"THERMODYNAMIC ANALYSIS OF AIR CONDITIONING SYSTEM USING WASTE HEAT OF STEEL PLANT"

Submitted to Delhi Technological University in Partial Fulfilment of the Requirement for the Award of the Degree of

Master of Technology In Mechanical Engineering

With specialization in Renewable Energy Technology

By SAURABH (2K13/RET/09)

Under the guidance of DR.RAJESH KUMAR (Associate Professor)

Department of Mechanical Engineering

DELHI TECHNOLOGICAL UNIVERSITY

Shahabad Daulatpur Bawana Road, Delhi-110042, INDIA SESSION 2013-15

CERTIFICATE

This is to certify that the project entitled "Thermodynamic Analysis Air conditioning system Using Waste Heat of Steel Plant" being submitted by me, is a bonafide record of my own work carried by me under the guidance and supervision of Dr. Rajesh Kumar (Associate Professor) in partial fulfilment of requirements for the award of the Degree of Master of Technology in Renewable Energy Technology from Department of Mechanical Engineering, Delhi Technological University, Delhi.

The matter embodied in this project either full or in part have not been submitted to any other institution or University for the award of any other Diploma or Degree or any other purpose what so ever.

Saurabh Registration Number: DTU/13/M-Tech/200 University Roll Number: 2K13/RET/09

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

DR.RAJESH KUMAR

(Associate Professor)

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

Shahabad Daulatpur, Bawana Road, Delhi-110042, India

ACKNOWLEDGMENTS

I have a great pleasure in expressing my deep sense of gratitude and indebtedness to Dr. Rajesh Kumar of Mechanical Engineering Department, Delhi Technological University for his continuous guidance, invaluable suggestion and exquisite time at all stages from conceptualization to experimental and final completion of this project work. I also wish to place on record the patience and understanding shown by Sir at critical situations. Along with academics, I learnt from him the resilience to undertake challenges that the research world would be putting my way.

I am also grateful to Prof. (Dr.) R. S. Mishra, Head, Department of Mechanical Engineering, Delhi Technological University for providing the experimental facilities. His constant support, co-operation and encouragement for successful completion of this work.

I also express my deepest respect and obligation to Miss Lalita Biruli, (Deputy Manager, SAIL, BSL) for his assistance and facilities provided by BSL (Bokaro Steel Limited) for experiments, required for the completion of this special subject.

This research work would not have become possible without strong cooperation, immense support and keen involvement of my friends and colleagues specially Mr. Surender Kumar, Santosh Kumar, Aadish Jain and Chandra Shekhar Som.

All my academic pursuits become a noticeable just because of my parents, Mr. Ramesh Chander and Mrs. Shashi Kanti who played a crucial role at each step providing encouragement and support. My sincere thanks to entire dear and near for their contribution directly or indirectly for accomplishing this arduous task.

Above all, I owe it all to Almighty God for granting me the wisdom, health and strength to undertake this research task and enabling me to its completion.

Saurabh University Roll Number: 2K13/RET/09

Abstract

This report is concerned with an idea of Air conditioning in an integrated steel plant using waste heat recovery unit and vapour absorption refrigeration system. As we know that in an integrated steel plant hot metal is produced in blast furnace and this hot metal is converted in to steel in LD converter. This molten steel is casted in to slabs and ingots for the production of HR coils, CR coils and Rails etc. In all these processes lot of heat input is required and out of which lot of heat is rejected to the atmosphere in the form of waste heat. During casting of slabs in continuous casting shop of the steel plant cooling of molten steel takes place and the heat stored in the steel is rejected to the atmosphere, we can use this waste heat using a waste heat recovery system. This waste energy or heat can be used to carry out different processes and one of them is Air conditioning.

List of Figures

S.No.	Figure Name	Page No.	
1.	Waste heat energy recovery using a recuperator	8	
2.	Metallic Radiation recuperator	8	
3.	Convective recuperator	9	
4.	Convective cum Radiative recuperator	10	
5.	Ceramic recuperator	11	
6.	Regenerator		
7.	Heat Wheel	12	
8.	Heat pipe	14	
9.	Basic Absorption Refrigeration Cycle	22	
10.	Flow circuitry of Lithium Bromide absorption refrigeration system	23	
11.	Enthalpy Temperature Concentration diagram for H ₂ O-LiBr solution	26	
12.	Double Drum type Lithium Bromide Water system	29	
13.	Single Drum type Lithium Bromide Water system	30	
14.	Double effect Lithium Bromide Water system	30	
15.	Double effect Lithium Bromide Water system	32	
16.	Flow diagram of Bokaro steel Limited	35	
17.	Flow diagram of coke oven and by product plant	44	
18.	Flow diagram of CCS	45	

List of Tables

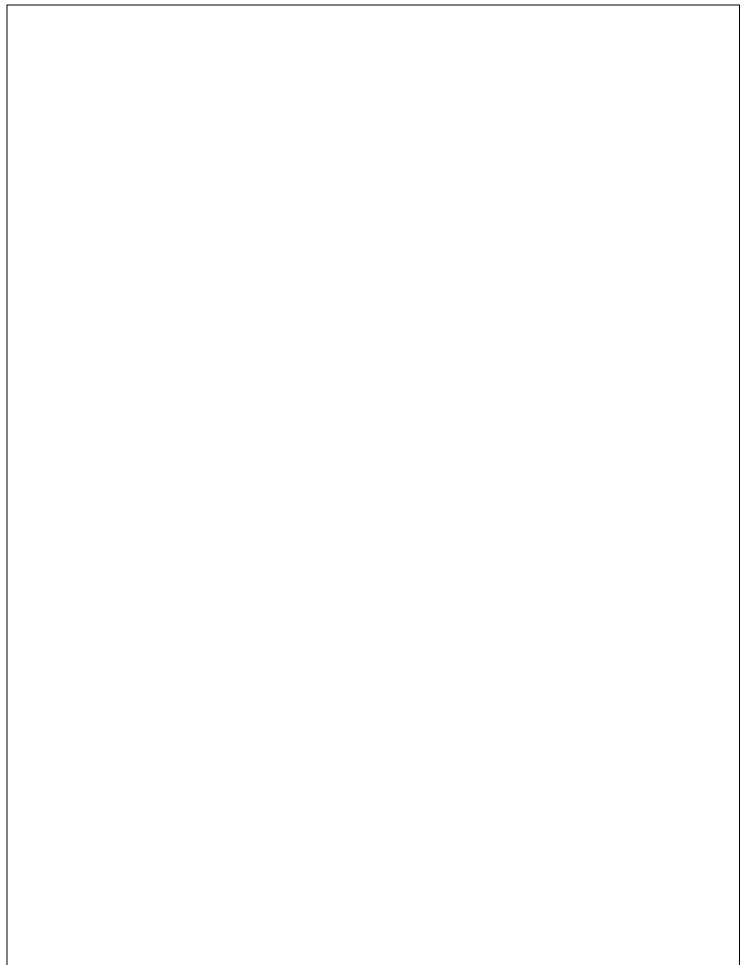

S.NO.	Table Name	Page No.		
1.	Quality and Sources of Waste heat	3		
2.	Different sources of high temperature range waste heat	4		
3.	Different sources of medium temperature range waste heat	5		
4.	Different sources of low temperature range waste heat	6		
5.	Statistics for a single stage Li-Br-H ₂ O system			
6.	Assumptions done for the calculation energy consumption and waste heat in a steel plant			
7.	Estimation of waste heat lost in exhaust gases			
8.	Exhaust gases composition	37		
9.	Average exhausts temperature of exhaust gases	37		
10.	Estimation of Waste heat in Coke Oven gas	37		
11.	Estimation of Waste heat in Blast Furnace gas	38		
12.	Estimation Waste heat in Basic Oxygen Furnace Off gas	38		
13.	Characteristics of fuel gases used in an Bokaro steel plant			
14.	C.V of Mixed gas used in Bokaro Steel plant	40		
15.	Important Energy Parameters at Bokaro Steel Plant	40		

TABLE OF CONTENTS				
TITLE	PAGE NO.			
I. Certificate	ii			
II. Acknowledgements	iii			
III. Abstract	iv			
IV. List of Figures	V			
V. List of tables	vi			
Table of Contents	vii			
Important Notations	viii			
1. Introduction	1			
1.1 Introduction to the idea of waste heat recovery	1			
1.2 Major components of the system	1			
1.3 Recovery of waste heat 2				
1.4 Advantages of recovery of waste heat 6				
1.5 Development of a waste heat recovery unit	7			
1.6 Economic assessment of Waste heat recovery unit	7			
1.7 Devices for recovery of waste heat	8			
2. Literature Review	16			
3. Research Gap and Proposal	21			
3.1 Research Gap	21			
3.2 Objective	21			
3.3 Probable Advantages of the system	21			
4. Analysis of Lithium Bromide Vapour Absorption system	22			

4.1 Lithium Bromide Water solutions properties		
4.2 Problems related to the Lithium Bromide Water systems		
4.3 Commercial systems	28	
4.4 Heat Sources for Lithium Bromide Water system	32	
4.5 Capacity control	34	
5. Sources of waste heat in an ISP	35	
6. Calculations for the Waste heat losses in an ISP	36	
7. Energy analysis & Production Data of an ISP	39	
7.1 Introduction	39	
7.2 Production data of Bokaro Steel Plant for month Feb. 2015	41	
7.3 Coke Oven	43	
7.4 Continuous Casting shop	45	
7.5 Cold Rolling Mill	46	
7.6 Hot Strip Mill	47	
8. Result and Conclusion	49	
9. References	50	

Important Notations

S.NO.	Notation	Definition
1.	CCS	Continuous Casting Shop
2.	HSM	Hot Strip Mill
3.	SM	Slabbing Mill
4.	COG	Coke Oven Gas
5.	B.F	Blast Furnace
6.	°C	Degree Celsius
7.	K	Kelvin
8.	Т	Ton
9.	m	Meter
10.	HR	Hot Rolled
11.	CR	Cold Rolled
12.	HRCF	Hot Rolled Coil Finishing
13.	CRM	Cold Rolling Mill
14.	М	Mega
15.	k	Kilo
16.	Cal	Calorie
17.	C.D.I	Coal Dust Injection
18.	SMS	Steel Melting Shop
19.	cm	centimetre
20.	hr	Hour
21.	COP	Coefficient of Performance
22.	Btu	British thermal unit
23.	°F	Degree Fahrenheit
24.	CO	Carbon Monoxide gas
25.	CO ₂	Carbon Dioxide gas
26.	H_2	Hydrogen gas
27.	CH ₄	Methane gas
28.	CBM	Coal Bed Methane
29.	Cons.	Consumption
30.	Ref.	Reference
31.	V-A	Vapour Absorption
32.	ISP	Integrated Steel Plant
33.	thm	Ton of Hot metal
34.	tcs	Ton of Crude Steel
35.	tss	Ton of Saleable Steel
36.	Sp.	Specific
37.	Fig	Figure

