
 
1 

CHAPTER 1  

INTRODUCTION 
 
 

Turning is a very important machining process in which a single point cutting tool is used 

to remove unwanted material from the surface of a rotating cylindrical work piece. The 

cutting tool is fed linearly in a direction parallel to the axis of rotation. Turning is carried out 

on lathe that provides the power to turn the work-piece at a given rotational speed and feed to 

the cutting tool at specified rate and depth of cut. Therefore, three cutting parameters namely 

cutting speed, feed rate and depth of cut need to be optimized in a turning operation. Turning 

operation is one of the most important operations used for machine elements construction in 

manufacturing industries i.e. aerospace, automotive and shipping [1]. 

Turning is the machining operation that produces cylindrical parts.  In its basic form, it 

can be defined as the machining of an external surface: 

   With the work piece rotating. 

   With a single-point cutting tool, and  

   With  the cutting tool feeding parallel to  the  axis of  the work  piece and  at  a  

distance  that  will remove  the outer  surface  of    the work. 

      

Whenever two machined surfaces have relative motion with each other, the quality of the 

surfaces play an important role in the performance and wear of the mating parts. The height, 

shape, arrangement and direction of these surface irregularities on the work piece depend 

upon a number of factors such as cutting speed, feed and depth of cut [14]. Turning is the 

removal of unwanted metal from the outer diameter of a rotating cylindrical work-piece. It is 

used to reduce the diameter of the work- piece, usually to a specified dimension, and finish 

the cylindrical work-piece surface. Turning is the machining operation that produces 

cylindrical parts. In its basic form, it can be defined as the machining of an external work-

piece surface. 
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Fig. 1.1: Adjustable parameters in turning operation [12] 

Turning is carried out on a lathe machine that provides the power to turn the work-piece 

at a given rotational speed and feed is given to the cutting tool at specified rate and depth of 

cut. Therefore, three cutting parameters namely cutting speed, feed and depth of cut need to 

be determined in the turning operation [14].  The purpose of turning operation is to remove 

unwanted material from the work-piece surface and produces better quality of surface finish 

of the parts. Surface    roughness   is   another   important   factor   to   evaluate    machining 

performance. Proper selection of cutting parameters can produce precise and lower surface 

roughness. So it is needed to optimize the process parameters such as cutting speed, feed and 

depth of cut to improve the response like material removal rate and surface roughness in a 

turning operation. 

 1.1 Turning parameters 

The turning parameters such as cutting speed, feed and depth of cut play an important role 

in the production of quality product. Whenever two machined surfaces come  in  contact  

with  each other,  the  quality  of  the mating  parts  plays  an  important   role   in   the 

performance and wear of the mating parts.  The height, shape, arrangement and direction of 

these surface irregularities on the work-piece depend upon number of factors which are given 

below. 

1.1.1 Depth of cut:  

It is the thickness of the layer to be removed (in a single pass) from the work-piece or the 

distance from the uncut surface of the work-piece to the cut surface, expressed in mm. It is 

important to note, though, that the diameter of the work-piece is reduced by two times the 

depth of cut because this layer is being removed from both sides of the work-piece. 
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      dcut =    mm 

2 

Here, D and d represent initial and final diameter (in mm) of the job respectively. On the 

increase of depth of cut, increases the cutting resistance and the amplitude of vibrations as 

well as increases the temperature at the tool work-piece interface. Therefore, the surface 

quality of the work-piece deteriorated. 

1.1.2 Feed: 

Feed is always given to the cutting tool in the turning operation, and it is the rate at which 

the tool advances along its cutting path. On most power-fed lathes, the feed rate is directly 

related to the spindle speed and is expressed in mm (of tool advance) per revolution (of the 

spindle), or mm/rev. 

Fm = f N mm/min
 

Here, Fm is the feed in mm per minute, f is the feed in mm/rev and N is the spindle speed 

in RPM. Experiments show that as the feed rate increases, the surface roughness also 

increases due to the increase in cutting force and vibration. 

1.1.3 Cutting speed: 

Speed is always given to the work piece in the turning operation. When it is stated in 

revolutions per minute (rpm) it tells their rotating speed. But the important feature for a 

particular turning operation is the surface speed, or the speed at which the work-piece 

material is moving past the cutting tool. It is simply the product of the rotating speed times 

the circumference of the work-piece before the cut is started. It is expressed in meter per 

minute (m/min), and it refers only to the work-piece. Every different diameter on a work-

piece will have a different cutting speed, even though the rotating speed remains the same. 

 

     V =  m/min 

1000 

Here, “V” is the cutting speed in turning operation, “D” is the initial diameter of the 

work-piece in mm, and N is the spindle speed in rpm. It is found that an increase of cutting 

speed generally improves the surface quality of the product. 
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1.2 Surface roughness 

The surface roughness was done as coarse, rough, medium and fine. The hand feel and 

visional inspection were used for theses classifications. There are many ways to define 

surface roughness depending on its applications like Ra, Rt, Rq, Rk, but roughness average 

Ra is widely used in industry for the mechanical components for indication of surface 

roughness, also known as arithmetic aver-age (AA) or centre line average (CLA) [ISO-4287, 

1997]. Is the area between surface profile and centre line [13], hence in this study Ra is used 

for indication of surface roughness.  

               L 

Ra =      Y (x)  dx 

          L   0 

Whereas L is the sample length, Y(x) is the profile along the direction x. Also  

                  n 

Ra =         yi   

          n    i=1 

Where n is the total number of samples and Yi is the height of profile at ith position. Surface 

roughness plays an important role in product quality. X. Wang [4] focuses on developing an 

empirical model for the prediction of surface. The model considers the following working 

parameters: work piece hardness (material), feed, depth of cut, spindle speed [5]. 

 

1.3 Material Removal Rate 

The material removal rate (MRR) in turning operations is the volume of material or metal 

that is removed per unit time in mm3/sec. For each revolution of the work piece, a ring 

shaped layer of material is removed. Material removal rate has been calculated as per 

following equation. 

 

MRR=     f  N 

4 

Here, D1 is the initial and D2 is the final diameter of work-piece, f is the feed rate and N is 

the spindle speed [3]. 

 

MRR (gm/min) =   

       t 

 

Where, Wi = Initial weight of work piece material (gm.), Wf = Final weight of work piece 

material (gm.), t = Time period of trials in minutes [10]. 

1 

1 

(D1
2 – D2

2) 

Wi – Wf 
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1.4 Selection of work-piece Material 

Turning is characterized by gradual material removal in the form of chips. It is provide 

dimension accuracy and surface quality to the work-piece. Its objective is to fulfill the 

function requirement of the object, work better, perform better and render longer service life. 

The chips forming during the turning is an important index of machining [22]. The chips 

configuration and color is a qualitative measure to check whether ongoing machining is 

favorable or not favorable. By the chip one can understand the type of material is machining. 

So if the type of chips are discontinuous it means that the work material behaving brittle. If 

the chips form are continuous the work material behaving brittle. If the chips are ribbon type 

continuous it means the work material behaving hard material [12].  

EN-31 tool steel material is a hard material. This material is used for ball and roller 

bearings, spinning tools, bearing rolls, punches and dies. As per its nature, this type of tool 

steel has high resisting properties against wear and can be used for components which are 

subjected to sever abrasion, wear or high surface loading, due to its characteristics it is also 

used in bearing materials. It is also called as bearing material. 
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CHAPTER 2  

LITERATURE REVIEW  

 

The conventional solution to finishing hard material parts (50-70 HRC) has been 

grinding, but there are a number of befits to the machining of hard materials with a cutting 

tool. Turning of hard material was early recognized and pioneered by the automotive industry 

as a means of improving the manufacturing of transmission components. Gear wheel and 

bearing surface are a great example of early applications converted from grinding to 

machining [11]. A common method to manufacture parts to a specific dimension involves the 

removal of excess material by machining operation with the help of cutting tool. Turning 

process is the one of the methods to remove material from cylindrical and non-cylindrical 

parts. There are three turning parameters like cutting speed, feed and depth of cut. For better 

quality of product, the surface roughness, Material removal rate and maximum temperature 

should be kept in mind. Here presents some papers for this project. 

  

A.Pal et al. (2014) experimental investigated to assess the machinability of hard AISI 

4340 steel through mathematical modeling during hard turning (> 45 HRC) and soft turning 

(< 45 HRC) with TiC mixed alumina ceramic tool. Effect of work-piece hardness and turning 

parameters (cutting speed, feed and depth of cut) on different responses (chip-tool interface 

temperature, cutting forces and surface roughness) were analyzed by performing ANOVA 

technique. They have measured the chip-tool interface temperature with tool-work 

thermocouple. They have planned the experiment design by central rotatable composite 

design technique (CCD). They have measured the cutting forces piezoelectric dynamometer. 

They have used conventional lathe machine. They have observed that the surface roughness 

decreases with increase in hardness level of work-piece. The reason is the grain size of the 

work-piece decreases resulting in smaller size of craters on the turned surface due to removal 

of grains and hence, decreases in roughness value. They have concluded that interface 

temperature increases with increase in hardness. 

 

S. Harish et al. (2009) studied the potential of cryogenic treatment on toughness of the 

EN-31 tool steel, the impact behavior of EN-31 tool steel by fractography analysis and to 

quantify the improvement in hardness. They have used vicker hardness tester to measurement 

hardness and charpy instrumented impact test with strain gauges to check the impact load. 

They have concluded that the toughness of different work-pieces of EN-31 tool steel (bearing 
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steel) after remains the same in charpy impact test. They have also concluded that the 

microstructure analysis reveals the formation of fine carbide particles in the martensite matrix 

as a result of tempering. So, cryogenic treatment should be followed by tempering for 

hardness augmentation and wear resistance improvement.  

 

A. Yadav et al. (2012) focused on the investigation of affect of cutting speed, feed, depth 

of cut on hardness of work-piece in turning. They selected EN-8 as experimental work-piece 

material. They adopt Taguchi’s method in the design of experiments for designing process 

and applying maximize S/N ratio for analyzing the experiments data. For measuring of 

hardness, they use Rockwell hardness tester. In their analysis they observed that as the cutting 

speed increases, hardness decreases, but after further increasing the cutting speed, the 

hardness also increases. They have observed that the hardness of work-piece increases as the 

feed rate changed from 0.15 mm/rev to 0.3 mm/rev and 0.3 mm/rev to 0.45 mm/rev, again 

they observed that as the depth of cut increases from 0.8 mm to 1.00 mm but as it further 

increases hardness decreases. They have performed the machining operation on medium duty 

conventional lathe machine. 

 

A.Belloufi et al. (2013) presented a new optimization technique (hybrid genetic 

algorithm with the help of sequential quadratic programming) to determine the optimal 

turning parameters that minimize the production unit cost in multi pass turning processes. 

They have not selected any specific work-piece and tool. They have checked the result of 

their proposed technique by comparing it with literature results. They have proposed their 

technique to implement any kind of work-piece material and any kind of tool. 

 

P. P. Kulkarni et al. (2014) determined the effect of cutting fluids and turning 

parameters on chip formation mode and cycle time in turning of EN-24 alloy steel and EN-

31tool steel. They have employed soluble oil and vegetable oil (palm oil) as cutting fluids. 

They have found that that the surface finish and material removal rate improved by using 

vegetable oil. Vegetable oil is much better compare to soluble oil in terms of color and shape 

of chips. They have observed that at higher speed, the ribbon type continuous chips produced 

under wet and dry condition and at lower speed and feed, less tubular and continuous helical 

shaped chips developed. They have concluded that ribbon type continuous chips at higher 

cutting speed of 710rpm with burnish blue color. They have performed the experiments on 
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conventional lathe machine and they have selected very small values of level of independent 

variables. 

 

L. B. Abhang et al. (2010) focused on the optimization of the power consumption during 

turning operation. They used EN-31 tool steel material as the work-piece for their 

experiments. They used ANOVA for analysis of experimental data. They find feed rate has 

the most significant effect on the power, followed by depth of cut, tool nose radius and 

cutting speed. They also concluded that at the minimum value of cutting speed, feed rate, 

depth of cut and tool nose radius, the power consumption has the lowest value and vice-versa. 

They have used conventional lathe machine. They have not got the optimum values of 

turning parameters. 

 

 S. Thamizhmanii et al. (2007) investigated the optimum turning parameters for 

minimum surface roughness in turning SCM 440 alloy steel by using Taguchi method and 

ANOVA. They have used coated ceramic cutting tool. They have found that depth of cut is a 

dominating factor to produce lower surface roughness followed by feed. They also observed 

that the cutting speed has not play a major role on surface roughness. They have concluded 

that for minimum surface roughness, the value of depth of cut should be in the range of 1 to 

1.5mm. They used soft material in comparison of EN-31 tool steel. They have selected small 

value of feed levels. 

 

 

Panda et al. (2014) studied on hard turning of EN-31 tool steel (55HRC) using 

TiN/TiCN/Al2O3 multilayer coated carbide inserts through Taguchi design and investigates 

surface roughness under dry environment. The machining operations were performed on 

CNC lathe machine. They used coated carbide inserts (TiN / TiCN / Al2O3) for machining. 

The surface roughness was measured by Taylor Hobson (Surtronic 25) surface roughness 

tester. They used Taguchi method for designing and optimization. ANOVA used for analysis 

purpose. They have concluded that the surface quality of machined work-piece can achieve 

better by using coated carbide inserts.  And feed is the most dominant factor in subject to the 

surface roughness. They have got the optimum value for minimum surface roughness of 

turning parameters are cutting speed 110 m/min, feed 0.04 mm/rev and depth of cut 0.4 mm. 

They have selected small value of level of depth of cut and feed. 
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K. Adarsh Kumar et al. (2012) focused on the analysis of optimum cutting conditions 

(like cutting Speed, Feed rate, Depth of cut) to get lowest surface roughness of EN-8 in 

facing operation by regression analysis. They have taken coated ceramic tool for machining 

the work-piece. They have used multiple regression modeling method for optimization. They 

measured the surface roughness by using Mitutoyo SJ-310 instrument. Mini-Tab software 

was used for Regression analysis. They observed that the effect of feed rate is having greater 

effect as compared to cutting speed, and also observed that as the feed rate increasing, the 

surface roughness is also increases. They have used conventional lathe machine for 

machining operations. They have selected only three levels.  

 

H. K. Dave et al. (2012)  presents the analysis and optimization of cutting parameters 

like cutting speed, feed and depth of cut, to get the lowest surface roughness and maximum 

material removal rate in CNC dry turning by using TiN coated cutting tools. They have taken 

different grades of EN materials. They have employed Taguchi method for experimental 

design and ANOVA & s/n ratio approach for analysis purpose. They have observed in their 

experiments and analysis that for high material removal rate, the depth of cut is a dominating 

factor and for lower surface roughness, the insert has play a significant role. They also 

concluded that by increasing the speed, material removal rate will increase and for getting the 

higher material removal rate, the positive insert is preferred than negative insert. They have 

selected only two levels of independent variables. 

 

C. R. Barik et al. (2012) focused on the optimization of turning parameters (i.e. cutting 

speed, feed, depth of cut) by applying the genetic algorithm in CNC turning of EN-31 tool 

steel, and also analyzed the effect of turning parameters on surface roughness with the help of 

Response Surface Methodology. They have found in their experiments, as the spindle speed 

and depth of cut increases, the surface roughness decreases and with increasing the feed rate 

the surface roughness increases. They have got the optimum value of cutting speed 2000 rpm, 

feed 0.1 mm/rev and depth of cut 0.1mm. They have selected only three levels of independent 

variables. The values of depth of cut are very small. 

 

L. B. Abhang et al. (2011) studied on the behavior of turning parameters (like cutting 

speed, feed and depth of cut) with tool-nose radius and concentration of solid-liquid 

lubricant, on the surface roughness of EN-31 tool steel during turning operation. They have 

employed response surface methodology along with design of experiments for design of 
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process and analysis of variance (ANOVA) for analyze the process parameters. They have 

found that as the feed and depth of cut increases, the surface roughness increases but while 

cutting speed, tool-nose radius and concentration of solid-liquid lubricant increasing, the 

surface roughness decreases. They have taken conventional lathe machine for experiments 

and three levels of independent variables.  

 

 

A. H. Suhail et al. (2010) experimental studied to analyze the turning parameters on 

surface roughness and work-piece surface temperature, and then found the optimum value of 

turning parameters. They have measured the work-piece surface temperature by an infrared 

thermometer. They employed medium carbon steel AISI 1020 as work-piece material. They 

have concluded that at1400 rpm cutting speed, 0.05 mm/rev feed and 1.5mm depth of cut 

give higher surface temperature. They have found that the higher surface temperature gives 

better surface roughness.  

 

 L.B.Abhang et al. (2010) experimentally measured the chip-tool interface temperature 

during turning of EN-31 tool steel with tungsten carbide inserts. They have measured the 

chip-tool interface temperature with the help of thermocouple technique. They have used 

response surface methodology with design of experiments and for analysis of experimental 

data, they have employed ANOVA. They have concluded that cutting speed is the 

dominating factor on chip-tool interface temperature. They also concluded that by increasing 

the cutting speed, feed and depth of cut, the chip-tool interface temperature increases but if 

tool-nose radius increases, the chip-tool interface temperature decreases. They have 

performed the experiments on conventional lathe machine and they have selected very small 

values of level of depth of cut. They have taken only three levels of independent variables. 

 

S. R. Das et al. (2012) presented minimum tool wear and low work-piece surface 

temperature by optimizing the turning parameters in dry turning of AISI D2 steel. They have 

used Taguchi and ANOVA for optimization. AISI steel is widely uses in manufacturing tool 

in mould industries. They have used CNC machine. They have measured the wok-piece 

surface temperature with the help of infrared thermometer. They have selected three levels of 

independent variables. They have found that at 150 m/min cutting speed, 0.5 mm depth of cut 

and 0.25 mm/rev feed, the tool wear and work-piece surface temperature are lower. They 
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have concluded that depth of cut and cutting speed is the major factor in case of tool wear and 

the lower surface temperature gives minimum tool wear on the cutting tools. 

 

S. S. Acharya et al. (2014) studied on optimization of surface roughness, material 

removal rate, machining time in wet and minimum quantity lubricant (MQL) system in 

turning of hard EN-31 tool steel. They have taken four independent variables like cutting 

speed, feed, depth of cut and insert nose radius. They have employed response surface 

methodology in design of experiments. They have found that minimum quantity lubrication 

system reduced the cutting zone temperature properly and very fast. They have concluded 

that feed rate has played a significant role on surface roughness and depth of cut is a 

dominating factor in tool wear. 

 

N. Uppal et al. (2013) presented an experimental study on the optimization process of 

turning parameters for maximize the material removal rate of hardened AISI 4041 die alloy 

steel during turning operation. They have employed Taguchi’s design of experiments and 

ANOVA in their experiments. They have got the optimum machining condition for MRR 

with cutting speed (300 rpm), feed rate (0.06 mm/rev), and depth of cut (0.2 mm). They have 

found that the material removal rate increases by increasing the cutting speed and feed but the 

material removal rate decreases by increasing the depth of cut. They performed the 

machining operations on conventional lathe machine. 

 

2.1 Research Gap 

In the above research papers, the point is clear that the turning parameters like cutting 

speed, feed and depth of cut should be optimized so that the product surface finish can be 

obtained better with maximum material removal rate and with better quality of product. In 

most research papers, they have used conventional lathe machine. In maximum cases only 

three levels of independent variables have taken. So variety of experiments is not possible. 

They have taken very small ranges of independent variables. The temperature analysis at 

chip-tool interface temperature has not been considered accurately in the previous research 

work.  
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2.2 Research Objectives  

The objective of this project is to get the optimized value of turning parameters so as to 

get the minimum value of surface roughness, maximum value of material removal rate and 

limiting value of maximum temperature of work-piece. 

 Preparation of samples of EN-31for experimentation work. 

 Conduct of experiment on CNC lathe machine. 

 Statistical analysis of turning parameters for the response such as surface roughness, 

material removal rate and maximum temperature at tool-work-piece interface. 

 Optimum selection of process parameters for the response such as surface roughness, 

material removal rate and maximum temperature at tool-work-piece interface using 

response surface methodology. 
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CHAPTER 3  

EXPERIMENTAL WORK 

 

 
The experiments have been conducted on EN-31 tool steel using CNC lathe machine (LL 

20T L3) under dry condition. The size of the Work-piece of EN-31 tool steel material is of 20 

mm diameter and 100 mm of length. In this project 20 numbers of work-piece have taken. 

The composition and mechanical properties of work-piece material is given below 

 

3.1 Material composition and mechanical properties 

The material used for the experiments is grade EN-31 steel, which is popularly named as 

bearing material. It is used in automotive type applications, like axle, bearings, spindle and 

molding dies etc. En-31 tool steel is a high quality alloy steel, having good ductility and 

shock resisting properties combined with resistance to wear. This steel is basically uses in 

bearing production in industry sector. This is also uses in rolling pipe industry as a roller. The 

versatile properties of EN-31 tool steel render them suitable for applications in manufacturing 

industries.                     

 

 

 

 

Fig 3.1.1: EN-31 work-piece 

The chemical composition and Mechanical properties of the En-31 tool steel are shown in 

the table.  

Table 3.1: Chemical composition of EN-31 tool steel 

Chemical composition Min % Max % 

Carbon 0.90 1.02 

Silicon 0.10 0.35 

Manganese 0.30 0.75 

Chromium 1.00 1.60 

Phosphorous 0 0.040 

Sulphur 0 0.040 
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Table 3.2: Mechanical properties of EN-31 tool steel  

Element Objective 

Tensile Strength 750 N/mm
2
 

Yield Stress 450 N/mm
2
 

Elongation 30 % 

Density 7.8 Kg/m
3
 

Hardness 63 HRC 

 

 3.2 Selection of tool 

To perform the turning operation on CNC lath machine choose the cutting tool coated 

(TiN) carbides (Tungsten) inserts CNMG 120408-THM-F (80
0 

diamond shaped insert). 

Double-sided 80° rhombic inserts, positive rake angle that varies along the edge to negative 

in order to prevent chipping. Special design reduces chattering.  

 

 

 

 

 

Fig 3.2.1: Coated carbide insert 

 

This insert has the following characteristics: 

 Increased speed capability, even when the time in cut is long. 

 High metal removal rates, ideal for roughing and semi-roughing operations. 

 Fewer machine offsets. 

 Longer times between insert indexes. 

 Ability to machine harder parts. 

 Ability to hold tighter tolerances. 
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3.3 Experimental setup used 

3.3.1 CNC machine 

CNC Machining is a process used in the manufacturing sector that involves the use of 

computers to control machine tools. CNC Machining stands for Computer Numerical 

Control. A computer program is customized for an object and the machines are programmed 

with CNC machining language (called G-code, M-codes) that essentially controls all features 

like feed rate, coordination, location and speeds. With CNC machining, the computer can 

control exact positioning and velocity. CNC machining is used in manufacturing both metal 

and plastic parts. There are many advantages to using CNC Machining. The process is more 

precise than manual machining, and can be repeated in exactly the same manner over and 

over again. Because of the precision possible with CNC Machining, this process can produce 

complex shapes that would be almost impossible to achieve with manual machining. CNC 

Machining is used in the production of many complex three-dimensional shapes. It is because 

of these qualities that CNC Machining is used in jobs that need a high level of precision or 

very repetitive tasks. 

 

Figure 3.3.1: CNC Turning Machine 

The CNC machine comprises of the computer in which the program is fed for cutting of the 

metal of the job as per the requirements. Motion is controlled along multiple axes, normally 

at least two (X and Y), and a tool spindle that moves in the Z (depth). The position of the tool 

is driven by motors through a series of step down gears in order to provide highly accurate 

movements, or in modern designs, direct-drive stepper motor or servo motors. Open-loop 

control works as long as the forces are kept small enough and speeds are not too great. On 

commercial metalworking machines, closed loop controls are standard and required in order 

http://en.wikipedia.org/wiki/Stepper_motor
http://en.wikipedia.org/wiki/Open-loop_control
http://en.wikipedia.org/wiki/Open-loop_control
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to provide the accuracy, speed, and repeatability demanded. All the cutting processes that are 

to be carried out and all the final dimensions are fed into the computer via the program. The 

computer thus knows what exactly is to be done and carries out all the cutting processes. 

CNC machine works like the Robot, which has to be fed with the program and it follows all 

the instructions.  

a. Some G-codes used in the experimentation are 

G00 - Rapid Positioning G21 - Input in Metric 

G01 - Linear Interpolation G27 - Reference Point Return Check 

G02 - Circular Interpolation CW G28 - Automatic Zero Return 

G03 - Circular Interpolation CCW G29 - Return from Zero Position 

G20 - Input in Inches 
 

  
b. Some of M-codes used in the experimentation are 

M00 - Program Stop M04 - Spindle Counter Clockwise 

M01 - Optional Program Stop M08 - Coolant 2 On 

M02 - Program End M09 - Coolant Off 

M03 - Spindle Clockwise M30 - End Progarm, Return to Start 

c. Programming of CNC machine 

Progamme No. 07 

N010 G28 U0.0; 

N020 G28 W0.0; 

N030 T0707; 

N040 G97 S2100 M03; 

N050 G00 X50.0 Z50.0; 

N060 G00 X20.0 Z10.0; 

N070 G01 Z5.0 F0.05; 
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N080 G01 X19.0; 

N090 G01 Z-70.0; 

N100 G01 X40.0; 

N110 G00 G28 U0.0; 

N120 G28 W0.0; 

N130 M30 

3.3.2 Thermal image Infrared Camera 

In this project use a high performance, 320 x 240 infrared camera. Laser Sharp Auto 

Focus - get consistently in-focus images every single time. This instrument utilizing precision 

laser technology, focus on the target with pinpoint accuracy and get the correct image and 

temperature measurements, where needed. This instrument captures visual and infrared 

images – only with Fusion technology with Auto Blend mode faster communication with 

wireless image transfer directly to PC.  

 

Fig 3.3.2: Infrared Camera for thermal Image 

It is One-handed, easy-to-use interface Touch screen Display (Capacitive) 8.9 cm (3.5 in) 

diagonal landscape color VGA (640 x 480) LCD with backlight for quick menu navigation 

Capture additional digital images to show location or additional site details with Annotation 

System Voice recording and annotation gets additional details saved with the image file. It 

has optional interchangeable lenses for greater flexibility in additional applications 

Rechargeable, field replaceable smart batteries with five-segment LED display to show 

charge levels High-temperature measurement up to 1200°C, 5 MP industrial-performance 

digital camera for high definition image quality. 
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   Fig 3.3.3: Infrared camera picture       Fig 3.3.4: 3D graph generate by software  

Table 3.3.1: Image Info generate by software 

Sl. No. Pareameter Reading  

1 Background Temperature 25.0°C 

2 Emissivity 0.95 

3 Transmission  1.00 

4 Average temperature 36.4°C 

5 Image range  35.4°C to 54.8°C 

6 Camera Model Ti400 

7 IR sensor size  320 x 240 

8 Camera manufacturer Fluke Thermography 

 

Table 3.3.2: Reading of Image Markers 

Sl. 

No. 

Avg. temp Min. temp. Max. temp. Emissivity Background 

temp. 

St. Dev. 

1 38.0°C 36.5°C 41.2°C 0.95 25.0°C 1.05 
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3.3.3 Surface roughness analyzer 

The major output parameter of this project is Surface roughness. For measuring the 

surface roughness, employed taylor hobson’s form talysurf Intra profilometer. This 

profilometer has the features of a full millimeter of range, a wide selection of interchangeable 

styli and a patented calibration routine, the Intra system is ideal for almost all high precision 

applications. The picture of calibration setup is shown in fig 3.3.4. 

 

 

Fig 3.3.5: Setup of Surface roughness measurement 

 
The Talysurf instrument is a portable, self-contained instrument for the measurement of 

surface texture. The parameter evaluations are microprocessor based. The instrument is 

powered by non-rechargeable alkaline battery (9V). It is equipped with a diamond stylus 

having a tip radius 5 μm. The measuring stroke always starts from the extreme outward 

position. At the end of the measurement the pickup returns to the position ready for the next 

measurement. The selection of cut-off length determines the traverse length. Roughness 

measurements, in the transverse direction, on the work pieces have been repeated five times 

and average of five measurements of surface roughness parameter values has been recorded. 

The measured profile has been digitized and processed through the dedicated advanced 

surface finish analysis software Talyprofile for evaluation of the roughness parameters. 

Surface roughness measurement with the help of stylus has been shown in fig 3.3.6 
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RPM-2100, Feed- 0.15, Depth OF Cut- 0.25 mm 

 

 

Fig 3.3.6: Reading of surface roughness by software 
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Length = 4 mm  Pt = 7.26 µm  Scale = 10 µm

Parameters calculated on the profile DProfile

* Parameters calculated on the full length of the 

profile.

* A microroughness filtering is used, with a ratio 

of 2.5 µm.

Roughness Parameters, Gaussian filter, 0.8 mm

Ra = 1.35 µm

Ra = 1.35 µm

Rq = 1.52 µm

Rp = 3.4 µm

Rv = 2.52 µm

Rt = 5.92 µm

Rsk = 0.372 

Rku = 1.79 

Rz = 5.92 µm

Rmr = 7.08 % (1 µm under the highest peak)

Rdc = 3.17 µm (20%-80%)

RSm = 0.169 mm

RDq = 5.82 °

RLq = 0.0938 mm

RLo = 0.527 %

RzJIS = 4.56 µm

R3z = 5.66 µm

RPc = 5.94 pks/mm (+/- 0.5 µm)

Rc = 4.8 µm

Rfd = 1.38 

RHSC = 19 peaks (1 µm under the highest peak)

RDa = 3.95 °

RLa = 0.123 mm

Rmax = 5.92 µm

Rtm = 5.92 µm

Ry = 5.92 µm

RH = 4.51 µm

RD = 5.91 1/mm

RS = 0.118 mm

RVo = 0.00236 mm3/mm2 (80%)

RTp = 7.08 % (1 µm under the highest peak)

RHTp = 3.17 µm (20%-80%)

Rrms = 1.52 µm
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CHAPTER 4 

STATISTICAL ANALYSIS 

 

4.1 Design of Experiments  

Experimental design is a statistical technique that enables an investigator to conduct 

realistic experiments, analyze data efficiently, and draw meaningful conclusions from the 

analysis. The aim of scientific research is usually to show the statistical significance of an 

effect that a particular factor (input parameter/independent variable) exerts on the dependent 

variable (output/response) of interest. Specifically, the goal of design of experiment is to 

identify the optimum settings for the different factors that affect the production process. The 

primary reason for using statistically designed experiments is to obtain maximum information 

from minimum amount of resources being employed. An experiment (also called run) may be 

defined as a test in which purposeful changes are made to the input variables of a process so 

that the possible reasons for the changes in the output/response could be identified. The 

experimental strategy frequently practiced by the industries is one factor at-a time approach 

in which the experiments are carried out by varying one input factor and keeping the other 

input factors constant. This approach fails to analyze the combined effect, when all the input 

factors vary together which simultaneously govern the experimental response [23]. A well 

designed experiment is important because the results and conclusions that can be drawn from 

the experimental response depend to a large extent on the manner in which data were 

collected.  

4.2 Analysis of Variance (ANOVA)  

ANOVA is a statistical decision making tool, used to analyze the experimental data, for 

detecting any differences in the response means of the factors being tested. ANOVA is also 

needed for estimating the error variance for the factor effects and variance of the prediction 

error [23]. In general, the purpose of analysis of variance is to determine the relative 

magnitude of the effect of each factor and to identify the factors significantly affecting the 

response under consideration (objective function).  
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4.3 Process variables and their limits 

In the present project, spindle speed, feed and depth of cut have been considered as 

process variables. The process variables with their units (and notations) and their five limits 

are listed in Table 4.3.1. 

Table 4.3.1: Levels of independent variables and their limits 

Sl. 

No. 

Independent variables -1.68 -1.00 0.00 1.00 1.68 

1 Cutting speed (rpm) 1500 1800 2100 2400 2700 

2 Feed (mm/rev) 0.05 0.10 0.15 0.2 0.25 

3 Depth of cut (mm) 0.25 0.50 0.75 1.00 1.25 
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4.4 CASE STUDY 1 FOR SURFACE ROUGHNESS 
 

After selection of independent variables and their limits, the design of experiments gives 

the design of process of 20 materials, each having a combination of different levels of factors 

as shown in table 4.4.1, were carried out. 

Table 4.4.1: Design of experiment matrix (coded) for Ra 

Sl. 

No. 

Std Run Factor 1 

A: speed 

(rpm) 

Factor 2 

B: Feed 

(mm/rev) 

Factor 3 

C: DOC 

(mm) 

Response  

Ra (m) 

1 20 1 0.00 0.00 0.00 1.29 

2 13 2 0.00 0.00 -1.68 1.15 

3 7 3 -1.00 1.00 1.00 1.86 

4 2 4 1.00 -1.00 -1.00 0.706 

5 6 5 1.00 -1.00 1.00 0.92 

6 16 6 0.00 0.00 0.00 1.24 

7 9 7 -1.68 0.00 0.00 1.44 

8 17 8 0.00 0.00 0.00 1.28 

9 4 9 1.00 1.00 -1.00 1.16 

10 18 10 0.00 0.00 0.00 1.26 

11 10 11 1.68 0.00 0.00 0.75 

12 14 12 0.00 0.00 1.68 1.7 

13 3 13 -1.00 1.00 -1.00 1.55 

14 1 14 -1.00 -1.00 -1.00 1.14 

15 8 15 1.00 1.00 1.00 1.72 

16 19 16 0.00 0.00 0.00 1.31 

17 5 17 -1.00 -1.00 1.00 1.32 

18 12 18 0.00 1.68 0.00 1.82 

19 11 19 0.00 -1.68 0.00 0.9 

20 15 20 0.00 0.00 0.00 1.35 

 

In table 4.4.1 the design of matrix in coded form are shown, and their actual value of 

limits are shown if table 4.4.2 

Table 4.4.2: Design of experiment matrix (uncoded) for Ra 

Sl. 

No. 

Std Run Factor 1 

A: speed 

(rpm) 

Factor 2 

B: Feed 

(mm/rev) 

Factor 3 

C: DOC 

(mm) 

Response  

Ra (m) 

1 20 1 2100 0.15 0.75 1.29 

2 13 2 2100 0.15 0.25 1.15 

3 7 3 1800 0.20 1.00 1.86 

4 2 4 2400 0.10 0.50 0.706 

5 6 5 2400 0.10 1.00 0.92 

6 16 6 2100 0.15 0.75 1.24 

7 9 7 1500 0.15 0.75 1.44 

8 17 8 2100 0.15 0.75 1.28 

9 4 9 2400 0.20 0.50 1.16 
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10 18 10 2100 0.15 0.75 1.26 

11 10 11 2700 0.15 0.75 0.75 

12 14 12 2100 0.15 1.25 1.7 

13 3 13 1800 0.20 0.50 1.55 

14 1 14 1800 0.10 0.50 1.14 

15 8 15 2400 0.20 1.00 1.72 

16 19 16 2100 0.15 0.75 1.31 

17 5 17 1800 0.10 1.00 1.32 

18 12 18 2100 0.25 0.75 1.82 

19 11 19 2100 0.05 0.75 0.9 

20 15 20 2100 0.15 0.75 1.35 

 

The experiments were carried out on 20 work-pieces. The experimental data were entered 

in design of experiment matrix, and then get the design of summary. The design of summary 

are shown in the table 4.4.3 

Table 4.4.3: Design of summary for Ra 

Sl. 

No

. 

Factor 

Name Units Type Subtype Mini

mum 

Maxi

mum 

-1 

actual 

+1 

actual 

mea

n 
Std. 

Dev. 

1 A Speed rpm numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

2 B Feed mm/rev numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

3 C DOC mm numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

 

4.4.1 Result Analysis and Discussion 

After design of summary the experimental data are analyzed. During this analysis process 

get the response range from 0.706 to 1.86, ratio of max to min 2.63456. Then get the 

summary of quadratic, shown in table 4.4.4. In this summary get the sequential p-value of 

quadratic less than 0.0001, lack of fit p-value 0.3808, adjusted R-squared 0.9837 and 

predicted R-squared 0.9531, and this quadratic is suggested. In this evaluation module, a 

quadratic fit is done. For response surface quadratic model, no aliases (aliases are calculated 

based on the response selection, taking into account missing data points) found for quadratic 

model. 

Table 4.4.4: Summary of Quadratic for Ra 

Sl. 

No. 

Source Sequential 

p-value 

Lack of fit 

p-value 

Adjusted 

R-Squared 

Predicted 

R-Squared 

 

1 Linear < 0.0001 0.0079 0.8894 0.8320  

2 2FI 0.2495 0.0085 0.8997 0.8554  

3 Quadratic <0.0001 0.3808 0.9837 0.9531 Suggested 

4 Cubic 0.2169 0.8826 0.9883 0.9908 Aliased 

 

Sequential model sum of square (type-I) get in surface roughness analysis process, shown 
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in table 4.4.5. In this table it is clearly mentioned that the design of experiment suggested for 

quadratic Vs 2FI model. 

Table 4.4.5: Sequential Model Sum of Square (Type-1) for Ra 

Sl. 

No. 

Source Sum Of 

Squares 

df Mean 

Square 

F 

Value 

p-value  

prob>F 

 

1 Mean Vs Total 33.45 1 33.45    

2 Linear Vs Mean 1.85 3 0.62 51.91 < 0.0001  

3 2FI Vs Linear 0.050 3 0.017 1.55 0.2495  

4 Quadratic Vs 2FI 0.12 3 0.041 23.4 < 0.0001 Suggested 

5 Cubic Vs Quad 9.9210
-3

 4 2.4810
-3

 1.98 0.2169 Aliased 

6 Residual 7.5110
-3

 6 1.2510
-3

    

7 Total 35.49 20 1.77    

 

After Sequential model sum of square (type-I) get lack of fit test and model summary 

statistical in table 4.4.6 and table 4.4.7. In both tables quadratic model is suggested. In lack of 

fit test the p-value (probability > F) is 0.3808 and F value is 1.33. 

Table 4.4.6: Lack of Fit Test for Ra 

Sl. 

No. 

Source Sum Of 

Squares 

df Mean 

Square 

F 

Value 

p-value  

prob>F 

 

1 Linear 0.18 11 0.017 11.08 0.0079  

2 2FI 0.13 8 0.017 11.06 0.0085  

3 Quadratic 9.95810
-3

 5 1.99210
-3

 1.33 0.3808 Suggested 

4 Cubic 3.61310
-5

 1 3.61310
-5

 0.024 0.8826 Aliased 

5 Pure Error 7.48310
-3

 5 1.49710
-3

    

 

The desirable value of R-squared is close to one in model summary statistics, table 4.4.7, 

which is R
2
= 99.14% shows that this much percentage of the variability of result is explained 

by the model. The predicted R-Squared value of 0.9531 is in reasonable agreement with the 

adjusted R-squared of 0.9837. PRESS stands for predicted residual error sum of squares and 

it is a measure of how well the model for the experiment is likely to predict the response in 

new experiments. In this case PRESS is 0.096. 

Table 4.4.7: Model Summary Statistics for Ra 

Sl. 

No. 

Source Std. 

Dev. 

R-Squared Adjusted 

R-Squared 

Predicted 

R-Squared 

PRESS  

1 Linear 0.11 0.9068 0.8894 0.8320 0.34  

2 2FI 0.10 0.9313 0.8997 0.8554 0.29  

3 Quadratic 0.042 0.9914 0.9837 0.9531 0.096 Suggested 

4 Cubic 0.035 0.9963 0.9883 0.9908 0.019 Aliased 

 

After lack of fit test and model summary statistical, get analysis of variance (ANOVA) 

for response surface quadratic model, shown in table 4.4.8. In this table get the lack of fit, not 
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significant and other sources are getting significant. On lack of fit, the F value and p-value 

(probability > F) are 1.33 and 0.3808 (> 0.05). The lack of fit F-value of 1.33 implies the lack 

of fit is not significant relative to the pure error. Non significant lack of fit is good. This is 

desirable as it indicates that the terms in the model have significant effect on the response. 

This implies that the model could fit and it is adequate. Cutting speed, feed, depth of cut and 

other sources have p-value less than 0.05. After examination of F-values in this table indicate 

that the variables, cutting speed (A), feed (B) and depth of cut (C), AB, AC, BC, A
2
, B

2
, C

2
 

are significant at 95% confidence level. To ensure the validity of lack of fit test, the degree of 

freedom for lack of fit should be minimum 3 (< 5) and for pure error minimum 4 (< 5).  

Table 4.4.8: Analysis of Variance (ANOVA) for Ra 

Sl. 

No. 

Source Sum of 

Squares 

df Mean 

Square 

F Value p-value  

prob.>F 

 

1 Model 2.02 9 0.22 128.71 < 0.0001 Significant 

2 A-Speed 0.47 1 0.47 267.55 < 0.0001 Significant 

3 B-Feed 1.03 1 1.03 590.78 < 0.0001 Significant 

4 C-DOC 0.35 1 0.35 201.17 < 0.0001 Significant 

5 AB 0.012 1 0.012 6.62 0.0277 Significant 

6 AC 0.010 1 0.010 5.78 0.0370 Significant 

7 BC 0.028 1 0.028 16.24 0.0024 Significant 

8 A
2
 0.066 1 0.066 37.81 0.0001 Significant 

9 B
2
 9.77810

-3
 1 9.77810

-3
 5.61 0.0394 Significant 

10 C
2
 0.035 1 0.035 19.86 0.0012 Significant 

11 Residual 0.017 10 1.74410
-3

    

12 Lack of Fit 9.95810
-3

 5 1.99210
-3

 1.33 0.3808 Not significant 

13 Pure Error 7.48310
-3

 5 1.49710
-3

    

14 Cor Total 2.04 19     

 

 

Final Equation in terms of coded factors: 

The experimental results were used to develop the mathematical models using response 

surface methodology (RSM). The proposed first order regression model developed from the 

above functional relationship using response surface method is as follows: 

 

Ra = +1.29 – 0.18 *A + 0.27 *B + 0.16 *C + 0.038 *A *B + 0.036 *A *C + 0.060 *B *C – 

0.068 *A
2
 + 0.026 *B

2
 + 0.049 *C

2
 

 

Surface Roughness, Ra = + (1.29) – (0.18 * Cutting Speed) + (0.27 * feed) + (0.16 * Depth of 

Cut) + (0.038 * Cutting Speed * Feed) + (0.036 * Cutting Speed * Depth of Cut) + (0.060 * 

Feed *Depth of Cut) – (0.068 *Cutting Speed
2
) + (0.026 * Feed

2
) + (0.049 *Depth of Cut

2
) 
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While compare the predicted value with the actual (observed) value, there is a 

discrepancy. This is called residual. For statistical purposes it‟s assumed that residual are 

normally distributed and independent with constant variance. For checking the statistical, 

normal plot of residual is recommended. The residuals, calculated from the difference of 

actual versus predicted response, can be plotted on Normal probability paper [21]. If the 

residuals are normally distributed, they will all fall in a line on this special paper. In this case, 

the deviations from linear are very minor, so it supports the assumption of normality. 

The normal probability plot of residuals for surface roughness is illustrated in Fig 4.4.1. It 

is expected that data from experiments form a normal distribution. It reveals that the residual 

fall on a straight line, implying that the errors (residuals) are spread in a normal distribution. 

Here a residual means difference in the observed value (obtained from the experiment) and 

the predicted value or fitted value [9]. This is also, confirmed by the variations between the 

experimental results and model predicted values analyzed through residual graphs. 

 

Fig 4.4.1: Normal Plot of Residual for Ra 

The actual and predicted plot shows how well the model fits the data. As seen from the 

fig 4.4.2, all the data lying on the diagonal line. It implies that this model is fit and gives the 

desired response. 
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Fig 4.4.2: Predicted Vs Actual for Ra 

 

To show the effect of independent variables like cutting speed, feed and depth of cut 

plotted individually graph with respect to response surface roughness. These plots are show 

in fig 4.4.3, fig 4.4.4 and fig 4.4.5. 

 

Fig 4.4.3: One Factor-Cutting speed for Ra 

 

In one factor-cutting speed (fig 4.4.3) plot, the behavior of one independent variable 

cutting speed is showing with response surface roughness. It implies that as the speed 

increases surface roughness decreases. 
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Fig 4.4.4: One Factor-Feed for Ra 

The behavior of second independent variable feed is showing with response surface 

roughness (fig 4.4.4). It implies that as the feed increases surface roughness increases. The 

behavior of third independent variable depth of cut is showing with response surface 

roughness (fig 4.4.5). It implies that as the depth of cut increases surface roughness increases. 

 

 

Fig 4.4.5: One Factor-Depth of cut (DOC) for Ra 

The graph between cutting speed, feed and depth of cut versus surface roughness have 

been plotted at one point in perturbation, shown in fig 4.4.6. It implies that as the cutting 

speed increases, the surface roughness decreases but by increasing the depth of cut and feed, 

the surface roughness decreases. 
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Fig 4.4.6: Perturbation for Ra 

 

Both contour plot and surface 3D plots help to understand the nature of the relationship 

between the two factors (Cutting speed, feed and depth of cut) and the response (Surface 

roughness).To convert the experimental data into informative map with quantitative 

information about the model uses response contour plot. Contour plot is generated for two 

factors. The typical application of the contour plot is in determining settings that will 

maximize (or minimize) the response variable. It can also be helpful in determining settings 

that result in the response variable hitting a pre-determined target value. The contour plots for 

two different independent variables and response surface roughness are shown in fig 4.4.7, 

fig 4.4.8 and fig 4.4.9. 

 

Fig 4.4.7: Response contour plot between Cutting speed and Feed for Ra 

The contour plots for two different independent variables (cutting speed and feed) and 

response surface roughness are shown in fig 4.4.7. 
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Fig 4.4.8: Response contour plot between Cutting speed and depth of cut for Ra 

The contour plots for two different independent variables (cutting speed and depth of cut) 

and response surface roughness are shown in fig 4.4.8. The contour plots for two different 

independent variables (Feed and depth of cut) and response surface roughness are shown in 

fig 4.4.9. 

 

Fig 4.4.9: Response contour plot between Feed and Depth of cut for Ra 

A response surface plot generally displays a three dimensional view that may provide a 

clearer picture of the response. If the regression model (first order model) contains only the 

main effect and no interaction, the fitted response surface will be a plane (contour lines will 

be straight). If the model contains interaction effect, the contour lines will be curved and not 

straight. The contours produced by a second order model will be elliptical in nature. The 

response surface 3D plot for two different independent variables and response surface 

roughness are shown in fig 4.4.10, fig 4.4.11 and fig 4.4.12. 
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Fig 4.4.10: Response surface 3D plot between Cutting speed and Feed for Ra 

In the response surface of 3D graph show the graph between cutting speed and feed (fig 

4.4.10), It indicates that the minimum surface roughness is at about 2700 rpm cutting speed 

and 0.05 mm/rev feed.  

 

Fig 4.4.11: Response surface 3D plot between Cutting speed and Depth of cut for Ra 

In the response surface of 3D graph show the graph between cutting speed and depth of 

cut (fig 4.4.11), It indicates that the minimum surface roughness is at about 2700 rpm cutting 

speed and 0.25 mm depth of cut.  
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Fig 4.4.12: Response surface 3D plot between Feed and Depth of cut for Ra 

In the response surface of 3D graph show the graph between feed and depth of cut (fig 

4.4.12), It indicates that the minimum surface roughness is at about 0.05 mm/rev. feed and 

0.25 mm depth of cut. 

 

4.4.2 Conclusion  

In this case study the effect of turning parameters cutting speed, feed and depth of cut are 

studied on surface roughness for turning operation on EN-31 tool steel. Analysis of variance 

is used to study the effect of these parameters and their interaction on surface roughness. In 

this case study, it is observed that the surface roughness increases with increase in feed 

followed by depth of cut but decrease with increase in the cutting speed. It is also observed 

that feed is dominating factor with contribution of 50.49%. The contribution of cutting speed 

and depth of cut are 23.04% and 17.16% respectively. The minimum value of surface 

roughness in experiment is 0.706 m at 2700 rpm cutting speed, 0.05 mm/rev feed and 0.25 

mm depth of cut. The maximum value of surface roughness in experiment is 1.86 m at 2700 

rpm cutting speed, 0.05 mm/rev feed and 0.25 mm depth of cut. As per the behavior of 

contour plots and surface plots get the optimum condition of minimum surface roughness is 

2700 rpm cutting speed, 0.05 mm/rev feed and 0.25 mm depth of cut. 
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4.5 CASE STUDY 2 FOR MRR 

4.5.1 MATERIAL REMOVAL RATE 

The turning process is carried out on CNC turning machine. The weight of 20 work-

pieces has been measured before machining and after machining. The machining time is also 

noticed during machining. Then material removal rate is calculated by dividing the difference 

between initial weight and final to the machining time. The experimental result of material 

removal rate is given in table 4.5.1.  

 

Table 4.5.1: Experiment result for MRR 

Sl. 

No. 

Initial weight 

(gm) 

Final weight 

(gm) 

Machine time 

(sec) 

Material removal rate 

(gm/sec) 

1 416.3 400 12 1.357 

2 416 411.5 6 0.75 

3 419.2 393.7 10 2.55 

4 416.5 401.5 15 1.00 

5 416 394.7 16 1.33 

6 416.2 398 14 1.30 

7 418 398 15 1.33 

8 417 397.4 13 1.508 

9 418 404 9 1.55 

10 418.8 401 12 1.48 

11 416.6 398 8 2.32 

12 417.3 391 10 2.63 

13 419 399 17 1.18 

14 416 405 22 0.50 

15 419 395 8 3.00 

16 417 399.6 11 1.581 

17 417 393 20 1.2 

18 418.4 403.5 7 2.125 

19 417 406 34 0.323 

20 417.9 400.5 12 1.45 
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The design of experiments gives the design of process of 20 materials, each having a 

combination of different levels of factors as shown in table 4.5.2, were carried out. 

Table 4.5.2: Design of experiment matrix (coded) for MRR 

Sl. 

No. 

Std Run Factor 1 

A: speed 

(rpm) 

Factor 2 

B: Feed 

(mm/rev) 

Factor 3 

C: DOC 

(mm) 

Response  

MRR 

(gm/sec) 

1 20 1 0.00 0.00 0.00 1.357 

2 13 2 0.00 0.00 -1.68 0.75 

3 7 3 -1.00 1.00 1.00 2.55 

4 2 4 1.00 -1.00 -1.00 1.00 

5 6 5 1.00 -1.00 1.00 1.33 

6 16 6 0.00 0.00 0.00 1.30 

7 9 7 -1.68 0.00 0.00 1.33 

8 17 8 0.00 0.00 0.00 1.508 

9 4 9 1.00 1.00 -1.00 1.55 

10 18 10 0.00 0.00 0.00 1.48 

11 10 11 1.68 0.00 0.00 2.32 

12 14 12 0.00 0.00 1.68 2.63 

13 3 13 -1.00 1.00 -1.00 1.18 

14 1 14 -1.00 -1.00 -1.00 0.50 

15 8 15 1.00 1.00 1.00 3.00 

16 19 16 0.00 0.00 0.00 1.581 

17 5 17 -1.00 -1.00 1.00 1.2 

18 12 18 0.00 1.68 0.00 2.125 

19 11 19 0.00 -1.68 0.00 0.323 

20 15 20 0.00 0.00 0.00 1.45 

 

In table 4.5.2 the design of matrix in coded form are shown, and their actual value of 

limits are shown if table 4.5.3 

Table 4.5.3: Design of experiment matrix (uncoded) for MRR 

Sl. 

No. 

Std Run Factor 1 

A: speed 

(rpm) 

Factor 2 

B: Feed 

(mm/rev) 

Factor 3 

C: DOC 

(mm) 

Response  

MRR 

(gm/sec) 

1 20 1 2100 0.15 0.75 1.357 

2 13 2 2100 0.15 0.25 0.75 

3 7 3 1800 0.20 1.00 2.55 

4 2 4 2400 0.10 0.50 1.00 

5 6 5 2400 0.10 1.00 1.33 

6 16 6 2100 0.15 0.75 1.30 

7 9 7 1500 0.15 0.75 1.33 

8 17 8 2100 0.15 0.75 1.508 

9 4 9 2400 0.20 0.50 1.55 

10 18 10 2100 0.15 0.75 1.48 

11 10 11 2700 0.15 0.75 2.32 

12 14 12 2100 0.15 1.25 2.63 

13 3 13 1800 0.20 0.50 1.18 
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14 1 14 1800 0.10 0.50 0.50 

15 8 15 2400 0.20 1.00 3.00 

16 19 16 2100 0.15 0.75 1.581 

17 5 17 1800 0.10 1.00 1.2 

18 12 18 2100 0.25 0.75 2.125 

19 11 19 2100 0.05 0.75 0.323 

20 15 20 2100 0.15 0.75 1.45 

 

The experiments were carried out on 20 work-pieces. The experimental data were entered 

in design of experiment matrix, and then get the design of summary. The design of summary 

are shown in the table 4.5.4 

Table 4.5.4: Design of summary for MRR 

Sl. 

No

. 

Factor 

Name Units Type Subtype Mini

mum 

Maxi

mum 

-1 

actual 

+1 

actual 

mean Std. 

Dev. 

1 A Speed rpm numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

2 B Feed mm/rev numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

3 C DOC mm numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

 

 

4.5.2 Result Analysis and Discussion 

After design of summary the experimental data are analyzed. During this analysis process 

get the response range from 0.323 to 3.00, ratio of max to min 9.28793. Then get the 

summary of quadratic, shown in table 4.5.5. In this summary get the sequential p-value 

0.0023, lack of fit p-value 0.2540, adjusted R-squared 0.9689 and predicted R-squared 

0.9066, and in this table quadratic is suggested.  

 

Table 4.5.5: Summary of Quadratic for MRR 

Sl. 

No. 

Source Sequential 

p-value 

Lack of fit 

p-value 

Adjusted 

R-Squared 

Predicted 

R-Squared 

 

1 Linear < 0.0001 0.0148 0.8688 0.8033  

2 2FI 0.0701 0.0266 0.9044 0.8525  

3 Quadratic 0.0023 0.2540 0.9689 0.9066 Suggested 

4 Cubic 0.1825 0.4162 0.9791 0.7948 Aliased 

 

Sequential model sum of square (type-I) get in material removal rate analysis process, 

shown in table 4.5.6. In this table it is mentioned that the design of experiment suggested for 

quadratic Vs 2FI model. Here F-value and p-value are 10.01 and 0.0023 respectively.  
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Table 4.5.6: Sequential Model Sum of Square (Type-1) for MRR 

Sl. 

No. 

Source Sum Of 

Squares 

df Mean 

Square 

F 

Value 

p-value  

prob>F 

 

1 Mean Vs Total 46.43 1 46.43    

2 Linear Vs Mean 8.20 3 2.73 42.93 < 0.0001  

3 2FI Vs Linear 0.42 3 0.14 2.99 0.0701  

4 Quadratic Vs 2FI 0.45 3 0.15 10.01 0.0023 Suggested 

5 Cubic Vs Quad 0.090 4 0.023 2.22 0.1825 Aliased 

6 Residual 0.061 6 0.010    

7 Total 55.65 20 2.78    

 

After Sequential model sum of square (type-I) get lack of fit test and model summary 

statistical in table 4.5.7 and table 4.5.8. In lack of fit test (table 4.5.7) the p-value (probability 

> F) is 0.2540 and F-value is 1.87. 

 

Table 4.5.7: Lack of Fit Test for MRR 

Sl. 

No. 

Source Sum Of 

Squares 

df Mean 

Square 

F 

Value 

p-value  

prob>F 

 

1 Linear 0.97 11 0.088 8.37 0.0148  

2 2FI 0.55 8 0.069 6.56 0.0266  

3 Quadratic 0.098 5 0.020 1.87 0.2540 Suggested 

4 Cubic 8.23910
-3

 1 8.23910
-3

 0.79 0.4162 Aliased 

5 Pure Error 0.052 5 0.010    

 

In model summary statistics, table 4.5.8, the value of R
2
= 98.36% shows that this much 

percentage of the variability of result is explained by the model. The predicted R-Squared 

value of 0.9066 is in reasonable agreement with the adjusted R-squared of 0.9689. PRESS 

stands for predicted residual error sum of squares and it is a measure of how well the model 

for the experiment is likely to predict the response in new experiments. In this case PRESS is 

0.86. 

Table 4.5.8: Model Summary Statistics for MRR 

Sl. 

No. 

Source Std. 

Dev. 

R-Squared Adjusted 

R-Squared 

Predicted 

R-Squared 

PRESS  

1 Linear 0.25 0.8895 0.8688 0.8033 1.81  

2 2FI 0.22 0.9346 0.9044 0.8525 1.36  

3 Quadratic 0.12 0.9836 0.9689 0.9066 0.86 Suggested 

4 Cubic 0.10 0.9934 0.9791 0.7948 1.89 Aliased 

 

After lack of fit test and model summary statistical, get analysis of variance (ANOVA) 

for response surface quadratic model, shown in table 4.5.9. In this table get the lack of fit and 

two other terms AB and AC, not significant and other sources are getting significant. On lack 

of fit, the F value and p-value (probability > F) are 1.87 and 0.2540 (> 0.05). Cutting speed 
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(A), feed (B), depth of cut (C), BC, A
2
, B

2
, and C

2
 have p-value less than 0.05. In this the 

term AB (0.5963) and AC (0.4231) have the p-value more than 0.05. Hence these terms are 

not significant in this table. For fit model these terms should be less than 0.05. So, for fit 

model go for backward elimination process.    

Table 4.5.9: Analysis of Variance (ANOVA) for MRR 

Sl. 

No. 

Source Sum of 

Squares 

df Mean 

Square 

F Value p-value  

prob>F 

 

1 Model 9.07 9 1.01 66.85 < 0.0001 Significant 

2 A-Speed 0.72 1 0.72 47.65 < 0.0001 Significant 

3 B-Feed 3.88 1 3.88 257.52 < 0.0001 Significant 

4 C-DOC 3.60 1 3.60 238.85 < 0.0001 Significant 

5 AB 4.51310
-3

 1 4.51310
-3

 0.30 0.5963 Not significant 

6 AC 0.011 1 0.011 0.70 0.4231 Not significant 

7 BC 0.40 1 0.40 26.57 0.0004 Significant 

8 A
2
 0.23 1 0.23 14.95 0.0031 Significant 

9 B
2
 0.11 1 0.11 7.61 0.0202 Significant 

10 C
2
 0.082 1 0.082 5.46 0.0416 Significant 

11 Residual 0.15 10 0.015    

12 Lack of Fit 0.098 5 0.020 1.87 0.2540 Not significant 

13 Pure Error 0.052 5 0.010    

14 Cor Total 9.22 19     

 

Final Equation in terms of coded factors: 

The experimental results were used to develop the mathematical models using response 

surface methodology (RSM). The proposed first order regression model developed from the 

above functional relationship using response surface method is as follows: 

 

MRR = +1.45 + 0.23 *A + 0.53 *B + 0.51 *C + 0.024 *A *B – 0.036 *A *C + 0.22 *B *C + 

0.13 *A
2
 – 0.089 *B

2
 + 0.076 *C

2
 

 

Material Removal Rate, MRR = +(1.45) + (0.23 * Cutting Speed) + (0.53 * feed) + (0.51 * 

Depth of Cut) + (0.024 * Cutting Speed * Feed) – (0.036 * Cutting Speed * Depth of Cut) + 

(0.22 * Feed *Depth of Cut) + (0.13 *Cutting Speed
2
) – (0.089 * Feed

2
) + (0.076 *Depth of 

Cut
2
) 

 

The normal probability plot of residuals for material removal rate is illustrated in Fig 

4.5.1. It is expected that data from experiments form a normal distribution. This is also, 

confirmed by the variations between the experimental results and model predicted values 

analyzed through residual graphs. 
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Fig 4.5.1: Normal Plot of Residual for MRR 

The actual and predicted plot shows how well the model fits the data. As seen from the 

fig 4.5.2, all the data lying on the diagonal line.  

 

 

 Fig 4.5.2: Predicted Vs Actual for MRR  

To show the effect of independent variables like cutting speed, feed and depth of cut 

plotted individually with respect to response material removal rate. These plots are show in 

fig 4.5.3, fig 4.5.4 and fig 4.5.5. 
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Fig 4.5.3: One Factor-Cutting speed for MRR 

In one factor-cutting speed (fig 4.5.3) plot, the behavior of one independent variable 

cutting speed is showing with material removal rate. It implies that as the speed increases 

material removal rate is flat but as further cutting speed increases the material removal rate is 

also increases. 

 

Fig 4.5.4: One Factor-Feed for MRR 

The behavior of second independent variable feed is showing with respect to material 

removal rate (fig 4.5.4). It implies that material removal rate increases by increasing the feed. 

The behavior of third independent variable depth of cut is showing with respect to material 

removal rate (fig 4.5.5). It implies that as the depth of cut increases material removal rate 

increases. 
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Fig 4.5.5: One Factor-Depth of cut for MRR 

The graph between cutting speed, feed and depth of cut versus material removal rate, at a 

point have been plotted in perturbation, shown in fig 4.5.6. It implies that as the cutting speed 

increases, the material removal rate is initially flat and then increases but by increasing the 

depth of cut and feed, the surface roughness increases. 

 

Fig 4.5.6: Perturbation graph for MRR 

Both contour plot and surface 3D plots help to understand the nature of the relationship 

between the two factors (Cutting speed, feed and depth of cut) and the response (material 

removal rate).To convert the experimental data into informative map with quantitative 

information about the model uses response contour plot. The contour plots for two different 

independent variables and response material removal rate are shown in fig 4.5.7, fig 4.5.8 and 

fig 4.5.9. The response contour plot between cutting speed and feed is shown in fig 4.5.7. 
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Fig 4.5.7: Response contour plot between Cutting speed and Feed for MRR 

The response contour plot between cutting speed and depth of cut for material removal 

rate is shown in fig 4.5.8. 

 

 

Fig 4.5.8: Response contour plot between Cutting speed and Depth of cut for MRR 

The response contour plot between feed and depth of cut for material removal rate is 

shown in fig 4.5.9. 
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Fig 4.5.9: Response contour plot between Feed and Depth of cut for MRR 

 

The response surface 3D plot for two different independent variables and response 

material removal rate are shown in fig 4.5.10, fig 4.5.11 and fig 4.5.12. 

 

 

Fig 4.5.10: Response surface 3D plot between Cutting speed and Feed for MRR 

The response surface 3D graph between cutting speed and feed for material removal rate 

is shown in fig 4.5.10. 
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Fig 4.5.11: Response surface 3D plot between Cutting speed and Depth of cut for MRR 

The response surface 3D graph between cutting speed and depth of cut for material 

removal rate is shown in fig 4.5.11. 

 

Fig 4.5.12: Response surface 3D plot between Feed and Depth of cut for MRR 

The response surface 3D graph between feed and depth of cut for material removal rate is 

shown in fig 4.5.12. 

 

4.5.3 Backward Elimination Process  

The fit summary recommends that the quadratic model is statistically significant for 

analysis material removal rate. For the appropriate fitting of the model of material removal 

rate, the non-significant terms AB and AC (p-value is greater than 0.05) are eliminated by the 

backward elimination process. The term AB and AC have been removed by reduction of 

model by using Backward Elimination Regression with Alpha to exit = 0.100. During 

backward elimination process, get forced terms intercept and ANOVA table, which are 

shown in table 4.5.10 and table 4.5.11. 
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Table 4.5.10: Forced Terms Intercept for MRR 

Sl. 

No. 

Removed Coefficient 

Estimate 

T for H0 

Coeff = 0 

Prob > |t| R – Squared MSE 

1 AB 0.024 0.55 0.5963 0.9832 0.014 

2 AC -0.036 -0.86 0.4065 0.9820 0.014 

 

Table 4.5.11: Analysis of Variance (ANOVA) after Backward Elimination process 

Sl. 

No. 

Source Sum of 

Squares 

df Mean 

Square 

F Value p-value  

prob>F 

 

1 Model 9.05 7 1.29 93.63 < 0.0001  

2 A-Speed 0.72 1 0.72 52.00 < 0.0001  

3 B-Feed 3.88 1 3.88 281.01 < 0.0001  

4 C-DOC 3.60 1 3.60 260.64 < 0.0001  

5 BC 0.40 1 0.40 29.00 0.0002  

6 A
2
 0.23 1 0.23 16.31 0.0016  

7 B
2
 0.11 1 0.11 8.30 0.0138  

8 C
2
 0.082 1 0.082 5.96 0.0311  

9 Residual 0.17 12 0.014    

10 Lack of Fit 0.11 7 0.016 1.54 0.3275 Not significant 

11 Pure Error 0.052 5 0.010    

12 Cor Total 9.22 19     

 

After backward elimination process, get analysis of variance (ANOVA) for response 

surface quadratic model, shown in table 4.5.10. In this table get the lack of fit, not significant 

and other sources are getting significant. The model F-value of 93.63 implies the model is 

significant. There is only a 0.01% chance that a “model F-value” this large could occur due to 

noise. On lack of fit, the F value and p-value (probability > F) are 1.54 and 0.3275 (> 0.05). 

This is desirable as it indicates that the terms in the model have significant effect on the 

response. This implies that the model could fit and it is adequate. Cutting speed (A), feed (B), 

depth of cut (C), BC, A
2
, B

2
, and C

2
 have p-value less than 0.05. If there are many 

insignificant model terms (not counting those required to support hierarchy) model reduction 

may improve the model. The lack of fit F-value of 1.54 implies the lack of fit is not 

significant relative to the pure error. There is a 32.75% chance that a “Lack of fit F-value” 

this large could occur due to noise. Non significant lack of fit is good, as it indicate the model 

is fit. 
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Table 4.5.12: Other parameters for MRR 

Parametrs Value Parametrs Value 

Std. Dev. 0.12 R-Squared 0.9820 

Mean 1.52 Adj R-squared 0.9715 

C.V.% 7.71 Pred R-Squared 0.9390 

PRESS 0.56 Adeq Precisior 37.131 

  

The “Pred R-Squared” of 0.9390 is in reasonable agreement with the “Adj R-Squared” of 

0.9715. “Adeq Precision” measure the signal to noise ratio greater than 4 is desirable. This 

ratio of 37.131 indicates an adequate signal. This model can be used to navigate the design 

space.   

Final Equation in terms of coded factors: 

After eliminating the non-significant terms, the final response equation for material 

removal rate is given as follows 

MRR = +1.45 + 0.23 *A + 0.53 *B + 0.51 *C + 0.22 *B *C + 0.13 *A
2
 – 0.089 *B

2
 + 0.076 

*C
2
 

 

Material Removal Rate, MRR = +(1.45) + (0.23 * Cutting Speed) + (0.53 * feed) + (0.51 * 

Depth of Cut) + (0.22 * Feed *Depth of Cut) + (0.13 *Cutting Speed
2
) – (0.089 * Feed

2
) + 

(0.076 *Depth of Cut
2
) 

 

The normal probability plot of residuals for material removal rate after backward 

elimination process is illustrated in Fig 4.5.13. It is expected that data from experiments form 

a normal distribution. It reveals that the residual fall on a straight line, implying that the 

errors (residuals) are spread in a normal distribution. This is also, confirmed by the variations 

between the experimental results and model predicted values analyzed through residual 

graphs. 
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Fig 4.5.13: Normal Plot of Residual for MRR after Backward Elimination 

After normal plot of residual get the actual and predicted plot after backward elimination 

process. The actual and predicted plot shows how well the model fits the data. As seen from 

the fig 4.5.14, all the data lying on the diagonal line. It implies that this model is fit and gives 

the desired response. 

 

Fig 4.5.14: Predicted Vs Actual for MRR after Backward Elimination 

To show the effect of independent variables like cutting speed, feed and depth of cut 

plotted individually with respect to response material removal rate after backward elimination 

process. These plots are show in fig 4.5.15, fig 4.5.16 and fig 4.5.17. 

 

Fig 4.5.15: One Factor-Cutting speed for MRR after Backward Elimination 

In one factor-cutting speed (fig 4.5.15) plot, the behavior of one independent variable 

cutting speed is showing with material removal rate. It implies that as the speed increases 

material removal rate is flat but as further cutting speed increases the material removal rate 

increases. 
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Fig 4.5.16: One Factor-Feed for MRR after Backward Elimination 

The behavior of second independent variable feed is showing with respect to material 

removal rate (fig 4.5.16). It implies that as the feed increases material removal rate increases. 

The behavior of third independent variable depth of cut is showing with respect to material 

removal rate (fig 4.5.17). It observed that as the depth of cut increases material removal rate 

increases. 

 

 

Fig 4.5.17: One Factor-Depth of cut for MRR after Backward Elimination 

The graph between cutting speed, feed and depth of cut versus material removal rate at a 

point have been plotted in perturbation, shown in fig 4.5.18. It implies that as the cutting 

speed increases, the material removal rate is initially flat and then increases but by increasing 

the depth of cut and feed, the material removal rate increases. 
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Fig 4.5.18: Perturbation graph for MRR after Backward Elimination 

Both contour plot and surface 3D plots help to understand the nature of the relationship 

between the two factors (Cutting speed, feed and depth of cut) and the response (material 

removal rate). The contour plots for two different independent variables (feed and depth of 

cut) and response (material removal rate) is shown in fig 4.5.19. 

 

Fig 4.5.19: Response contour plot between Feed and Depth of cut after Backward 

Elimination 

A response surface plot generally displays a three dimensional view that may provide a 

clearer picture of the response. The response surface 3D plot for two different independent 

variables (feed and depth of cut) and response (material removal rate) is shown in fig 4.5.20. 

The behavior of graph indicates that the maximum material removal rate is achieved at about 

0.25mm/rev feed and at 1.25mm depth of cut.  
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Fig 4.5.20: Response surface plot between Feed and Depth of cut after Backward 

Elimination 

 

4.5.4 Conclusion 

The analysis of the experimental observation highlights that the material removal rate in 

CNC turning process is greatly influenced by depth of cut followed by feed and cutting 

speed, with contribution of 42.08%, 39.04% and 7.8% respectively. It is noted that the 

maximum value of material removal rate is 2.63gm/sec, which is at 2100 rpm cutting speed, 

0.15 mm/rev feed and 1.25 mm depth of cut. The minimum value of material removal rate is 

0.50 gm/sec, which is at 1800 rpm cutting speed, 0.10 mm/rev feed and 0.50 mm depth of 

cut. Form the analysis and behavior of surface plots and contour plots, it implies that the 

optimal condition for higher material removal rate is at 2700 rpm cutting speed, 0.25 mm/rev 

feed and 1.25 mm depth of cut.   
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4.6 CASE STUDY 3 FOR TEMP ANALYSIS 

The investigated results of chip-tool interface temperature obtained during turning of EN-

31 tool steel. The results were obtained at variation of Cutting Speed e.g. from 1800 to 2700 

rpm, feed rate e.g. from 0.05 to 0.25 mm/rev, and depth of cut from 0.25 to 1.25 mm. The 

experiments data are fed into design of experiments and the following table 4.6.1 get. 

Table 4.6.1: Design of experiment matrix (coded) for temp 

Sl. 

No. 

Std Run Factor 1 

A: speed 

(rpm) 

Factor 2 

B: Feed 

(mm/rev) 

Factor 3 

C: DOC 

(mm) 

Response  

Tmax (
O
C) 

1 20 1 0.00 0.00 0.00 45 

2 13 2 0.00 0.00 -1.68 40 

3 7 3 -1.00 1.00 1.00 76 

4 2 4 1.00 -1.00 -1.00 41.2 

5 6 5 1.00 -1.00 1.00 42.6 

6 16 6 0.00 0.00 0.00 46 

7 9 7 -1.68 0.00 0.00 37.9 

8 17 8 0.00 0.00 0.00 44 

9 4 9 1.00 1.00 -1.00 43.5 

10 18 10 0.00 0.00 0.00 46.4 

11 10 11 1.68 0.00 0.00 42.5 

12 14 12 0.00 0.00 1.68 69 

13 3 13 -1.00 1.00 -1.00 38.5 

14 1 14 -1.00 -1.00 -1.00 37.5 

15 8 15 1.00 1.00 1.00 73 

16 19 16 0.00 0.00 0.00 45.6 

17 5 17 -1.00 -1.00 1.00 39.5 

18 12 18 0.00 1.68 0.00 68 

19 11 19 0.00 -1.68 0.00 39 

20 15 20 0.00 0.00 0.00 47 

 

The coded form of design of experiment matrix is shown in table 4.6.1 and uncoded form 

of design of experiment matrix is shown in table 4.6.2. 

Table 4.6.2: Design of experiment matrix (uncoded) for temp 

Sl. 

No. 

Std Run Factor 1 

A: speed 

(rpm) 

Factor 2 

B: Feed 

(mm/rev) 

Factor 3 

C: DOC 

(mm) 

Response  

Tmax (
O
C) 

1 20 1 2100 0.15 0.75 45 

2 13 2 2100 0.15 0.25 40 

3 7 3 1800 0.20 1.00 76 

4 2 4 2400 0.10 0.50 41.2 

5 6 5 2400 0.10 1.00 42.6 

6 16 6 2100 0.15 0.75 46 
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7 9 7 1500 0.15 0.75 37.9 

8 17 8 2100 0.15 0.75 44 

9 4 9 2400 0.20 0.50 43.5 

10 18 10 2100 0.15 0.75 46.4 

11 10 11 2700 0.15 0.75 42.5 

12 14 12 2100 0.15 1.25 69 

13 3 13 1800 0.20 0.50 38.5 

14 1 14 1800 0.10 0.50 37.5 

15 8 15 2400 0.20 1.00 73 

16 19 16 2100 0.15 0.75 45.6 

17 5 17 1800 0.10 1.00 39.5 

18 12 18 2100 0.25 0.75 68 

19 11 19 2100 0.05 0.75 39 

20 15 20 2100 0.15 0.75 47 

 

The design summary of chip-tool interface temperature experiments is shown in table 

4.6.3. In this table minimum and maximum value of independent variables (cutting speed, 

feed and depth of cut) and std. dev are shown. 

 

Table 4.6.3: Design summary for temp 

Sl. 

No. 
Factor 

Name Units Type Subtype Minimum Maximum -1 

actual 

+1 

actual 

mean Std. 

Dev. 

1 A Speed rpm numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

2 B Feed mm/rev numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

3 C DOC mm numeric Continuos -1.68 1.68 -1.00 1.00 0.00 0.83 

 

4.6.1 Result Analysis and Discussion 

After design of summary the experimental data are analyzed. During this analysis process 

get the response range from 37.5 to 76, ratio of max to min 2.02667. Then get the summary 

of quadratic, shown in table 4.6.4. In this summary get the sequential p-value of quadratic 

less than 0.0001, lack of fit p-value 0.3273, adjusted R-squared 0.9908 and predicted R-

squared 0.9713, and this quadratic is suggested. In this evaluation module, a quadratic fit is 

done. For response surface quadratic model, no aliases (aliases are calculated based on the 

response selection, taking into account missing data points) found for quadratic model. 

Table 4.6.4: Summary of Quadratic for temp 

Sl. 

No. 

Source Sequential 

p-value 

Lack of fit 

p-value 

Adjusted 

R-Squared 

Predicted 

R-Squared 

 

1 Linear  0.0001 0.0001 0.6611 0.4814  

2 2FI 0.0047 0.0006 0.8408 0.7855  

3 Quadratic <0.0001 0.3273 0.9908 0.9713 Suggested 

4 Cubic 0.2991 0.3235 0.9924 0.8954 Aliased 
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Sequential model sum of square (type-I) get in chip-tool interface temperature analysis 

process after summary of quadratic table, shown in table 4.6.5. In this table it is clearly 

mentioned that the design of experiment suggested for quadratic Vs 2FI model. The p-value 

and F-value for quadratic Vs 2FI are less than 0.0001 and 71.31 respectively.  

 

Table 4.6.5: Sequential Model Sum of Square (Type-1) for temp 

Sl. 

No. 

Source Sum Of 

Squares 

df Mean 

Square 

F 

Value 

p-value  

prov>F 

 

1 Mean Vs Total 46291.44 1 46291.44    

2 Linear Vs Mean 2096.36 3 698.79 13.35 0.0001  

3 2FI Vs Linear 517.75 3 172.58 7.02 0.0047  

4 Quadratic Vs 2FI 305.35 3 101.78 71.31 < 0.0001 Suggested 

5 Cubic Vs Quad 7.27 4 1.82 1.55 0.2991 Aliased 

6 Residual 7.01 6 1.17    

7 Total 49225.18 20 2461.26    

 

After Sequential model sum of square (type-I) get lack of fit test and model summary 

statistical in table 4.6.6 and table 4.6.7. In both tables quadratic model is suggested. In lack of 

fit test the p-value (probability > F) is 0.3273 and F value is 1.52.  

Table 4.6.6: Lack of Fit Test for temp 

Sl. 

No. 

Source Sum Of 

Squares 

df Mean 

Square 

F 

Value 

p-value  

prov>F 

 

1 Linear 831.72 11 75.61 66.87 0.0001  

2 2FI 313.98 8 39.25 34.71 0.0006  

3 Quadratic 8.62 5 1.72 1.52 0.3273 Suggested 

4 Cubic 1.36 1 1.36 1.20 0.3235 Aliased 

5 Pure Error 5.65 5 1.13    

 

The desirable value of R-squared is close to one in model summary statistics, table 4.6.7, 

which is R
2
= 99.51% shows that this much percentage of the variability of result is explained 

by the model. The predicted R-Squared value of 0.9713 is in reasonable agreement with the 

adjusted R-squared of 0.9908. PRESS stands for predicted residual error sum of squares and 

it is a measure of how well the model for the experiment is likely to predict the response in 

new experiments. In this case PRESS is 84.32. In this table also quadratic is suggested. 

Table 4.6.7: Model Summary Statistics for temp 

Sl. 

No. 

Source Std. 

Dev. 

R-Squared Adjusted 

R-Squared 

Predicted 

R-Squared 

PRESS  

1 Linear 7.23 0.7146 0.6611 0.4814 1521.46  

2 2FI 4.96 0.8911 0.8408 0.7855 629.40  

3 Quadratic 1.19 0.9951 0.9908 0.9713 84.32 Suggested 

4 Cubic 1.08 0.9976 0.9924 0.8954 306.92 Aliased 
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After lack of fit test and model summary statistical, get analysis of variance (ANOVA) 

for response surface quadratic model, shown in table 4.6.8. In this table get the lack of fit and 

source AB not significant and other sources are getting significant. The model F-value of 

227.25 implies the model is significant. There is only a 0.01% chance that a „model F-value‟ 

this large could occur due to noise. On lack of fit, the F value and p-value (probability > F) 

are 1.52 and 0.3273 (> 0.05). The lack of fit F-value of 1.52 implies the lack of fit is not 

significant relative to the pure error. Non significant lack of fit is good. This is desirable as it 

indicates that the terms in the model have significant effect on the response. This implies that 

the model could fit and it is adequate. Cutting speed, feed, depth of cut and other sources 

have p-value less than 0.05. After examination of F-values in this table indicate that the 

variables, cutting speed (A), feed (B) and depth of cut (C), AC, BC, A
2
, B

2
, C

2
 are significant 

at 95% confidence level. To ensure the validity of lack of fit test, the degree of freedom for 

lack of fit should be minimum 3 (< 5) and for pure error minimum 4 (< 5).  

 

Table 4.6.8: Analysis of Variance (ANOVA) for temp 

Sl. 

No. 

Source Sum of 

Squares 

df Mean 

Square 

F Value p-value  

prov>F 

 

1 Model 2919.46 9 324.38 227.25 < 0.0001  

2 A-Speed 20.02 1 20.02 14.03 0.0038  

3 B-Feed 1036.43 1 1036.43 726.09 < 0.0001  

4 C-DOC 1039.91 1 1039.91 728.53 < 0.0001  

5 AB 2.88 1 2.88 2.02 0.1859  

6 AC 9.24 1 9.24 6.48 0.0291  

7 BC 505.62 1 505.62 354.22 < 0.0001  

8 A
2
 61.76 1 61.76 43.27 < 0.0001  

9 B
2
 99.84 1 99.84 69.94 < 0.0001  

10 C
2
 128.46 1 128.46 89.99 < 0.0001  

11 Residual 14.27 10 1.43    

12 Lack of Fit 8.62 5 1.72 1.52 0.3273 Not significant 

13 Pure Error 5.65 5 1.13    

14 Cor Total 2933.74 19     

 

 

Final Equation in terms of coded factors: 

The quadratic model for chip-tool interface temperature in terms of coded factors is given 

below. 

Tmax = + 45.69 + 1.21 *A + 8.71 *B + 8.73 *C – 0.60 *A *B – 1.07 *A *C + 7.95 *B *C – 

2.07 *A
2
 + 2.63 *B

2
 + 2.99 *C

2
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Maximum Temperature, Tmax = +(45.69) + (1.21 * Cutting Speed) + (8.71 * feed) + (8.73 * 

Depth of Cut) – (0.60 * Cutting Speed * Feed) – (1.07 * Cutting Speed * Depth of Cut) + 

(7.95 * Feed *Depth of Cut) – (2.07 *Cutting Speed
2
) + (2.63 * Feed

2
) + (2.99 *Depth of 

Cut
2
) 

 

The normal probability plot of residuals for chip-tool interface temperature is illustrated 

in Fig 4.6.1. It is expected that data from experiments form a normal distribution. It reveals 

that the residual fall on a straight line, implying that the errors (residuals) are spread in a 

normal distribution. This is also, confirmed by the variations between the experimental 

results and model predicted values analyzed through residual graphs. 

 

Fig 4.6.1: Normal plot of residual for temperature 

The actual and predicted plot shows how well the model fits the data. As seen from the 

fig 4.6.2, all the data lying on the diagonal line. It implies that this model is fit and gives the 

desired response. 

 

Fig 4.6.2: Predicted Vs actual graph for temperature 
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To show the effect of independent variables like cutting speed, feed and depth of cut 

plotted individually graph with respect to response chip-tool interface temperature. These 

plots are show in fig 4.6.3, fig 4.6.4 and fig 4.6.5. 

 

Fig 4.6.3: One factor- cutting speed plot for temperature 

In one factor-cutting speed (fig 4.6.3) plot, the behavior of one independent variable 

cutting speed is showing with response chip-tool interface temperature. It implies that as the 

cutting speed increases chip-tool interface temperature increases bur further as the cutting 

speed increases chip-tool interface temperature decreases. 

 

Fig 4.6.4: One factor- feed plot for temperature 

In other one factor-feed (fig 4.6.4) plot, the behavior of one independent variable feed is 

showing with response chip-tool interface temperature. It implies that as the feed increases 

chip-tool interface temperature increases. 
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Fig 4.6.5: One factor- depth of cut plot for temperature 

In third one factor-depth of cut (fig 4.6.5) plot, the behavior of one independent variable 

feed is showing with response chip-tool interface temperature. It implies that as the depth of 

cut increases chip-tool interface temperature increases. 

 

 
Fig 4.6.6: Perturbation plot for temperature 

 

The graph between cutting speed, feed and depth of cut versus chip-tool interface 

temperature have been plotted at one point in perturbation, shown in fig 4.6.6. In this plot, the 

behavior of independent variable with respect to chip-tool interface temperature at a point is 

shown.  It implies that as the cutting speed increases, the chip-tool interface temperature 

initially increases and then decreases but by increasing the depth of cut and feed, the chip-

tool interface temperature increases. 
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Fig 4.6.7: Response contour plot between cutting speed and feed for temp. 

To convert the experimental data into informative map with quantitative information 

about the model uses response contour plot. Contour plot is generated for two factors 

(independent variables). The typical application of the contour plot is in determining settings 

that will maximize (or minimize) the response variable. The contour plots for two different 

independent variables and response (chip-tool interface temperature) are shown in fig 4.6.7, 

fig 4.6.8 and fig 4.6.9. The contour plots for two different independent variables (cutting 

speed and feed) and response (chip-tool interface temperature) are shown in fig 4.6.7. 

 

Fig 4.6.8: Response contour plot between cutting speed and depth of cut for temp. 

The contour plots for two different independent variables (cutting speed and depth of cut) 

and response (chip-tool interface temperature) are shown in fig 4.6.8. The contour plots for 

two different independent variables (feed and depth of cut) and response (chip-tool interface 

temperature) are shown in fig 4.6.9 
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Fig 4.6.9: Response contour plot between feed and depth of cut for temp. 

A response surface plot generally displays a three dimensional view that may provide a 

clearer picture of the response. If the regression model (first order model) contains only the 

main effect and no interaction, the fitted response surface will be a plane (contour lines will 

be straight). If the model contains interaction effect, the contour lines will be curved and not 

straight. The response surface 3D plot for two different independent variables and response 

chip-tool interface temperature are shown in fig 4.4.10, fig 4.4.11 and fig 4.4.12.  

 

Fig 4.6.10: response surface plot between cutting speed and feed for temp 

The response surface 3D plot for two different independent variables (cutting speed and 

feed) and response chip-tool interface temperature is shown in fig 4.4.10. It indicates that as 

cutting speed increase chip-tool interface temperature increases but further it decreases, and 

as the feed increases chip-tool interface temperature increases. 
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Fig 4.6.11: Response surface plot between cutting speed and depth of cut for temp 

The response surface 3D plot for two different independent variables (cutting speed and 

depth of cut) and response chip-tool interface temperature is shown in fig 4.4.11. It indicates 

that as cutting speed increase chip-tool interface temperature increases but further it 

decreases, and as the depth of cut increases chip-tool interface temperature increases. 

 

 

Fig 4.6.12: Response surface plot between feed and depth of cut for temp 

The response surface 3D plot for two different independent variables (feed and depth of 

cut) and response chip-tool interface temperature is shown in fig 4.4.12. It indicates that as 

feed increase chip-tool interface temperature increases and as the depth of cut increases chip-

tool interface temperature increases. 

 

4.6.2 Conclusion 

In this case study the chip-tool interface temperatures have been experimentally studied 

with infrared camera in CNC turning process. The model developed in this case study 

produces small errors and has satisfactory result. This model has the regression coefficient 
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approximate 0.99 (R-squared=99.51%). Therefore the proposed model can be utilized to 

predict the corresponding chip-tool interface temperatures of EN-31 tool steel at different 

parameters in turning. This can also be used for metal cutting process optimization, 

increasing productivity and reducing manufacturing cost. The analysis of the experimental 

observation highlights that the chip-tool interface temperature is influenced by depth of cut 

and feed, with contribution of 35.45% and 35.32% respectively. It is noted that the maximum 

value of chip-tool interface temperature is 76
0
C, which is at 1800rpm cutting speed, 0.20 

mm/rev feed and 1.00 mm depth of cut. The minimum value of chip-tool interface 

temperature is 37.5
0
C, which is at 1800rpm cutting speed, 0.10 mm/rev feed. and 0.50 mm 

depth of cut. From the analysis and behavior of contour plot and surface plot, it implies that 

the optimal condition for higher chip-tool interface temperature is at 2100rpm cutting speed, 

0.25 mm/rev feed and 1.25 mm depth of cut.   
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CHAPTER 5 

CONCLUSION 
 

In this project surface roughness, material removal rate and chip-tool interface 

temperature have been experimentally studied on CNC machine with coated carbide insert. 

The process design of twenty experiments has been carried out with the help of design of 

experiments in response surface methodology. The successful optimization of all responses 

(surface roughness, material removal rate and chip-tool interface temperature) has been 

achieved. From the above three case study, the following has been conclude.  

1. For surface roughness the feed is dominating factor. By increasing feed and depth of 

cut surface roughness increases. But as the cutting speed increases surface roughness 

decreases. 

2. The contribution of feed 50.49%, depth of cut 17.16% and cutting speed 23.04% get 

in the surface roughness case study. 

3. The optimum value of turning parameters is 2700 rpm cutting speed, 0.05 mm/rev 

feed and 0.25 mm depth of cut for minimum surface roughness. 

4. In the material removal rate case study depth of cut is a major parameter. It is found 

the as the depth of cut and feed increases the material removal rate increases, but by 

increasing cutting speed the material removal rate initially flat and then increases.  

5. The contribution of depth of cut, feed and cutting speed is 42.08%, 39.04% and 7.8% 

respectively in case of material removal rate. 

6. The optimum value of turning parameters for higher material removal rate is 2700 

rpm cutting speed, 0.25 mm/rev feed and 1.25 mm depth of cut. 

7. In case of chip-tool interface temperature depth of cut and feed play a major role. It is 

observed that the chip-tool interface temperature increases by increasing depth of cut 

and feed, but in case of cutting speed initially chip-tool interface temperature 

increasing up to a point and then decreasing. 

8. In chip-tool interface temperature case study, it is observed that depth of cut and feed 

contributed 35.45% and 35.32% respectively. 

9. The optimum value of turning parameters is 2100rpm cutting speed, 0.25 mm/rev feed 

and 1.25 mm depth of cut in case of chip-tool interface temperature. 
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