CERTIFICATE

Date:-____

This is to certify that report entitled "EXPERIMENTAL ANALYSIS OF TURNING PARAMETERS ON EN 31 TOOL STEEL" by Mr. DEEPAK KUMAR SAINY, is the requirement of the partial fulfillment for the award of Degree of Master of Technology (M. Tech.) in Production Engineering at Delhi Technological University. This work was completed under our supervision and guidance. He has completed his work with utmost sincerity and diligence. The work embodied in this project has not been submitted for the award of any other degree to the best of my knowledge.

(Guide)

(Co-Guide)

Mr. M. S. NIRANJAN (ASSISTANT PROFESSOR) Dr. QASIM MURTAZA (ASSOCIATE PROFESSOR)

DEPARTMENT OF MECHANICAL ENGINEERING DELHI TECHNOLOGYCAL UNIVERSITY

DELHI

ACKNOWLDGEMENT

To achieve success in any work, guidance plays an important role. It makes us put right amount of energy in the right direction and at right time to obtain the desired result. I express my sincere gratitude to my supervisors, **Mr. M. S. NIRANJAN**, **Assistant Professor** and **DR**. **QASIM MURTAZA**, **Associate Professor** Department of Mechanical Engineering for giving valuable guidance during the course of this work, for their ever encouraging and timely moral support. Their enormous knowledge always helped me unconditionally to solve various problems.

I am greatly thankful to **Prof. R. S. Mishra**, Professor and Head, Mechanical Engineering Department, Delhi Technological University, for his encouragement and inspiration for execution of the this work. I express my feelings of thanks to the entire faculty and staff, Department of Mechanical Engineering, Delhi Technological University, Delhi for their help, inspiration and moral support, which went a long way in the successful completion of my report work.

DEEPAK KUMAR SAINY

(Roll No. 2K12/PRD/27)

ABSTRACT

Today CNC machines have play a vital role in the manufacturing industry. In this competitive scenario to manufacture good quality product with mass production and flexibility in the product can possible with CNC turning machine. For good quality of product the tuning parameters such as cutting speed, feed and depth of cut are selected in such a way, that the product machined surface roughness should be better.

In the present work, the experiments have been conducted on EN-31 tool steel using CNC turning machine and the machining parameters such as cutting speed, feed and depth of cut have been optimized for the response such as material removal rate (MRR), Surface roughness (Ra) and maximum temperature at interface of cutting tool and work-piece surface. Statistical analysis has been done using response surface methodology (RSM) to optimize the material removal rate (MRR), Surface roughness (Ra) and maximum temperature at the interface. The objective of using response surface methodology (RSM) is not only to investigate the response over the entire factor space, but also to locate the region of interest where the response reaches its optimum or near optimal values. The design of experiments have been done by considering three controllable input variables namely cutting speed, feed and depth of cut and the response such as material removal rate (MRR), Surface roughness (Ra) and maximum temperature at interface of cutting tool and work-piece surface have been optimized.

Keywords: CNC, turning parameters, EN-31, RSM, DOE, MRR, Surface Roughness, Maximum Temperature,

CONTENT

Торіс	Page No.
Certificate	i
Acknowledgement	ii
Abstract	iii
List of Table	vi
List of Figure	viii
Chapter 1: Introduction	1
1.1 Turning parameters	2
1.1.1 Depth of cut	2
1.1.2 Feed	3
1.1.3 Cutting speed	3
1.2 Surface Roughness	4
1.3 Material Removal Rate	4
1.4 Selection of work-piece material	5
Chapter 2: Literature review	6
2.1 Research Gap	11
2.2 Research Objective	11
Chapter 3: Experimental work	13
3.1 Material composition & dimension	13
3.2 Selection of tool	14
3.3 Experimental setup used	15

3.3.1 CNC machine	15
3.3.2 Thermal Image Infrared Camera	17
3.3.3 Surface roughness analyzer	19
Chapter 4: Statistical analysis	21
4.1 Design of Experiments	21
4.2 Analysis of Variance	21
4.3 Process variables and their limits	22
4.4 Case study 1 for surface roughness	23
4.4.1 Result analysis and discussion	24
4.4.2 Conclusion	33
4.5 Case study 2 for MRR	34
4.5.1 Material Removal Rate	34
4.5.2 Result analysis and discussion	36
4.5.3 Backward Elimination Process	44
4.5.4 Conclusion	50
4.6 Case study 1 for Temperature Analysis	51
4.6.1 Result analysis and discussion	52
4.6.2 Conclusion	60
Chapter 5: Conclusion	62
References	63

LIST OF TABLES

S.NO.	TITLE	PAGE NO.
Table 3.1	Chemical composition of EN-31 tool steel	13
Table 3.2	Mechanical properties of EN-31 tool steel	14
Table 3.3.1	Image Info generated by software	18
Table 3.3.2	Reading of image markers	18
Table 4.3.1	Levels of independent variable and their limits	22
Table 4.4.1	Design of Experiment matrix (coded) for Ra	23
Table 4.4.2	Design of Experiment matrix (uncoded) for Ra	23
Table 4.4.3	Design of summary	24
Table 4.4.4	Summary of quadratic for Ra	24
Table 4.4.5	Sequential model sum of square (Type-I) for Ra	25
Table 4.4.6	Lack of fit test for Ra	25
Table 4.4.7	Model summary statistics for Ra	25
Table 4.4.8	Analysis of Variance (ANOVA) for Ra	26
Table 4.5.1	Experiment result for MRR	34
Table 4.5.2	Design of Experiment matrix (coded) for MRR	35
Table 4.5.3	Design of Experiment matrix (uncoded) for MRR	35
Table 4.5.4	Design of summary for MRR	36
Table 4.5.5	Summary of quadratic for MRR	36
Table 4.5.6	Sequential model sum of square (Type-I) for MRR	37
Table 4.5.7	Lack of fit test for MRR	37
Table 4.5.8	Model summary statistics for MRR	37
Table 4.5.9	Analysis of Variance (ANOVA) for MRR	38
Table 4.5.10	Forced terms intercept for MRR	45

Table 4.5.11	Analysis of Variance (ANOVA) for MRR after	
	Backward Elimination process	45
Table 4.5.12	Other parameters for MRR	46
Table 4.6.1	Design of Experiment matrix (coded) for temperature	51
Table 4.6.2	Design of Experiment matrix (uncoded) for temperature	51
Table 4.6.3	Design of summary for temperature	52
Table 4.6.4	Summary of quadratic for temperature	52
Table 4.6.5	Sequential model sum of square (Type-I) for temperature	53
Table 4.6.6	Lack of fit test for temperature	53
Table 4.6.7	Model summary statistics for temperature	53
Table 4.6.8	Analysis of Variance (ANOVA) for temperature	54

LIST OF FIGURE

S. NO.	TITLE	PAGE NO.
Fig. 1.1	Adjustable parameters in turning operation	2
Fig 3.1.1	EN-31 work-piece	13
Fig. 3.2.1	Coated carbide insert	14
Fig 3.3.1	CNC Turning Machine	15
Fig 3.3.2	Infrared Camera for thermal Image	17
Fig 3.3.3	Infrared camera picture	18
Fig 3.3.4	3D graph generate by software	18
Fig 3.3.5	Setup of Surface roughness measurement	19
Fig 3.3.6	Reading of surface roughness by software	20
Fig 4.4.1	Normal Plot of Residual for Ra	27
Fig 4.4.2	Predicted Vs Actual for Ra	28
Fig 4.4.3	One Factor-Cutting speed for Ra	28
Fig 4.4.4	One Factor-Feed for Ra	29
Fig 4.4.5	One Factor-depth of cut for Ra	29
Fig 4.4.6	Perturbation for Ra	30
Fig 4.4.7	Response contour plot between Cutting speed and Feed for Ra	30
Fig 4.4.8	Response contour plot between Cutting speed and	
	Depth of cut for Ra	31
Fig 4.4.9	Response contour plot between Feed and depth of cut for Ra	31
Fig 4.4.10	Response surface 3D plot between cutting speed and	
	Feed for Ra	32
Fig 4.4.11	Response surface 3D plot between cutting speed and	
	Depth of cut for Ra	32

Fig 4.4.12	Response surface 3D plot between Feed and	
	Depth of cut for Ra	33
Fig 4.5.1	Normal Plot of Residual for MRR	39
Fig 4.5.2	Predicted Vs Actual for MRR	39
Fig 4.5.3	One Factor-Cutting speed for MRR	40
Fig 4.5.4	One Factor-Feed for MRR	40
Fig 4.5.5	One Factor-depth of cut for MRR	41
Fig 4.5.6	Perturbation for MRR	41
Fig 4.5.7	Response contour plot between Cutting speed and Feed	42
Fig 4.5.8	Response contour plot between Cutting speed and	
	Depth of cut for MRR	42
Fig 4.5.9	Response contour plot between Feed and Depth of cut	43
Fig 4.5.10	Response surface 3D plot between Cutting speed and	
	Feed for MRR	43
Fig 4.5.11	Response surface 3D plot between Cutting speed and	
	Depth of cut for MRR	44
Fig 4.5.12	Response surface 3D plot between Feed and	
	Depth of cut for MRR	44
Fig 4.5.13	Normal Plot of Residual for MRR after backward elimination	46
Fig 4.5.14	Predicted Vs Actual for MRR after backward elimination	47
Fig 4.5.15	One Factor-Cutting speed for MRR after backward elimination	47
Fig 4.5.16	One Factor-Feed for MRR after backward elimination	48
Fig 4.5.17	One Factor-Depth of cut for MRR after backward elimination	48
Fig 4.5.18	Perturbation for MRR after backward elimination	49
Fig 4.5.19	Response contour plot between Feed and Depth	

	Of cut after backward elimination	49
Fig 4.5.20	Response surface plot between Feed and Depth	
	Of cut after backward elimination	50
Fig 4.6.1	Normal Plot of Residual for temperature	55
Fig 4.6.2	Predicted Vs Actual for temperature	55
Fig 4.6.3	One Factor-Cutting speed for temperature	56
Fig 4.6.4	One Factor-Feed for temperature	56
Fig 4.6.5	One Factor-depth of cut for temperature	57
Fig 4.6.6	Perturbation for temperature	57
Fig 4.6.7	Response contour plot between Cutting speed and Feed	58
Fig 4.6.8	Response contour plot between Cutting speed and	
	Depth of cut for temperature	58
Fig 4.6.9	Response contour plot between Feed and Depth of cut	59
Fig 4.6.10	Response surface 3D plot between Cutting speed and	
	Feed for temperature	59
Fig 4.6.11	Response surface 3D plot between Cutting speed and	
	Depth of cut for temperature	60
Fig 4.6.12	Response surface 3D plot between Feed and	
	Depth of cut for temperature	60