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ABSTRACT 
 

System’s performance is highly affected by CPU Scheduling. Effective scheduling leads to 

better system performance. Process scheduling problem is a combinatorial problem in which 

arrangement of jobs is a key factor. Different algorithms and techniques have been 

developed, used to find the above factor, many techniques such as FCFS, SJF, Round-

Robin, Priority, Multi-Level Queue and many more are applied but all these technique 

provide sequence of job relevant to their properties, the sequence which is necessary toward 

our requirement may be not full-filled by applying previously known techniques, to find 

such sequence its take exponential time.  

In this project we proposed a method for process scheduling using a deadline aware 

approximation algorithm to provide efficient process scheduling, where required schedule 

has a certain weightage of priority and Burst time of job. In our problem we solve the desire 

sequence of jobs by using four approximation techniques. 

To solve above problem in polynomial time there are approximation algorithms which solve 

the sequence of jobs in polynomial time. Genetic algorithm (GA) is one such approximation 

technique and another one is Artificial-Bee-Colony (ABC). Two further techniques are the 

modified-GA and modified-ABC. 

In real life problems we have a deadline to complete certain set of jobs, we have to decide 

the sequence of job in which we complete our jobs before or nearby deadline, our proposed 

technique provide a way which leads toward a good solution, we known each job take   

some duration to execute (i.e. Burst time) and each job is associate with some priority, so 

considering both factor we developed a method in which we provide a certain weightage 

(requirement percentage) to priority, this lead to total completion time of jobs ( Total-Turn-

Around time) . Toward Total-Turn-Around time (TAT) we find a sequence of jobs. 

We apply approximation algorithms to find desire schedule, our proposed CPU Scheduling 

method and comparison is made on the performance of CPU scheduling with and without 

the proposed technique in terms of number of iteration, number of test case, requirement 

percentage and tardiness (fitness value).  

Keywords: CPU Scheduling, Optimization, Genetic Algorithm, Artificial-Bee-Colony and 

Crossover. 
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CHAPTER 1 

 

INTRODUCTION 

 

CPU scheduling is one of the most important functionality of the operating system, the 

scheduling of job play a vital role on the performance and efficiency of CPU. The major 

functionality of this task is to maximize the efficiency and finally enhance the performance. 

Scheduling of jobs should be done correctly and fairly, so that each job gets a chance to 

execute on the processor. Scheduling of jobs also plays a vital role as utilization of resources 

to a large extent depends on the efficiency of scheduling. The problem of getting a flexible or 

robust solution for scheduling problems is of uttermost importance for real-life applications. 

The objective of multiprogramming is to reside multi-process in main memory, in today time 

multi-programming is similar to multi-tasking, which leads to maximize CPU utilization. The 

objective of time sharing is all the processes are run concurrently and the CPU is switched 

among processes so frequently. In a uni - processor system only one process is running at a 

time. In our problem we consider one process is executing at a time. The work of a dispatcher 

is allocating a CPU to a process which is decided by a scheduler to be processed under 

allocation. Scheduling is a factor which majorly affects the performance of the system, 

because it decides which process will come under execution and which will wait. 

 

Figure.1.1 [31] 
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In above figure.1 all the states of process are shown, the above representation and linking of 

path shows how a program is to move from one state to another with or without external 

effects. 

New State: when we double click on program, program is added to the job-pool which is in 

HDD and unique ID is associated with that process. 

Ready State: process is being to execute. 

Execute State: process is under execution, the CPU is allocated to it. 

Waiting State:  process is waiting for input/output, completion, this state is in main memory. 

 Suspend State: Process is temporary swap-out and place in that part of HDD called swap 

space. 

Terminate State: Process has fairly finished its execution  

  

Types of Scheduling 

 Long-term Scheduling 

 When a new process is created and is added to the job-pool which is in HDD and 

unique ID is associated with that process. The long-term scheduler decides which 

programs are now admitted into the system for processing and which are later 

admitted into the system. The work of admitting jobs is done by the dispatcher. The 

long-term scheduler is lesser frequent then Medium -term scheduler. 

 

 Medium-term Scheduling 

Medium-term scheduling is scheduled which decides which process is swap-in and 

which is swap-out. Virtual memory is combination of main memory and part of HDD 

called swap space. The process of the swap-in, swap-out is handled by Medium-term 

scheduler. The medium-term scheduler is lesser frequent than a Short-term scheduler.  

 

 Short-term Scheduling 

Short-term scheduling is scheduled which decides which process is coming under 

execution from ready queue, short-term scheduler decides which process is now bring 
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under execution and this work is done by dispatcher. It means decisions are made by 

scheduler and dispatcher fulfills it. The short-term scheduler executes most frequent 

scheduler. 

 

Scheduling Criteria 

 CPU Utilization: 

The amount of time CPU is busy in performing useful task divide by total amount of 

time.  At 99 % of jobs, 99 % of the time is spent on a particular bunch of lines. To 

increase utilization the page which consist those lines much always be in main 

memory. 

 Throughput: 

Throughput is the rate at which number of processes are completed their execution  

per unit time. 

 Turnaround time: 

It is a total time when a process is arrive on ready state till the process is complete, its 

execution and move to terminate state. 

 Waiting time: 

Waiting time is the total time spent by process in ready queue. 

 Response time: 

Response time is the time when a process is brought into main memory and a time it 

spent first time in ready queue, that time is contribute in response time. 

 Fairness: 

CPU should be allocated to each process in a fair share manner. 

 Tardiness: 

It is time which is difference of job completion time and its deadline time. 

 

 Makespan: 



 Page 4 
 

When several jobs are together competing of execution, then the starting of first job 

time to the end of last job run that time is contributing to makespan.  

 

There are two modes of scheduling 

Preemptive Scheduling: 

In preemptive, the scheduling criterion is based on remaining time on the process currently 

being processed. The process with shortest remaining burst time is executed / scheduled first 

then other processes. In other words, if a new process arrives, then the remaining burst time of 

the current process is compared with the burst time of new process, whichever is shortest, is 

scheduled and the other process is made to wait. 

Non-preemptive Scheduling: 

In non-preemptive, if an arriving process has a shorter burst time, then the executing process, 

the process in execution is not preempted, but is allowed to finish. In our paper, we use 

preemptive (Shortest remaining time first) scheduling algorithm. 

Process scheduling problem is a combinatorial problem in which arrangement of jobs is a key 

factor. Scheduling of jobs is a combinatorial problem which consumes exponential time. To 

solve the above problem in polynomial time there are approximation algorithms which solve 

the sequence of jobs in polynomial time. Genetic algorithm (GA) is one such approximation 

technique and another one is Artificial-Bee-Colony (ABC).  

Genetic algorithm is an approximation base algorithm which is inspired by nature. It was 

first developed by Holland [2] and De Jong [3]. The genetic algorithm is applied to varying 

field of problems which are non-polynomial (NP-Complete or even NP-Hard). GA play a 

vital role in solving them in polynomial time. 

Scheduling of jobs is a combinatorial problem which consumes exponential time but GA 

applied on many scheduling problems to solve them in polynomial time. 

A basic GA consists of five components. These components are as follows: first, a random 

number generator ; second, a fitness evaluation unit ; last three are the genetic operators 

Selection(Reproduction), Crossover and Mutation operations. 
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1.1.   Scheduling Algorithms 

 Scheduling algorithms or scheduling policies are used for short-term scheduling. The main 

functionality of short-term scheduling is to allocate a processor in such a way as to optimize 

one or more aspects of scheduling criteria / system behavior. 

Let say we have a uniprocessor system for these scheduling algorithms. Scheduling 

algorithms decide which of the process in the ready queue is to be allocated to the processor 

is the basis of the type of scheduling policy and whether that scheduling policy is either 

preemptive or non-preemptive in nature. For scheduling several aspects such as arrival time, 

burst time and priority are also playing a role in scheduling of jobs. 

List of scheduling algorithms is as follows: 

 First-come-first-served scheduling (FCFS) algorithm. 

 Shortest Job First Scheduling (SJF) algorithm. 

 Shortest Remaining time First (SRTF) algorithm. 

 Non-preemptive priority algorithm of scheduling. 

 Preemptive priority algorithm of scheduling. 

 Round-Robin algorithm of scheduling. 

 

For explaining some of the above scheduling let us take an example. 

 Arrival time Burst time Priority 

Process1 0 4 2 

Process2 3 6 1 

Process3 5 3 3 

Process4 8 2 1 

   Table.1.1 

 

1.1.1. First-come First-served Scheduling (FCFS) 



 Page 6 
 

As the name refers First-come First-served Scheduling follow first enter, first leave out 

method. Each process is waiting in ready queue for the allocation of CPU. When the 

currently running process finished its execution, the next selected process for execution is the 

oldest process in the Ready queue. That is the first entered process among the available 

processes in the ready queue. The average waiting time for FCFS is quite long. It is non-

preemptive in nature. 

 

TURN-AROUND TIME=WAITING TIME + BURST TIME 

 

 

 Table 1.2 

Advantages 

 Better for long processes, if we consider context switching overhead. 

 Simple method (i.e., minimum overhead on processor) 

 Minimum context switching. 

 No starvation 

Disadvantages  

 Waiting time of shorter process is more if it arrives later higher burst time process. 

 Throughput is poor, the higher burst time process comes early then lower burst time 

process. 

 

1.1.2. Shortest Job First Scheduling (SJF) 

Shortest-Job-First  scheduling algorithm is of two types: i) preemptive (Shortest remaining 

time first) and ii) non-preemptive [12] in nature. In preemptive, the scheduling criterion is 

based on remaining time on the process currently being processed. The process with shortest 

remaining burst time is executed / scheduled first then other processes. In other words, if a 

new process arrives, then the remaining burst time of the current process is compared with the 

burst time of new process, whichever is shortest, is scheduled and the other process is made to 

wait. 
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 In non-preemptive, if an arriving process has a shorter burst time, then the executing 

process, the process in execution is not preempted, but is allowed to finish. In our paper, we 

use preemptive (Shortest remaining time first) scheduling algorithm. 

 

 

Table 1.3 

Advantages 

 Total-turn-around time is better. 

 Throughput is good. 

Disadvantages 

 Typical to implement, difficult to get exact burst time priori. 

 Starvation is possible for the longer processes, if shorter is continuously arriving. 

 

1.1.3. Priority Scheduling 

Every CPU scheduling algorithm can be considered as a priority algorithm because the 

property which follow one’s algorithm can be treated as priority.  

The priority scheduling algorithm is preemptive [12] in nature in which processes are 

scheduled according to their priority, whereas highest priority job can run first whereas lower 

priority job can be made to wait. The priority of a given particular process is subjective and it 

is determined by many factors, in our algorithm 0(zero) denotes the highest priority and 5 

denotes the lowest priority. The biggest problem of this algorithm is the starvation of a process 

[11]. 

 

 

Non-preemptive Priority Scheduling 

In this type of scheduling the CPU is allocated to the next highest priority process after 

completing the present running process. 
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Table 1.4 

Advantage 

 Less response time for the highest priority processes. 

Disadvantage 

 Starvation can be possible for the lowest priority processes. 

 

Preemptive Priority Scheduling 

In this scheduling if new arriving process has higher priority than a process which is under 

execution, executing process is preempted and newly process is coming under allocation of 

CPU.  

 

 

Table 1.5 

Advantage 

 Very good response time for the highest priority process over non-preemptive version 

priority CPU scheduling. 

Disadvantage 

 Starvation can be possible for the lowest priority processes. 

 

1.1.4. Round-Robin Scheduling 

 

This type of scheduling algorithm is basically designed for multi-processing / time sharing 

system. It is similar to the FCFS scheduling algorithm if we add preemption on it, preemption 

is based on time-slice. Round-Robin Scheduling is also called as time-slicing (time 

quantum)scheduling. Clock interrupt is generated at periodic interval of 5-50ms. When the 
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interrupt occurs, the next ready job is selected on a FCFS (First-come-First-serve) basis and 

the current running process is moved in the ready queue. This process is known as time-

slicing (time quantum) scheduling, because each process is executed equal to time quantum 

before it being preempted. 

One of the below happens: 

 The burst time of the process may be smaller than the time quantum. 

  Burst time of currently executing process is longer than the time quantum. In this 

case the context switch occurs and the currently running process is put at the tail of 

the ready queue. 

 

Mostly, the duration of time-slice is decided on the basis of 90% of jobs can finish in their 

first time-slice period, this is because to reduce the number of context switching’s. 

 

 

 

Table 1.6 

Advantages 

 Best response time. 

 Highly interactive scheduling algorithm. 

Disadvantages 

 Choosing quantum value is crucial. 

 Number of context switch is more. 

    If time quantum is very small, throughput is low. 

1.2. Approximation Algorithm 

 

1.2.1    Genetic Algorithm 
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Genetic algorithm is an approximation base algorithm which is inspired by nature. It was 

first developed by Holland [2] and De Jong [3]. The genetic algorithm is applied to varying 

field of problems which are non-polynomial (NP-Complete or even NP-Hard). GA play a 

vital role in solving them in polynomial time. 

Scheduling of jobs is a combinatorial problem which consumes exponential time but GA 

applied to many scheduling problems to solve them in polynomial time. 

A basic GA consists of five components. These components are as follows: first, a random 

number generator ; second, a fitness evaluation unit ; last three are the genetic operators 

Selection(Reproduction), Crossover and Mutation operations.  

The basic algorithm is summarized below: 

1: Initialize Population 

2: repeat 

3:    Evaluation 

4:    Selection 

5:    Crossover 

6:    Mutation 

     7: until requirements are met 

 

Initialize Population 

It is a starting phase of Genetic algorithm in which initial population is generated, each 

element of the population is called Chromosome. A chromosome consists of genes, to 

represent a gene we required some encoding schemes. Various types of encoding schemes 

are: 

 Binary encoding 

 Permutation encoding 

 Value/Real  encoding 

 Octal & Hexadecimal encoding 

In our algorithm we use the Value encoding scheme. 
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Evaluation 

It is phased in, which evaluation of the problem is done as a result. There are is a function 

which is treated as a result evaluation, i.e. objective function / fitness function. Fitness 

function can be defined by many factors such as tardiness, makespan, total-turn-around time, 

total-waiting time. 

In our problem fitness function is tardiness. 

Selection 

It is phase of the selection of two parent chromosome from the set of initial population. On 

these two chromosomes the further lower phases (Crossover, Mutation) of Genetic algorithm 

are applied. 

Crossover 

It is the phase which is applied on selected two parent chromosome, There are several types 

of crossover: 

 One-point crossover. 

 Two-point crossover. 

 Half uniform crossover and Uniform crossover. 

 Ring crossover. 

 Hybrid One-Two point crossover 

 

One-point crossover 

 

Select two individuals randomly from the current population for crossover operation.  Apply 

one-point crossover operation on the parent chromosome to generate new offspring 

chromosome. A new set of sequence vector is generated for new offspring. Compute the cost 

for that offspring; Compute the fitness of updates individual. Replace the worst parent and 

associated chromosome with new best offspring and its chromosome if it is better update 

individuals. 

 

10100011 00110110 10100110 00110011 

 Parent1 Parent2 Offspring1      Offspring2   Table 1.7 
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Two-point crossover 

 

Select two individuals randomly from the current population for crossover operation.  Apply 

two-point crossover operation on the parent chromosome to generate new offspring 

chromosome. A new set of sequence vector is generated for new offspring. Compute the cost 

for that offspring; Compute the fitness of updates individual. Replace the worst parent and 

associated chromosome with new best offspring and its chromosome if it is better update 

individuals. 

10100011 00110110 10110111 00100010 

Parent1 Parent2 Offspring1     Offspring2  

 Table 1.8 

 

Hybrid One-Two point crossover 

 

Select two individuals randomly from the current population for crossover operation.  Apply 

two-point crossover operation on the parent chromosome to generate new offspring 

chromosome. Compute the fitness of that offspring; now apply one-point crossover operation 

on the parent chromosome to generate new offspring chromosome. Compute the fitness of 

that offspring. Compare both pairs of fitness of one-point and two-point; select one pair 

which is minimum of both. Replace the worst parent and associated chromosome with new 

best offspring and its chromosome if it is better update individuals.  

If offspring after one-point crossover have better fitness than offspring after a two-point 

crossover. 

 

10100011 00110110 10100110 00110011 

Parent1 Parent2 Offspring1     Offspring2 

Table 1.8 

If offspring after two-point crossover have better fitness than offspring after a one-point 

crossover. 
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10100011 00110110 10110111 00100010 

Parent1 Parent2 Offspring1      Offspring2 

  Table 1.9 

 

Uniform crossover 

Select two individuals randomly from the current population for crossover operation. Take an 

auxiliary vector of equal number of genes in chromosomes and filled by randomly 0 and 1.  

All genes of both chromosomes having indexed same to the index of the auxiliary vector with 

0 values are swapped. Compute the fitness of updates individual. Replace the worst parent 

and associated chromosome with new best offspring and its chromosome if it is better update 

individuals. 

 

Ring crossover 

Select two individuals randomly from the current population for crossover operation.  Apply 

ring crossover operation on the parent chromosome to generate new offspring chromosome. 

In ring crossover assume both parent chromosomes are in two arrays now, imagine left end of 

one array is joining with the left end of another array and right end of one array is joining 

with right end of another array generate random number r b/w 0 & number of gene in 

chromosome, perform circular rotation r times. Arrays after the perform above step are new 

offspring chromosome. Compute the fitness of updates individual. Replace the worst parent 

and associated chromosome with new best offspring and its chromosome if it is better update 

individuals. 

Suppose r is 3. 

10100011 00110110 10010100 10110110 

Parent1 Parent2 Offspring1      Offspring2 

  Table 1.10 

Mutation 

If mutation criteria is met(it is randomly 3 times out of 100 times) then ,Select two 

individuals based on minimum fitness value  from the current population of mutation 
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operation. Apply mutate operation to generate new chromosomes (new offspring).Compute 

the fitness value for that offspring, Replace the worst parent and associated chromosome with 

new best offspring and its chromosome if it is better update individuals. 

It is the phase which is applied on selected two parent chromosomes, There are several types 

of mutation: 

 Move 

 Swap 

 Move and Swap 

 Rebalancing 

  

Move Mutation 

Select two individuals based on minimum fitness value  from the current population of 

mutation operation. Apply mutate operation (move) to generate new chromosomes (new 

offspring).Compute the fitness value for that offspring, Replace the worst parent and 

associated chromosome with new best offspring and its chromosome if it is better update 

individuals. 

   

00110110 00110111 

Parent   Offspring 

  Table 1.11 

 

Swap Mutation 

 

Select two individuals based on minimum fitness value  from the current population of 

mutation operation. Apply mutate operation (move) to generate new chromosomes (new 

offspring).Compute the fitness value for that offspring, Replace the worst parent and 

associated chromosome with new best offspring and its chromosome if it is better update 

individuals. 

 

10100011 00110110 10100111 00110010 

Parent1 Parent2 Offspring1      Offspring2 

Table 1.12 
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1.2.2. Artificial Bee Colony Algorithm 

 

In ABC algorithm, we imitate all these tasks in a computerized way. Employee starts the 

process of collecting nectars from different food sources. They bring back the nectars to the 

hive and exchange information about the food source they visited by a particular dance called 

waggle dance. Physical interpretation of waggle dance is, more a bee dances higher the 

quality of the food source visited by it. After seeing the waggle dance, onlooker bee decides 

the food source they are going to visit and this process continues until a food source is dead. 

When a food source is dead, it is abandoned, and scout bee starts searching for a new food 

source to replace the abandoned one. The benefit of such social organizations is the increased 

flexibility to adapt to the changing environments. The bee members use a sophisticated 

communication protocol with bee-to-bee signals, a stigmergic feedback cue for bee-to-group 

or group-to-bee interaction.  

 

In ABC algorithm, colony bees are divided into three groups: employed bees, onlooker bees 

and scout bees. The number of employees is equal to the number of food sources i.e. number 

of solutions in the population. The employee whose food source is exhausted is provided with 

a new food source by the scout bee. Each food source position is equivalent to a potential 

solution of optimization problem, with its quality or fitness value acting as the nectar amount. 

Whenever any bee finds a food source, it signals the other bees by stigmergy (waggle dance), 

the quality and the location of the food source. This attracts a large number of bees (onlooker 

bees) towards good food sources for further exploration. 

 

The main steps of the algorithm are as below: 

1: Initialize Population 

2: repeat 

3: Place the employed bees on their food sources 

4: Place the onlooker bees on the food sources depending on their nectar amounts 

5: Send the scouts to the search area for discovering new food sources 

6: Memorize the best food source found so far 

7: until requirements are met 

 

 The ABC algorithm has three operational phases:  
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 Scout bees do random search for the food, & find near optimal food sources, 

completely random.  

 Employed bees visit food source and gather information about food source location 

and the quality. They have memory of the places they have visited before and quality 

of food there, & performs the local search to try to exploit the neighboring sources to 

locate the best.  

 Onlooker bees wait in the dance area to decide which food source is better on the 

basis of information provided by employees. They perform the global search for 

discovering the global optimum.  

 

 

1.3.    Motivation 

 

CPU scheduling is one of the most important functionality of the operating system, the 

scheduling of job play a vital role on the performance and efficiency of CPU. Scheduling of 

jobs plays a vital role as utilization of resources to a large extent depends on the efficiency of 

scheduling. The problem of getting a flexible or robust solution for scheduling problems is of 

uttermost importance for real-life applications. The major functionality of this task is to 

maximize the efficiency and finally enhance the performance. 

 

Process scheduling problem is a combinatorial problem in which arrangement of jobs is a key 

factor. Different algorithms and techniques have been developed, used to find the above 

factor, many techniques such as FCFS, SJF, Round-Robin, Priority, Multi-Level Queue and 

many more are applied but all these technique provide sequence of job relevant to their 

properties, the sequence which is necessary toward our requirement may be not full-filled by 

applying previously known techniques, to find such sequence its take exponential time. 

 

Lot of research has been done in the area of optimization of CPU scheduling, so GA plays a 

vital role in finding nearby optimal solutionsof optimization and search problems in 

polynomial time[4]. The guided randomsearch based algorithms typically generate multiple 

candidate solutions, sampled from a feasible solution space and uses a guided search for 

exploration. A host of evolutionary, swarm intelligence techniques likeGenetic algorithms 
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[1], [13], Particle Swarm Optimization[14], Ant Colony Optimization [16],Simulated 

Annealing [15], and Tabu search [17], [18]have been successfully applied to the scheduling. 

 In real life problems we have a deadline to complete certain set of jobs, we have to 

decide the sequence of job in which we complete our jobs before or nearby 

deadline, our proposed technique provide a way which leads toward a good 

solution, we known each job take   some duration to execute( i.e. Burst time) and 

each job is associate with some priority, there are many other factor associated 

with job but these two are important. So considering both factor we provide a  

sequence of jobs which is towards desired optimal 

1.4. Research Objective 

With the motivation explained in the previous section, the objective of our research work 

can be identified as: 

 Development of a mechanism when there are certain number of jobs ( any real life 

work is treated as job) with number of parameter associated with it, provide a  

sequence of jobs which is towards desired optimal. 

 In this research we consider two factor of  job, i.e. burst time and priority of job. 

 To improvise the completion time of set of jobs we provide set of requirement 

percentage of priority, user can choose particular requirement percentage of 

priority as per his/her deadline. 

 Let there be N Preemptive processes (jobs) (j1,j2,...,jn) [12] that are waiting to be 

processed by a single processing system. Each job ji has its arrival time ai, burst 

time bi and priority pi respectively. 

 

 We have two schedules of N processes, one ordered by their burst times and the 

other according to their priorities and a third schedule needs to be generated that is 

a  weighted sum of both priority and Shortest–Job-First(SJF). 
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1.5.   Major Project Organization 

We start this dissertation with introduction in chapter 1. A detailed description of 

background is presented in chapter 2 which includes scheduling & its applications, 

literature review of Optimization Algorithm. Chapter 3 explains about proposed problem 

statement and its proposed solution. Chapter 3 also gives a brief about the optimization 

technique we have used. Chapter 3 also explains in detail about our proposed algorithm 

Modified-GA and proposed Hybrid-ABC. We evaluate the performance of the proposed 

algorithm and technique with CPU scheduling in chapter 4. We conclude about the work 

done and observations in chapter 5. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1. Scheduling and its Application  

Scheduling is key factor to perform any work in a systematic way. In real life everyone is 

surrounded with ample of work and have to perform each work completely either in efficient 

way or inefficient way, but our objective is to perform that work in efficient and for that we 

highly recommend for scheduling.   

Scheduling of job play a vital role on the performance and efficiency of CPU. The major 

functionality of this task is to maximize the efficiency and finally enhance the performance. 

Scheduling of jobs should be done correctly and fairly, so that each job gets a chance to 

execute on the processor. Scheduling of jobs also plays a vital role as utilization of resources 

to a large extent depends on the efficiency of scheduling. The problem of getting a flexible or 

robust solution for scheduling problems is of uttermost importance for real-life applications. 

If we say, we have to run our life without scheduling then there is no deadline of any work, 

then there is no systematic in nature and without it life cannot be run. So, scheduling play a 

key factor in the real world. The application of scheduling is everywhere in each and every 

field. 

Some of the application, we mention below: 

2.1.1.  Transport system 

 Railway System 

If there is no scheduling of arrival and departure of train then there shell be a 

deadlock or even a crash. 

 Airline System 

same as railway system, If there is no scheduling of arrival and departure of train then 

there shell be a deadlock or even a crash. 
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2.1.2 Education System 

 Library Management System 

If books of every department is not separately schedule and stored randomly then 

time to search for particular book is unpredictable. 

 Examination Management System 

in this section also scheduling is play a vital role, if scheduling is not follow, then 

examination never be able to conduct or if conducted, it is in such manner which 

doesnot make any importance on examination result. 

2.1.3. Banking Sector 

 Opening / closing time of banks. 

 Scheduling of transaction. 

 Inconsistency in data. 

 Non-Atomicity. 

 Non-durability. 

2.1.4. Computer Science & Engineering 

 Graph Coloring Problem 

The beauty of this problem is schedule nodes is such a way no two adjacent 

node are come under same set. 

In graph coloring problem we have graph with its nodes and edges, we have to 

color each node with minimum number of colors and constrain of coloring are 

as follows: 

 Make minimum numbers of independent set. 

 In independent set, all vertices are non-adjacent to each other. 

 The number of independent set is equal to minimum number of colors 

required to perfectly color a graph. 
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 A service architecture for ATM. 

 

 

 

 Figure: 2.1 [19] 

 

2.1.5. CPU Scheduling 

Process scheduling problem is a combinatorial problem in which arrangement of jobs is a key 

factor. Different algorithms and techniques have been developed, used to find the above 

factor, many techniques such as FCFS, SJF, Round-Robin, Priority, Multi-Level Queue and 

many more are applied but all these technique provide sequence of job relevant to their 

properties, the sequence which is necessary toward our requirement may be not full-filled by 

applying previously known techniques, to find such sequence its take exponential time. 

System’s performance is highly affected by CPU Scheduling. Effective scheduling leads to 

better system performance. 

The problem of getting a flexible or robust solution for scheduling problems is of uttermost 

importance for real-life applications. Scheduling of jobs also plays a vital role as utilization 

of resources to a large extent depends on the efficiency of scheduling. The major 

functionality of this task is to maximize the efficiency and finally enhance the performance. 

Scheduling of jobs should be done correctly and fairly, so that each job gets a chance to 
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execute on the processor. CPU scheduling is one of the most important functionality of the 

operating system, the scheduling of job play a vital role on the performance and efficiency of 

CPU.  

Scheduling of jobs also plays a vital role as utilization of resources to a large extent depends 

on the efficiency of scheduling. The objective of multiprogramming is to reside multi-process 

in main memory, in today time multi-programming is similar to multi-tasking, which leads to 

maximize CPU utilization. The objective of time sharing is all the processes are run 

concurrently and the CPU is switched among processes so frequently. In a uni - processor 

system only one process is running at a time. 

In preemptive, the scheduling criterion is based on remaining time on the process currently 

being processed. The process with shortest remaining burst time is executed / scheduled first 

then other processes. In other words, if a new process arrives, then the remaining burst time of 

the current process is compared with the burst time of new process, whichever is shortest, is 

scheduled and the other process is made to wait. 

In non-preemptive, if an arriving process has a shorter burst time, then the executing process, 

the process in execution is not preempted, but is allowed to finish. In our paper, we use 

preemptive (Shortest remaining time first) scheduling algorithm. 

2.2 Genetic Literature 

 This section presents a comprehensive study of Genetic Algorithms (GA) applied to 

scheduling in last 2 to 3 decades. GA is widely used in many engineering fields and it is an 

effective, it’s optimization performance was verified in [1]. GA’s was developed by Holland 

[2] and De Jong [3] , based on mechanics of natural selection in the biological system.  

GA has been applied to different application areas, specifically in combinational problems, 

such as scheduling [4-9]. In general ,scheduling problems have been proved to be NP-

Complete [7] and so to find an optimal solution it take exponential time, which is not feasible 

in real time applications with time constraints, so GA plays a vital role in finding nearby 

optimal solutions of optimization and search problems in polynomial time[4]. 

2.3 Artificial Bee Colony Literature 

 In swarm based optimization technique, the bees based optimization technique are 
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population based search algorithm that mimics the food foraging behavior of honey bees. 

This technique was first proposed in 2005 by D.T.Pham [22] and Karaboga [23] 

independently. D.T.Pham [22] was proposed ABC on the basis of foraging behaviour  of 

honey bee, Karaboga [23] was also proposed ABC on the basis of foraging behaviour of 

haney bee but it was more effective in searching for food source. 

 [24] M. S. Kiran and M.G. Unduz, In this paper author present a new approach of 

artificial bee colony algorithm for solving the numerical optimization problems in 

which exploitation and local search abilities were improved. 

 [27] DENG Guanlong, XU Zhenhao and GU Xingsheng, In this paper, author present 

a blocking flow shop scheduling problem in which the role is to minimize the total 

flow time, by designing some new schemes for all three phases (employee bee, 

onlooker bee and scout bee phase). 

 [28] A. Madureira, I. Pereira and A. Abraham, In this paper, author present a Job-

shop scheduling optimization technique in which the role is to minimize the total 

tardiness of jobs with constrain we have only one machine on which all operation 

have to run. 

 [29] M. S. Kiran and A. Babalik, In this paper author proposed a improved version of 

artificial bee colony algorithm for continues optimization problem in which selection 

of neighborhood of the candidate solutions is done in onlooker bee phase on the bases 

of information shared by the employed bees. 

 [30] Ana Madureira, Bruno Cunha and Ivo Pereira, In this paper author present a way 

of intercommunication for distributed scheduling, it is based on self-organized 

scheduling system. In this agents are collaborate together to improve their local 

solution and the global schedule. The cooperative mechanism is generated by 

resource agents to analyze the schedule and idle time is reduce by the self-organized 

behaviour of artificial bee colony algorithm. 

 

2.4. Some Other Approximation Techniques 

2.4.1. Ant Colony Optimization 

ACO is a optimizing probabilistic technique which is used to find a good path toward 
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solution of computational problems using graph. We known that there are many 

computational problems which are graph based and if we solve them in greedy way it take 

enormous exponential time. ACO is initially proposed by Marco Dorigo [21] in 1992 in his 

PhD thesis. 

A basic algorithm is summarized: 

1. Initialize pheromone. 

2. Single ant deposited pheromone perceivable by other ants. 

3. While moving from nest to food-source (or vice-versa) pheromone is lay. 

4. Guidance for other foragers to food source. 

5. Even shortest way to food source is optimized. 

Foraging behavior of ants   

 Pheromone 

Pheromone is a substance which is release by an ant to give an direction to other ants, 

the path which have higher percentage of pheromone that path is followed by ants and 

during following path ants release pheromones, so the concentration of pheromone is 

slightly increased in single path and that become the shortest path. 

Recent work of ACO algorithm on scheduling 

 [25] R. Chaukwale and S. S. Kamath, in this paper ACO play its role for local 

balancing in job-shop scheduling problem. Job-shop scheduling problem is NP-Hard 

problem, where number of jobs are N (j1,j2,…,jn), number of machines are M 

(m1,m2,…,mn) and each process have M operation. We have to find a schedule each 

operation of all the jobs must be run on any of the machine in such a way, total 

makespan (completion time) should be less. So, here ACO make a balance to 

operation in such a way the total makespan (completion time) is nearby optimal. 

 [26] Tawfeek, M.A., El-Sisi, in this paper, ACO play its role for optimizing cloud 

task scheduling. Cloud collection of software as a service, data as a service, in which 

we do-not need to install software on our local drive and we use the services of 

software. Cloud computing is a collection of interconnected and virtual computer 

system, scheduling a task in cloud is also a NP-Hard problem, here ACO provide a 

solution which is non-exponential and nearby optimal. 
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2.4.2. Particle Swarm Optimization 

In PSO is an optimizing probabilistic technique which is used to find a best food source out of 

number of food source. Particle swarm optimization was invented by Kennedy and Eberhart 

[20] Conversing rate of PSO is faster than ACO but do not guarantee optimal optimization all 

the time. We know that there are many computational problems which are graph based and if 

we solve them in greedy way it take enormous exponential time. In PSO all population 

particle are moving in search space. Particles are moving toward the direction of current 

optimum particles and changing their position to move towards the optima. In every iteration 

there is a current particle achieve called best particle Pbest , each particle follow it and best of 

the population is the global best Gbest.  

In PSO there are two important keys: 

 Position of particle 

The new position of the particle is calculated by previous position of particle and the 

current velocity of particle. In this way particles are move towards best particle.  

 Velocity of particle 

New velocity is calculated by the previous velocity with some parameter called inertia 

weight and the difference of old position to new position of particle with some 

constant factor which determine the significance of  Pbest and Gbest. 

The basic algorithm is summarized below: 

1: Initialize Population 

2: repeat 

3: Calculate fitness values of particles 

4: Modify the best particles in the swarm 

5: Choose the best particle 

6: Calculate the velocities of particles 

7: Update the particle positions 
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CHAPTER 3 

 

PROPOSED WORK 

 

3.1. Problem Statement 

Let there be N Preemptive processes (jobs) (j1,j2,...,jn) [12] that are waiting to be processed by 

a single processing system. Each job ji has its arrival time ai, burst time bi and priority pi 

respectively. 

The objective is to find the schedule that satisfies the following constraints. 

 

1. CPU should process every job. 

2. Processes are independent and compete for resources. 

3. We have two schedules of N processes, one ordered by their burst times and the other 

according to their priorities and a third schedule needs to be generated that is a  

weighted sum of both priority and Shortest–Job-First(SJF). 

 

3.2. Proposed Solution 

We have two schedules one according to SJF and the other according to priority, we know 

that SJF gives us optimal Total Turnaround Time(TAT) but if we consider only it we neglect 

our priorities, which in real life applications is not possible where processes come with 

different priorities. So we required a schedule which has near optimal turnaround time 

considering the priorities of the jobs. 

 

If we neglect the priorities of the jobs and go for a execution sequence according to their 

CPU bursts, then we may end up with a set of processes such that the process with lowest 

burst time has the highest I/O burst and vice-versa, in such cases SJF schedule may not give 

optimal TAT so we have to consider both the priorities of the jobs in schedule as well as their 

burst times. 
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In our proposed algorithm, We have taken two schedules , once ordered according to SJF and 

and other according to their priorities, the weightage of priority in the optimal schedule is wp 

i.e. new required schedule should contain wp % of priority and (1-wp)% of SJF in the 

solution. 

 

Let required time, 

RT = wp * sch_priority + (1-wp)*sch_sjf                                                                                 (1) 

 

where,  

sch_priority = Total Turnaround Time (TAT) according to priority scheduling. 

sch_sjf = Total Turnaround Time (TAT) according to Shortest-Job-First (SJF) scheduling. 

 

Require Time (RT) is the Total Turnaround Time (TAT) of some schedule and we have to 

find that schedule or a schedule whose TAT is nearby RT. This may be happen that there is 

no schedule which with RT, therefore we go for schedule whose TAT is nearby RT. 

 

 FITNESS FUNCTION 

 

Our objective is to find a schedule with minimum tardiness. 

Tardiness =modulus [completion time – required time (RT)].                              (2) 

Fitness value = tardiness value.       

   

Required time (RT) in (1). 
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3.3. Genetic Algorithm (GA) 

Scheduling of jobs is a combinatorial problem which consumes exponential time but GA 

applied to many scheduling problems to solve them in polynomial time. 

A basic GA consists of five components. These components are as follows: first, a random 

number generator; second, a fitness evaluation unit; last three are the genetic operators 

Selection (Reproduction), Crossover and Mutation operations.  

The basic algorithm is summarized below: 

1: Initialize Population 

The initial population contain 50 chromosome representing schedule of N jobs, each 

chromosome contain priorities of N jobs and each priority is unique and priority assign to 

each job is randomly using poisson distribution. 

2: Repeat 

3:    Evaluation 

4:    Selection 

5:    Crossover 

6:    Mutation 

     7: Until requirements are met 

The main function in initialize population is encoding scheme, each element of the population 

is called Chromosome. A chromosome consists of genes, to represent a gene we required 

some encoding schemes. In our algorithm we use value encoding scheme, in which value is 

the priority of job, each genes of chromosome is a priority of job. 
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Flow-Chart of GA Algorithm 
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3.4. Modified-Genetic Algorithm (MGA) 

The basic algorithm is summarized below: 

1. Choosing an Encoding scheme. 

2. Initialize population 

The initial population contain only two chromosome representing schedule of N jobs 

one ordered according to their priorities and the other according to the CPU bursts 

,each chromosome contain priorities of N jobs and each priority is unique and priority 

assign to each job is randomly using poisson distribution. 

3. Repeat 

4. Evaluation  

Fitness function which is Tardiness (1). 

 

5. Selection 

6. Crossover  

There are several types of crossover: 

 One-point crossover. 

 Two-point crossover. 

 Half uniform crossover and Uniform crossover. 

 Ring crossover. 

In our algorithm we use Two-point crossover and Ring crossover. 

7. Mutation 

There are several types of mutation: 

 Move 

 Swap 

 Move and Swap 

 Rebalancing 

In our algorithm we use swap. 

       Mutation is used to avoid local optimal. 

8. Until requirements are met 
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 Flow-Chart of Modified-GA Algorithm 
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3.5. Artificial Bee Colony Algorithm (ABC) 

In ABC algorithm, we imitate all these tasks in a computerized way. Employee starts the 

process of collecting nectars from different food sources. They bring back the nectars to the 

hive and exchange information about the food source they visited by a particular dance called 

waggle dance. Physical interpretation of waggle dance is, more a bee dances higher the 

quality of the food source visited by it. After seeing the waggle dance, onlooker bee decides 

the food source they are going to visit and this process continues until a food source is dead. 

When a food source is dead, it is abandoned, and scout bee starts searching for a new food 

source to replace the abandoned one. 

In ABC algorithm, colony bees are divided into three groups: employed bees, onlooker bees 

and scout bees. The number of employees is equal to the number of food sources i.e. number 

of solutions in the population. The employee whose food source is exhausted is provided with 

a new food source by the scout bee. Each food source position is equivalent to a potential 

solution of optimization problem, with its quality or fitness value acting as the nectar amount. 

Whenever any bee finds a food source, it signals the other bees by stigmergy (waggle dance), 

the quality and the location of the food source. This attracts a large number of bees (onlooker 

bees) towards good food sources for further exploration. 

 

The main steps of the algorithm are as below: 

1: Initialize Population 

2: Repeat 

3: attach the employee bees to some food source( no. of food source equal to no. of employee        

bee) 

4: attach the employee bees to some food source depending on their nectar amounts 

5: Send the scouts bees for finding new food sources on the search area 

6: Memorize the best food source found so far 

7: Until requirements are met 

 

The ABC algorithm has three operational phases:  

 Scout bees do random search for the food, & find near optimal food sources, 

completely random.  
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 Employed bees visit food source and gather information about food source location 

and the quality. They have memory of the places they have visited before and quality 

of food there, & performs the local search to try to exploit the neighboring sources to 

locate the best.  

Onlooker bees wait in the dance area to decide which food source is better on the basis of 

information provided by employees. They perform the global search for discovering the 

global optimum. 

 

Pseudo code of ABC algorithm 

 

1. Initialize the Control Parameters of the ABC Algorithm and randomly generate the 

priorities of jobs and each priority is unique in each chromosome, if in real life priorities 

are same then it is also manageable in our algorithm.   

2. Set Iteration =0;   

Evaluate the nectar amount (fitness) of food sources (2);  

3. Repeat Until (cycle is not equal to MAXCYCLE)  

for each employee bee do 

Search the neighbourhood of the food source for new solutions using equation. (3); 

xij=yij+ψ(ykj-yij)             (3) 

     where j is the position of a randomly selected priority, φ is a random number  such that 

ψ ϵ[-1,1] 

Check if xij is within the bounds of the monitoring area  

Evaluate the fitness of the new food source using equation (2); 

 Make a greedy selection between old solution and the new solution 

4. Compute the probability Probi of the solution using equation (4) 

ProBi =
�.�∗��������

�����������
+0.1                                                                   (4)       

5.For each onlooker bee do 

Generate a random number rand ϵ (0, 1) and select a food source depending on the 

value of ProB and rand; 

Look for new food source in the neighbourhood using the  equation (3); 

Check if the new solution is within the bounds of the area 

Evaluate the fitness of the new food source using equation (3);  

Make a greedy selection between old solution and the new solution 
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6. Memorize the best solution found so far 

7. Iterate through the trial array of food sources 

if (the trials for a food source is greater than max trials)  

replace the food source with a randomly generated food source; 

Set trial =0 

8. Cycle = Cycle +1; 

 

3.6. Modified-Artificial Bee Colony Algorithm (MABC) 

 

The main steps of the algorithm are as below : 

1: Initialize Population 

2: Repeat 

3: attach the employee bees to some food source( no. of food source equal to no. of employee        

bee) 

4: attach the employee bees to some food source depending on their nectar amounts 

5: Send the scouts bees for finding new food sources on the search area 

6: Crossover operation 

7: Memorize the best food source found so far 

8: Until requirements are met 

 

In MABC algorithm, colony bees are divided into four groups: employed bees, onlooker 

bees, scout bees and crossover operation. The number of employees is equal to the number of 

food sources i.e. number of solutions in the population. The employee whose food source is 

exhausted is provided with a new food source by the scout bee. Each food source position is 

equivalent to a potential solution of optimization problem, with its quality or fitness value 

acting as the nectar amount. Whenever any bee finds a food source, it signals the other bees 

by stigmergy (waggle dance), the quality and the location of the food source. This attracts a 

large number of bees (onlooker bees) towards good food sources for further exploration. In 

crossover operation, generate parent population of food source by applying tournament 

selection operation in which for each tournament fitness value select three fitness value from 

total population randomly and the best of three fitness is the fitness of tournament. Select a 

certain amount of worse food sources based on the crossover probability value; for each 
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selected food source in tournament apply two point crossover and ring crossover, the best 

fitness of these two crossover is the fitness of crossover applied food source. 

 

 

Pseudo code of Modified-ABC algorithm is summarized below: 

1. Initialize the Control Parameters of the ABC Algorithm and randomly generate the 

priorities of jobs and each priority is unique in each chromosome, if in real life priorities 

are same then it is also manageable in our algorithm.   

2. Set Iteration =0;   

Evaluate the nectar amount (fitness) of food sources (2);  

3. Repeat Until (cycle is not equal to MAXCYCLE)  

for each employee bee do 

Search the neighbourhood of the food source for new solutions using equation. (3); 

xij=yij+ψ(ykj-yij)             (3) 

     where j is the position of a randomly selected priority, φ is a random number  such that 

ψ ϵ[-1,1] 

Check if xij is within the bounds of the monitoring area  

Evaluate the fitness of the new food source using equation (2); 

 Make a greedy selection between old solution and the new solution 

4. Compute the probability Probi of the solution using equation (4) 

ProBi =
�.�∗��������

�����������
+0.1                                                                   (4)       

5.For each onlooker bee do 

Generate a random number rand ϵ (0, 1) and select a food source depending on the 

value of ProB and rand; 

Look for new food source in the neighbourhood using the  equation (3); 

Check if the new solution is within the bounds of the area 

Evaluate the fitness of the new food source using equation (3);  

Make a greedy selection between old solution and the new solution 

6. Crossover Operation 

         Generate the parent population of food source by applying tournament selection; 

Select a certain amount of worse food sources based on the crossover probability value; 

for each selected food source do 

Select two parents randomly from the parent population 
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Produce two new food sources by crossing the selected parents; 

Apply greedy selection for the selected food source and the newly produced food sources; 

 

7. Memorize the best solution found so far 

8. Iterate through the trial array of food sources 

if (the trials for a food source is greater than max trials)  

replace the food source with a randomly generated food source; 

Set trial =0 

9. Cycle = Cycle +1;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Page 37 
 

 

 

 

CHAPTER 4 

 

SIMULATION RESULTS & ANALYSIS 

 

 

 

Simulation is considered as flexible and efficient tool to evaluate the performance of the 

algorithm working under vivid environmental conditions. In this chapter, MGA and MABC 

technique proposed in chapter 4 are evaluated on a simulation platform. The pre-existing 

algorithms GA and ABC are also evaluated on a simulation platform. The performance of the 

proposed algorithm is compared with other pre-existing algorithm in terms of number of 

iteration, number of test case, requirement percentage and tardiness (fitness value). 

 

4.1 Simulation Setup 

 

Microsoft Visual C++ is the tool we used for simulation and performance evaluation of GA, 

MGA, ABC and MABC technique. Our aim with the simulation is to compare GA and ABC 

with our MGA and MABC algorithm in respect to number of iteration, number of test case, 

requirement percentage and tardiness (fitness value).  

For the experiment we have randomly generated an input set using Poisson distribution with 

some factors which are taken for experiment are shown in table 1, number of test cases are 20 

with random number of processes respectively. The algorithm is implemented in C with 

system having 4GB ram, i5 2.6GHz. 

 

 MEAN VARIANCE RANGE 

Process 50 30 [20-80] 

Arrival 5 5 [0-10] 

Burst 20 19 [1-39] 

Priority 25 24 [1-49] 
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Table 4.1 

Requirement percentage is varies from 0.05 to 0.90, 0 and 1 is not include because 0 indicate 

require sequence is the sequence of SJF scheduling which we already have and 1 indicate 

require sequence is the sequence of Priority scheduling which we already have. 

 

                                                Requirement Percentage  

0.0

5 

0.

1 

0.1

5 

0.

2 

0.2

5 

0.

3 

0.3

5 

0.

4 

0.4

5 

0.

5 

0.5

5 

0.

6 

0.6

5 

0.

7 

0.7

5 

0.

8 

0.8

5 

0.

9 

0.9

5 

 Table 4.2 

In GA, the number of chromosomes is 50, the mutation probability is 0.03. 

In MGA, the number of chromosomes is 2 i.e. one according to SJF and other according to 

Priority, the mutation probability is 0.03. 

In ABC and MABC, the values of the parameters of the probabilistic model are as follows: 

γ1=1, γ2=0, β1=1, β2=0.5.  

The crossover probability is 0.2 and the tournament population size is 30. 

For all algorithms maximum number of cycle (MAXCYCLE): 1000, number of test cases is 

20. 

Number of iteration indicates solution converse after such number of iterations. 

Total number of food source in ABC and MABC are 50, each food source has priorities as 

parameter and the range of priority is from 1 to number of processes in particular test case.   

 

4.2 Performance Evaluation- GA and MGA 

With the above parameters mention in section 4.1 the performance evaluation of between GA 

and MGA is discussed in this section. The performance of the proposed MGA algorithm is 

compared with pre-existing GA algorithm in terms of number of iteration, number of test 

case, requirement percentage and tardiness (fitness value). 
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Figure 4.1 

In above figure, a test case which have 65 number of processes, graph represents the number 

of iteration in which solution (tardiness) converse with the varies of requirement percentage. 

 

 

 

Figure 4.2 

In above figure, a test case which have 79 number of processes, graph represents the number 

of iteration in which solution (tardiness) converse with the varies of requirement percentage. 
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Figure 4.3 

In above figure, requirement percentage is 0.3; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 

 

 

 

Figure 4.4 

In above figure, requirement percentage is 0.5; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 
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Figure 4.5 

In above figure, requirement percentage is 0.7; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 

 

 

 

Figure 4.6 

In above figure, a test case which have 65 number of processes, graph represents the solution 

(tardiness / fitness value) converse with the varies of requirement percentage. 
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Figure 4.7 

In above figure, a test case which have 79 number of processes, graph represents the solution 

(tardiness / fitness value) converse with the varies of requirement percentage. 

 

 

 

Figure 4.8 

In above figure, requirement percentage is 0.3; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 
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Figure 4.9 

In above figure, requirement percentage is 0.5; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 

 

 

Figure 4.10 

In above figure, requirement percentage is 0.7; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 

 

4.3 Performance Evaluation- ABC and MABC 

With the above parameters mention in section 4.1 the performance evaluation of between 
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algorithm is compared with pre-existing ABC algorithm in terms of number of iteration, 

number of test case, requirement percentage and tardiness (fitness value). 

 

 

Figure 4.11 

In above figure, a test case which have 65 number of processes, graph represents the number 

of iteration in which solution (tardiness) converse with the varies of requirement percentage. 

 

 

 

Figure 4.12 

In above figure, a test case which have 79 number of processes, graph represents the number 

of iteration in which solution (tardiness) converse with the varies of requirement percentage. 
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Figure 4.13 

In above figure, requirement percentage is 0.3; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 

 

 

Figure 4.14 

In above figure, requirement percentage is 0.5; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 
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Figure 4.15 

In above figure, requirement percentage is 0.7; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 

 

 

Figure 4.16 

In above figure, a test case which have 65 number of processes, graph represents the solution 

(tardiness / fitness value) converse with the varies of requirement percentage. 
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Figure 4.17 

In above figure, a test case which have 79 number of processes, graph represents the solution 

(tardiness / fitness value) converse with the varies of requirement percentage. 

 

 

 

Figure 4.18 

In above figure, requirement percentage is 0.3; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 
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Figure 4.19 

In above figure, requirement percentage is 0.5; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 

 

 

 

Figure 4.20 

In above figure, requirement percentage is 0.7; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 
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MGA, MABC algorithm is compared with pre-existing GA, ABC algorithm in terms of 

number of iteration, number of test case, requirement percentage and tardiness (fitness value). 

 

 

Figure 4.21 

In above figure, a test case which have 65 number of processes, graph represents the number 

of iteration in which solution (tardiness) converse with the varies of requirement percentage. 

 

 

Figure 4.22 

In above figure, a test case which have 65 number of processes, graph represents the number 

of iteration in which solution (tardiness) converse with the varies of requirement percentage. 
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Figure 4.23 

In above figure, requirement percentage is 0.3; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 

 

 

 

Figure 4.24 

In above figure, requirement percentage is 0.5; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 
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Figure 4.25 

In above figure, requirement percentage is 0.7; graph represents the number of iteration in 

which solution (tardiness) converse with the different number of test cases. 

 

 

 

Figure 4.26 

In above figure, a test case which have 65 number of processes, graph represents the solution 

(tardiness / fitness value) converse with the varies of requirement percentage. 
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Figure 4.27 

In above figure, a test case which have 79 number of processes, graph represents the solution 

(tardiness / fitness value) converse with the varies of requirement percentage. 

 

 

 

Figure 4.28 

In above figure, requirement percentage is 0.3; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 
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Figure 4.29 

In above figure, requirement percentage is 0.5; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 

 

 

 

Figure 4.30 

In above figure, requirement percentage is 0.7; graph represents the solution (tardiness / 

fitness value) converse with the different number of test cases. 
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CHAPTER 5 
 

       CONCLUSION AND FUTURE WORK 

 

 

Process scheduling problem are a combinatorial problem in which selection and 

arrangement of jobs are key factor. Different algorithm and techniques are developed to find 

above factor, there are several approximation techniques which provide nearby desirable 

optimal solution. In our research a deadline aware approximation algorithm is applied (i.e. 

Genetic Algorithm, Artificial Bee Colony and their modification) for scheduling jobs with 

Burst time and Priorities.  

In section 4.2 the performance evaluation of between GA and MGA is discussed in which 

MGA performance is much better then GA in almost cases, same in section 4.3 the 

performance evaluation of between ABC and MABC is discussed in which MABC 

performance is much better then ABC in almost cases. In section 4.4 the performance 

evaluation of between all four GA, MGA, ABC and MABC is discussed in which MABC 

performance is much better than other all three (GA, MGA and ABC) in almost cases. 

The future work is intended to an efficient hybrid approximation algorithm that will be 

treated as decision making system and support apply in recommendation system. 
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	Types of Scheduling 
	Scheduling Criteria 
	1.1.1. First-come First-served Scheduling (FCFS) 
	1.1.2. Shortest Job First Scheduling (SJF) 
	1.1.3. Priority Scheduling 
	1.1.4. Round-Robin Scheduling  This type of scheduling algorithm is basically designed for multi-processing / time sharing system. It is similar to the FCFS scheduling algorithm if we add preemption on it, preemption is based on time-slice. Round-Robin Scheduling is also called as time-slicing (time quantum)scheduling. Clock interrupt is generated at periodic interval of 5-50ms. When the interrupt occurs, the next ready job is selected on a FCFS (First-come-First-serve) basis and the current running process is moved in the ready queue. This process is known as time-slicing (time quantum) scheduling, because each process is executed equal to time quantum before it being preempted. One of the below happens: 

