

i

A PROJECT REPORT ON

DISTRIBUTED HEALTH RECORD
MANAGEMENT FOR HETEROGENEOUS

HOSPITAL INFORMATION SYSTEMS

Submitted in partial fulfillment of the requirement for the award of the degree of

Master of Technology in Software Engineering

Submitted By:

Arpit Goel 2K13/SWE/02

Under the guidance of

Dr. Daya Gupta

Professor

Co-guide

Ms. Divyashikha Sethia

Asst. Professor

DELHI TECHNOLOGICAL UNIVERSITY

(Main Bawana Road, Shahabad Daulatpur, New Delhi, Delhi 110042)
(2013-2015)

ii

CERTIFICATE

This is to certify that the project entitled “Distributed Health Record Management for

Heterogeneous Hospital Information Systems” is being submitted at DTU, Delhi for the

award of Master of Technology in Software Engineering degree. It contains the record of

bonafide work carried out by Arpit Goel under my supervision and guidance. It is further

certified that the work presented here has reached the standard of M.Tech and to the best of

my knowledge has not been submitted anywhere else for the award of any other degree or

diploma.

 Dr. Daya Gupta
(Professor)

Department of Software Engineering
DTU, Delhi

iii

ACKNOWLEDGEMENT

I feel immense pleasure to express my heartfelt gratitude to Ms. Divyashikha Sethia for her

constant and consistent inspiring guidance and utmost co-operation at every stage which

culminated in successful completion of my project work.

I am also grateful for Dr. Daya Gupta’s overall supervision and direction in the research

work. I also would like to thank the faculty of Computer Engineering Department, DTU and

my peers for their kind advice and help from time to time.

I owe my profound gratitude to my family which has been a constant source of inspiration

and support.

1

 TABLE OF CONTENTS

TABLE OF CONTENTS ... 1

LIST OF FIGURES ... 3

LIST OF TABLES ... 4

ABSTRACT ... 5

CHAPTER 1: INTRODUCTION .. 6

CHAPER 2: LITERATURE REVIEW ... 10

CHAPTER 3: PERSONAL HEALTH RECORD MODELS .. 12

3.1 Various Health Records ... 12

3.2 Standalone PHR Model.. 14

3.3 Integrated PHR Model ... 14

3.4 Tethered PHR Model ... 16

CHAPTER 4: HOSPITAL INFORMATION SYSTEMS ... 18

4.1 OpenMRS .. 18

4.1.1 Data Transfer using REST web service .. 21

4.1.2 OpenMRS Medical Dictionary ... 21

4.2 OpenEMR .. 23

4.2.1 Features of OpenEMR .. 24

4.3 GNU Health ... 25

4.3.1 GNU deployment scenarios .. 27

4.3.2 Data transfer through FHIR REST Server .. 27

CHAPTER 5: HL7 FRAMEWORK .. 30

5.1 Interoperability Standards in Heatlhcare ... 30

5.2 Overview of HL7 ... 32

5.2.1 Components of a HL7 message .. 33

5.2.2 Sample HL7 message .. 33

2

5.2.3 Categories of HL7 message .. 34

5.3 ADT - A28 HL7 Message .. 36

5.4 ORU – R01 HL7 Message ... 36

5.5 FHIR Medical Information Sharing Standard .. 36

5.6 Mirth Connect .. 38

CHAPTER 6: HADOOP DISTRIBUTED FILE SYSTEM .. 40

6.1 Components of HDFS .. 40

6.2 HDFS File Operations.. 42

6.2.1 HDFS Write .. 42

6.2.2 HDFS Read ... 43

6.2.3 HDFS Append ... 44

6.3 MapReduce Paradigm .. 45

6.4 HDFS SequenceFiles ... 46

CHAPTER 7: DESIGN AND IMPLEMENTATION ... 48

7.1 System architecture .. 48

7.2 Reference Storage and Management ... 50

7.3 Integrated EHR .. 51

7.4 Implementation .. 52

CHAPTER 8: RESULTS ... 57

CONCLUSION AND FUTURE WORK .. 59

REFERENCES .. 60

APPENDIX .. 64

3

LIST OF FIGURES

Figure 1 : Hybrid PHR model based on hub and spokes concept [7] .. 8

Figure 2: Complexity of various PHR models ... 15

Figure 3 : OpenMRS Technical Architecture [30] .. 20

Figure 4 : REST Web Service Methods [32] ... 22

Figure 5 : OpenMRS Concept Dictionary mappings example .. 23

Figure 6 : OpenEMR typical deployment architecture .. 24

Figure 7 : Modular Structure of GNU Health [37] .. 26

Figure 8 : HL7 Message Example [49] .. 34

Figure 9 : ADT A28 HL7 Sample Message... 36

Figure 10: ORU R01 HL7 Sample Message.. 37

Figure 11 : Mirth Connect Architecture... 39

Figure 12 : HDFS Architecture [54] .. 42

Figure 13 : HDFS Write [57] ... 43

Figure 14 : HDFS Read [57] .. 44

Figure 15 : MapReduce Engine [56] .. 46

Figure 16 : HDFS SequenceFile [59]... 47

Figure 17 : System architecture for distributed record management system 49

Figure 18 : JSON based Integrated EHR ... 51

Figure 19 : Overall Workflow with all the components of the system 52

Figure 20 : System Authentication Screen. .. 54

Figure 21 : Mirth Receiving requests and sending translated responses 54

Figure 22 : Responses received by the querying system ... 55

Figure 23 : Healthcard exported as a JSON file .. 56

4

LIST OF TABLES

Table I Review of various PHR models [12] .. 16

Table II Comparison between OpenMRS, OpenEMR and GNU Health 28

Table III Local File System Vs HDFS for SequenceFile .. 57

Table IV Local File System Vs HDFS for Large Files .. 58

5

ABSTRACT

A patient can visit numerous hospitals or clinics in his lifetime which therefore disseminates

his medical data among multiple hospital information systems (HIS), managed by each

hospital independently. The integrated Patient Health Records can be kept on portable

equipment such as USB or mobile device [1], and can be retained with the patient as he

moves from one HIS to another. A backup of the PHR should be retained on the cloud for

refurbishing PHR in case of theft or for a remote access. The proposed system on the cloud,

shall maintain backup of healthcard consisting of references to each HIS having patient’s

actual clinical data along with medical information like medication, lab tests. To integrate the

dispersed data, we propose a distributed health record management system that shall query

individual HISs for clinical data of a particular patient and then integrate all the responses

together in standardized way to generate the aggregated health record in case of loss of PHR

based healthcard. The information we receive in response from diverse sources may all be in

different formats. The proposed system shall translate all responses into HL7 messages that

together may represent the integrated Electronic Health Record (EHR) of the patient. We

have deployed the backup of records on a distributed file system such as Hadoop DFS and

results indicate that it can provide high availability, reliability and performance as compared

to a single file system access.

6

CHAPTER 1: INTRODUCTION

A Personal Health Record (PHR) is loosely defined as a patient data repository that can serve

individuals, encouraging self-care. It allows an individual to keep track of his complete

medical history including current and past diagnoses, medications, lab results and much more

[2]. PHRs can also be used for providing efficient communication between patients and

providers and even allow patients to setup future appointments [3]. It enables consolidation of

medical data from patients as well as physicians. Patient collected information may include

various physiological parameters that can be gathered through body sensors and physicians

may specify clinical information such as lab tests results, prescribed medication or identified

allergies. Apart from clinical information, PHRs can also store other information like

patient’s insurance information for billing purposes and emergency information that can be

used in crisis or during disasters [4]. They can be extremely valuable for chronic patients in

managing their long term illness.

There are various types of PHRs that are being implemented today. In a broad view, they can

be classified as either standalone PHRs or integrated PHRs [4, 5]. Standalone PHRs are

generally under the physical control of the individual and they can be carried on devices like

USB drives or smart cards. The patient himself may create and update these records. Such

PHRs can provide portability, security and confidentiality of records but the information

cannot be trusted by a healthcare provider as patients may not be able to report exact test

results making them inadequate [6]. Integrated PHRs, on the other hand, include records

from various sources such as Hospital Information Systems (HIS), pharmacies or insurance

companies where patient data is generally kept in a centralized repository and made available

to patient through web or email. An integration solution offers more complete records that

can be trusted by providers. Although, integrated PHRs have huge potential, they are difficult

to realize in practice [4, 5]. To reap benefits from both architectural styles, a hybrid PHR can

be used which consists of a patient controlled health record, termed as healthcard, containing

patient’s vitals, insurance information, clinical observation, lab reports, prescriptions and

medications. The healthcard, as outlined in Fig. 1, can exchange data with various healthcare

stakeholders such as doctor, nurse, pharmacist, lab technician etc. in a standardized manner,

promoting both self-care and communication among patients and healthcare providers [7].

7

Medical information for patients can be distributed among numerous healthcare facilities as

the patient may move between different hospitals to seek specialized treatment or secondary

consultation. In certain situations, patient data may be tethered to an insurance plan or a

particular facility but he may move from one medical plan to another, disseminating the

medical records. Although, the decentralization of records may deter healthcare services due

to unavailability of complete medical account, it still outweighs a centralized strategy as it

raises many legal, security and privacy concerns. The NPfIT system that has been developed

in U.K uses Spine to hold the complete patient record centrally [8]. The system has met with

severe criticism regarding confidentiality and misuse of patient data, summarized in [9]. In

contrast, Netherlands developed an Electronic Patient Dossier (EPD) system, that decentrally

stores patient records into GBZs which are information systems maintained by each facility

individually [10, 11]. Fragmented records do help in alleviating confidentiality issues but it

must deal with the incorporation of dispersed data and keeping it in a standard format.

The work assumes that patient retains PHR on a portable device such as a mobile device [1]

and proposes an integrated health record management solution in which records are

decentrally stored on different HIS. Each record stored in HIS usually represents a visit or an

encounter with a healthcare professional. A backup of the healthcard is retained on the cloud

in a digital health vault consisting of references to HIS visits along with medical history files

such as bulky media files related to lab tests or medical procedures. To maintain

confidentiality of records, we do not keep all the records together at any other location,

except that with the patient over which he has complete control. Although this mitigates the

privacy issue, it makes the job of backing up the healthcard all the more difficult [12]. We

propose a distributed query mechanism that keeps reference pointers to all these visit records

at a central location which can be used to pull all the scattered EHRs required for restoration

of the patient’s complete medical account in case of damage to or theft of healthcard. All

HISs may not share the same data model and hence the data dispersed may be in

heterogeneous forms. To keep the records in a regular format, we use HL7 framework in

which we translate EHRs retrieved from different sources using a common HL7v2 template.

These HL7 based records encapsulated together represents the healthcard of the patient.

Though the system is able to retrieve the PHR of an individual, keeping references to

disseminated EHRs necessitates high security and availability. To provide high availability,

we use Hadoop Distributed File System that allows replication of data while being highly

fault tolerant and can be deployed on inexpensive hardware [13]. In this way, we are able to

8

provide a novel method to aggregate distributed health records that can be used as backup for

the PHR of the patient.

Figure 1 : Hybrid PHR model based on hub and spokes concept [7]

 The thesis is divided into 8 chapters. Chapter 1 gives an introduction to the work done with

clearly stating the motivation for the work, the problem and a brief about the solution.

Chapter 2 presents the Literature Review which includes little description work about related

work done by people all over the world.

Chapter 3 gives insight into different PHR models, their usage and functionality, and a

comparison among them.

Chapter 4 provides an introduction to Hospital Information Systems and describes three

different open source systems used in the study.

Chapter 5 gives an overview to HL7 framework with explaining what exactly is an HL7

message, its components and how can they be used to transmit health information to achieve

interoperability.

9

Chapter 6 explains what Hadoop Distributed File System (HDFS) is and different file

operation are performed on it. The chapter also briefs about SequenceFiles and their use to

solve the small file problem on HDFS.

Chapter 7 goes in detail about the design and implementation of the solution while also

explaining about different components involved in the proposed system.

Chapter 8 states the result of the proposed system, with comparing HDFS performance with

that of a local file system.

The Conclusion and a discussion about its future prospects are provided in the next section.

The thesis is ended with listing the works referred in the research and Appendix in which

Java programs to create SequenceFiles and read them from HDFS is provided along with

steps to deploy GNU Health in local environment.

10

CHAPER 2: LITERATURE REVIEW

In the past years, people’s interest in keeping track of their medical information has widened.

They want access to their health records in a convenient way while without distressing about

the confidentiality and security of the records [12, 14]. This has led to exploration of PHRs

and their different models, research in the area of integration of medical information and

development of medical standards for transfer of information and interoperability. Adoption

of PHR is evident in various parts of the world [2, 5, 15]. Large organizations such as Google

and Microsoft have also invested in personal health by providing online health repositories,

namely Google Health and Microsoft HeathVault, though Google has discontinued Google

Health as it didn’t catch on [16]. A brief evaluation of user-end features of both the products

can be found in [17].

A simple standalone PHR may not require to integrate with other sources, but to provide

better healthcare services it is essential to interact and incorporate with multiple healthcare

facilities. A lot of research has been done in the field of integration of medical information. A

cloud based solution has been proposed by Ankur Agarwal, Borko Furht and Vivek Tyagi

that allows integration of information from various health record systems using existing

medical standards and make it available to a patient or a doctor through a web portal [18].

They propose a cloud architecture that keeps the patient records centrally which can be

accessed anytime by an authorized user. The information kept on the cloud is the integrated

information received from various HL7 compliant diverse sources like information systems,

medical record systems and imaging systems.

In [19], Anant R Koppar and V Sridhar proposed a Tele-Health Medical Diagnostic System

that has been deployed in few healthcare facilities in Karnataka, India. The system helps in

monitoring patients remotely while also aiding in diagnostic process. It uses an integrated

EHR comprising of patient related digital information from different visits that forms the

backbone of the system. The EHR is also capable of exchanging data with local or regional

hospital so as to provide continuity of care especially during medical referrals.

A clinical data exchange system using Ensemble Integration platform has been developed in

China by Wang Yu, Guo Long, Tian Yu and Jing-Song Li that collects clinical data from

various medical institutions and transforms and uploads it into a centralized data repository

11

(data center) using HL7 standard files [20]. The data center parses the HL7 files and store the

information in a central schema to which authorized access is given to providers and patients

with the help of ASP.NET technology.

A model for sharing patient generated healthcare data with healthcare provider’s EHR system

has been proposed by Walter Sujansky and Douglas Kunz that allows structured data retrieval

using HL7v2 message combined with HL7 CDA (Clinical Document Architecture) through

secure transfer using Direct project’s email standards [21]. The proposed model collects the

Patient Generated Health Information (PGHI) in a centralized repository that is able to

communicate with different healthcare professionals with the help of Direct standard using

query response mechanism.

In [22], Daniel James Baldock, Vadim Georgiovich Svinenko, Kerri E. Marshall and Karen

Calhoun presented a hybrid architecture for sharing of health records that keeps the actual

patient records at different locations but maintains patient identifying information at a central

component that is to be used for retrieval of distributed records.

The Dutch EPD system also stores patient records into decentralized component known as

GBZs managed by each hospital locally. To access the dispersed records, a reference index

for each patient is maintained at a central component storing references to all the particular

patient’s records and the idea was extended by the author that involves elimination of

centralized component to reduce privacy and security risks by explicit transfer of references,

when required, under the control of the patient or the doctor [9, 23].

The work proposed in this paper provides a novel manner of storing integrated records on the

healthcard that is highly available along with a backup on a digital vault in the cloud which

can refurbish the details of the card through distributed query mechanism.

12

CHAPTER 3: PERSONAL HEALTH RECORD MODELS

In this chapter, we introduce different type of digital healthcare records available to either the

patient or to the health facility. In later sections, different personal health records models like

standalone, tethered and integrated are introduced and compared by considering their merits

and demerits. In the end, we also expand on our hybrid PHR model that was introduced

earlier.

3.1 Various Health Records

In today’s healthcare sector, there has been a surge in the use of digital healthcare records

instead of the paper base records due to easy management of patient data. Different users use

various types of digital health records to realize their specific needs.

An Electronic Medical Record (EMR) is a digital version of paper based records held by a

single clinic or any other solo healthcare organization. EMRs are restricted to only a single

practice and they only create or manage medical data about different patients being treated in

that particular facility. They allow a healthcare provider to keep track of medical history of a

patient, although in limited manner. EMRs can also be used to identify patients and check on

them based on certain parameters like whether a patient is vaccinated for a particular disease

or not or if patient’s blood pressure levels are at par or not [24]. Though they offer great

benefits to patients but they do not communicate with other facilities, limiting its

functionality. Thus, when a patient goes to some other healthcare practice for any reason, his

data is not readily available and physicians are unable to monitor patient’s health effectively.

An Electronic Health Record (EHR) does not only refer to a digitized health record but may

encompass a whole electronic system that can automatically collect data about a patient or a

population of patient. They may include different range of data like patient’s medical history,

his medication, vaccinations, allergies, lab results and even personal and demographical

information. EHRs are more capable than EMRs as they allow sharing of data among

different healthcare organizations providing a broader view of patient’s current medical status

[24]. They typically implement interoperability standards to allow easy sharing of data

among diverse systems. It reduces data redundancy and provides more up to date records that

aid providers in delivering better healthcare services. EHRs are generally under direct control

13

of healthcare facilities thus minimizing the authority of a patient on his own healthcare

information.

A Personal Health Record (PHR), in simple terms, can be a person's paper based or computer

file record that holds information like doctor visit details, medications, insurance information,

lab reports, and much more about the patient. PHRs are different from EHRs and EMRs as

they represent an electronic record that is shared, managed and controlled by the patient

himself [25]. It provides a longitudinal view of significant health information via a single

interface. There is no set standard for what a PHR may include or what functions it might

provide though a PHR must aid an individual in the process of self care while also

additionally facilitating communication with healthcare professionals to improve the quality

of healthcare delivery process. To have such characteristics, a PHR must include:

• Identification information – patient’s name, address, telephone, demographics

• Diagnosis information – patient’s current and past diagnoses

• Lab Reports – lab tests ordered and their results along with standard medical images

such as X-Ray reports, ultrasound, mammogram etc.

• Medication – history of patient’s medication along with his current medicine

information

• Physical records - Patient’s physiological parameters like weight, height, temperature,

glucose level etc. measured over time

• Allergy record – list of patient’s allergies identified by providers

• Immunization record – list of immunization given to the patient during his lifetime

• Insurance information – patient’s insurance plan data along with deductible and non-

deductible charges

• Provider comments – comments noted by various healthcare providers like physician,

pharmacist or nurse

Based on various attributes like type of data being stored, sources of such data and different

use cases of the system, PHRs can be seen as anything between a standalone PHR that keeps

all the medical information together on a patient's device over which a person has complete

control and an integrated PHR that keeps the complete data in a centralized repository that

can be accessed over the web by the patients and providers with proper authentication an

authorization [2]. An integrated PHR generally pulls information from various hospital

14

information systems and then integrate it together but if the PHR is modelled to work with

only a single Hospital or healthcare facility, it is said to be tethered to that particular

organization. A difference among the three is seen in Table I.

3.2 Standalone PHR Model

Standalone PHRs are generally individually maintained or the privilege is extended to certain

individuals like close family members or family doctor. Such type of PHR can be kept by the

patient in a secure device ensuring portability of the records. They generally constitute of

patient generated health information such as blood glucose measurement, weight

measurement or other vital data captured by body sensors connected in a Body Area Network

(BAN). These types of PHR offers many benefits like accepting input from patient, managing

diet charts, and receiving medication reminders. Although patient generated data can be

really helpful but they might be trivial if they are not mapped on to well defined parameters

so that the data may help a clinician in the diagnostic process. While providing

confidentiality and safety of records, standalone PHRs cannot connect to various information

sources making them islands of information not able to contribute much [3]. Also, reliability

of patient measured data is always dubious. For example, a patient may be able to record

correct weight or temperature measurements but he might not be able to record accurate

laboratory values such as haemoglobin or cholesterol levels needed by a physician [6].

Standalone PHRs are easy to implement and use as all the data is consolidated into a single

destination kept under the direct control of the patient or related affiliates. These destinations

can be anything like smart cards, USB, mobile phones or any other manageable device

providing both portability and confidentiality of records. Figure 2 and Figure 3 measures the

complexity and functionality of standalone PHRs against other PHR models.

3.3 Integrated PHR Model

In integrated PHRs, information about the patient is collected from various sources such as

imaging systems, pharmacies, EHRs kept in hospitals or clinics and even patient entered data,

although for selected fields [5]. It provides a complete view of relevant health information for

both patient and the healthcare provider and are equipped with much more robust backup

systems [2]. Integrated PHRs not only allows access to the healthcare facility kept medical

records but also serve as communication channel between patient and healthcare providers.

15

Such PHR helps in reducing clinical errors and also in elimination of duplication of data.

They are generally made available over the web through some sophisticated interface with

the use of proper authentication and authorization services for secure access but

confidentiality of records may still be compromised as the patient does not have complete

control over the records. Such integrated systems may need to take extra measures for

providing privacy and security of records to the patient.

Integrated PHRs can either be push based system or pull based system [12]. In push based

system, the central source receives data from different clinical sources with the authorization

of the patient. In pull based system, the central repository retrieves data from all the sources

in which a patient’s information is stored. Such pull based systems need to keep track of all

the primary sources holding patient’s records and require proper permission from both patient

and the healthcare facility for accessing those records.

Although integrated PHRs offer great benefits to health concerned individuals, such systems

are difficult to realize in practice. This is due to requirement of integration of medical

information from heterogeneous sources. To achieve interoperability, we need well

established global medical standards that can be easily implemented by various information

systems in question. In recent times, many standards have come to light such as OpenEHR,

HL7 and CCR (Continuity of care records) but only few of them have been globally accepted

and are currently in practice. Also, competing facilities do not want to share information with

each other and there is lack of trust among them, hence causing hindrance in the path of

achieving the ideal integrated PHR.

Figure 2: Complexity of various PHR models

16

3.4 Tethered PHR Model

Tethered PHRs can be seen as simplified version of integrated PHRs in which a person’s

health record is tethered to a particular medical plan or to a single healthcare organization

which may offer complete or partial access to health records through web portals. It can

provide additional functionality to a user like ability to email medical providers, renew

medical prescriptions and even make future appointments with a physician [5]. Even though

they offer many advantages and are also relatively simple to implement but when the patient

switches to another medical plan or facility, his data may not be conveyable due to system

incompatibilities or due to unwillingness of associations to share data.

Table I Review of various PHR models [12]

Attribute Standalone PHR Tethered PHR Integrated PHR

Complexity Low (but backup
complex)

Moderate High

Access Web based, memory
sticks or card readers

Web based Web based

Confidentiality High (Complete
control by the patient)

Low (tethered
facility is in control)

Low (can be
improved by letting
patient set access
controls)

Security High Low (depends on the
facility’s security
system)

Low (can be
improved by
installing a third
party central security
system)

Information sources Patient entered data,
body sensors

Facility’s EHR,
physician comments

Patient entered data,
body sensors,
Facility’s EHR, labs,
pharmacies, doctor
comments

Challenges Loss or theft of
device, non standard
data input from the
patient

Access to records is
restricted and patient
may not recover his
records when he
switches to another
medical plan or
facility

Use of common
medical standards
for interoperability
and cooperation,
level of trust among
various affiliates

17

It can be seen that each PHR model has its own set of merits and demerits. To combine the

advantages of integrated and standalone PHRs, we have proposed the use of hybrid model

that will remain, at all times, in control of the patient so as to provide confidentiality of the

records and also it can be used to communicate medical information to associated healthcare

practitioners with the use of widely implemented medical standards such as HL7.

18

CHAPTER 4: HOSPITAL INFORMATION SYSTEMS

A hospital or a healthcare information system (HIS) can be seen as automated system that not

only provides electronic storage of patient health records but also satiates administrative and

financial needs of a healthcare facility. Usage of such systems not only improves quality of

care provided to patients but also make healthcare services more affordable and easily

accessible [25, 26]. A HIS may comprise of a data model that stores the patient record in a

structured format electronically, authorization and security mechanisms for protection of

patient data, information communication tools for promoting interoperability, data analysis

and visualization tools for enhancing care services, and a for making the system simple to

operate. In the recent years, there has been an increase in the usage of network based

application software as care delivery systems due to their easy availability and deployment

combined with a smooth learning curve, although such factors vary for different developers

or vendors. Some popular HIS applications are OpenMRS, FreeMED, GNU Health,

OpenEMR, CottageMed, IndivoX etc. We describe the three most popular among them in the

next sections.

4.1 OpenMRS

OpenMRS is an open source medical record system that was created in 2004 through a non-

profit collaboration led by Regenstrief Institute and Partners in Health, used readily in

developing countries [27]. OpenMRS provides a platform to create customized medical

record system through their modular design and use of open source components. The core

application is a client-server application having a multi-tiered architecture. OpenMRS’s data

model closely resembles Regenstrief data model uses a concept dictionary that defines

different medical terms as concepts. The dictionary has concepts defined for medical

procedures, lab tests and results, diseases and symptoms, and even medications [28]. It even

has mappings to international standards such as SNOMED CT, LOINC, ICD-10 etc. The base

application is built in Java and the user interaction is provided through a web interface built

using JavaScript and JSPs. OpenMRS is able to collaborate with other networks and EMR

application with the help of HL7 interoperability standard [29].

As stated in [27], “OpenMRS provides a software platform and a reference application that

enables design of a customized medical records system. It is a client-server application,

19

which means it is designed to work in an environment where many client computers access

the same information on a server”.

There are several layers to the system:

• The data model is inspired from the well known Regenstrief data model.

• The API providing interfaces to the access the data model.

• The web application including web front-end and modules that extend the core

functions.

The core OpenMRS application comprises a web application, programmed in Java and

JavaScript and a number of open-source component applications, maintained by other open

source communities, including MySQL, Apache Tomcat and Hibernate. The architecture

based on MVC model, as shown in Figure 3 comprises of three layers:

• Presentation Layer - The presentation layer includes a sophisticated web interface

built using JSP and JavaScript. JQuery is used to simplify the interactions with

JavaScript and the browser.

• Service Layer - The service layer is responsible for managing the business logic of the

application. It uses the Spring framework for managing transactions between service

layer classes and thus providing functions like authentication and logging.

• Data access Layer - The data access layer is an abstraction layer representing the

actual data model. It uses Hibernate framework as the Object Relational Mapping tool

which manages relational database changes in a database independent way.

OpenMRS is fulfilling its potential as a low cost, rapid development, open source application

for developing patient treatment and management systems in resource-poor settings. The

generality of the core application design-based on the clinical encounter with flexible

addition of observations linked to concepts will likely support extension to information

management in a number of primary healthcare settings in developing countries [30].

Some of the most important features that OpenMRS provide are:

• A central medical dictionary that contains all the definitions for medical data so as to

provide interoperability among different systems using coded data

• Security using authentication and role based access

• Storage and maintenance of patient’s data involving lab tests, demographics, visit and

emergency data

http://wiki.openmrs.org/display/docs/Data+Model
http://www.regenstrief.org/
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Web_Application

20

• HL7 standard support with FHIR support in development

• Addition of modules to extend the functionality of the basic system

• Support for different languages and localizations

Figure 3 : OpenMRS Technical Architecture [30]

21

4.1.1 Data Transfer using REST web service

Communication between OpenMRS (HIS) with an external system occurs with the help of

REST web service. REST (Representational State Transfer) defines a set of architectural

principles used to design Web services that focus on system's resources, including how

resource states are addressed and transferred over HTTP by a wide range of clients written in

different languages. OpenMRS provides REST web service through a module that can be

used to access remote resources. These resources are returned as JSON objects that can be

then transferred over the network via the REST API.

A REST service includes methods to oversee how resource states are addressed and

transferred over HTTP [31]. A concrete implementation of a REST Web service follows four

basic design principles:

• Use HTTP methods explicitly

• Be stateless

• Expose directory structure - like URIs

• Transfer XML or JavaScript Object Notation (JSON)

The basic REST design principle establishes a one-to-one mapping between creates, read,

update, and delete (CRUD) operations and HTTP methods:

• POST method is used to create a resource on the server.

• GET method is used to retrieve a resource from the server.

• PUT method is used to change or update the state of the resource.

• DELETE method is used to delete a resource from the server.

4.1.2 OpenMRS Medical Dictionary

OpenMRS uses a concept dictionary that defines all the medical terms such as observations,

diseases, symptoms and medications in terms of coded data [29]. This coded data can then be

used for exchanging data over the network without losing its semantics, thus facilitating

interoperability. Concepts are seen as individual data points collected for a patient. The

dictionary not only assigns codes to various clinical terms but also provides meaning and

description of each term, relationships with other concepts, classes and attributes of different

concepts, and also mappings to other popular medical dictionaries such as SNOMED and

LOINC.

22

Figure 4 : REST Web Service Methods [32]

A concept can either be a drug, a medical test, coded result, a symptom or a medical problem.

For example, Haemoglobin value is a medical test that has a numeric code defined as 21. It is

stated by the dictionary that this concept takes a numeric value as answer with measuring

units as g/dl and in the range of 12.0 to 16.0 g/dl. A snapshot of the concept as defined in the

dictionary is given in Figure 5.

The latest versions of OpenMRS has moved to a more robust MVP CIEL dictionary created

through joint contribution from Millennium Villages Project (MVP) and Columbia

International eHealth Laboratory (CIEL) and has mappings to well known international

interoperability standards such as SNOMED, ICD-10, LOINC etc. Efforts are also being

made to translate the dictionary into different languages [33].

23

Figure 5 : OpenMRS Concept Dictionary mappings example

4.2 OpenEMR

OpenEMR is another open source health management system that is able to run on multiple

platforms. It is ONC certified and is working towards Meaningful Stage II certification in the

United States [34]. The application is a web based application that can be accessed through a

browser and is built using PHP, Apache Http Server and MySQL database. Through

OpenEMR, a healthcare professional is able to track patient demographics, schedule

appointments, store visit based records, manage prescriptions and provide billing services. It

allows patient documents to be encrypted and provides permissions based per-user access

control for added security. It also allows import of standardized code sets like ICD-10 and

SNOMED. The typical deployment architecture for OpenEMR is given in Figure 6 that

shows what components are involved and where those components are placed.

24

Figure 6 : OpenEMR typical deployment architecture

4.2.1 Features of OpenEMR

Some important features of OpenEMR are [35]:

• Free and ONC certified – OpenEMR is open source, free to use and is also ONC

certified

• Personalized patient demographics – It can store variety of demographics data like

name, date of birth, gender, marital status, contact information, primary provider,

insurance data etc. and can be customized according to facility’s needs.

• Patient appointments administration – patients can set appointments at different but

connected facilities and can get notifications over mail or sms.

• EHR (Electronic Health Records) – OpenEMR stores medical information about a

patient as EHRs combining various sections like encounter data, medical problems,

vital stats, immunization data ,lab results and doctor comments

25

• Medication and prescriptions – The application can search for drugs name online and

track patient’s current and past medications and also create prescriptions while also

providing reminders to patients.

• Billing – It can use coding systems like ICD9, ICD10 and SNOMED and can, thus,

create fully legible medical bills with also incorporating medical claims

• Security – OpenEMR provides security of records by encrypting them through an

external module while also providing authentication and role base access controls.

• Report generation – The software also generates reports involving patient lists,

immunizations, sales, insurance eligibility etc.

• Multilanguage support – OpenEMR provides Multilanguage support within the same

clinic and also other language support can be added easily.

Although OpenEMR offers many benefits, it still lacks a good interface and it provides no

external interface that can transmit medical data to a remote system, unlike OpenMRS

and GNU Health.

4.3 GNU Health

GNU Health [36] is also free and open source health information system that started as a

project for Primary Care facilities in developing countries but is now used by both public and

private institutions in different parts of the world. The system is written in Python and uses

the Tryton general purpose application platform. GNU health allows both patient

management that includes managing patient history, demographics, encounters, medications

etc. and health center management overseeing finances, labs, pharmacies and even human

resources. It can be used at different scales like in single doctor clinic or in public hospitals

by using centralized or distributed type of deployment [37]. GNU Health is relatively new

and although it provides a FHIR (Fast Healthcare Interoperability Resources) server for

exchanging data over HTTP, resources that can be retrieved are limited with no write

functionality [38, 39]. Figure 7 outlines the modular design of GNU Health based on Tryton

framework. Such modular design of the software assists facilities to build over the core

component so as to provide department specific and localized support. It also allows one to

use GNU Health in different scenarios like being used as EHR systems in clinics or being

used as complete hospital management systems.

26

Figure 7 : Modular Structure of GNU Health [37]

The primary domains that GNU Health includes are [37]:

• Individual and community management – It includes managing patient

demographics, domiciliary units and other operational areas.

• Patient management – It includes management of patient records like lab reports,

encounters, hospitalizations, medical history, lifestyle, Socioeconomics etc.

• Health center management - It includes management of finances, stocks, pharmacy ,

laboratory, beds, operating rooms, appointments, supply chain management, human

resource management for the facility

• Information management - It involves reporting, demographics analysis and cause

and effect analysis for health and disease conditions (Epidemiology)

27

4.3.1 GNU deployment scenarios

GNU Health is scalable in functionality, database size and transactional volume. For instance,

one can install GNU Health in a single doctor office, or in country public hospitals network.

Depending upon the type of deployment, one will think about centralized (single instance)

versus a distributed installation.

• Single GNU Health Instance: All the information resides in a single database, and it

will be accessed via network from different workstations from the same health center

(local area network) or from different health centers.

• Distributed GNU Health instances: Under this scenario, each health center has its own

database instance, and information can be synchronized among health centers. This

would be the case when you want to deploy GNU Health in a network of hospitals,

where the communication infrastructure is suboptimal.

Choosing the deployment method requires careful study of resources like hardware available,

network architecture, human resources, security and access control, and backup and disaster

recovery policies.

4.3.2 Data transfer through FHIR REST Server

Fast Healthcare Interoperability Resources (FHIR) is an HL7 standard framework used to

transfer resources in a flexible manner. It combines the best parts about HL7v2, HLv3 and

CDA while focussing more on implementation [38]. GNU Health allows for remote transfer

of patient information as FHIR resources sent through a REST server. FHIR standard is

relatively new and is being highly endorsed be HL7 organization itself. GNU Health’s FHIR

REST server is still under development and as of now it only provides read access to the

patient resources. Currently, it supports the retrieval of 12 resources [40]:

• Conformance: Describes the server's FHIR capabilities.

• Patient: Patient information, like email, address, SSN, etc.

• DiagnosticReport: Completed lab tests, but not the data

• Observation: Lab data, like Uric Acid values

• Practitioner: Health professionals and their information

• Procedure: Surgeries/operations

28

• Condition: Diseases/diagnoses

• FamilyHistory: Family histories of patients

• Medication: Medications (not prescriptions)

• MedicationStatement: Medications taken by a patient

• Immunization: Immunizations

• Organization: Institutions, departments, companies, etc.

Table II Comparison between OpenMRS, OpenEMR and GNU Health

Feature OpenMRS OpenEMR GNU Health

Technology Java PHP Python

Web or Desktop Web based Web based Desktop

Open Source Yes Yes Yes

Multi-platform Yes Yes Yes

Online Support Wiki + Forums Forums + Mailing list Mailing list

Website http://openmrs.org/ http://www.open-

emr.org/

http://health.gnu.org/

External Interface Yes(send & receive)* No Yes (send)**

HL7 Support Yes (receive) No Yes (FHIR send)

Vastly Implemented in Developing countries

(NGO support)

Primarily US based Latin America

Pros +Technical platform, can

be easily extended or

modified according to

ones need

+Large development

community with active

GSOC participation

+Very secure as can be

accessed remotely

through UI

+Additional Medical

features like mailing

reports and scheduling

appointments through

downloadable modules

+Built in python using

Tryton framework

making it easy to extend

by adding modules

http://openmrs.org/
http://www.open-emr.org/
http://www.open-emr.org/
http://health.gnu.org/

29

Cons - Medical knowledge

required to add data

through medical

concepts

- No external interface to

fetch data in background

- Dated UI

- Comparatively new

and has lot less support

* REST interface that can receive HL7 messages for adding new patient or adding observations.
** FHIR REST server that can send medical information in JSON or XML format. (Limited as still in
development)

30

CHAPTER 5: HL7 FRAMEWORK

In this chapter, we give a brief introduction to different healthcare interoperability standards

that are available today. The chapter also provides an overview of HL7v2 messages followed

by examples of how ADT and ORU messages can be used to represent and transfer medical

data. Later, we describe the evolving FHIR medical standard and finish with introducing

Mirth Connect and over what protocols it can be used.

5.1 Interoperability Standards in Healthcare

Different HISs store information in diverse formats such as in relational database, structured

documents like XML or JSON, or even digitized copy of physical records making it very

difficult to exchange information among various facilities [41]. This leads to requirement of

standard ways for exchanging data to make systems interoperable. Some of such standards

are HL7, openEHR, Continuity of Care Records (CCR) and Continuity of Care Documents

(CCD).

OpenEHR is a medical standard that defines a set of specifications delineating how medical

data can be stored, managed and exchanged with various systems while its primary focus

being to develop interoperable EHR systems from scratch [42]. The specifications define a

reference model known as archetypes using which healthcare systems can be designed. The

common archetype based design ensures interoperability among the built systems but it does

not do much work with pre-existing systems. Archetypes are considered fairly complex and

require relatively more resources for implementation. Hence, OpenEHR is used in large scale

systems focussing on medical data sharing.

Continuity of Care Record (CCR) is an ASTM standard used to exchange clinical data. It is

like a snapshot of relevant medical information or specific condition. CCR could contain

information about the patient’s current medications, allergies, recent visits, diagnoses,

suggestions etc. from previous providers so that the next provider can deliver more

continuous healthcare services. CCR standard is designed to allow for information to be

pulled from one or more sources and organized into a single XML file. It has sections like:

• CCR identifier (identifies referring and referred clinician)

• Patient identifying info

31

• Financial/ Insurance data

• Patient health status (vital signs, diagnoses, allergies, current medication, lab results)

CCR is not a historical document containing physician notes, transfer information or a

discharge summary. Most importantly, the CCR standard is neither a substitute nor a

replacement for an EHR [43]. Healthcare industry seems to be moving away from CCR as it

is generally only used to relay patient information from one clinician to another so that other

clinician knows the patient current status.

HL7 version 2 (HL7v2) is an ANSI certified set of international standards used for medical

data exchange. HL7v2 medical standard is the most popular interoperability standard in use

[44]. It provides a framework for sharing and integration of medical information. The

standards dictate how information should be structured and transferred among similar or

dissimilar systems. It is based on the assumption that health data is exchanged among various

applications due to occurrence of some event such as patient admit or discharge, lab tests

ordered or lab tests completed, pharmacy order or some medical procedure scheduled. HL7v2

messages are basic string message in which data is segregated with special symbols with each

field flexible enough to hold different type of data. Due to this adaptable nature HL7v2 is the

most implemented interoperability standard in the medical industry.

HL7 version 3 (HL7v3) is the next stage for HL7v2 introduced by the same organization in

2005 bringing formalism to the standards. It uses an object oriented Reference Information

Model (RIM) to attach semantics to each part of the standard. RIM defines a generic set of

classes which are used to derive more specific concepts. This makes the standard more

consistent but less customizable. In HL7v3, medical information is encoded as XML

messages defining complex structure rules as compared to simple structured HL7v2

messages. It uses an XML Schema Definition (XSD) to define the message type and describe

various components of the message. It has not been as popular as HL7v2 due to stringent

modelling rules, being difficult to realize.

Clinical Document Architecture (CDA) was introduced by HL7 as a part of family of HL7v3

standards that defines a mark-up standard for specifying the structure and semantics of

clinical documents that can be exchanged between patient and providers [45]. CDA

documents can be transferred independently or can be transferred into HL7v2 or HL7v3

message. A CDA document is a defined and complete information object that can include

32

text, images, sounds, and other multimedia content. The document can be sent inside an HL7

message and can exist independently, outside a transferring message [46]. It is a part of HL7

v3 family of standards but it is a complex standard that can be challenging to implement. It

also used RIM and due to this underlying information model in CDA and HL7v3, it makes

them difficult to comprehend and use and lack of it in HL7v2 makes it flexible and easy to

implement.

Continuity of Care Document (CCD) is built using CDA elements and contains data defined

in CCR. It was formed by collaboration between ASTM and HL7. It can be seen as a

restricted version or a use case of CDA. CCD defines certain templates that are to be filled in

the document. These templates can be medication, allergies, immunization, family history,

lab results etc. The data contained in each of the templates is set by CCR but CCD is quite

complex than CCR. [47]. We can use CCD for storing all the data defined by the templates

and then the document can be sent as HL7v3 message or it can be embedded into a HL7v2

message into certain segment of the message but majority of that information would be

redundant as visits observation including vital signs, medication, lab results etc. can be sent

directly through HL7v2 message.

Documents like CCR, CDA and CCD hold static information, i.e., a snapshot at a particular

time. They cannot incorporate new information or any changes unlike standard HL7

messages. [48]. Each time new information is added, we will need to prepare a new document

that will represent patient information for that particular time and store it with previously

retained documents which will not be efficient on storage and processing, though, it can be

useful for transferring images and special medical documents as those can be encoded into

base64 CCD document and then embedded into a message itself providing support for

transmission of various types of data [21].

5.2 Overview of HL7

Each HL7 message is made up segments and fields. A segment identifies what kind of

information does a message contains like patient identification, diagnosis, insurance etc.

whereas the fields contains the actual information like patient name, address, insurance id etc.

Each segment is separated by carriage return symbol and each field is separated by pipe

symbol. Every message contains a required MSH (Message header) segment that identifies

33

sender and receiver and also the type of message. More details are given in the below

sections.

5.2.1 Components of a HL7 message

An HL7 message contains one or more segments, each of which identifies the type of data

that the message contains like diagnosis, insurance, demographics, or observations. A

carriage return character (‘\r’ - 0D in hexadecimal) is used to separate one segment from

another and hence each segment is displayed on a different line of text.

Each segment consists of one or more composites, also known as fields that carry the actual

information being conveyed such as person’s name, observation value, medicine dosage,

insurance id etc. A pipe (‘|’) character is used to separate one composite from another and if

a field contains other composites, these sub-composites (or sub-fields) are normally separated

by hat character (‘^’). If a sub-composite also contains composites, these sub-sub-composites

are normally separated by ampersand character (‘&’).

5.2.2 Sample HL7 message

Consider the following ADT^A01 sample message having various segments such as MSH,

EVN, PID, PV1 etc. Some common segments are:

• MSH (Message Header) is always the first segment and marks the starting of new

HL7 message. It carries information like source and destination of the message, date

of the message, type of message, character set of the message and much more.

• EVN (Event type) holds information about the event triggered that required the

sending of the message to receiving application.

• PID (Patient identification) segment is used to transmit information that can be used

to identify a particular patient and also other personal information about the patient

such as a unique patient id along with patient’s name, date of birth, gender, race,

address, contact information, citizenship and even death indicator.

• PV1 (Patient Visit) segment is used to communicate visit specific data such as

attending doctor, referring doctor, visit type etc.

34

Figure 8 : HL7 Message Example [49]

5.2.3 Categories of HL7 message

There are four primary HL7 standard message types:

• Patient Administration (ADT)

• Orders (ORM)

• Results (ORU)

• Charges (DFT)

HL7 ADT messages are used to carry patient demographic data for HL7 exchanges and they

also supply crucial information about trigger events such as whether patient got admitted into

the facility or whether he got discharged, if the patient has transferred from some other

healthcare centre or in case of new patient registration. Some of the most significant

segments in the ADT message are the PID (Patient Identification) segment, the PV1 (Patient

Visit) segment, and seldom the IN1 (Insurance) segment that is used to transmit insurance

related data like insurance provider, policy type and its start and end date. ADT messages are

universal in HL7 processing and are among the most extensively used among all message

types.

35

According to [50], “The HL7 ORU message is used to transmit observations and results from

the producing system/filler (i.e. LIS, EKG system) to the ordering system/placer (i.e. HIS,

physician office application). It may also be used to transmit result data from the producing

system to a medical record archival system or to another system not part of the original order

process. ORU messages are also sometimes used to register or link to clinical trials, or for

medical reporting purposes for drugs and devices.”

Types of observations reported in the ORU message typically include:

• Clinical lab results

• Imaging study reports

• EKG pulmonary function study results

• Patient condition or other data (i.e. vital signs, symptoms, allergies, notes, etc.)

ORU message can be seen as a structured report in which each observation is divided into

individual articles, and then they are separated into fields/composites. Generally, ORU

messages are not used to carry images but they can carry reference pointers to large

audio/video files which then can be accessed remotely. Apart from pointers, they can use

varying data types like numeric, normal text or coded data. An ORU message is composed of

the OBR (Observation request) and OBX (Observation) that offers the following

functionality:

• The OBR (order) segment is typically used as the header of the report or a section of

the report. It consists of vital information about any order/ lab test that is to be filled.

This may include fields like order number, request date and time, observation date

and time, ordering provider and additional notes and comments. This segment is part

of a group that can be used more than once for each observation result that is reported

in the message.

• The OBX segment (filler) is used to transmit actual observational data that was

ordered in the OBR segment. The fields included in this segment carry information

like observation name (RBC, glucose level etc.), observation value, date and time of

the observation and information about the responsible observer that can be used for

auditing. As mentioned, observation value can be can be textual, numerical or of

coded type.

36

5.3 ADT - A28 HL7 Message

An ADT event A28 message is used to add person’s information into the receiving facility so

that the sender and receiver have the same information about the individual in question. It

contains various segments like PID that is used for patient identification and carries personal

information like name, date of birth and gender. It also has a NK1 segment that can carry

next of kin information for emergency situations. It can also carry diagnosis, allergy and

insurance information as in Figure 9.

Figure 9 : ADT A28 HL7 Sample Message

5.4 ORU – R01 HL7 Message

An ORU event R01 message, as shown in Figure 10 is used to transmit lab results to other

systems. An ORU message coupled with a medical dictionary can be used to send various

medical observations such as weight, height, glucose level, RBC, WBC etc. Using a medical

dictionary, we can even send medication information in ORU messages. For example,

through OpenMRS dictionary we can send medication information with the help of drug

name (also defined in the dictionary), start date and stop date concepts. Therefore, by using

the combination of these messages we can transfer information like patient demographics,

diagnosis, emergency information, allergies, insurance information, lab test results,

medication, and prescriptions data to other systems.

5.5 FHIR Medical Information Sharing Standard

Fast Healthcare Interoperability Resources (FHIR, pronounced "Fire") specify a set of

resources that are used to depict granular medical concepts. These resources can be

37

maintained by some system in isolation, or they can be lumped together into complex

documents [38]. FHIR is designed for the web, i.e., the resources are based on simple XML

or JSON structures, with an http-based RESTful protocol where each resource has a fixed

URL that can be used to get, post, put or delete a resource. It makes use of open internet

standards for data representation in these resources.

Figure 10: ORU R01 HL7 Sample Message

Some of the resources defined by FHIR are [51]:

• Patient - It includes administrative and demographics information about a patient in

question

• RelatedPerson - It includes information about a person that is involved in the care of

the patient but is note the target of the healthcare service

• Practitioner - The resource represents information about an individual who provides

the healthcare service such as physician, pharmacist, nurse etc.

38

• Medication - This resource is primarily used for identification and description of

certain medicine

• Observation - It include measurements or other assertions made about a patient. They

are a central part of healthcare and are at the core of other resources like

DiagnosticReport. It can be used to track patient's progress, support diagnosis made

by the physician, carry demographics information and determine patterns. For

example, observations can be anything from vital signs like blood pressure,

temperature etc. to more detailed laboratory data like Complete Blood Count or

Thyroid test.

• DiagnosticReport - The resource includes diagnostic test's findings and meanings.

• Encounter - It represents an interaction between a patient and healthcare practitioner.

5.6 Mirth Connect

Mirth Connect is an open source tool that is widely used for transforming non standard data

into standard format such as HL7 [52]. It allows routing of standard messages between

multiple systems over various transfer protocols like TCP/IP, HTTP and SMTP. The software

helps in building HL7 interfaces to non standard compliant applications. It connects two

systems using a channel that can fetch data from some source, transform it according to rules

set for the channel, filter information and then send it to the destination. All transactions in

Mirth Connect can be stored in an internal database so as to group multiple data requests or to

archive messages. It allows one to create interfaces using JavaScript facilitating easy

transformation and transfer of information.

Mirth Connect supports sending and receiving healthcare messages over a variety of

protocols:

• TCP/MLLP

• Database (MySQL, PostgreSQL, Oracle, Microsoft SQL Server, ODBC)

• File (local file system and network shares)

• PDF and RTF documents

• JMS

• FTP/SFTP

• HTTP and SMTP

39

Figure 11 : Mirth Connect Architecture

40

CHAPTER 6: HADOOP DISTRIBUTED FILE SYSTEM

Apache Hadoop is a Java based open source software framework widely adapted for

distributed data storage and processing and was inspired by Google File System and their

MapReduce. The platform is composed of following major components [53]:

• Hadoop Distributed File System (HDFS) - a distributed file system the stores data in

chunks on inexpensive hardware

• MapReduce - a distributed data processing model that uses Map and Reduce concepts

together to analyze large data

• Hadoop YARN - a resource management tool used for assigning resource to users'

jobs

• Hadoop Common - a set of useful libraries and utilities used be other components of

the platform

HDFS is a highly fault tolerant distributed file system that can be hosted on economical

hardware infrastructure [54]. It allows for high throughput access for large data sets by

providing streaming access to file system data. HDFS assumes that hardware is bound to fail,

thus quickly it quickly discovers faults and provides automated recovery. It is designed to be

used as batch processing rather than interactive processing as the emphasis is on high

throughput rather than low latency for accessing data. It follows a write once and read

anywhere model for files which mean that reads are faster than writes, simplifying data

coherency problems. It also works on the fact that moving computation near the data is

advantageous than moving data near the computational part which certainly holds true for

large data sets. Since, HDFS is built using Java; the file system is platform independent and

can run over any platform distribution.

6.1 Components of HDFS

HDFS consist of following components working together:

• NameNode - NameNode is the central part of the distributed system. It manages the

name system, i.e., all the directories and files by keeping a directory tree and keeps a

track of all the blocks that together manifests a particular file. These blocks are

41

present on the DataNodes and in no case any file data is stored on the NameNode.

HDFS Client always communicates with the NameNode by requesting any operation

on a file and NameNode returns a list of DataNodes that are holding the data.

NameNode behaves as the master of the system and in earlier releases, it was used to

be Single Point of Failure for the file system but efforts are being made to make

HDFS more highly available by removing such single point of failure [55].

• DataNodes - They are the systems that are deployed on machines which are supposed

to hold the actual data. DataNodes are also known as slaves in the distributed file

system. They store file data in blocks and are responsible for serving read and write

requests for the HDFS client. A DataNode gives periodic heartbeat signals to the

NameNode so as to signify whether it is alive and operational. After HDFS client

retrieves the location of a file from the NameNode, it can directly communicate with

DataNodes to retrieve file blocks in parallel.

• Secondary NameNode is responsible for performing periodic checkpoints. In the

event of NameNode failure, you can restart the NameNode using the checkpoint. The

secondary NameNode’s job is not only to be a backup for the primary NameNode, but

it periodically reads the filesystem changes, log them and applies them into the image

file, thus bringing it up to date. This allows the NameNode to start up quicker next

time [56].

• HDFS Client - HDFS client interacts with NameNode and DataNode on behalf of user

to fulfil user request. User establishes communication with HDFS through File

System API and normal I/O operations, processing of user request and providing

response over it is carried out by File System API processes.

Figure 12 depicts the overall architecture of HDFS and how HDFS client interacts with

NameNode and DataNodes.

42

Figure 12 : HDFS Architecture [54]

6.2 HDFS File Operations

The latest version of HDFS supports following file operations:

• Write

• Read

• Append (in later versions)

6.2.1 HDFS Write

The write operation in HDFS is done in seven steps as shown in Figure 13.

1. Create new file in the NameNode’s Namespace and calculate block topology

2. Stream data to the first DataNode

3. Stream data to the second DataNode in the pipeline

43

4. Stream data to the third DataNode

5. Success/Failure acknowledgement

6. Success/Failure acknowledgement

7. Success/Failure acknowledgement

Figure 13 : HDFS Write [57]

6.2.2 HDFS Read

The read operation in HDFS is done in three steps as shown in Figure 14.

1. Client retrieves block location from NameNode

2. Client read blocks to re-assemble the file

3. Client read blocks to re-assemble the file

44

Figure 14 : HDFS Read [57]

6.2.3 HDFS Append

In recent versions of HDFS, append operation has been added to the system. Before the

addition of append operation, files on HDFS, once closed, were used to be immutable. For

append operation to work, HDFS needs to keep last block of unclosed file visible to the

client. This raises two challenges:

• Read consistency. At a given time different replicas of the last block may have

different number of bytes. What read consistency should HDFS provide and how to

guarantee the consistency even in case of failures.

• Data durability. When any error occurs, the recovery cannot simply throw the last

block away. Instead the recovery needs to preserve at least the appended bytes while

maintaining the read consistency.

The append operation takes place in the following way:

1. Client sends an append request to NameNode.

2. NameNode checks the file and makes sure that it is closed. Then it checks the file’s last

block and if it is not full and has no replica, append operation fails. Otherwise, changes are

45

made to the file. If the last block is full, NameNode allocates a new last block to the file. If

the last block is not full, NameNode changes this block as an under construction block, with

its finalized replicas as its initial pipeline

3. A pipeline for append operation is setup if last block is not full. Otherwise, one for creating

a new file is setup

4. If the last block does not end at a checksum chunk boundary, read the last partial crc

chunk. This is for the purpose of calculating checksums.

5. The rest is the same as a regular write.

6.3 MapReduce Paradigm

As defined in [58], “MapReduce is a framework used for distributed data processing using

the well-known MapReduce programming idea. Programs written in this functional style are

by design parallelized and executed on a large cluster of commodity hardware. The runtime

system takes care of partitioning of the input data, scheduling of the program's execution

across a set of machines, handling machine failures, and managing the required inter

machine communication. This allows programmers without any experience with parallel and

distributed systems to easily utilize the resources of a large distributed system.”

In the HDFS MapReduce paradigm, each job (or program) has a user-defined map phase

which is a parallel, share-nothing processing of input; followed by a user-defined reduce

phase where the output of the map phase is aggregated. Typically, HDFS is the storage

system for both input and output of the MapReduce jobs.

The main components of MapReduce are as described below [56]:

• JobTracker – It is the master of the MapReduce system that manages the jobs as well

as the resources in the cluster (TaskTrackers). The JobTracker schedules each map as

close to the actual data being processed or to be used by the application, i.e., on the

TaskTracker which is running on the same DataNode as the underlying block on

which data resides.

• TaskTrackers - TaskTrackers are the slaves in the MapReduce system and are

deployed on each machine involved. They are responsible for running the separate

map and reduce tasks as instructed by the JobTracker.

46

• Job History Server - It is a daemon that serves historical information about completed

applications. Typically, Job History Server can be co-deployed with JobTracker

Figure 15 provides details of the core components for the included in MapReduce engine.

Figure 15 : MapReduce Engine [56]

6.4 HDFS SequenceFiles

HDFS does not provide acceptable performance when working with small files [59] because

each file will take a single block of size larger than the file's actual size and for each will have

an entry in NameNode that will take actual physical memory that may be greater than the file

size. Also the map task in MapReduce processes a block of input at a time, thus there will be

more number of map tasks doing little work. Sequence files are nothing but flat container

files that consist of binary key/value pairs. It is largely used in MapReduce as input and

output formats. Generally, small files are kept together in a single container sequence file

with key as file name and value as file contents. Furthermore, Sequence files are splittable, so

47

MapReduce can break them into chunks and operate on each chunk independently. They also

support compression on both record and block levels. Even though SequenceFiles offer many

advantages for handling small files it still suffers from some drawbacks. Creating a single

SequenceFile from many small files is a hefty task that takes a long time and huge amount of

memory. Due to its binary structure, it does not allow appending of records to a single file

contained in the big SequenceFile and we need to overwrite the whole SequenceFile to edit

single file content.

Figure 16 : HDFS SequenceFile [59]

48

CHAPTER 7: DESIGN AND IMPLEMENTATION

The work assumes that the primary PHR of the patient resides on a portable device such as a

mobile device [1]. In this architecture we provide overview of how backup can be retained on

the cloud which can offer to reconstruct the healthcard in case of theft or loss of healthcard

and also access some of the medical information through Hadoop Distributed File system for

high availability, reliability and response time. The section describes the overall architecture,

different components involved along with their tasks and an overview of implementation of

our work.

7.1 System architecture

The entire system, as shown in Figure 17, has three main components: a data query and

integration system, a middle layer of HL7 interface, and individual hospital information

systems storing records in a distributed manner. The system can be used by clinical

administrator to provide a backup for the complete medical record of an individual that can

then be handed over to the person through a portable device.

Each local HIS stores medical data about patients who have an encounter with a physician

affiliated with that hospital. This medical data may encompass information like patient’s

demographics, current vitals, medication history, prescriptions, diagnosis information, lab test

results etc. They keep health records in an electronic format according to their information

model and may provide an external interface for retrieval and update of records over the

network. Each HIS is responsible for maintenance and availability of health records and it

also ensures correctness of medical information stored.

Since these HISs may not share a common data model, health information of a patient gets

distributed into heterogeneous data sources. The records pulled from these source needs to be

translated into a common format so that they can be assimilated together while maintaining

interoperability standards so as to support easy communication and data exchange with

different healthcare professionals. HL7 is a feasible medical standard as it provides a

common structure to medical information while being flexible enough so that separate HL7

string messages assembled together can represent complete medical history of the patient,

while keeping the storage requirement to bare minimum.

49

Figure 17 : System architecture for distributed record management system

50

To retrieve all the medical records of a patient, we maintain a list of reference pointers at a

centralized component. These pointers are used by the data query and integration system to

request data from each HIS having patient’s record. These pointers are maintained in

reference file created for each patient registered in the system identified by an external patient

identifier. As data received in response from different sources may not be in a standard

format, we use HL7 interface layer to forward each query and then get back responses in

standardized HL7 layout. All of the HL7 messages received by the system can be

encapsulated together into a container format like JSON, representing the integrated EHR,

and forwarded to the administrator. The integrated EHR with some pre-parsing of HL7 data

can be used to realize the PHR of the patient. The administrator then yields control of the

record to the individual who keeps the record on his personal device ensuring confidentiality

of records while enabling him to keep track of his medical information.

7.2 Reference Storage and Management

Reference pointers to all the HIS along with files such as lab reports, prescriptions and

medications are stored on Hadoop Distributed File System to provide scalable, reliable

storage in case of theft or damage to healthcard. A typical reference may include information

necessary to track a particular visit stored in the EHR of a healthcare organization like facility

name, facility’s HIS URL, facility’s provider information and patient local identifier. All

references for a particular patient are kept as JSON objects encapsulated into a single file

identified using a single global patient identifier. Whenever a request comes for regeneration

of healthcard for a particular patient, he must provide his global identifier to the system

supervisor. He shall query the system to check whether references for that patient are present

or not. If a file is present, references to be used for restoration of the PHR are parsed and

returned to the user and then queries are made to the subsequent HISs. These reference files

are to be made highly available so that medical information can be retrieved as quickly as

possible from different sources. For this purpose, we use HDFS that replicates the records so

that even system goes down in the cluster, references can still be traced. Using SequenceFiles

on HDFS, we are bound to have faster response times than plain File System. Thus, HDFS

allows for more reliable and faster access to patient records using the reference model.

51

7.3 Integrated EHR

The new format proposed will hold all the ORU messages along with a single ADT message

encapsulated in a JSON object. The object will have following key-value pairs:

• ADT – HL7 string message containing patient personal information

• ORU – JSON array containing multiple ORU messages each representing a visit

ORU array can be sorted on the basis of timestamp so that most recent visits are above the

old ones in the array.

Figure 18 : JSON based Integrated EHR

52

7.4 Implementation

For implementation of the system in our local environment, we have used open source

hospital information systems: OpenMRS, OpenEMR and GNU Health for simulating storage

of health records at different locations but the system can use any HIS that supports export of

patient’s medical data.

Figure 19 : Overall Workflow with all the components of the system

53

All of these three systems are built on different technologies and use different data models to

store patient records. Both OpenMRS and GNU Health provide REST web services for

retrieval of data in non HL7 format but there is no such provision in OpenEMR.

We use Mirth Connect to build external HL7 interfaces to these data sources, enabling us to

transform raw data into standard HL7 data. We connect to OpenEMR using a Database

Connector so as to retrieve raw data as requested and then transform into HL7 records. Mirth

Connect can also send these transformed records over the network to a desired destination.

Each of these transformed records may signify an encounter or a visit to a healthcare

professional and they are represented as a combination of ADT A28 and ORU R01 messages

in HL7.

An overall workflow is given in Figure 18, in which the system first takes patient identifier as

an input along with administrator username and password. The data query system then

retrieves the encrypted reference file stored on HDFS and decrypted it using ABE. These

references are then forwarded to HL7 interfaces built using Mirth Connect. Each interface

then retrieves data from the mentioned source and translates it into appropriate format. The

transformed message is then routed back to the system and integrated together inside a

structured JSON. This JSON file is then handed back as the integrated healthcard of the

individual.

Figures 19 – 22 depicts the implemented workflow in which the proposed system has been

built in Java which can fetch references from the HDFS, relay those references to Mirth and

then integrate the responses received from it together. Mirth Connect is responsible for

querying individual HISs and then translating raw responses into HL7 responses and then

forward them to the Java based system. The user interface of the system is built using Java

Swings and communication with HDFS and Mirth happens over TCP/IP sockets.

In Figure 20, we show the system’s authentication screen that requires the registered

administrator’s username and password along with the global unique identifier of the patient.

54

Figure 20 : System Authentication Screen.

Figure 21 : Mirth Receiving requests and sending translated responses

55

Once correct information is entered, events are triggered that first retrieve references from

HDFS through sockets and then relay them to Mirth, again through sockets and wait for

responses from it. Mirth, as shown in Figure 21, queries the referenced HISs in parallel and

then transform responses based on the scripts written in JavaScript using E4X standard

Figure 22 describes how the system waits for the data from Mirth and integrates the data

together as an encapsulated JSON file including a single ADT message representing personal

information of the patient and array of ORU messages representing the visit data.

Figure 22 : Responses received by the querying system

56

In Figure 23, we see how the admin can export the PHR received in parts over the network

and then integrated together and forwarded to the patient.

Figure 23 : Healthcard exported as a JSON file

57

CHAPTER 8: RESULTS

The results of the implementation of the proposed system in a simulated environment

indicates that it is successfully able to regenerate the healthcard/ PHR of the patient that is

distributed in various hospital systems using only references stored on the distributed file

system. HDFS provided high availability through replication and provide decent response

times using SequenceFiles.

We tested the availability of HDFS by reading references through Java multithreaded

application created with Java version 1.7. Firstly we tried with file of 1MB size for testing the

availability and response time of reference files when retrieved in a pseudo concurrent

environment. As HDFS does not work well with small files, we used sequence file that shall

contain all the reference files for all the patients so as to improve performance [59]. The

Hadoop cluster that we tested on consisted of a NameNode with 2 GB of RAM and a

DataNode with same amount of memory.

 Table 1 shows the time taken to access patient references when files of size 1 MB are stored

on local file system and HDFS. Time taken to access references stored in HDFS using

SequenceFiles is less compared to those stored in Local file system in regular format.

Table III Local File System Vs HDFS for SequenceFile

No. of files accessed Time taken by Local File
System (ns)

Time taken by Hadoop DFS
(ns)

1 13654402 8244926

10 293183063 64200978

100 7505942552 661442233

58

Table 2 shows time taken when file size is of 2GB size. In case of large files, time taken to

access references stored in HDFS is large as compared to Local file but we are bound to get

better results with more volume of data and better hardware infrastructure as reading

performance scales better for large set of data [60].

Table IV Local File System Vs HDFS for Large Files

No. of files accessed Time taken by Local File
System (ns)

Time taken by Hadoop DFS
(ns)

1 33877723615 197278325721

10 106077535258 17470047772381

100 643332935076955 1759844631510245

59

CONCLUSION AND FUTURE WORK

The personal health record of a person allows him to actively monitor his health while giving

him direct control over his clinical information. A Patient visiting different healthcare facility

will have his data distributed among multiple heterogeneous HISs while he keeps a copy of

the record that gets consolidated into his PHR. Although the hybrid PHR model allows

confidentiality of data but if, somehow, the healthcard is lost it becomes very complex to

restore the PHR. The distributed mechanism discussed provides a secure way to manage and

create a backup of the PHR with the help of trusted HISs. The reference model enables the

integration of information when required and by keeping these references on the HDFS, it

allows for their high availability even on economical hardware.

Through implementation and testing in simulated environment, we can see that the proposed

system successfully recreates the PHR of the individual in a reliable manner but realizing it in

a real environment do pose certain challenges. Some of the major issues include

trustworthiness of different components used and compliance of medical standards by the

different healthcare organizations. In a country like India where private sector governs the

healthcare industry and sharing of medical data is limited among competing organizations, it

becomes essential that the control over the information is in the hands of the patient and he

can allow sharing of data with other health professionals while also enabling him to watch

over his complete medical history.

We plan to add pushing of references to the central system either by the PHR or by individual

HIS. The system also faces certain technical challenges like appending of records in sequence

files [59] and improving response times for large media files. We plan to use Apache HBase

[61] for improving performance for reading and writing Big data and also to provide better

response times for small files in addition to allowing appending of data. It also seems that

healthcare community is rapidly shifting to FHIR standard for interoperability as it offers

combined advantages of HL7v2 and HL7v3 while focusing on implementation [38]. We also

plan to replace HL7v2 based integrated model with FHIR based model in the future.

60

REFERENCES

[1] Sethia, Divyashikha, et al. "NFC based secure mobile healthcare system."Communication
Systems and Networks (COMSNETS), 2014 Sixth International Conference on. IEEE,
2014.

[2] Sprague, Lisa. "Personal health records: the people’s choice." NHPF Issue Brief 820
(2006): 1-13.

[3] Tang, Paul C., et al. "Personal health records: definitions, benefits, and strategies for
overcoming barriers to adoption." Journal of the American Medical Informatics
Association 13.2 (2006): 121-126.

[4] Brian Raymond. “Realizing the Transformative Potential of Personal Health Records.”
Kaiser Permanente Institute for Health Policy, In Focus, v1, 2007.

[5] Detmer, Don, et al. "Integrated personal health records: transformative tools for
consumer-centric care." BMC medical informatics and decision making 8.1 (2008): 45.

[6] Wuerdeman, Lisa, et al. "How accurate is information that patients contribute to their
electronic health record?." AMIA Annual Symposium Proceedings. Vol. 2005. American
Medical Informatics Association, 2005.

[7] Kaelber, David C., et al. "A research agenda for personal health records (PHRs)." Journal
of the American Medical Informatics Association 15.6 (2008): 729-736.

[8] Spine Services — Health and Social Care Information Centre,
http://systems.hscic.gov.uk/spine

[9] Campion-Awwad, Oliver, Alexander Hayton, Leila Smith, and Mark Vuaran." The
National Programme for IT in the NHS.", 2014.

[10] van't Noordende, Guido. "Security in the Dutch electronic patient record
system." Proceedings of the second annual workshop on Security and privacy in medical
and home-care systems. ACM, 2010.

[11] Force, G. E. T. “Electronic health records: A global perspective Second Edition.”
Technical report, HIMSS Enterprise Systems Steering Committee, 2010.

[12] Daglish, David, and Norm Archer. "Electronic personal health record systems: a brief
review of privacy, security, and architectural issues." Privacy, Security, Trust and the
Management of e-Business, 2009. CONGRESS'09. World Congress on. IEEE, 2009..

[13] Borthakur, Dhruba. "HDFS architecture guide." HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf (2008).

61

[14] Krohn, Rick. "The consumer-centric personal health record—it’s time." Journal of
Healthcare Information Management 21.1 (2007): 21-23.

[15] Halamka, John D., Kenneth D. Mandl, and Paul C. Tang. "Early experiences with
personal health records." Journal of the American Medical Informatics Association 15.1
(2008): 1-7.

[16] Official Google Blog - An update on Google Health and Google PowerMeter,
http://googleblog.blogspot.in/2011/06/update-on-google-health-and-google.html

[17] Sunyaev, Ali, Dmitry Chornyi, Christian Mauro, and Helmut Krcmar. "Evaluation
framework for personal health records: Microsoft HealthVault vs. Google Health."
In System Sciences (HICSS), 2010 43rd Hawaii International Conference on, pp. 1-10.
IEEE, 2010.

[18] Agarwal, Ankur, Borko Furht, and Vivek Tyagi. "Integration of Various Health Record
Systems." Handbook of Medical and Healthcare Technologies. Springer New York,
2013. 503-528.

[19] Koppar, Anant R., and V. Sridhar. "Tele-Health Medical Diagnostics System with
Integrated Electronic Health Records." Indian Journal of Public Health Research &
Development 3.3 (2012): 9-13.

[20] Yu, Wang, et al. "Design and Development of a Clinical Data Exchange System Based on
Ensemble Integration Platform." Frontier and Future Development of Information
Technology in Medicine and Education. Springer Netherlands, 2014. 385-392.

[21] Huba, Nicholas, and Yan Zhang. "Designing patient-centered personal health records
(PHRs): health care professionals’ perspective on patient-generated data." Journal of
medical systems 36.6 (2012): 3893-3905.

[22] Baldock, Daniel James, et al. "Electronic health record sharing using hybrid architecture."
U.S. Patent No. 8,650,045. 11 Feb. 2014.

[23] van’t Noordende, Guido. "Controlled dissemination of electronic medical
records." Proceedings of the 2nd USENIX conference on Health security and privacy.
USENIX Association. 2011.

[24] EMR vs EHR – What is the difference?, http://www.healthit.gov/buzz-blog/electronic-
health-and-medical-records/emr-vs-ehr-difference/

[25] EMR vs EHR vs PHR, http://ed-informatics.org/healthcare-it-in-a-nutshell-2/emr-vs-ehr-
vs-phr/

[26] Haux, Reinhold. "Health information systems–past, present, future."International journal
of medical informatics 75.3 (2006): 268-281.

[27] Goldschmidt, Peter G. "HIT and MIS: implications of health information technology and
medical information systems." Communications of the ACM48.10 (2005): 68-74.

http://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference/
http://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference/

62

[28] OpenMRS, http://openmrs.org

[29] Concept Dictionary Basics,
https://wiki.openmrs.org/display/docs/Concept+Dictionary+Basics

[30] Seebregts, Christopher J., et al. "The OpenMRS implementers network."International
journal of medical informatics 78.11 (2009): 711-720.

[31] RESTful Web Service, http://www.ibm.com/developerworks/webservices/library/ws-
restful/

[32] Restful Crud Operation on a WCF Service,
http://www.codeproject.com/Articles/115054/Restful-Crud-Operation-on-a-WCF-Service

[33] Getting and Using the MVP-CIEL Concept Dictionary,
https://wiki.openmrs.org/display/docs/Getting+and+Using+the+MVP-
CIEL+Concept+Dictionary

[34] OpenEMR Project, http://www.open-emr.org/

[35] OpenEMR Features,
http://www.open -emr.org/wiki/index.php/OpenEMR_Features

[36] GNU Health – Freedom and Equity in Healthcare, http://health.gnu.org/

[37] GNU Health Introduction, https://en.wikibooks.org/wiki/GNU_Health/Introduction

[38] Introducing HL7 FHIR, http://www.hl7.org/fhir/summary.html

[39] FHIRREST server, https://en.wikibooks.org/wiki/GNU_Health/FHIR_REST_server

[40] Using the FHIR REST server,
https://en.wikibooks.org/wiki/GNU_Health/Using_the_FHIR_REST_server

[41] Eichelberg, Marco, et al. "A survey and analysis of electronic healthcare record
standards." Acm Computing Surveys (Csur) 37.4 (2005): 277-315.

[42] What is OpenEHR, http://www.openehr.org/what_is_openehr

[43] Understanding the Continuity of Care Record,
http://www.corepointhealth.com/sites/default/files/whitepapers/continuity-of-care-record-
ccr.pdf

[44] HL7 Version 2 Product Suite,
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185

[45] CDA Release 2,
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7

http://openmrs.org/
https://wiki.openmrs.org/display/docs/Concept+Dictionary+Basics
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.codeproject.com/Articles/115054/Restful-Crud-Operation-on-a-WCF-Service
https://wiki.openmrs.org/display/docs/Getting+and+Using+the+MVP-CIEL+Concept+Dictionary
http://www.open-emr.org/
http://health.gnu.org/
https://en.wikibooks.org/wiki/GNU_Health/Introduction
http://www.hl7.org/fhir/summary.html
http://www.openehr.org/what_is_openehr
http://www.corepointhealth.com/sites/default/files/whitepapers/continuity-of-care-record-ccr.pdf
http://www.corepointhealth.com/sites/default/files/whitepapers/continuity-of-care-record-ccr.pdf
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7

63

[46] The HL7 Clinical Document Architecture,

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC130066

[47] An overview of CCD templates, http://www.hl7standards.com/blog/2008/07/23/an-
overview-of-ccd-templates/

[48] Comparing HL7 messages to HL7 documents,
http://www.hl7standards.com/blog/2008/01/25/comparing-hl7-messages-to-hl7-
documents/

[49] HL7 Sample Message, http://www.altova.com/HL7_technology_primer.html

[50] HL7 Resources, http://www.corepointhealth.com/resource-center/hl7-resources

[51] FHIR Resource Index, http://www.hl7.org/fhir/resourcelist.html

[52] Mirth Connect, http://www.mirth.com/Products-and-Services/Mirth-Connect

[53] Apache Hadoop, https://en.wikipedia.org/wiki/Apache_Hadoop

[54] Borthakur, Dhruba. "HDFS architecture guide." HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf (2008).

[55] HDFS NameNode, http://wiki.apache.org/hadoop/NameNode

[56] Apache Hadoop core components,
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.2.4/bk_getting-started-
guide/content/ch_hdp1_getting_started_chp2_1.html

[57] Hadoop Tutorial:
Developing Big-Data Applications with Apache Hadoop,
http://www.coreservlets.com/hadoop-tutorial/

[58] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large
clusters." Communications of the ACM 51.1 (2008): 107-113.

[59] The Small files problem, http://blog.cloudera.com/blog/2009/02/the-small-files-
problem/

[60] Dinh, Tien Duc. "Hadoop Performance Evaluation." (2009).

[61] Apache HBase, http://hbase.apache.org/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC130066
http://www.hl7standards.com/blog/2008/07/23/an-overview-of-ccd-templates/
http://www.hl7standards.com/blog/2008/07/23/an-overview-of-ccd-templates/
http://www.corepointhealth.com/resource-center/hl7-resources
http://www.mirth.com/Products-and-Services/Mirth-Connect
https://en.wikipedia.org/wiki/Apache_Hadoop
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.2.4/bk_getting-started-guide/content/ch_hdp1_getting_started_chp2_1.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.2.4/bk_getting-started-guide/content/ch_hdp1_getting_started_chp2_1.html
http://www.coreservlets.com/hadoop-tutorial/
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/

64

APPENDIX

A - Writing a SequenceFile made from reference files on HDFS through

Java

package writeFile;

import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;

public class WriteData {

 int num_records;

 public WriteData(int num_records) {
 this.num_records = num_records;
 }

 public void SeqFileWrite()throws IOException{
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(conf);
 FSDataInputStream inputStream;
 Text key = new Text();
 Text value = new Text();
 org.apache.hadoop.io.SequenceFile.Writer.Option
filePath = SequenceFile.Writer
 .file(new Path("/refs.seq"));
 org.apache.hadoop.io.SequenceFile.Writer.Option
keyClass = SequenceFile.Writer
 .keyClass(Text.class);
 org.apache.hadoop.io.SequenceFile.Writer.Option
valueClass = SequenceFile.Writer
 .valueClass(Text.class);

65

 SequenceFile.Writer writer =
SequenceFile.createWriter(
 conf, filePath, keyClass, valueClass);

 for (int i = 1; i <= 1000; ++i) {
 String str = "";
 Path inputFile = new
Path("/Patient_References/ref" + i + ".js");
 System.out.println("Processing file : " +
inputFile.getName() + " and the size is : " +
inputFile.getName().length());
 inputStream = fs.open(inputFile);
 key.set(inputFile.getName());
 while (inputStream.available() > 0) {
 str = str + inputStream.readLine();
 }
 value.set(str);
 writer.append(key, value);

 }
 fs.close();
 IOUtils.closeStream(writer);
 }

 public static void main(String[]args) {
 try {
 new
WriteData(Integer.parseInt(args[0])).SeqFileWrite();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
}

66

B - Reading N number of reference files from a SequenceFile made on

HDFS through Java

package readFile;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.SequenceFile.Reader.Option;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.util.ReflectionUtils;

public class ReadFile {

 int num_records;

 public ReadFile(int num_records) {
 this.num_records = num_records;
 }
 private void readSequenceFile(String
sequenceFilePath)throws IOException {
 // TODO Auto-generated method stub

 /*
 * SequenceFile.Reader sequenceFileReader = new
SequenceFile.Reader(fs,
 * new Path(sequenceFilePath), conf);
 */
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(conf);
 Option filePath = SequenceFile.Reader.file(new
Path(sequenceFilePath));
 SequenceFile.Reader sequenceFileReader = new
SequenceFile.Reader(conf,
 filePath);

 Writable key =
(Writable)ReflectionUtils.newInstance(
 sequenceFileReader.getKeyClass(), conf);
 Writable value =
(Writable)ReflectionUtils.newInstance(
 sequenceFileReader.getValueClass(), conf);

67

 try {

 long startTime = System.nanoTime();
 for (int i = 0; i < num_records; ++i) {
 sequenceFileReader.next(key, value);
 System.out
 .printf("[%s] %s %s \n",
 sequenceFileReader.getPosition(),
key,
 value.getClass());
 }
 long endTime = System.nanoTime();
 System.out.println(endTime - startTime);
 }
 finally {
 IOUtils.closeStream(sequenceFileReader);
 }

 }

 public static void main(String[]args) {
 ReadFile rf = new
ReadFile(Integer.parseInt(args[0]));

 try {
 rf.readSequenceFile("/refs.seq");
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

}

68

C - Deploying GNU Health on local environment

Requirements:

1. Operating System: GNU Health is Operating System independent, although we are using

Ubuntu Distribution 14.04

2. Database: PostgreSQL

3. Python: >= 2.7 < 3.0

4. Tryton: = 3.4

5. BASH Shell

6. PIP version for Python 2

Step I. Install dependencies

#apt-get install build-essential python-dev python-pip \

libxml2-dev libxslt1-dev libldap2-dev libsasl2-dev python-ldap \

python-imaging python2.7-cracklib postgresql postgresql-server-dev-all

Step II. Creating the Operating System User

Run the following command as root:

useradd -m gnuhealth

If you already created the "gnuhealth" operating system user, you can skip this section,

otherwise, create it now.

Step III. Verify PostgreSQL authentication method

PostgreSQL uses different authentication methods (MD5, ident, trust). Depending upon the

Operating System, the PostgreSQL server authentication method will vary. The standard

GNU Health installation uses the trust authentication method, so you need to check the

PostgreSQL authentication file configuration. Locate the pg_hba.conf file and verify that the

69

trust method is set. The location of this configuration file can be obtained with the following

command, to be executed as root:

su - postgres -c "psql -t -P format=unaligned -c 'show hba_file'"

An example configuration file entry specifying use of the trust method is given in the

following line:

local all all trust

After any changes to the file, the PostgreSQL server needs to be restarted.

Step IV. Downloading and Installing GNU Health

Do the following steps with your newly created gnuhealth user and do not use root:

1. Become user gnuhealth:

su - gnuhealth

2. Download GNU Health from GNU.org

wget http://ftp.gnu.org/gnu/health/gnuhealth-latest.tar.gz

3. Uncompress the file:

tar xzf gnuhealth-latest.tar.gz cd gnuhealth-*

4. Run the gnuhealth_install.sh script

./gnuhealth_install.sh

5. Finally, enable the BASH environment for the gnuhealth user.

source "$HOME"/.gnuhealthrc

http://ftp.gnu.org/gnu/health/gnuhealth-latest.tar.gz

70

Step V. Activate Network Devices for the JSON-RPC Protocol

The Tryton GNU Health server listens to localhost at port 8000, not allowing direct
connections from other workstations.

editconf

Edit the parameter listen in the [jsonrpc] section, to activate the network device so
workstations in your net can connect. Add the following block:

[jsonrpc]

listen = *:8000

This will allow connecting to the server in the different devices of your system.

Step VI. Setting up a Local Directory for Attachments

By default, Tryton uses a system-wide directory to store the attachments. In GNU Health it is
advisable to keep the attachments in the gnuhealth user space. Edit the server configuration
file trytond.conf and enter the attach directory under the [database] section, for instance:

editconf

[database]

path = /home/gnuhealth/attach

Step VII. Booting up the Tryton Server

Change to your newly installed system (use the alias cdexe)

cdexe

Boot the server using the command

./trytond

Step VIII. Installation of the Tryton Client

Download and extract the Tryton client from the tryton site:
http://downloads.tryton.org/3.4/tryton-3.4.2.tar.gz

http://downloads.tryton.org/3.4/tryton-3.4.2.tar.gz

71

Install python dependencies:
pip2 install --user python-dateutil

Untar the client tarball:
tar -xzvf tryton-3.4.2.tar.gz

Excute the client
cd tryton-3.4.2/bin

	front
	CERTIFICATE
	ACKNOWLEDGEMENT

	thesis_final_arpit
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER 1: INTRODUCTION
	CHAPER 2: LITERATURE REVIEW
	CHAPTER 3: PERSONAL HEALTH RECORD MODELS
	3.1 Various Health Records
	3.2 Standalone PHR Model
	3.3 Integrated PHR Model
	3.4 Tethered PHR Model

	CHAPTER 4: HOSPITAL INFORMATION SYSTEMS
	4.1 OpenMRS
	4.1.1 Data Transfer using REST web service
	4.1.2 OpenMRS Medical Dictionary

	4.2 OpenEMR
	4.2.1 Features of OpenEMR

	4.3 GNU Health
	4.3.1 GNU deployment scenarios
	4.3.2 Data transfer through FHIR REST Server

	CHAPTER 5: HL7 FRAMEWORK
	5.1 Interoperability Standards in Healthcare
	5.2 Overview of HL7
	5.2.1 Components of a HL7 message
	5.2.2 Sample HL7 message
	5.2.3 Categories of HL7 message

	5.3 ADT - A28 HL7 Message
	5.4 ORU – R01 HL7 Message
	5.5 FHIR Medical Information Sharing Standard
	5.6 Mirth Connect

	CHAPTER 6: HADOOP DISTRIBUTED FILE SYSTEM
	6.1 Components of HDFS
	6.2 HDFS File Operations
	6.2.1 HDFS Write
	6.2.2 HDFS Read
	6.2.3 HDFS Append

	6.3 MapReduce Paradigm
	6.4 HDFS SequenceFiles

	CHAPTER 7: DESIGN AND IMPLEMENTATION
	7.1 System architecture
	7.2 Reference Storage and Management
	7.3 Integrated EHR
	7.4 Implementation

	CHAPTER 8: RESULTS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX
	A - Writing a SequenceFile made from reference files on HDFS through Java
	B - Reading N number of reference files from a SequenceFile made on HDFS through Java
	C - Deploying GNU Health on local environment
	Requirements:
	Step I. Install dependencies
	Step V. Activate Network Devices for the JSON-RPC Protocol
	Step VI. Setting up a Local Directory for Attachments
	Step VII. Booting up the Tryton Server
	Step VIII. Installation of the Tryton Client

