
i

A Major Project Report On

Mutual Authentication on Java Card

Submitted in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

By

Om Prakash

(Roll No. 2K13/SWE/10)

Under the guidance of

Dr. Daya Gupta

Professor

Co-guide

Ms. DivyashikhaSethia

Assistant Professor

Department of Software Engineering

Delhi Technological University, Delhi

DELHI TECHNOLOGICAL UNIVERSITY

Department of Computer Engineering

Delhi Technological University, Delhi

2013-2015

ii

CERTIFICATE

iii

ACKNOWLEDGEMENTS

I feel immense pleasure to express my heartfelt gratitude to Dr. Daya Gupta and Ms.

DivyashikhaSethia for her constant and consistent inspiring guidance and utmost co-

operation at every stage which culminated in successful completion of my research work.

I also would like to thank the faculty of Software Engineering Department, DTU for their

kind advice and help from time to time.

I owe my profound gratitude to my family which has been a constant source of inspiration

and support.

Om Prakash

Roll No. 2K13/SWE/10

iv

TABLE OF CONTENTS

CERTIFICATE .. II

ACKNOWLEDGEMENTS ..III

TABLE OF CONTENTS ... IV

LIST OF FIGURES .. VI

LIST OF TABLES ... VII

ABSTRACT ... VIII

CHAPTER 1. OVERVIEW ... 1

1.1 INTRODUCTION .. 1

1.2 MOTIVATION ... 2

1.3 THESIS GOALS .. 2

1.4 DISSERTATION ORGANIZATION .. 3

CHAPTER 2. MUTUAL AUTHENTICATION ... 5

2.1 INTRODUCTION .. 5

2.2 CHALLENGE-RESPONSE TECHNIQUES ... 7

2.3 ZERO-KNOWLEDGE TECHNIQUES ... 8

2.4 AUTHENTICATION PROTOCOLS .. 9

2.4.1 EAP-PSK ... 9

2.4.2 EAP-TLS .. 10

2.4.3 EAP-TTLS .. 12

2.4.4 EAP-IKEv2 .. 12

2.4.5 PLAID ... 13

2.4.6 OPACITY ... 13

2.5 COMPARISON OF PROTOCOLS ... 16

2.6 MALICIOUS ATTACKS .. 16

CHAPTER 3. SMART CARDS .. 18

3.1 INTRODUCTION .. 18

3.2 ADVANTAGES OF USING SMART CARDS ... 20

3.4 SMART CARD COMMUNICATION MODELS ... 23

3.5 STANDARDS AND SPECIFICATIONS .. 24

3.6 CARD OPERATING SYSTEMS .. 25

3.7 JAVA CARDS .. 26

v

3.7.1 Java Card Progress .. 29

3.7.2 Java Card 3.0 ... 30

3.7.3 Java card Security ... 34

CHAPTER 4. PLAID ... 35

4.1 INTRODUCTION .. 35

4.2 PROTOCOL DATA DICTIONARY .. 36

4.3 PROTOCOL OPERATIONS .. 38

5.4 ADVANTAGES WITH PLAID .. 41

5.5 LIMITATIONS OF PLAID ... 42

CHAPTER 5. IMPLEMENTING PLAID PROTOCOL ... 44

5.1 RSA .. 44

5.2 AES .. 45

5.3 RANDOM NUMBER ... 47

5.4 HASH .. 48

5.5 DER .. 50

5.6 IMPLEMENTING THE APPLET ... 51

5.6.1 Applet development environment ... 51

5.6.2 The applet development ... 52

5.7 IMPLEMENTING THE READER .. 53

5.7.1 Reader development environment .. 54

5.7.2 Reader development ... 54

CHAPTER 6. EVALUATION AND RESULTS ... 56

6.1 CARD INITIALIZATION .. 56

vi

LIST OF FIGURES

FIGURE 1 REPRESENTATION OF EAP-PSK MESSAGE EXCHANGE .. 10

FIGURE 2 REPRESENTATION OF EAP-TLS MESSAGE EXCHANGE. .. 11

FIGURE 3 ARCHITECTURE OF OPACITY BASED SYSTEM .. 14

FIGURE 4 SMART CARD DEVICES COMMONLY.. 19

FIGURE 5 CONTACT SMART CARD AND CONTACT LESS SMART CARD 19

FIGURE 6 SMART CARD CONTACT POINTS .. 21

FIGURE 7 SMART CARD ARCHITECTURE .. 21

FIGURE 8 SMART CARD COMMUNICATION MODEL ... 23

FIGURE 9 APDU STRUCTURE .. 24

FIGURE 10 COMMUNICATION MODEL OF JAVA CARD ... 28

FIGURE 11 JAVA CARD 3.0 ARCHITECTURE .. 32

FIGURE 12 OPERATIONS IN PLAID PROTOCOL .. 39

FIGURE 13 AES DATA FLOW FOR ENCRYPTION ... 45

FIGURE 14 RUN1 FOR THE READER OF THE PLAID PROTOCOL .. 57

FIGURE 15RUN2 FOR THE READER OF THE PLAID PROTOCOL ... 57

FIGURE 16 RUN3 FOR THE READER OF THE PLAID PROTOCOL .. 58

file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067554
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067555
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067556
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067558
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067559
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067560
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067562
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067563
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067564
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067566
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067568
file:///I:/Plaid/thesisReportOmPrakashjuly30_420AM.doc%23_Toc426067569

vii

LIST OF TABLES

TABLE 1 SUPPORTED AND UNSUPPORTED JAVA FEATURES.19

TABLE 2 DATA DICTIONARY PLAID PROTOCOL 29

TABLE 3 RCON ARRAY. .41

TABLE 4 SOME TYPES AND THEIR UNIVERSAL-CLASS TAGS 61

TABLE 5 DER FORMAT OCTET STRING DATA TYPE . 62

TABLE 6 DER FORMAT SEQUENCE DATA TYPE . 62

viii

ABSTRACT

PLAID was introduced by Centrelink in 2009 and in a short time it has

become one of the top choices for mutual authentication on Java smart cards.

The protocol is cryptographically stronger, faster and more private, than

most or all equivalent protocols currently available either commercially or

via existing standards. PLAID is designed to perform a high strength mutual

authentication in the 150-300 millisecond range, making it suitable for a

range of mission critical contact-less applications.

 This work is about the complete implementation of the protocol

including the applet which runs on the card and the reader application which

runs on the host machine. The prime focus has been on the implementation

of the protocol and to get the real performance evaluation of the protocol. It

discusses about the implementation processes and also the difficulties with

solutions steps and processes which are carried out. On breaking the

cumulative timings of the operations of the protocol in this implementation,

it could be confirmed that the claims made by the protocol to carry out a

cryptographically strong mutual authentication within 300 milliseconds can

be easily achieved using the PLAID protocol.

Keywords: Mutual Authentication, java card, PLAID, OpenSSL

1

Chapter 1. Overview

1.1 Introduction

 Mutual authentication, also called 2-way authentication is the process in which a

client’s identity is verified by the server and the same way the identity of server is verified

by the client. Mutual authentication verifies that the message from the client reaches the

intended server and in similar way the message from the server reaches the intended

client. Generally mutual authentication is required before any type of access of a certain

service. It is commonly used in the scenarios where a specific service is used by a number

of clients. Mutual authentication facilitates in the verification process that the service is

used by the intended user and not some malicious identity with the hidden intentions of

destruction of the service. On the other way the clients need to verify that the services to

be used are provided by the intended service provider not by some fraudulent server.

 Java card in the basic terms is, adaptation of the Java platform to be used on smart

cards. Java cards are subsets of the set of smart cards [2,12], plastic cards with embedded

Integrated Chip (IC) on it. These smart cards can be classified in to categories connected

and connectionless. Mobile SIM cards, credit cards, driving licenses and vehicle

registration certificates (RC) and metro cards are some of the commonly available forms

of smart cards in India. These smart cards are embedded with ICs which consists tiny

processor, RAMs, EEPROMs etc. to provided computation capability. On the software

front these cards have card OS over which a Java Card Virtual Machine (JCVM) and Java

Card Runtime Environment (JCRE) works. On the top of that, Java card applications

called 'Applet' works. A card could have a no. of Applets at a time but communicates with

only one at a time.

 Protocol used here in the thesis work for the mutual authentication is PLAID

[8,9,10,13,14] (Protocol for Lightweight Authentication of Identity).We abbreviate the

version number of the protocol and it would be just denoted by PLAID in the rest of this

thesis report. The protocol was proposed by Centrelink in the year 2009 and in a sort

time, it has become one of the top choices for mutual authentication on Java smart cards.

It is a standard for smart card based mutual authentication in Australia. The protocol is

cryptographically stronger, faster and more private, than most or all equivalent protocols

2

currently available either commercially or via existing standards. PLAID is a candidate

for broad usage in Physical and Logical Access Control Systems (PACS /LACS) where

the requirement for a fast, private, ID leakage proof, secure, free and extensible smart

card authentication protocol has grown significantly. PLAID is designed to perform a

high strength mutual authentication in the 150-300 millisecond range, (0.15 to 0.3 of a

second), making it suitable for a range of mission critical contact-less applications.

1.2 Motivation

 Without any security measures in place, smart card based Java card might give

away its information too easily. In a world where many applications utilize these cards in

the system for identification and if these share information too easily, may lead to loss of

privacy. In mutual authentication, the reader and cards does not reveal its identity unless

some criteria has been met. Usually this type of authentication is proven through the

knowledge of secret information shared between two entities. In addition to sharing a

secret information, an affordable way to encrypt the data must be found as well as

appropriate measures must be taken to prevent other types of attack such as message

replay, eavesdropping etc. Now keep in mind the above things, we need to search for a

protocol which meets our requirements. Several authentication schemes have been

proposed and discussed, however our focus is on finding those which are more suitable

for smart cards which are resource-constrained devices. Being resource-constrained

devices, the amount of computation and the memory requirements should be kept as small

as possible. The search for the authentication protocol ended at above discussed protocol

more known as PLAID.

1.3 Thesis goals

 In the thesis, we set out to implement the above said mutual authentication

protocol PLAID, on our 'MicroSD embedded Java cards'[33]. The objective is to to find

an optimal mutual authentication protocol and to implement the protocols specification as

closely as possible the Java card, we have, which are made available by the smart card

manufacturer and distributer Go-Trust, Taiwan. As mentioned in the official

documentation and made available by the Centrelink [8,9], the protocol has been

designed to get the authentication done within a time frame of 150 - 300 seconds, which

3

has been tried to achieve on the card available with us.

 The main contribution of the work is research of optimal mutual authentication

protocols and implementation of PLAID mutual authentication on Java card (applet as

well as a reader), Java Card devices run a subset of the Java language, tailored to suit

resource-constrained devices. However, aside from the advantages of code portability and

multi-application support, the use of an interpreted language does not come without a

performance penalty. For selection we considered mutual authentication protocols such as

EAP-PSK, EAP-TLS, EAP-FATS, EAP-IKEv2, PLAID and OPACITY. Of these, PLAID

was found to be most suitable for mutual authentication scheme for cards (justification

provided in section 2.5). Some benefits with PLAID are, its fast i.e. transaction for

PLAID authentication is 150-300 millisecond, it is cryptographically strong, uses hybrid

nature cryptography (RSA, AES, SHA1, SECURE_RANDOM), designed for smart cards

so use APDU for encapsulating the data, could be used with different key sizes (16, 24, or

32 bytes), provides privacy protection and could work in three different modes such as 1-

factor (normal), 2-factor(PIN hash) and 3-factor (minutiae).

1.4 Dissertation Organization

 In this chapter we provide a brief work overview in terms of introduction and the

thesis main goals. The remainder of this dissertation is organized as follows.

 In Chapter 2 and chapter 3, we cover the topics and terms introduced in the above

sections which need to be explained for better understanding of the dissertation. Topics

such as mutual authentication and Java cards are explained with the required details so

that reader could get all the related things in single go and does not feel to look around to

get introduced to terms used in the dissertation work.

 Chapter 4 covers the PLAID protocol used for authentication process. As this

dissertation is all about PLAID so it’s quite fair to put it into a separate chapter.

 Chapter 5 covers the aspects related to the implementation such as public key

cryptography, RSA, symmetric key cryptography AES and hashing SHA1 used in the

work to accomplish the requirement specifications of the PLAID. The end of the chapter

contains the details related to the implementation work which consists breaking the

4

problem in modules and achieving each module and finally aggregating the modules to

achieve the goals. It also carries the challenges and their respective solutions, regarding

an implementation on a Java Card platform.

 Chapter 6 covers the details about the final results and observation which are

encountered in this dissertation work.

5

Chapter 2. Mutual Authentication

 In the following sections we will look at different authentication schemes which

are built upon symmetric and public-key cryptosystems. The reader is not required to

fully grasp the internal behavior of the cryptographic functions used, nevertheless, it is

important to get familiarized with the computational costs and implementation challenges

involved. We will cover the essential background; readers who want a deeper

understanding of cryptographic theories, have at their disposal several good books

devoted to cryptography, such as Cryptography and Network Security by William

Stallings [6]. In the current chapter, we include some background details on mutual

authentication process and technique. We would also provide some brief introduction

about terms used throughout this dissertation work.

2.1 Introduction

 Mutual authentication is technique through which a claimant (usually one who

claim to identity) to show a verifier (the one who verifies the claim) that he is who he

claims to be, in other words, an authentication scheme allows someone's identity to

verified and hence any attempt of impersonation could be prevented. The term 'mutual'

associated with the authentication signifies that it is a two-way process such as both the

parties actively participate in the process of authentication. Identity of the Claimant is

verified by the verifier and also the identity of the verifier is verified by the claimant. The

terms Identification and Authentication are used interchangeably, however, the former

refers to the process of establishing an identity, while the latter refers to process of linking

the claimed identity to someone. For example, identification involves a claim of identity

to which it requires to get associated “I am SRK”, while the authentication would be

verification of that claim. Therefore, it could be considered that the Authentication is

wider and inclusive for the term Identification. Found a suitable definition for the terms

as:

 Identification is the means by which a user provides a claimed identity to the

system. Authentication is the means of establishing the validity of this claim [4].

The objectives of identification protocols have been listed as [5]:

6

1. In the case of honest parties A and B, A is able to successfully authenticate itself

to B, i.e., B will complete the protocol having accepted A’s identity.

2. (transferability) B cannot reuse an identity exchanged with A so as to successfully

impersonate A to a third party C.

3. (impersonation) The probability is negligible that any party C distinct from A,

carrying out the protocol and playing the role of A, can cause B to complete and

accept A’s identity. Here negligible means “is so small that it is not of practical

significance”.

4. Points 1 to 3 remain true even if a (polynomial order) large number of previous

authentications between A and B have been observed; the adversary C has

participated in previous protocol executions with either or both A and B; and

multiple instances of the protocol, possible initiated by C, may be run

simultaneously do not even reveal any partial information which makes C’s tasks

any easier whatsoever.

To provide a proof of identity, authentication can be based on several different factors,

which can be used alone or combined. Some commonly used factors are:

1. Something known: something which is known to the individual. This secret

information can be, for example, a password, a personal identification number

(PIN), or a cryptographic key.

2. Something possessed: something that the individual owns. Tokens such as

magnetic-stripe cards or smart cards are commonly used and of which Java smart

cards would be discussed in the subsequent sections of this report.

3. Something inherited: something that the individual is, which usually refers to

biometric data (e.g., handwritten signatures, facial features, fingerprints, retinal

patterns, voice, etc.).

There are several characteristics of authentication protocols that must be addressed, such

as:

1. Reciprocity: either unilateral or mutual authentication is possible, provided that

7

only one, or both entities provide a proof of identity, respectively.

2. Computational efficiency: the number of operations required to be executed per

authentication process of the protocol.

3. Communication efficiency: this includes the number messages need to be

exchanged between entities, as well as the bandwidth required (total number of

bits transmitted) to complete the authentication.

The most widely used password authentication schemes, such as fixed password schemes

and one-time password schemes, have deep roots in the areas of authentication, but they

are still vulnerable to a variety of threats such as replay attacks and dictionary attacks,

mentioned later in the chapter. In password authentication, the claimant proves her

identity by demonstrating that she knows a secret, the password. However, revealing the

secret makes it susceptible to interception by the adversary. Therefore, we focus on the

cryptographic mechanisms available in smart cards which allow us to design stronger

authentication schemes.

 Available authentication techniques can be broadly divided into two categories,

one is Challenge-Response technique and the other is Zero-Knowledge proof. These can

also be categories as unilateral (unidirectional) Authentication and Mutual Authentication

(bi-directional Authentication) techniques. As the name suggests, in unilateral

Authentication only the claimant is verified and in same way in the latter both claimant as

well as verifier are verified.

2.2 Challenge-Response techniques

 In the Challenge-Response Authentication techniques, the claimant need not to

present the secret to the verifier but needs to demonstrate the knowledge of the secret by

correctly responding to the challenge thrown by the verifier. The response here could

simply be a function of secrets and the challenge. Since every challenge is different

similarly the response differs for the same secret or set of secrets. Even on monitoring the

communications, the response from one execution of the authentication protocol could not

provide an adversary with useful information for a subsequent authentication, as

subsequent challenges will differ, thereby precluding replay attacks.

8

 Challenge-Response based authentication techniques use different challenges by

keeping the variations in time or using some randomly generated nonces, which changes

for every subsequent authentication process. Without time-variant parameters, protocols

are vulnerable to replay attack, interleaving attacks as well as chosen-text attacks. There

are three main classes of time-variant parameters that can be used: random numbers,

sequence numbers, or timestamps. The presence of random number or sequence number

or timestamps provide some uniqueness (every attempt can be distinguished from the

other), so attempts of replay attack can be easily captured). These are classified based on

clock (timestamp and random or sequence). Both, these have their advantages and

disadvantages; since the majority of smart cards lack internal time source therefore, they

are not adequate for time stamp-based protocols.

 Some challenge-Response based Authentication mechanisms also utilize the

symmetric-key as well as the public-key cryptosystems. In symmetric key cryptosystems

the secret key could be pre-shared between the involved entities and while the

authentication process the challenge as well as the response is encrypted using the pre-

shared keys. In the public-key based cryptosystems for challenge-response based

authentication, claimant demonstrates the knowledge of its private key in any of two

ways: the claimant made to decrypts a challenge encrypted using its public key or made to

digitally sign a challenge which is verified by the verifier using the public of the claimant.

2.3 Zero-Knowledge Techniques

 In zero-knowledge interactive proofs for Authentication, the claimant only needs

to demonstrate the knowledge of the secret, and not anything else that might reveal or

endanger the confidentiality of the secret. An interactive proof is said to be a proof of

knowledge if it has both the properties of completeness and soundness.

 A modern day example of zero-knowledge proof can be seen when a smart phone

has been lost. Now Victor has found the smart phone and the device is locked with a pass-

code or pattern. Peggy approaches and claims to be the owner of the phone (statement).

Victor needs to prove the ownership and ask Peggy to unlock the device. Peggy does not

want to reveal her pass-code or pattern, so she turns her back to Victor and unlocks the

phone.

9

 Seeing the unlocked phone, Victor now has proof that Peggy is the rightful owner.

Just as Peggy has provided zero knowledge of her personal pass-code while proving

ownership.

Completeness If the statement is true, the honest verifier will be convinced of this fact by

an honest prover.

Soundness If the statement is false, no cheating prover can convince the honest verifier

that it is true, except with some small probability.

Zero-knowledge If the statement is true, no cheating verifier learns anything other than

this fact.

The general structure of zero-knowledge protocols is the following:

A→B : witness

 B→A : challenge

A→B : response

 The entity claiming to be A selects a random number from a predefined set, as its

secret commitment, from which he computes the witness. This mechanism provide

randomness which allows to distinguish different protocol runs. Upon reception of the

witness, B issues a challenge to which only the legitimate party A can provide a correct

response. To decrease the probability of successful cheating, the protocol is iterated if

necessary.

2.4 Authentication Protocols

 2.4.1 EAP-PSK

 The EAP Pre-shared key is a mutual authentication protocol defined in RFC

4764[36]. Below figure 1 shows a representation of the message exchange in EAP-PSK

between a server and a peer (Note: these terms are just the names that are used in the

standard). The ID_S and ID_P is the identity information of the server and peer

respectively. The RAND_S and RAND_P fields are the two random fields for the

dynamic challenges.

10

T

he responses that accomplish the authentication are named MAC_S (for the server) and

MAC_P (for the peer). Figure 1 shows how these response values are calculated. The

CMAC-AES-128 function is a MAC based on the AES encryption algorithm with a 128

bit key size. The server and peer can verify the received MAC_P and MAC_S

respectively by calculating the values themselves and compare it to the received one. If

the received and calculated are values match, the authentication is successful.

 Additional information (PCHANNEL_S_0 and PCHANNEL_S_1) is exchanged

in order to set up the secure channel that can be used after the authentication is completed.

2.4.2 EAP-TLS

 EAP Transport Layer Security (EAP-TLS) [37] is a PKI based authenticated

scheme which uses X.509 certificates. EAP-TLS is based on TLS which is widely used in

the Internet to provide a secure channel in HTTP, FTP and e-mail connections. EAP-TLS

provides mutual authentication, protected cipher suite negotiation, privacy and automatic

key management. Key management refers to the automatic establishment of a key(s) for

the symmetric encryption algorithm.

Figure 1 Representation of EAP-PSK message exchange

11

 Figure 2 illustrates the message exchange between the client and a server. The

client first sends a ClientHello which includes a random value (which is later used as

challenge) and a list of supported cipher suites. The server responds by sending five

messages.

 The ServerHello contains the server’s challenge and a selection from the list of

cipher suites that was sent by the client. The Certificate message contains the X.509

certificate of the server. The ServerKeyExchange is optionally sent when the certificate

does not contain enough information for the client to send information confidentially. The

CertificateRequest message is sent if the server wishes to authenticate the client (mutual

authentication). The ServerHelloDone indicates that the server has sent all its messages.

The client processes the server’s response. Most importantly, it will verify the

trustworthiness of the received certificate. If the server requested it, the client will send its

certificate. The ClientKeyExchange contains a pre-master secret. The pre-master secret

consist of another random value generated by the client and of the TLS version number.

The server and client both calculate the master secret from the pre-master secret and

random values that were exchanged in the hello messages. The master key is used as a

session key in the secure channel.

 The CertificateVerify message authenticates the client to the server. This is done

by hashing and encrypting all data that is sent until now (this includes the random value /

Figure 2 Representation of EAP-TLS message exchange.

12

challenge) with the client’s private key. The ChangeCipherSpec message indicates that all

subsequent traffic will be secured with the negotiated parameters (a secure channel with

the selected cipher suite and calculated master key). The Finish message is the first

message in the secure channel which allows to server to verify that it is working properly.

The server responds with a ChangeCipherSpec and a Finish message. In case of the

server, the purpose of the Finish message is authentication to the client by showing that it

was able to decrypt the pre-master secret.

 Optionally, EAP-TLS provides privacy. This is accomplished by executing the

TLS handshake twice. In the first handshake, the server only authenticates to the client.

When this authentication is successful, the resulting secure channel is used to perform a

second handshake in which both peers mutually authenticate. This makes it impossible for

an unauthorized party to obtain the client’s certificate. In [75] an alternative approach for

privacy in EAP-TLS is suggested which leverages the TLS extension mechanism. This

approach is more efficient because it does not require the handshake to be executed twice.

2.4.3 EAP-TTLS

 The EAP Tunneled Transport Layer Security (EAP-TTLS) [37] is similar to EAP-

TLS and thus PKI-based but it provides backwards comparability with password based

authentication.

 This scheme describes mutual authentication between a user and authenticator.

Only the authenticator has a certificate. The user verifies this certificate in order to make

sure that the authenticator is legitimate after which a secure channel is set up as normally

done in TLS. Subsequently, this secure channel is used to send the user’s password to the

authenticator as if it was application data after which the user is authenticated.

2.4.4 EAP-IKEv2

 The EAP Internet Key Exchange Protocol is defined in [38] and based on IKEv2

which is defined in [39]. IKE is used in IPsec in order to perform mutual authentication

and setting up a security association.

13

 EAP-IKEv2 is similar to EAP-TLS as it provides similar functionality. It supports

X.509 certificate for authentication which are either pre-shared or distributed using

domain name systems (DNS). Furthermore, it supports cipher suite negotiation, automatic

key management and identity confidentiality (depending on the mode of operation).

A number of extensions to IKEv2 are documented which provide additional functionality.

Session resumption allows the continuation of a session between a peer and authenticator

after a failure without going through to the complete set up process [40]. IKE redirect

enables the redirection of incoming request to other servers in order to perform load

balancing [41]. EAP-IKEv2 extends IKEv2 by including support for password based

authentication.

2.4.5 PLAID

 PLAID [8, 9, 10, 13] has been found most suitable for mutual authentication on

Java card, in the work PLAID has been used as the authentication method has been

discussed in detail in chapter 4.

2.4.6 OPACITY

 Open Protocol for Access Control, Identification, and Ticketing with privacy

(OPACITY) [42] is an open authentication protocol targeted at smart cards. Its

application include access control and also ticketing in public transport systems.

OPACITY is compliant with many smart card related standard/recommendation

documents including ISO 24727. It offers mutual authentication (depending on the mode),

support for multiple cipher suites, end-to-end confidentiality and a key-agreement

protocol that supportsforward secrecy.

 As opposed to PLAID, support for multi factor authentication is not included.

Furthermore, support for the exchange of authorization based information (PLAID

enables this by using the ACS record as explained in chapter 4) is not included.

 OPACITY relies on PKI in order to provide authentication. Every card and

terminal are pre-loaded with a unique signed Card Verifiable Certificate (CVC), a

corresponding private key and a number of trusted root certificates. The CVC contains the

identity of the card or terminal and is defined according to the X.509 standard. The

14

authentication process is similar as explained in Section 5.3.2: the certificates are

exchanged and the signature is validated. Subsequently, a challenge/response mechanisms

is used to verify that a node has the private key corresponding to the certificate that it

presented.

 OPACITY also supports identity privacy meaning that an attacker cannot read the

identity (CVC) from the card. This is accomplished by encrypting the card’s CVC

symmetrically before it is sent to the terminal. The symmetric key is derived using a key

agreement protocol called Elliptic curve Diffie-Hellman (ECDH). The exact operation of

this protocol is not discussed here but this protocol makes sure that only a valid terminal

can read the CVC.

 Persistent binding is an optimization feature. The idea is to save time in the key

agreement phase. When a particular card is presented to a particular terminal for the first

time, the session key is derived and stored in both the card and the terminal together with

one time card identifier (referred to as the PB record). This key and identifier can be used

the next time the card is presented to the same terminal which will speed up the

transaction time.

 Two modes of operation are defined:

1. OPACITY-FS - This mode is designed for use in applications with high security

requirements. Therefore, it supports mutual authentication, end-to-end

confidentiality and forward secrecy.

2. OPACITY-ZKM - This mode is designed for applications where short

transactions times are required. It does not offer mutual authentication: the

terminal will only authenticate the card and not vice versa which decreases the

transaction time but comes at the cost of security.

Figure 3 Architecture of OPACITY based system

15

The architecture of OPACITY based system is shown in Figure 3. The terminal

consists of the Secure Authentication Module (SAM), which is responsible for

authentication and cryptographic functions, and the client application which implements

the service/business logic.

 This architecture allows for the easy integration of OPACITY in existing client

applications. During the authentication process, the client application acts as an interface

between the card and the SAM meaning that it simply relays the traffic between these two

entities. After the authentication, the client application can communicate with the card

over a secure channel by letting the SAM encrypt and decrypt the data.

 To the best of our knowledge, OPACITY is currently not widely deployed and

therefore its quality is not proven in the field. Hence, we depend on scientific publications

that evaluate this protocol. A cryptographic analysis of OPACITY is given in [43]. In this

work it is concluded that there are restrictions to the privacy guarantees (identity privacy).

Furthermore, according to [43], it is not recommended to use OPACITY-ZKM mode for

deployment due to weak authentication and identity privacy in this mode.

In [13], three limitations of OPACITY are described.

1. High transaction times - The asymmetric encryption used is slow compared to

symmetric encryption due to limited processing capabilities in smart cards. This

results in higher transaction times.

2. No CVC revocation list - Typically, in PKI-based systems a list of revoked

certificates is maintained in a certificate revocation list (CRL). Certificates on this

list should not be trusted any more. OPACITY does not use a CRL or similar

mechanism. Effectively, this means that when a smart card is stolen, there is no

way to mark a card as untrusted. This will make it difficult to prevent that an

attacker with a stolen card gains access illegally.

16

3. No support for multi factor authentication - In an environment where security

requirements are strict, multi factor authentication is often desirable. The lack of

support for this means that OPACITY cannot be used in an environment where

this feature is required.

2.5 Comparison of protocols

From all of the above protocols, PLAID and OPACITY are the only one designed

specifically to be used with smart cards. As these are designed for cards so use APDU for

data encapsulation. Both the protocols, standards mention explicit protection against

MiTM, (mentioned in the following section). PLAID and OPACITY also do not use

passwords. Hence, it can be concluded that these protocols are protected against

dictionary attacks. EAP-PSK is protected against dictionary attacks because no passwords

are used in this protocol. PLAID provides high privacy protection. EAP variants are not

specifically designed, but these are made compliant to be used on smart cards. The

performance of the open source java card implementation of EAP-TLS is discussed in a

master thesis [44]. The TLS handshake takes 10.5 seconds to complete in this

implementation (for ’typical’ cipher suite TLS_RSA_WITH_RC4_128_SHA). This is

high compared to the authentication times that are common in smart card specific

protocols such as PLAID (300 milliseconds). Therefore, it is concluded that TLS-based

protocols do not satisfy this requirement. EAP-PSK, PLAID and OPACITY do not

support cipher suite negotiation. EAP- PSK does not provide any “End-user identity

protection”.

It is found that PLAID and OPACITY are most compliant to be used with smart cards.

From these two PLAID comes out be better as compared to OPACITY. OPACITY has

higher transaction time, no CVC revocation list i.e. it does not provide any mark for card

that is untrusted, in case card stolen or lost, it does not provide multiple operation. So, in

these terms PLAID even found to better then OPACITY. So PLAID was chosen for

implementation in this dissertation work.

2.6 Malicious Attacks

 Let’s look at some of the common attacks that can be launched on smart card

based systems. We would also describe the nature of the different attacks, as well as

17

discuss how PLAID protects the Java card based authentication system from these

attacks.

Physical attacks: A physical attack includes attempting to model the behavior of the card

by probing the physical components of the card, or trying to clone the card in other

mechanical ways. Cards are designed to physical temper proof and unclonable in nature.

So, there is no way that a card could mimic the nature of some other card.

Replay attack: As discussed earlier, the other form of active attack is a replay attack. An

adversary may try to impersonate an authenticated tag or reader in order to gain some sort

of access. PLAID protocol used messages are of no use immediately after they used once,

so a replay of a message will not be useful to an attacker. An active adversary may

succeed in tracking the card, as he can send a request to the card, and the card will reply

with response encrypted by RSA key at one of the supported keysetIDs or with some

random “RSA Shill key”. If it is not known that what keysetIDs the card supported even a

several billions of responses could not provide any significant information.

Man in the middle attack (MiTM): In this kind of attack, attacker sits between both the

involved parties and relays and possibly alters the communication between them. Parties

in between authentication (communication) process communicate with the attacker but it

is not deduced by both these parties. Attackers could get all the sensitive information

which it could be used maliciously.

Dictionary Attack: This kind of attack is carried out in the systems where password are

utilized as the security procedure. The attack is carried out by utilizing the English

dictionary for guessing the password.

18

Chapter 3. Smart cards

3.1 Introduction

 Smart cards are pocket-sized devices such as credit cards, driving licenses, vehicle

registration certificates (contact-based), Delhi metro cards (connection-less) include an

embedded integrated circuit chip (ICC) which typically hosts a micro-controller with

internal memory and secured storage. The micro-controller and memory components

present makes it capable of storing and processing information through the electronic

circuits embedded in the plastic substrate of its body. The enormous progress in

microelectronics in the 1970s created the path for smart card creation, making it possible

to integrate data storage and processing logic on a single silicon chip. With the advances

in chip technology and modern cryptography, smart cards areas of application widened to

the telecommunications (GSM networks: 1991), credit cards (EMV specifications: 1994)

and electronic signatures (European directive: 1999).

 From a software developer’s perspective, smart card software was initially rigid

and monolithic, with closed proprietary systems that made the process of application

development lengthy and difficult. Nevertheless, the success of open smart cards like

MultOS [21] and Java Card, became an important milestone in the history of smart cards.

These brought flexible and inter-operable mechanisms, by which multiple applications

could be installed after the card had been issued.

 Smart cards store information securely in a tamper-resistant security system,

protecting the confidentiality and integrity of sensitive data such as keys and personal

data from known and anticipated attacks. The micro-controllers offer a secure computing

environment for the execution of algorithms to carry out on-card functionalities, typically

providing security services. Cards without a micro-controller known as memory cards,

depend on the security of the card reader for processing and thus offer lower security

services than the ones which perform on-card processing.

19

Figure 4 Smart card devices commonly

 Smart cards are usually categorized into contact and contactless devices. Contact

smart cards must be inserted into a smart card reader to function. They have a contact area

(of around 1 square centimeter) comprising several gold-plated contact pads, which will

become in direct contact with the reader. The reader provides power to the card through

these pads. All communication between the card and the reader is also accomplished

through these contact plates.

 Contactless smart card requires only close proximity to a reader and

communicates through antennae using radio frequencies (RF). As with contact card, the

reader powers the card, but this time the power is transferred through RF induction

technology.

Figure 5 Contact smart card and contact less smart card

20

3.2 Advantages of using Smart cards

Some advantages of the smart card technology are listed below:

 Security: smart cards are tamper-resistant devices with embedded chip which

allow data storage, processing and personal key management in a secure way.

Unlike magnetic stripe cards, smart card exploitation requires not only the

physical possession of the card, but also intimate knowledge of the smart card

hardware, software and specialized equipment.

 Multi-application support: multiple applications can reside on a single card.

Moreover, these can be installed and removed after the card has been issued,

without compromising the security of the various applications.

 Standardized features: standards such as the EMV, ISO7816, ISO 14443 and GSM

ensure interoperability between different card manufacturers and different card

readers.

 Cryptographic support: faster microprocessors and bigger storage capacity allow

the exploitation of complex cryptographic algorithms. Current smart cards provide

both symmetric and public-key cryptography through AES [11] and RSA [15],

respectively, hashing (SHA-1 [16], MD5) and digital signature schemes such as

DSA and ECDSA. Furthermore, these can be used to develop more advanced

cryptographic protocols and provide security schemes (e.g., authentication).

3.3 Smart card hardware

 Smart card contact points and architecture are depicted in figure 3. The Smart card

architecture, depicted in figure 4, is made of one embedded CPU; three types of memory:

electrical erasable program read-only memory (EEPROM), random access memory

(RAM) and read-only memory (ROM); and may also have a coprocessor for

mathematical computations.

21

 Smart Card Contact Points: As presented in the fig. 6 a smart card has eight

points of which allow it to communicate with a CAD: Vcc, RST, CLK, GND, I/O

Figure 6 Smart card contact points

Figure 7 Smart card architecture

22

and RFU [18].

 Processor: Most of the CPUs on the smart cards are 8-bit size. However those

with a 16-bit or 32-bit micro-controller exists and likely to become more common

in the future. The clock signal is supplied externally as smart card processors

usually do not have internal clock generators. Even though the standards restrict

the clock signal to a range of 1-5 MHz, an internal clock multiplier allows card to

operate at higher frequencies.

 Coprocessor: Smart cards are very limited in terms of resources, and most are

without a specialized mathematical coprocessor, some cryptographic operations

would otherwise be infeasible. Security applications which involve modular

arithmetic and large-integer calculations commonly resort to the coprocessor (e.g.,

RSA [15], ECC [20]).

 Memory System :

 Read-only-memory (ROM): This persistent memory can only be

programmed once, by the manufacturer, and usually includes the operating

system routines, cryptographic algorithms and transmission protocols.

 EEPROM: Most data of the smart card applications and operating system

parameters is stored in this type of memory. It can hold data after the power

supply is switched off and also be erased electronically and rewritten.

However, writing this memory is considerably slower than RAM, which

should be carefully taken into consideration when designing and implementing

applications.

 RAM: RAM is the fastest and most scarce type of memory in a smart card,

meant to store and modify temporary data. The data is stored temporarily in

RAM, being immediately lost when the power supply is switched off.

 Depending on the application area, memory capacity may range from 16 to

400KB of ROM, 1 to 500KB of EEPROM and 256 bytes to 16KB of RAM

[19].

23

3.4 Smart card Communication Models

 In order to communicate with a computer, a card interacts with a Card Acceptance

Device (CAD). This device can either be a reader, which in turn communicates with the

computer it is connected to, or a terminal if it comprises both the tasks of a reader and a

computer (e.g., ATM machine). In this communication model (fig. 8), the applications

that communicate with the smart card are called host applications. Smart cards adopt

client-server paradigm, being smart card the server and the host application the client.

Due to the client-server paradigm, communication between a host and a CAD is half

duplex, therefore data can only be sent in one direction at a time. This is achieved through

a request-response protocol fig. 5, in which application protocol data units (APDUs) are

exchanged. It is the host who initiates the communication, which he does by sending to

the card a command APDU (C-APDU), thereafter the smart card replies with a response

APDU (R-APDU).

 The structure of APDUs are illustrated in the fig. 6. In the C-APDU the mandatory

fields are, CLA byte identifies the class of instructions and the INS byte further specifies

the specific instruction, while bytes P1 and P2 provide extra parameters. The SW1 and

SW2 bytes form the status word, which is used to provide feedback about the execution of

the C-APDU. Several status words are predefined in the ISO 7816 standard [32];

examples of status words are “0x9000”, which means that the command was successfully

executed and “0x6D00” for an invalid INS value.

Figure 8 Smart card communication model

24

 The remaining fields are optional: the data field may contain up to 255 bytes,

where Lc defines the number of data bytes in the C-APDU and Le the maximum number

of bytes expected in the R-APDU data field.

 When powered up, or after receiving a RST command, a smart card sends out an

answer to reset (ATR) message to the host. ATR message contains various parameters

related to the transmission protocol; card hardware parameters but also allows the host to

identify the card as cards from the same family share the same ATR.

 Transmission protocols are designated as “T=” (for ’transmission protocol’) plus a

sequential number. The two most used protocols are called T=0 and T=1, where the

former is asynchronous, half-duplex, byte oriented, and the latter is asynchronous, half-

duplex, block oriented.

3.5 Standards and Specifications

 Many standards and specifications have been developed over the years to ensure

the interoperability between smart card systems. Along the way, many projects have born,

evolved, fused together or even dropped. Here we mention the most commonly known

terms in the context of the smart cards:

Figure 9 APDU structure

25

 ISO/IEC 7816 [31]: The most important standard regarding smart cards, it defines

multiple aspects of smart cards, such as physical characteristics, transmission

protocols and their security architecture are defined by this international standard.

 ISO/IEC 14443 [32]: Describes the properties and operation modes of contactless

smart cards with a range of approximately 10cm.

3.6 Card Operating Systems

 The smart card’s Chip Operating System or sometimes Card Operating System

(COS) is a sequence of instructions, permanently embedded in the ROM, that allow user

applications to be stored from an outside development system and provide resources for

their execution.

 Today’s smart card’s COSs are nothing like the monolithic first-generations of

smart cards, which did not allow the management and execution of third-party

applications. As a result, early smart cards were inflexible and failed to provide

portability, since applications needed to be developed with a single microprocessor in

mind.

 It was the introduction of open smart card platforms, namely MultOS [21] and

Java Card [12] that allowed both hardware abstraction and multi-application deployment.

Later on, other technologies emerged, such as Windows for Smart Cards (WfSC),

BasicCard and smart card.NET.

 While MultOS and Java Card remain the most widely used smart card platforms,

the Java Card appears to be the one enjoying the widest acceptance amongst security

researchers. WfSC was intended to be an alternative to Java Card, however, due to lack of

acceptance by the smart card industry, the project was abandoned by Microsoft. On the

other hand, BasicCard and SmartCard.NET platforms appear to be growing in popularity,

specially the latter one, taking into consideration the growing numbers of published

articles involving these smart cards.

 The basic functions of an operating system that are common across all smart card

products are:

26

1. Management of interchange between the card and the outside world, primarily in

terms of interchange protocol.

2. Management of local files and data held in memory.

3. Access control to information and functions.

4. Management of card security and cryptographic algorithm procedures.

More information on the above mentioned technologies can be found in, since a detailed

comparison of these platforms is out of the scope of this thesis. As we are going to use the

Java card based smart card for our thesis work, the next section provides a detailed

information about the card technology.

3.7 Java Cards

 Despite its major hardware constraints, its portability, tamper resistance and

capability to execute most of the popular security protocols and algorithms, remain one of

the mobile computing devices of choice. Java Card technology [12] enables programs

written in a subset of Java programming. One of the most widely used multi-application

smart card platforms , Java Card, is one of major reason behind the success of smart cards

as the ”write-once-run-everywhere” concept of Java brought even to the smart card

application developers more development flexibility and platform independence.

Applications written for the Java Card platform are referred to as applets. Due to the

smart card hardware limitations, only a subset of the features of the Java can be

supported. Furthermore, Java virtual machine (JVM) must be distributed between the

smart card and the workstation.

 The Java Card runtime environment (JCRE) manages card resources, network

communications, applet execution and security. It also makes sure that different applets

do not interfere through a security mechanism referred to as applet firewall.

27

Table 1 Supported and unsupported Java features

Supported Unsupported

Boolean, byte, short int, long, double, float, char

One-dimensional arrays String, multi-dimensional arrays

Packages, classes, interfaces,

exceptions

Dynamical class loading

objects Object cloning, object serialization

Garbage collection threads

 Security manager

 The bottom layer of the JCRE contains the Java Card virtual machine (JCVM) and

native methods. The JCVM executes bytecodes, controls memory allocation, manages

objects, and enforces runtime security. Unlike the Java virtual machine (JVM), the Java

Card Virtual Machine is split between the card and the workstation. The former is

referred to as the on-card VM, or interpreter, and the latter as off-card VM, or converter.

While the converter loads and processes the class files and outputs a CAP (converted

applet), the interpreter executes the CAP, by which we mean that it executes bytecode

instructions and ultimately executes applets. Another component of the JCVM is the Java

Card application framework classes (APIs) which provides functions coded in the native

instructions of the target processor. Since this can yield a considerable increase in

processing speed, APIs should be used as much as possible (e.g., cryptographic

operations).

 The steps for creating and downloading a Java Card application are summarized as

follows:

1. At the workstation, the application programmer writes the Java source code and

compiles it, with a standard Java compiler, creating a class file and an export file.

At this point, the process is identical to Java programming for PCs.

28

2. The class file is then transferred to the Java Card Converter (the off-card portion

of the VM), which performs static tests and, if all these tests are passed

successfully, delivers a second export file and a card application file (CAP file).

3. The applet is loaded into the smart card in the form of a CAP file, which is often

carried out using Global Platform.

4. On card VM (interpreter) tests and interprets the bytecode line by line and

generates machine instructions for smart card processor from bytecode.

 We would be using the terms such as Java smart cards, smart cards and Java cards

interchangeably for our Java card embedded on the Micro-SD card provided by Go-Trust,

Taiwan [33].

Java Card offers several advantages which could explain why it has enjoyed such

a wide acceptance from programmers: extensive documentation, development tools, cards

and code portability. On the other hand, Java is an interpreted language, which comes at a

Figure 10 communication model of Java card

29

performance price. Nevertheless, it is relatively difficult to make fair comparisons

between assembler or C programs and Java. We can only assume that with proper use of

the Java API, the execution time will be approximately 50% longer than for a comparable

implementation in C or assembler.

3.7.1 Java Card Progress

 The Java Card concept was born in Schlumbereger Austin Texas, with the primary

target to bring smart card development into the mainstream. API s were first introduced in

1996, after which Bull and Gemplus joined Schlumberger to cofound the java card

Forum, as they stated on their website, the aim of this forum is to promote and develop

Java as the preferred programming language for multiple-application smart cards.

 The first set of specifications was pretty much rigid and the platform was not

extensible. The specification only included standard classes and APIs that allow secure

and chip-independent execution of Java applets to run directly on a standard ISO-7816

compliant card. The minimum requirements to run such applets were 512 bytes of RAM,

12Kb ROM and 4Kb EEPROM.

 In November 1997, Sun Microsystems Inc. released Java Card 2.0 specification,

which evolved from the work of Integrity Arts (a spinoff of Gemplus that specialized in

Smart Card virtual machines and operating systems) in collaboration with the Java Card

Forum members. The specification contained more concrete details on both API

specifications and the Java Card Virtual Machine (JCVM). However, portability and

interoperability of applets was still not addressed even on a source code level. The class

file conversion, download process, and executable instructions were still in the

responsibility of the Java Card implementer, and the API lacked the necessary details for

a reasonably complex Java Card application to be portable from one card to another [31].

Typical minimum execution requirements suggested in the specifications w ere 512 bytes

of RAM, 16Kb ROM and 8Kb EEPROM.

 Java Card 2.1 was released in March 1999, and consisted of 3 specifications [2]:

 The Java Card Virtual Machine (JCVM) Specification providing the instruction

set of the Java Card Virtual Machine, the supported subset of the Java language,

and the file formats 25used to install applets and libraries into Java Card

30

technology enabled devices.

 The Java Card Runtime Environment (JCRE) Specification defining the necessary

behavior of the runtime environment in any implementation of the Java Card

technology. The RE includes the implementation of the Java Card Virtual

Machine, the Java Card API classes, and runtime support services such as the

selection and de-selection of applets.

 APIs for the Java Card Platform complementing the Java Card RE Specification,

and describing the application programming interface of the Java Card

technology. It contains the class definitions required to support the Java Card VM

and the Java Card RE.

The JCVM architecture and applet-loading format specifications in Java Card 2.1,

allowed for true applet interoperability. Version 2.2 of the specification was released June

2002, followed with incremental updates 2.2.1 (October 2003) and 2.2.2 (March 2006).

This version included additional features such as:

 support for contactless and ID cards,

 remote method invocation (RMI),

 up to 4 logical channels support,

 improved interoperability for cards with multiple communication interfaces,

 richer cryptography and security features such as AES and elliptic curves

algorithms,

 Standardized biometry support.

3.7.2 Java Card 3.0

 By the year 2008, smart card hardware technology was producing 32 bit RISCs

microprocessors with Gigabytes of Flash (form of EEPROM) and a full speed USB 2.0

communications. Such configurations could support multiple communication interfaces

each capable of running with independent co-resident applications on a single device [32].

The application potential was enormous, and it was becoming feasible to encrypt/decrypt

a real-time video conference or securely run a web server on the card. Java Card 3

technology was released March 2008 and introduced a completely new architecture. The

31

specification became available in two separate, yet coherent versions:

 Classic Edition, which is based on an evolution of the Java Card Platform,

Version 2.2.2, introducing several incremental changes to ensure alignment with

smart card and security standards. The specification is still made up of 3

documents as previous versions, JCVM, JCRE and API specifications.

 Connected Edition, featuring a significantly enhanced execution environment

and a new virtual machine. It includes new network-oriented features, support for

web applications with new Servlet API s, and support for applets with extended

and advanced capabilities.

 Both Editions are backward-compatible with existing applications, and share key

security features. Version 3.0.1 was announced March 2009, and introduced minor API

updates and clarifications.

 The Connected Edition specification is targeted at less resource-constrained

devices (minimum 32-bit CPU with 24Kb RAM, 256Kb ROM and 128K EEPROM),

which would typically have a high-speed full-duplex contacted physical interface, such as

a USB interface, as well as additional I /O interfaces such as I SO 7816-4 contact

connections and ISO 14443 contactless physical interfaces. The specification makes it

possible for a device to handle multiple concurrent communications to such interfaces.

The introduced features include support for web applications and applets with extended

and advanced capabilities, offering the possibility of a multitude of applications in various

industries. For example a device supporting Java Card 3 can act as a secure network node,

providing security services such as resource access control.

 The specification [32] includes the following documents:

 Runtime Environment Specification describing the runtime environment

required for interoperable execution of Java Card technology-based servlets and

applets with extended/advanced capabilities.

 Java Servlet Specification describing the requirements for interoperable Java

Card technology-based servlet execution.

32

 Application Programming Interface defining a set of classes upon which Java

Card technology-based servlets and applets with extended/advanced capabilities

can be constructed.

 Virtual Machine Specification describing the new virtual machine for the

Connected Edition of the Java Card Platform.

 Sample Structure of Application Modules showing the sample structure of the

distribution format and the use and syntax of the application descriptors.

Sun Microsystems illustrate the Connected Edition Java Card platform using the

following fig 8. The right hand side column represents the Classic Edition based on Java

Card 2.2.x. This is still part of the Java Card 3 specification, kept for

backwardcompatibility as w ell as low-end hardware.

The Connected Edition virtual machine introduced a number of new features, including:

 class file loading from a Java Archive (JAR) file (in classic edition, loading,

linking, and verification functions are performed by the off-card converter tool)

 support for on-card class file verification assuring type safety at runtime

Figure 11 Java card 3.0 architecture

33

 Java SE language features such as generics and annotations

 support for multi-threading and concurrent execution of applications

 automatic garbage collection (GC) freeing unused temporary session data

 Framework for end-to-end secure connectivity.

The Connected-specific API s in the next layer include support for:

 concurrent interfaces and multi-threading, allowing concurrent APDU and TCT/I

P based communications

 networking classes from the Generic Connection Framework (GCF) providing IP

connectivity for faster communication and also allowing for card-initiated

connections (not possible with APDU - based ISO 7816)

 enhanced security features to support a more complex environment, including,

flexible role-based and permission-based security as w ell as end-to-end secure

connections

 More Java programming language support and API s, such as Collection classes,

Localization and Internationalization support generics, annotations, auto boxing,

typed enums etc.

 An enhanced version of the classic APDU-driven Applet container is provided, w

hereby extended applet applications can make use of the connected API s. Such applets

can be truly concurrent applications through multi-threading, concurrently processing

APDU commands received over different I /O interfaces.

 The Servlet container is a completely new feature of Java Card 3, supporting a

subset of the Java Servlet API Specification, providing an embedded web server with full

HTTP support. This allows smart cards to host web-based applications, interacting with

off-card clients via a HTTP and HTTPS request/response protocols over TCP/I P,

typically using high speed interfaces like USB. As described in [12], the Java Card

platform’s Web application container manages the life cycle of the web applications, the

communication services required, and the security of access to these applications and

their resources.

34

3.7.3 Java card Security

 Java is well known as a secure programming language, and the Java Card platform

inherits most of the Java integrity and security features, adapting them to the ‛memory-

limited’ environment, while adding other security features and services which are only

applicable to the smart card technology.

 Like Java, Java Card compilers are strongly typed, and make extensive stringent

error checking when the program is compiled. All primitive types have a specific size and

all operations are performed in a designated order.

 Byte-code verification is performed at compile time controlling access to all

methods and variables. Access to methods and instance variable can be defined through

access modifiers, different levels of access controls. Class file verification is made off-

card, before code is downloaded into the card, after which the code is signed. On-card

byte-code verification is also done at runtime in later versions of the Java Card runtime

environments (mandatory in Java Card 3).Java abstracts away any pointers to direct

memory locations and does not allow malicious programs snooping around inside

memory.

 The card architecture and the security features of Java Card make it possible for

multiple applets to coexist safely on a card. This offers the possibility of a single smart

card to safely host multiple applets such as electronic pure, authentication and health care

program developed and managed by different service providers. The Java Card Runtime

Environment (JCRE) allow s applet isolation through a firewall mechanism which

controls access between different applications on the card, and communication can only

occur in specified and controlled ways.

The JCRE also includes ability to execute code in a transactional context. Such set

of updates to the card state are guaranteed to execute atomically, i.e. all updated are

effected or none, to avoid inconsistent or corrupted data on card.

35

CHAPTER 4. PLAID

4.1 Introduction

 PLAID is an acronym for Protocol for Lightweight authentication and

Identification is an authentication protocol targeted at smart cards. It was developed and

standardized [8, 14] by Centrelink, an agency of the Australian government’s Department

of Human Services (DHS). The protocol is open and supports both physical access control

and logical access control. According to its developers claim, the protocol is supposed to

provide a cryptographically strong, fast, and private protocol for physical and logical

access control, without exposing “card or card holder's identifying information or any

other information which is useful to an attacker.

 PLAID was initially proposed for use in the internal ID management of employees

at Centrelink. However, the intended scope of applications has since significantly

broadened to include the whole of DHS and the Australian Department of Defence.

Indeed, the protocol’s promoters aspire to broader commercial and governmental

deployment, including international levels. With the technological advances, protocol was

optimized "to bridge the gap between existing RFID - based technologies that offer speed

but lack the necessary security features, and PKI - based authentication, which is

cryptographically secure but lacks the speed necessary in many contactless smart card

scenarios".

 Another strategy that is being actively pursued is standardization [14]. PLAID was

previously registered as the Australian standard AS-5185-2010 and was then entered into

the ISO/IEC standardization process via the fast track procedure. At the time of writing,

the current ISO/IEC version is draft international standard (DIS) 25185-1.2 and is

currently in the “Inquiry phase” 40.60 (close of voting). However, the latest version of the

PLAID specification supports part 3 and 6 of ISO 24727, a standard that lists a number of

requirements for smart cards used as identification cards. This means that it is on the right

track for approval as an ISO standard. Minor changes in the original protocol to match the

international standard have been applied. Reference implementations, based on the

Australian standard, are available both from the Australian Department of Human

Services (in Version 8.04) and of the Australian Department of Defense (in draft version

36

1.0.0).

4.2 Protocol Data Dictionary

 PLAID mutual authentication is supported and implemented using both symmetric

and asymmetric encryption. The complete authentication process takes less than 0.3

seconds in ideal conditions. Furthermore, it supports multi factor authentication meaning

that multiple authentication factors, i.e. something the user knows (such as a PIN) or

something the user has (or possess as a unique characteristic e.g. such as a fingerprint),

are used in conjunction with the card itself.

 Before going ahead with the operations of the PLAID authentication protocol, it

would be good that we go through the different data objects of PLAID. The following

table sets out the size and details of PLAID data objects.

Table 2 Data dictionary PLAID protocol

Object

Name

Purpose Size

Bytes

Data type Comments

ACSRecord Access

Control

System

Record

varies Alpha-

Numeric

An Access Control System record for each

supported Operational Mode Identifier for

the purpose of authorization by back office

PACS or LACS access control systems. This

record is mapped by the OpModeID to the

particular back office numbering system the

protocol is supporting.

This record is returned by the Final

Authenticate command response.

DivData Symmetri

c Key

Diversific

ation

Data

8 Binary A number (or salt) which is set at PLAID

instantiation for use in the key diversification

algorithm to ensure that loss of an individual

card symmetric key cannot result in a breach

of the system master keys. This salt is

determined by the issuer and should

preferably be both random and unique per

PLAID invocation AND per system.

37

Object

Name

Purpose Size

Bytes

Data type Comments

FAKey Undiversi

fied Final

Authentic

ate Key

(AES)

16 Binary A number (or salt) which is set at PLAID

instantiation for use in the key diversification

algorithm to ensure that loss of an individual

card symmetric key cannot result in a breach

of the system master keys. This salt is

determined by the issuer and should

preferably be both random and unique per

PLAID invocation AND per system.

FAKey(DIV) Diversifie

d Final

Authentic

ate Key

(AES)

16 Binary An instance of a Final Authenticate key that

has been diversified against an ICC’s

diversification data. There are only 3 distinct

key sizes allowable by AES.

KeySetID Uniquely

identify a

keyset

2 Binary One or more 2-byte identifiers sent in a list

to the ICC in the Initial Authenticate

command so as to determine and/or negotiate

the key set to be used for authentication.

Minutiae Fingerpri

nt

Minutiae

data

stored on-

card

Variabl

e

Binary Minutiae template is extracted as raw data

and evaluated by the IFD. At this version we

are looking to understand if this is sufficient

data for operational systems. We are

explicitly seeking comment as to whether

additional minutiae data should be designed

into the specification or whether minutiae

should be by individual finger etc.

OpModeID Operation

Mode

Identifier

2 Binary An identifier sent to the ICC in the Final

Authenticate command that determines

which ACSRecord record is served up in the

final authentication response from the ICC.

PIN PIN 8 Alpha-

Numeric

The PIN Global to the ICC.

PIN

Hash

PIN Hash 20 Binary The SHA1 hash value of the PIN which is

served up in the final authentication response

from the ICC.

38

Object

Name

Purpose Size

Bytes

Data type Comments

RND1 Random

Number 1

16 Binary Random number generated by the smartcard

using its TRNG.

RND2 Random

Number 2

16 Binary Random number generated by the IFD or

back office system using a TRNG.

RND3 Random

Number 3

16 Binary String generated by the IFD and ICC

separately calculation SHA[RND1][RND2].

Secure

ICC

Secure

the ICC

1 Binary Flag to hold initial state of the PLAID

application. 0 = unsecured, 1 = secured.

SessionKey Session

Key

16 Binary String generated by the IFD and ICC

separately calculating RND3. There are only

3 distinct key sizes allowable by AES.

ShillKey Shill Key

(AES)

Varies Binary A shill key is randomly generated by the ICC

during PLAID instantiation but is only

known to the ICC. A shill key is generated

for both the Initial Authenticate (RSA) and

the Final Authenticate (AES) commands.

ShillKey is used by the ICC in place of the

actual key when an inconsistency is detected,

thereby removing any indication to a

potential attacker that an inconsistency has

been detected.

VersionNo Version

number

1 Binary Implementation version number, starting at

zero and incrementing by one for each

release.

4.3 Protocol operations

 Before the first protocol operation it is required that card is initialized with the

keysetId, keys against the ids, ACS record, divData and other things such as PIN and

minutiae. Then the card is instantiated to the secure mode, which means that the card is

ready for the further protocol operations. We will cover this card initialization process in

the implementation chapter of the dissertation. The OpModeID field is a two byte number

on the card which indicates the supported mode of operation. For example, aOpmodeID

39

could indicate that a PIN code is used for authentication. The card contains a ACS Record

which can be used for authorization, i.e. it indicates the role or level of permission that a

legitimate user has. The divData is a random number provided by the claimant, which is

used by the verifier for the diversification of the AES key using the divData as a salt.

 Figure 9 illustrates the subsequent steps of authentication process. The terms

'interface device' (IFD) is used in this figure which is same as the card reader. It illustrates

the messages exchanged between the IFD and the ICC (integrated circuit card).

Figure 12 Operations in PLAID protocol

1. In the initial authentication request, the IFD send a list of KeySetIDs that it

supports in order of preference.

 Note: ASN1 encoding has been used for the initial card data setup process and

initial authentication process.

2. The ICC will extract the list of received KeySetIDs and select the first key,

IAKey, which is supported. Subsequently, a string, STR1, is calculated from a

40

randomly generated string, RND1, as follows:

 STR1 = KeySetID | DivData | RND1 | RND1

 The random string RND1 is included twice such that it can be used as a

 checksum. Before being sent to the IFD, STR1 is encrypted asymmetrically

using the IAKey.

3. The IFD will decrypt the received STR1 by trying the supported keys. A

successful decryption is indicated by the presence of two equal numbers (RND1)

in the decrypted string. The IFD generates a new random number, RND2 and

calculates a new random number, RND3 by using SHA as a hash function:

 RND3 = SHA (RND1 | RND2)

 RND3 is used as a session key to encrypt all traffic symmetrically

 STR2 = OpModeID | RND2 | RND3

 STR2 is encrypted using a symmetric key, referred to as the final authentication

key FAKey, which is calculated from a shared master key diversified by using DivData.

4. The ICC receives the encrypted STR2 and decrypts it by calculating FAKey. After

68this it verifies RND3 by calculating this number itself. If it matches the received

one, it indicates that IFD was able successfully decrypt STR1, containing RND1

and thus the IFC is authenticated to the ICC. If the authentication is indeed

successful, the ICC will respond with STR3, symmetrically encrypted using

RND3 as a key.

 STR3 = DivData | ACSRecord | (Null, PINHash and/or Biometric Minutiae)

 The last object optionally contains information for the multi factor authentication

such as a hashed PIN code or biometric information.

5. Upon reception, the IFD decrypts the message and obtains STR3. It verifies that

the DivData is the correct value. After this the authentication is complete.

6. The authentication also results in a secure channel between the IFD and ICC:

41

RND3 is used as a session key to encrypt all data. After authentication, the card

behaves as a secure memory: data can read and written from/to the card over the

secure channel with the get data and set data commands. This allows the card to be

used in a variety of other applications than physical access control. For example,

in a payment application the secure memory could be used to store the balance of

a user and update it after a payment.

 To the best of our knowledge, PLAID is currently not widely deployed and

therefore its quality is not proven in the field. Hence, we depend on scientific publications

that evaluate this protocol.

5.4 Advantages with PLAID

We have mentioned advantages of PLAID in introduction section lets elaborate it here

 An advantage with PLAID protocol is the use of hybrid cryptography, i.e. use both

asymmetric and symmetric encryption. In operations the second operation of

PLAID protocol card sends RSA encrypted response to the reader, except this all

other communications are AES encrypted which is faster than asymmetric

encryption or decryption.

 In terms of transaction time, it takes 300 milliseconds for authentication. It is

better compared to asymmetric encryption based protocols (Asymmetric

encryption requires considerably more processing power compared to symmetric

encryption). It is known from experience that PSK based systems are easy to set

up but do not scale well whereas for PKI this is vice versa. The fact that PLAID

uses a hybrid model poses the question about the set up cost and scalability of

PLAID.

 The hybrid model used in PLAID does not require the setup of certificate

authorities since no certificates are used. This means lower set up cost. PLAID

uses key sets (a set of multiple public and corresponding private keys).

 A key set can be used for multiple cards, meaning that no shared secret is required

for each card as is done with PSK. This improves scalability compared to using

42

PSK. However, an increase in card numbers in the system results in an increase in

the number of keys in the key set. This means that the reader has to try more keys

before finding the right one when decrypting STR1 which may take too long.

Thus, this limits the scalability. The conclusion is the hybrid model of PLAID can

be placed between PSK and PKI in terms of scalability and set up cost.

 PLAID protocol does not let you know if some step in the authentication process

is not approved then it response some random data encrypted using random key

called “shill key”. Its response is uniform in all the situations, which makes it

more resilient to attacks, as attacker won't be able to guess whether the previous

step was a success or failure.

 PLAID could work in different modes. The modes are corresponding to 1-

FACTOR, 2-FACTOR, and 3-FACTOR mode. In first mode, the authentication

takes place without any added security. In 2-factor authentication the

authentication takes place with added security of pin hash and in 3-factor the

biometric minutiae based security is also added.

5.5 Limitations of PLAID

As claimed in by unpicking PLAID [45], their “results show that PLAID has significant

privacy weaknesses. The shill key attack and the keyset fingerprinting attack reveal card

identifying information and, via access authorizations, information about the card holder.

As for entity authentication and the secrecy of established keys for subsequent

communication, in several places the design of PLAID follows some uncommon

strategies and reveals potential attack vectors, such as the lack of forward security. The

case of PLAID also shows that standards should specify details thoroughly, in order to

avoid vulnerable implementations. An example here is the ISO/IEC 9797-1 non-

compliant CBC padding in PLAID, which could potentially be exploited”. It recommend

the indiscriminate usage of PLAID in its current form, especially not for privacy-critical

scenarios. The PLAID description promises that the protocol should be scrutinized by

“the most respected cryptographic organizations, as well as the broader cryptographic

community”. Unfortunately, we are not aware of any available documents in this regard.

43

Indeed, standardization processes in general would benefit if supporting material, arguing

the security of a proposal, was available at the time of evaluation.

44

Chapter 5. Implementing PLAID protocol

 In this chapter we address the strategies used while implementation, issues faced

and the choices we made to tackle the issues which arrived. The implementation can be

divided into two separate process as implementation of the PLAID applet on the card and

the other is implementation of the reader for the card.

 First of all let us gets some briefs about the well-known algorithms used in the

implementation work. We have seen that in total we need RSA, AES, for random number

generation (used secure random algorithm for that) and for hashing purpose SHA1 has

been used in the implementation.

5.1 RSA

 In this section we describe the components implemented for RSA cryptosystem.

The RSA cryptosystem is a public-key cryptosystem that offers both encryption and

digital signatures (for authentication). It uses a public modulus n, product of two large

prime numbers p and q, a public exponent e, less than n and relatively prime to φ(n) =

(p−1)·(q−1), and a private exponent d = e −1 (mod φ(n)). The values of e and d are called

the public and private exponents, respectively. The public key is the pair (n, e), while (n,

d) is the private key. The factors p and q that constitute n must be kept secret, and allow

us to use the Chinese Remainder Theorem (CRT) to speed up decryption/signing.

 The keys and other required parameters are computed externally, in the

workstation with the java.math.BigInteger class, and loaded into the card at applet

instantiation time. Once the RSA cryptosystem is set up, i.e., the modulus and the private

and public exponents are determined and the public components have been published,

both the operation of signing and verification can be performed with the computation of a

modular exponentiation, M^e (mod n). The digital signature is created by

exponentiations: s = m d mod n, where d and n are the signatory’s private key, and m the

message to be signed. The validation/verification of the signature is performed by m = s e

mod n, where e and n are the signatory’s public key.

45

5.2 AES

 In this section we describe the main classes implemented for AES cryptosystem.

The AES algorithm is iterative and every round operates on an entire data block called

State. The input to the encryption and decryption algorithms is fixed-sized block (usually

128 bits, but AES is easily adaptable for a multiple 32-bit size block, such as 192 and 256

bits). Data is processed as a square matrix of bytes. However, the Java Card specifications

do not support multi-dimensional arrays, which forces us to represent the state matrix as

an array of 128/8 = 16 Bytes. In order to speed up the transformations performed upon the

state variable, we store the data as a transient byte array.

 A working implementation of AES must support all the four transformations:

substitution, permutation, mixing and key adding. The four main methods that are used

for the encryption process are the SubBytes, ShiftRows, MixColumns and AddRoundKey

functions; these operations are depicted in Figure 5.1. As for decryption, the sequence of

method invocation is reversed, except for the AddRoundKey, whose inverse

transformation is identical to the forward transformation, because the Xor operation is its

own inverse.

 In our implementation of the protocol the javax.smartcardio supports AES of three

different key lengths: 128, 192 and 256 bits. The cipher key is loaded into the card at

applet instantiation time and stored in static memory. The AES class constructor is

invoked when the AES cipher is created at applet instantiation time; it takes a key as

parameter and performs all the necessary memory allocation, key expansion and set up of

the algorithm.

Figure 13 AES Data flow for encryption

46

SubBytes

 The SubBytes transformation performs a simple byte substitution on each byte of

the State using a substitution table, the substitution box (sBox), which contain the

permutations of all 256 8-bit values. These boxes are constructed using defined

transformation of values in GF (28) and are loaded into the card as static final byte arrays

(EEPROM) at applet instantiation time. Each of this tables is stored in the EEPROM and

requires 256 bytes of memory.

 The implementation of the inverted SubBytes function is straightforward, as is it

processed exactly in the same way as the SubBytes operation, with the exception that the

inverse substitution Box (invsBox) table is used. Consequently, a total of 512 bytes are

needed for storing the S-BOX and the inverted S-BOX table, which is almost negligible

for modern smart cards.

ShiftRows

 The ShiftRows transformation consists of circular byte shifts, where each row is

shifted over a different number of positions. The inverse shift row transformation

(invShiftRows) performs the circular shifts in the opposite direction.

MixColumns

 MixColumns is the most expensive operation, since it involves matrix

multiplication in GF(28). GF(28) multiplication is defined with a carefully selected

primitive polynomial x8 + x4 + x3 + x + 1 to speed up computation.

 In practice, Mix Columns can be implemented by expressing the transformation of

each column as four equations to compute the new bytes for that column. The

computation only involves shifts, XORs and conditional XORs (for the modulo

reduction). However, the decryption is slower due to the computation requiring the use of

the inverse matrix, which has larger coefficients.

 We can achieve a significant speed up by using lookup tables with all the

precomputed multiplications in GF(28). The additional 1536 bytes of EEPROM memory

required to store the lookup tables does not comprise a problem, taking into account the

considerable amount of memory currently available in smart cards. Lookup tables not

47

only improve the performance of the AES algorithm but also make it more secure by

making it less prone to timing and power attacks.

AddRoundKey

 The AddRound function is straightforward: the 128 bits of State are bitwise

XORed with the 128 bits of the round key.

KeyExpansion

 The AES key expansion algorithm takes as input the key and produces the

expanded key array, which ranges from 176 bytes to 240 bytes, depending on the size of

the input key. The expanded key could be expanded each time it is being used, or be

expanded once and stored in the static memory. We have followed the latter approach,

since storing the key in static memory has a low memory footprint and decreases the time

needed to perform either encryption or decryption.

 The round constant array (Rcon) contains the values given by xi−1 , with xi−1 being

powers of x in the field GF(28). This array is stored in persistent memory and is depicted

in Table 3.

Table 3 Rcon array

i 0 1 2 3 4 5 6 7 8 9

xi 01 02 04 08 10 20 40 80 1b 36

5.3 Random Number

In simple, a random number is a number generated through a process, whose

outcome cannot be predicted i.e. its outcomes should be completely unpredictable in

nature and also which cannot be produced sub sequentially with any reliability.

Random number generation requires random events represented in bits, these n

random bits are obtained by gathering "physical events" which should be unpredictable,

48

as far as physics are concerned. Usually, timing is used: the CPU has a cycle counter

which is updated several billions times per second, and some events occur with an

inevitable amount of jitter (incoming network packets, mouse movements, key strokes...).

The system encodes these events and then "compresses" them by applying a

cryptographically secure hash function such as SHA-256 (output is then truncated to yield

our n bits). What matters here is that the encoding of the physical events has enough

entropy: roughly speaking, that the said events could have collectively assumed at least

2^n combinations. The hash function, by its definition, should make a good job at

concentrating that entropy into an n-bit string.

Once we have n bits, we use a PRNG (Pseudo-Random Number Generator) to

crank out as many bits as necessary. A PRNG is said to be cryptographically secure if,

assuming that it operates over a wide enough unknown n-bit key, its output is

computationally indistinguishable from uniformly random bits.

In the context of cards, the random number generation for implementation of the

applet, we have used the enriched API provide along with the java card sdk. The

RandomData class of the javacard.security package has been used to get the random

numbers, which are required in the protocol. The getInstance method, which is used to

initialize the object with the desired algorithm types and the generateData method is used

to get the random bytes.

5.4 Hash

 Cryptographic hash functions simply the hash function are algorithms that take

data input (often called the 'message') and generate a fixed-size result (often called the

'hash' or 'digest'). The process of generating the hash of a message is hashing. For

example:

"administrator" => "b3a5a92c793ee039b4a9b0a5f5fc056e05140df3"

An ideal hash functions make it very difficult to get the original message back

from the digest or the hash, it should be reasonably easy to compute a hash for a given

message, it must be infeasible to generate a message with a given hash, also infeasible to

49

modify a message without changing the resultant hash, and final it should be infeasible to

find two messages with the same hash.

While there is hardly an ideal function exists, but functions which aim for these

properties can prove to be very useful. A classic example for the usage of cryptographic

hash function is their use in storage of passwords. When you sign up for a website, your

data is usually stored in a database on their servers. The issue is that if your password is

stored on the server as regular text (often called 'plaintext') and somebody hacks into the

server, your password is completely compromised. If your password is hashed on the

server, however, an attacker shouldn't be able to formulate your password from the stored

value.

This concept may leave some wondering how a password entered at a later date

could then be compared to the stored value to check if the login information is correct, but

in fact this is extremely simple. The inputted password is simply hashed using the same

function, and this digest is simply compared to that in the database -- if they match, the

inputs were the same, and thus the user has inputted the correct password. Situations like

this are also where it being "infeasible to find two messages with the same hash" becomes

very important. If two values generate the same hash (these situations are called

collisions, and are something that pretty much all hash functions are vulnerable to),

somebody could input an incorrect password yet it could validate as correct.

The irreversibility is not actually as impossible as it might first sound -- the tough

bit comes in compromising this with all the other ideal properties. The trick is the split the

message into a number of blocks, and then have these messed up and interact with each

other to get some final value pop out. The interactions are often in the form of bitwise

AND, OR, and XOR operations which mean a loss of information to the original input,

and this combined with the mixing of blocks means that there simply isn't enough

information to get back to the original input via working the algorithm back.

 For hashing, the java card javacard.security provides supports for different

algorithms. The hashing function supported are SHA, SHA256, SHA348, SHA-512, and

MD5. In cards context, for hash generation we need to call getInstance() method to get a

messageDigestobject to initial for further use. Then the call of the dofinalor the update

methods does the hashing of the message.

50

5.5 DER

 Abstract Syntax Notation One (ASN.1) defines the following rule sets that govern

how data structures that are being sent between computers are encoded and decoded.

 Basic Encoding Rules (BER)

 Canonical Encoding Rules (CER)

 Distinguished Encoding Rules (DER)

 Packed Encoding Rules (PER)

 The original rule set was defined by the BER specification. CER and DER were

developed later as specialized subsets of BER. PER was developed in response to

criticisms about the amount of bandwidth required to transmit data using BER or its

variants. PER provides a significant savings [23].

As DER has been used in the first communication as well as in the initialization

from reader to the card it would be good to provide some introduction about the notation

standard. In the encoding the basic unit is a byte. The different data types are assigned

different tag bytes for example an octet string is assigned 0x04 as a tag byte. Format for

sending an octet string in DER encoding is given in the table below.

Table 4 DER format octet string data type

Tag Byte Content (Octet

String) Size

Content(Octet String)

04 0A 00 E1 04 06 2D 03 5A 85 41 09

 As in the table the first byte is the tag byte, next one is the size of the content i.e.

the number of octet strings which follows. The encoding for other data types would be

similar. Let’s also discuss one more type used in the protocol that is Sequence or

Sequence of, which is encoded as in the table.

51

Table 5 DER format Sequence data type

Tag Byte content Size Content(sequence of Octet String)

10 11 04 01 08 04 02 11 11 04 08 85 41 09 08 93 12

7D 5B

 The table shows the encoding of the sequence, as given the tag byte for the

sequence is 10 (i.e. 16 in decimals) and size is the 17 (content carries 17 octets). The

content itself is the sequence of octet strings. The content consists three octet strings. It

satisfies the DER for octet strings. The first octet string starts with 04 (which is tag byte

for the octet string), followed by the size which is 01 and then the content which is 08

similarly the next the octet string which is of size 02 and content as 11 11 and then the

last octet string follows that is of length 08 [24].

5.6 Implementing the Applet

 Before discussing about the applet implementation, it would be good if we get

introduced about the development environment. The development environment for the

applet development is different from the development environment for the reader. We

will discuss here only the environment for the applet development. The development

environment for the reader will be discussed in the section related to the reader

development.

5.6.1 Applet development environment

 For the development and testing of smart card application, we opted for the host

computer an Intel® Core™ i3 CPU M 380 @ 2.53GHz × 4 PC with 3GB of RAM under

Windows 7 ultimate of OS type 64-bit. Several tools are available to develop and load

Java Card applets, and, even though there are interesting proprietary tools, we focused

only on publicly available and open source software. The development environment has

the following configuration:

 A GoTrust Micro-SD embedded java card based smart card is used in this project.

It is Java Card 3.0.1 and Global Platform [33] 2.1.1 compliant and has an

52

approximate available memory size of 80K. Multiple cryptographic algorithms are

supported, such as RSA (up to 2048 bit), AES (128, 192 and 256 bits) and SHA1.

True random number generation and real garbage collector (JC 2.2.1 specification)

are also available.

 As it is Micro-SD embedded smart card so we do not need any specific hardware

for reader. A normally available SD card reader can be used perform the tasks of a

CAD. We would require an adapter to use the Micro-SD into the SD card reader.

 The workstation is a Windows/PC, which is used to develop the Java Card applets

as well as running the host applications. Java code source file (.java) can be

compiled via the Java Development Kit (JDK) into a class file (.class). Sun’s Java

Card Development Kit (JCDK) version 2.2.1 [1] is used for converting class files

into converted applet files (.cap). The JCDK does not provide a visual

development environment, therefore, the Eclipse IDE is used for developing Java

Card applets through the JCDE [3] plugin, which integrates the functionality of

the JCDK. The Eclipse integrated Java Card development Environment is depicted

in Figure 6.1.

 In order to deploy the application, the CAP file must be loaded into the smart card,

which can be achieved through the jSDSCTool v.1.3.4.

 Our implementation of the AES cryptosystem for the Java Card smart card

supports three key sizes: 128, 192 and 256 bits. However, the standard Java SDK

does not support the 192 and 256 key sizes due to export restriction policies. In

order to access all sizes in the challenge-response, Java Cryptography Extension

(JCE) Unlimited Strength Jurisdiction Policy Files need to be downloaded.

 The javax.smartcardio package was included in Java 6 and allows Java programs

to communicate with a Java Card smart card, using ISO/IEC 7816-4 APDUs. With

the Java Smart Card I/O API it is also possible to detect card insertion/removal as

well as to establish connection with a reader

5.6.2 The applet development

 Prior to deployment, applications may be tested in the PC/Windows workstation,

53

using the two simulators provided by the JCDK: JCWDE and CREF. Card simulator

reveals several advantages, such as speeding up the development process of applets and

not wearing out the card. However, these simulators also have several limitations; for

instance, several cryptographic algorithms are not or only partially available (e.g. RSA

keys are limited to 512 bits and NOPAD mode is not available). Moreover, accurate

benchmarking cannot be performed because the code is executed by the simulator running

on a 0x86 CPU and can only provide estimate values. Emulators, on the other hand,

provide more accurate results as their behavior is similar to the physical cards. However

these are only available on proprietary tools, such as JCOP tools.

 As we have already gone through the operations of the protocol. An

implementation has been done keeping the specification. Got the sample implementation

which worked as reference for our implementation. We have made the required changes

in the reference applet code so that we could get the data and keys and verification of the

data we set to the card. Also used a tweak to get the status of the card at different stages

of the protocol operations. This helped to get the status of the card at different stages of

the protocol, which helps to debug the applet code.

 In the protocol, firstly the card receives the keysetID in plain text format, which is

encoded using the DER ASN.1 [23, 24], the first operation uses the RSA in the first

operation for which I got reference for the code at Oracle forum on java card, where one

can get many code references for the RSA as well as for the AES. As specified in the

PLAID protocol specifications, I have used 1024 bits key size for RAS encryption and 16

bytes (128 bits) (16,24,32 in the specifications) length keys for AES

encryption/decryption. The algorithm used for RAS is “ALG_RSA_PKCS1”, algorithm

used for AES is “ALG_AES_BLOCK_128_CBC_NOPAD”, algorithm used for random

number generation is “ALG_SECURE_RANDOM” and the algorithm for hash is

“ALG_SHA”. Brief introduction about these algorithms has already provided in the above

sections.

5.7 Implementing the Reader

 Again, let's go through the development environment used for the implementation

of the reader. For the PLAID to communicate with the host machine we required a reader.

54

As we have Micro-SD embedded Java card from GoTrust it does not require any other

card reader except the SD card reader, which is available in most of the machines out in

the market. The API provided along with the card provides us the methods for sending the

commands APDU and get the response.

5.7.1 Reader development environment

 For the development of smart card reader applications, we opted for the host

computer, an Intel® Core™ i3 CPU M 380 @ 2.53GHz × 4 PC with 3.0 GB of RAM

under Ubuntu 14.04 LTS of OS type 32-bit. As the card API provided for interfacing is in

C language, so it was decided to stick to C language for the reader application. The reader

for the most part is written in C language.

 Code::Blocks worked as the primary Integrated Development Environment

further refereed as IDE for the reader application [25].

 As the thesis work require multiple cryptographic functionalities, I opted

to go with the most popular and open source library, OpenSSLv.1.0.2a [7,

26].

 For the AES implementation we have used the Java language, so

environment for the Java language the complier and the runtime

environment also need to be setup [27].

5.7.2 Reader development

 Going through the operations of the protocol the first operation which takes place

is the sending the key set IDs which is supported by the reader. As we have the theSdk

made available along with the card, utilizing it provides us the functionalities to

communicate to the card using APDUs.

 Now if the card supports the key set ID it would send reply encrypted with RSA

public key. If the card does not support the key set ID even then it sends some reply

which basically consists random bytes encrypted with some unknown random public RSA

key.

 Now as the card supported the key set ID replies with the RAS encrypted data

55

which is required to be decrypted. For the decryption process the reader utilizes the

private decrypt function available with the OpenSSL library [7, 28]. The function returned

the decrypted data. The success of the decryption process has been confirmed on the fact

that the last 32 bytes consisted a single 16 byte data repeated twice. As the card does not

communicate anything about the key set IDs it supported but simply encrypted the data

with one of the supported key set, so it was required to determine the key set ID with

which it has been encrypted. It is done by trying to decrypt with all the available key sets

and checking the repeated 16 bytes at the end.

 The next operation at the reader end is to generate a 16 byte random number. For

the random generation the OpenSSL library has been utilized [7, 29]. Also we required to

generate hash of the RAND1 (from the card) and RAND2 (from reader) to get another 16

byte random number RAND3. For the hash generation the again the OpenSSL library

function has been used [7, 30].

 Now in the third communication between the card and the reader the reader sends

RAND2 and RAND3 encrypted using the AES. The AES key used here is the key from

the determined key set ID. For the encryption process the Java has been used which

encrypts the data and returns the result to the reader which is then packed into APDU and

then transmitted to the card. RAND3 is now set as the session key which functions as the

AES key for further communication in the process.

56

Chapter 6. Evaluation and Results

 To get results of the implementation of the protocol we are required to initialize

the card with various data. In the chapter, we first discuss the card initialization so that we

get the card initialized and then carry out the operations to get the results.

6.1 Card initialization

 After all the implementation, we are required to initialize the card with data so that

I could test out the implementation of the PLAID protocol. The initialization process

basically consists adding various data such as keysetIDs along with the keys, ACSrecord

and divData to the card to make it operational. For all the initialization related work we

can utilize the jSDSCTool provided for loading applet to the card or we could also use the

initialization application created for the initialization process only.

 With the jSDSCTool for the initialization process we are required to send a set of

command APDUs, which basically set data to the card. Sometimes we could be required

to send a number of command APDUs to the card. All the command APDUs are DER

ASN.1 type encoded.

 Other method for the initialization of the card data is the application which is

written just to initialize the card data. Basically in the application all the command

APDUs we were required to send using the jSDSCTool are now put into a single

application which transmits the data to the data in a sequential manner.

 After initialization of the card with the data card is required to put into the secure

mode so that card cannot be accessed in any other way except the discussed operations of

the protocol.

 The screen shots below present the three runs of the reader application.

57

Figure 14 Run1 for the reader of the PLAID protocol

Figure 15Run2 for the reader of the PLAID protocol

58

 It can be seen from screen shots, data related to the operations are numbered. The

first operation of the protocol is sending the supported key set IDs by the reader to the

card. Next operation is the response of the first step. Both the encrypted response and the

response after the decryption are presented. Next the generated random numbers are

presented. In the next command the AES encrypted RAND2 and RAND3 are sent to the

card. It concludes the PLAID authentication process. In the next step, divDataand

theACSrecord encrypted using the AES session key are decrypted and presented. This

communication has been through the generated session key, it shows that the session key

has been determined and agreed upon has been generated at both the ends successfully.

Timings Breakdown

 The protocol implementation, on an average the PLAID protocol takes an average

time of 1.42 seconds (1420 milliseconds), execution time present in the screenshots above

fig 11, 12 and 13, for complete run of the application. This time includes checking and

listing the available card readers, selecting a card reader, establishing connection to the

card, resetting the Java card, applet selection, PLAID authentication and finally

Figure 16 Run3 for the reader of the PLAID protocol

59

disconnecting the communication channel with the applet. The most of the execution time

is consumed in the Java function calls for the AES encryption and decryption process.

Two Java class file calls for execution takes 600 milliseconds on an average. First two

operations of the protocol that is sending the keysetID and then decrypting the response

takes about 75 milliseconds on an average. The random number generation and hashing

takes less than a millisecond (400 microseconds) on the host machine. Card reset and

applet selection processes takes 90 millisecond on an average. The combined timing for

device listing, selecting a device and establishing connection to the device takes about

310 millisecond on an average. Making card ready for first communication takes about

(310 + 90) 400 milliseconds.

 Considering only the PLAID authentication timings only then it comes close to

300 milliseconds on an average, which is in the acceptance limits by the proposed

execution timings of the protocol.

60

Preferences

[1] Java card development kit. http://java.sun.com/javacard/devkit/. [Online;

 accessed February, 2014].

[2] Sun Microsystems Inc. Java Card Platform Specifications.

 http://www.oracle.com/technetwork/java/javacard/specs-138637.html [Online;

 accessed February 2015].

[3] Sourceforge.net: Eclipsejcde. http://eclipse-jcde.sourceforge.net/. [Online;

 accessed February , 2014].

[4] NIST, editor. An Introduction to Computer Security : The NIST Handbook,

 Special Publication 800-12, October 1995.

[5] Paul C. van Oorschot Alfred J. Menezes and Scott A. Vanstone. Handbook of

 Applied Cryptography. Crc Press Series on Discrete Mathematics and Its

 Applications, 1997.

[6] William Stallings. Cryptography and Network Security: Principles and Practice.

 Prentice Hall, 4th edition, 2005.

[7] Pravir Chandra, Matt Messier, John Viega . Network Security with OpenSSL .

 O'Reilly , June 2002

[8] Centrelink. Protocol for Lightweight Authentication of Identity (PLAID) —

 Logical Smartcard Implementation Specification PLAID Version 8.0 - Final,

 December 2009.

[9] Hideki Sakurada. Security evaluation of the PLAID protocol using the ProVerif

 tool. http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-

 1_ProVerif.pdf, September 2013.

[10] Standards Australia. AS 5185-2010 Protocol for Lightweight Authentication of

 IDentity (PLAID). Standards Australia, 2010

http://www.oracle.com/technetwork/java/javacard/specs-138637.html
http://eclipse-jcde.sourceforge.net/
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-

61

[11] Announcing The Federal. Federal information processing standards publication

 197. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, November 2001.

 [Online; accessed March, 2015].

[12] Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and

 Programmer’s Guide. Addison-Wesley Longman Publishing Co., Inc., Boston,

 MA, USA, 2000.

[13] Koh Ho Kiat and Lee Yong Run. An analysis of OPACITY and PLAID

 protocols for contactless smart cards. Master’s thesis, Naval Postgraduate School,

 Monterey, CA, USA, September 2012.

[14] ISO. DRAFT INTERNATIONAL STANDARD ISO/IEC DIS 25185-1.2

 Identification cards - Integrated circuit card authentication protocols - Part 1:

 Protocol for Lightweight Authentication of Identity. International Organization

 for Standardization, Geneva, Switzerland, 2014.

[15] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

 signatures and public-key cryptosystems. Commun. ACM, 21:120–126, February

 1978.

[16] Federal Information Processing Standards Publications. Secure Hash Standard

 (SHS). Technical Report FIPS PUB 180-3, National Institute of Standards and

 Technology, October 2008.

[17] Knuth, D., The Art of Computer Programming, Vol. 2, 2nd ed., Addison-Wesley,

 Reading, (1981).

[18] W. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, Inc., New

 York,NY, USA, 3 edition, 2003.

[19] Wolfgang Rankl and Kenneth Cox. Smart Card Applications: Design models for

 using and programming smart cards. John Wiley & Sons, Inc., New York, NY,

 USA, 2007.

[20] Patrick Gallagher, Deputy Director Foreword, and CitaFurlani Director. Fips

 pub 186-3 federal information processing standards publication digital signature

62

 standard (dss), 2009.

[21] Keith Mayes and KonstantinosMarkantonakis. Smart Cards, Tokens, Security and

 Applications. Springer Science+Business Media, 2008.

[51] NIST, “Advanced Encryption Standard (AES),” Tech. Rep. FIPS PUB 197,

 National Institute of Standards and Technology (NIST), Gaithersburg, Maryland,

 United States, 2001.

[23] A Layman's Guide to a Subset of ASN.1, BER, and DER (An RSA Laboratories

 Technical Note) By Burton S. Kaliski Jr. Revised November 1, 1993

 http://luca.ntop.org/Teaching/Appunti/asn1.html (cited February 2015)

[24] Introduction to ASN.1 Syntax and Encoding https://msdn.microsoft.com/en-

 us/library/windows/desktop/bb648640(v=vs.85).aspx (cited February 2015)

[25] Code::Blocks IDE http://www.codeblocks.org/home (cited March 2015)

[26] OpenSSL Library home page https://www.openssl.org/ (Online accessed March

 2015).

[27] Ubuntu community page. Java (JDK and JRE) for ubuntu

 https://help.ubuntu.com/community/Java (accesed online, March 2015)

[28] OpenSSL RSA documentation page, for public decryption

 https://www.openssl.org/docs/crypto/rsa.html (accesed online, March 2015)

[29] OpenSSL random bytes documentation. for random number generation,

 https://www.openssl.org/docs/crypto/RAND_bytes.html (accesed online, April

 2015)

[30] OpenSSL sha1 https://www.openssl.org/docs/crypto/SHA1_Init.html (accesed

 online, April 2015)

[31] Government International Standards for Business and Society. Iso/iec 7816. http://

 www.iso.org/iso/search.htm?qt=7816&published=on&active_tab=standards.

 [Online; accessed March, 2015].

http://luca.ntop.org/Teaching/Appunti/asn1.html
https://msdn.microsoft.com/en-
https://msdn.microsoft.com/en-
https://msdn.microsoft.com/en-us/library/windows/desktop/bb648640(v=vs.85).aspx
http://www.codeblocks.org/home
https://www.openssl.org/
https://help.ubuntu.com/community/Java
https://www.openssl.org/docs/crypto/RAND_bytes.html
https://www.openssl.org/docs/crypto/SHA1_Init.html

63

[32] Government International Standards for Business and Society. Iso/iec 14443.

 http://www.iso.org/iso/search.htm?qt=14443&published=on&active_tab=stand-

 ards. [Online; accessed March, 2015].

[33] Micro-SD embedded Java card. http://www.go-trust.com/products/microsd-java/

 [Online accessed Jan, 2015]

[34] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code

 in C. John Wiley & Sons, Inc., New York, NY, USA, 1993.

[35] J. Beusink, “Secure access control to personal sensor information in federations of

 personal networks,” 2012.

[36] F. Bersani and H. Tschofenig, “The EAP-PSK protocol: A pre-shared key

 extensible authentication protocol (EAP) method.”

 http://tools.ietf.org/html/rfc4764.

[37] M. Badra and P. Urien, “Adding identity protection to eap-tls smartcards,” in

 Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE,

 pp. 2951–2956, March 2007.

[38] P. E. Y. Sheffer, H. Tschofenig, “An extension for eap-only authentication in

 ikev2.” http://tools.ietf.org/html/rfc5998.

[39] P. Eronen, C. Kaufman, Y. Nir, and P. Hoffman, “Internet key exchange protocol

 version 2 (IKEv2).” http://tools.ietf.org/html/rfc5996.

[40] Y. Sheffer and H. Tschofenig, “Internet key exchange protocol version 2 (ikev2)

 session resumption.” http://tools.ietf.org/html/rfc5723.

[41] V. Devarapalli and K. Weniger, “Redirect mechanism for the internet key

 exchange protocol version 2 (ikev2).” http://tools.ietf.org/html/rfc5685.

[42] ActivIdentity, “Open protocol for access control identification and ticketing with

 privacy specifications,” tech. rep., ActivIdentity, Silicon Valley, California, 2011.

[43] M. Fischlin and C. Onete, “A Cryptographic Analysis of OPACITY,” Darmstadt

 University of Technology, Germany, pp. 1–46.

http://www.iso.org/iso/search.htm?qt=14443&published=on&active_tab=stand-
http://www.iso.org/iso/search.htm?qt=14443&published=on&active_tab=stand-
http://www.go-trust.com/products/microsd-java/
http://www.go-trust.com/products/microsd-java/
http://tools.ietf.org/html/rfc4764
http://tools.ietf.org/html/rfc5998
http://tools.ietf.org/html/rfc5996
http://tools.ietf.org/html/rfc5723
http://tools.ietf.org/html/rfc5685

64

[44] G. Bernabé, TLS embedded in smart card. PhD thesis, University of Plymouth,

2012.

[45] Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni,

Unpicking PLAID, Information Security Group, Royal Holloway, University of

London Cryptoplexity, Technische Universität Darmstadt, Germany

