
HANDWRITTEN NUMERAL RECOGNITION USING

NEURAL NETWORKS

MAJOR PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF DEGREE OF

Master of Technology

In

Information Systems

Submitted By:

SUVARNA KOTHARI

(2k13/ISY/25)

Under the Guidance

Of

Dr. O. P. Verma

(Prof. and Head, Department of CSE)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(2013-2015)

ii

CERTIFICATE

This is to certify that Suvarna Kothari (2k13/ISY/25) has carried out the major project titled

“Handwritten Numeral Recognition Using Neural Networks” in partial fulfilment of the

requirements for the award of Master of Technology degree in Information Systems by Delhi

Technological University.

The major project is bonafide piece of work carried out and completed under my supervision

and guidance during the academic session 2013-2015. To the best of my knowledge, the matter

embodied in the thesis has not been submitted to any other University/Institute for the award

of any degree or diploma.

Dr. O. P. Verma

Professor and Head

Department of Computer Science and Engineering

Delhi Technological University

Delhi-110042

iii

ACKNOWLEDGEMENT

I take the opportunity to express my sincere gratitude to my project mentor Dr. O. P. Verma,

Prof. and Head of Department, Department of Computer Science and Engineering, Delhi

Technological University, Delhi, for providing valuable guidance and constant encouragement

throughout the project. It is my pleasure to record my sincere thanks to him for his constructive

criticism and insight without which the project would not have shaped as it has.

It humbly extend my words of gratitude to other faculty members of this department for

providing their valuable help and time whenever it was required.

Suvarna Kothari

Roll No. 2k13/ISY/25

M.Tech (Information Systems)

E-mail: suvarnakothari91@gmail.com

iv

ABSTRACT

Machine learning algorithms including Support Vector Machines (SVM’s), Multilayer

Perceptrons and Neural Networks have been successful in vision tasks earlier, but it has been

seen that there is stagnation in the error rate or accuracy of these algorithms due to reasons

including poor generalization, local minima and weight change. The challenge to improve

further still remains. Deep learning has posed several interesting possibilities and state of the

art results have been achieved in vision tasks including image labelling, hand written digit

recognition etc. Deep learning methods aim at learning feature hierarchies with features from

higher levels of the hierarchy formed by the composition of lower level features. Deep

architectures attempt to learn hierarchical structures and seem promising in learning simple

concepts first and then successfully building up more complex concepts by composing the

simpler ones together

Many existing learning methodologies have been used in recognition of hindi numerals but

none of the deep learning approaches have been tried much in this area as of now. By applying

deep learning methods, we are free of hand-crafted low-level features and can automatically

learn mid-level and higher-level features from a large amount of unlabelled raw samples

beyond types and domains of handwriting recognition also.

Through this work we look at various deep learning methodologies and specifically

methodologies which help in pre-training of the multiclass classifiers thus avoiding the need

of hand crafting features for better results. The idea of deep learning has been implemented

using different kinds of neural networks though the concept is not restricted to only neural

networks. State-of-the-art results have been achieved on classification experiments performed

on hindi numeral images involving techniques of pre-training a deep multiclass classifier

basically Autoencoders.

v

Table of Contents

Title Page no.

CERTIFICATE ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

Figures and Tables vii

1. INTRODUCTION 1

 1.1 Handwriting Recognition 1

1.2 Deep Neural Networks 2

 1.2 Motivation 3

 1.3 Goal of Master Thesis 3

 1.4 Outline of Dissertation 4

2. LITERATURE REVIEW 5

2.1 Automatic Handwriting Recognition 5

 2.1.1 Why Handwriting Recognition 5

 2.2 Deep neural Networks 6

 2.2.1 A New Paradigm for Machine Learning 6

 2.2.2 Supervised and Unsupervised Learning 8

 2.3 From Shallow to Deep Architechtures 9

 2.4 Learning Methods for Deep Learning 12

 2.4.1 Convolutional Neural Network 12

 2.4.2 Deep Belief Networks 13

 2.4.3 Autoencoders 14

 2.5 Applications of Deep Learning 15

3. DEEP NEURAL NETWORK APPLIED TO HINDI NUMERAL RECOGNITION

 17

 3.1 Stacked Autoencoders 17

 3.2 Greedy Layer-wise Training 19

3.3 Flow Chart Of The Model 20

vi

4. EXPERIMENTS AND RESULTS 23

 4.1 System Configuration 23

 4.2 Database 23

 4.3 Experimental Procedure 24

 4.3.1 Training the First Autoencoder 25

 4.3.2 Training the Second Autoencoder 27

 4.3.3 Training the final Softmax Layer 28

 4.3.4 Forming a Multi-layer Neural Network 29

 4.4 Results Obtained 32

5. CONCLUSION AND FUTURE SCOPE 36

 5.1 Conclusion 36

 5.2 Future Scope 37

 REFERENCES 38

vii

Figures and Tables

Fig/Table Title Page no.

Figure 1.1 Different Hindi Numerals 2

Figure 1.2 Structure of a Handwriting Recognition System 2

Figure 2.1 Expression computed by a deep architecture with sums and products 10

Figure 2.2 Same expression from Fig 2.1 computed by a shallow architecture 10

with sums and products.

Figure 2.3 Example of deep architecture for classification 11

Figure 2.4 The convolutional and sub sampling process 12

Figure 2.5 Illustration of layers in a Deep Belief Network 13

Figure 2.6 Autoencoder Framework 14

Table 2.1 Summary of mainstream deep machine learning approaches 15

Figure 3.1 First autoencoder from the stacked series 18

Figure 3.2 Second autoencoder of the stacked series which takes as input the 18

 features learnt by the first autoencoder

Figure 3.3 Deep learning setting with stacked autoencoders 19

Figure 3.4 Flowchart of the model used 22

Table 4.1 Showing number of samples of each numeral in the database 24

Figure 4.1 Before and After performing Rotation 24

Figure 4.2 Before and After performing Elastic Distortion 24

Table 4.2 Parameter values for training the first layer autoencoder 25

Table 4.3 Parameter values for the performance function msesparse 26

Figure 4.3 Network structure of the first autoencoder 26

Figure 4.4 Modified structure of first layer autoencoder after removing the top layer 27

Table 4.4 Parameter values for training the first layer autoencoder 27

Table 4.5 Parameter values for the performance function msesparse 28

Figure 4.5 Network structure of the second layer autoencoder 28

Figure 4.6 Modified structure of second layer autoencoder after removing the 28

 top layer

Table 4.6 Parameter values for training the final softmax layer 29

viii

Figure 4.7 Network structure of the final softmax layer 29

Figure 4.8 First Layer Autoencoder 30

Figure 4.9 Second Layer Autoencoder 30

Figure 4.10 Final Softmax Layer 30

Figure 4.11 Final Network formed by joining the above three networks 31

Table 4.7 Parameter values for training the final network 31

Figure 4.12 Confusion Plot showing the training accuracy for the Proposed Method 32

Table 4.8 Explanation of Training Confusion Plot for the Proposed Model 33

Figure 4.13 Confusion Plot showing the testing accuracy for the Proposed Model 34

Table 4.9 Explanation of the Testing Confusion Plot for the Proposed Model 34

Chapter 1

INTRODUCTION

Automatic handwriting recognition and machine learning are two very strongly linked research

fields as algorithms from machine learning research area can be applied for solving complex

problems of handwriting recognition. Machine learning on the other hand can take advantage

of the large database for handwriting recognition available thus helping to move machine

learning towards reality.

Essentially handwriting recognition can be seen as a classification task in which the input data

have to be classified in different classes (i.e 0-9 in case of numerals and a-z in case of

alphabets).Thereby, the best classifier to solve this task can be machine learning algorithms.

Deep Neural Network provide not only as a classifier but also a form to extract features in an

automated manner and give better classification accuracy.

The two main topics of this Master Thesis will be introduced in this chapter: handwriting

recognition and deep neural network. After that, the motivation and goals of the Master Thesis

will be presented and an outline of the dissertation will be included at the end of this section.

1.1 HANDWRITING RECOGNITION

Handwriting Recognition is the technique by which symbols or characters written by hand can

be recognized by a computer system. The sources of input can be photographs, paper

documents, touchscreens or other devices. The image can either be sensed “offline” by

optically scanning a piece of paper or can be sensed “online” through the movement of pen tip

or stylus.

There can be two basic categories of handwriting recognition-

 Numeral Recognition- Is the process in which we try to recognize digits i.e. 0-9 and try

to classify them correctly.

 Character Recognition- Is the process in which we try to recognize alphabets i.e. a-z

and try to classify them correctly.

Since there are many languages in the world, we have limited the scope of this Master Thesis

to the offline recognition of Hindi Numerals in devanagari script.

Fig 1.1 showing the different hindi numerals

The structure of a handwriting recognition system can be divided in the following main parts.

Fig 1.2 showing the structure of a handwriting recognition system

 Feature Extraction – in this part, relevant information is extracted from the input signal

for classification purposes. Thus, a new depiction of input signal is obtained called

feature.

 Classification – in this phase a score is given based on confidence or distance measure

to fulfil the classification task.

 Decision – given the score obtained in previous part, the system decides depending

upon the task at hand.

1.2 DEEP NEURAL NETWORKS

A relatively new field of machine learning that has been in news recently for gaining success

is Deep Neural Network (DNN henceforth). A range of structures are included under this name

which have these things in common: the starting point for these networks is the classical neural

network with only one hidden layer, more hidden layers are added to it so that it can solve

more complex problems which the traditional neural networks could not solve.

Hence, human learning technique is copied by DNN as the features are directly extracted from

the input data without dependence on human crafted features. Features are extracted from

multiple levels of abstraction and complex learning functions are absorbed directly from data.

In the ever growing world of data and increasing usage of machine learning, the automated

learning of features is a much sought after thing.

Due to limitations in training of this kind of structure, experimental success was not reported

till 2006. However, the limitations were mostly from hardware point of view rather than

theoretical. Although many algorithms existed for training of such structures, poor results were

found when they were randomly initialized. All these limitations disappeared with the

upgradation of hardware devices and the famous learning algorithm given by Hinton in 2006

in which he used the advantage of unsupervised learning algorithms to initialize parameters

and followed a greedy approach of training one layer at a time.

Some of the drawbacks of this kind of neural network that still exist are the huge number of

free parameters, high computation cost for training of such structures and amount of data

required to train such networks.

1.3 MOTIVATION

The good results obtained in the field of handwritten numeral and character recognition is the

main motivation behind the idea of combining handwritten recognition with DNN. On the basis

of the results encountered, we can conclude that deep architectures have the capability to learn

the correct approach for handwriting recognition that can be used for other pattern recognition

tasks as well.

At one hand, better performances have been found by researchers on systems using DNN than

other approaches. It is seen that not only in the field of handwriting recognition but also

computer vision tasks and speech learning. All these examples prove that DNN is indeed a

powerful machine learning tool.

On the other hand, numeral recognition problem has almost similar issues as character

recognition, so the solution through DNN can also be applied to other similar fields. Moreover,

other research areas like Biometric Recognition System (iris, signature, face, fingertips) can

also be benefitted by the study in this Master Thesis.

1.4 GOAL OF MASTER THESIS

The main objective of this Master Thesis is to apply learning algorithm of deep neural network

to achieve better accuracy for classification of hindi numerals.

Thus, the thesis can be divided into two parts –

 Theoretical Framework – This includes the study of different frameworks of deep

neural networks and their attributes for deciding which one would suit the problem best.

 Experimental Framework – The objective of this part of the thesis is to develop a

numeral recognition system based on DNN on MATLAB platform.

1.5 OUTLINE OF DISSERTATION

The dissertation is structured as follows –

 Chapter 1 introduces the issues of handwriting recognition and deep neural network

and gives the motivation, objective and outline of the Master Thesis.

 Chapter 2 summarizes the current happenings in handwriting recognition and deep

neural network, the main issues discussed in dissertation.

 Chapter 3 defines the proposed method of handwriting recognition by using deep neural

networks.

 Chapter 4 describes the experiments performed during this effort, listing and examining

the results achieved.

 Chapter 5 summarizes the main inferences drawn from this work, also outlining future

research areas.

Chapter 2

LITERATURE REVIEW

Handwriting Recognition and Machine Learning based on deep neural network are the two

areas in which this work is mostly focussed. These both have been very active areas of research

since the past 30 years. A brief overview of both fields will be provided in this chapter.

In section 2.1, the importance of handwriting recognition for researchers will be discussed and

two main branches of handwriting and two main approaches: template and feature based; will

be further evaluated.

In section 2.2, will show the rise of deep neural network in the machine learning field, and

some machine learning algorithms as well as architectures will be discussed.

2.1 AUTOMATIC HANDWRITING RECOGNITION

Among all topics of automatic handwriting recognition, this section evaluates some of the best

methods by which this can be performed and also discuss the advantages of automatic

handwriting recognition.

2.1.1 Why Handwriting Recognition?

As we mentioned above in chapter 1, there are two approaches to handwriting recognition (off-

line and online).We are dealing with the off-line approach in this Mater Thesis. Thus, some of

the applications of offline handwriting recognition are-

 Cheque Reading- Cheque reading in banks can be one of the most prominent

applications of off-line handwriting recognition. It is also one of the most commercially

viable applications of Handwriting Recognition.

 Postcode Recognition- Handwritten postal code on letters can be read by Handwriting

Recognition software hence making the process faster and more efficient.

 Form processing- Handwriting Recognition can also be applied to form processing.

Usually public information is gathered via forms.

 Signature Verification- Signature Verification can also be performed by Handwriting

Recognition and can also be used to identify a person as handwriting differs from

person to person.

The two main approaches for handwriting recognition are

 Template matching- It is the oldest and simplest method available for handwriting

recognition. In this method, we have a pre-fetched reference text with which we match

the input text and the text with less error is the required output. For the standard fonts,

this method gives quite good results but for handwriting recognition

 Feature Extraction- In this method orthogonal properties are extracted from the image

and statistical distribution is used to analyse it. Most features are extracted by

performing basic and logic operations on the image. The features extracted help us in

gathering clear details about the character in the image. The features are usually

functions of physical properties such as relative position, length to width ratio, number

of end points, number of joints etc. This method gave good results for handwriting

recognition but was more prone to errors such as thickness of edges and noise.

2.2 DEEP NEURAL NETWORK

This section describes the emergence of deep neural networks as the new paradigm in the field

of machine learning. It is responsible for the recent breakthrough in machine learning causing

revised interest in the field. In this chapter, we will discuss the differences between supervised

and unsupervised learning algorithm, basic dissimilarities between shallow and deep

architectures and gather an idea on training and testing of deep architectures.

2.2.1 A new paradigm for machine learning

Artificial intelligence has always aimed at trying to model the real world [1]. It essentially

implies processing huge amounts of data, generalizing new contexts and being able to answer

questions put up to it. Although there have been many cases of success some drawbacks still

remain as computers cannot understand real scenes well enough and are unable to express them

in natural languages [1].

The basic difference between learning algorithms and human brain is the way in which useful

information is extracted from data. Different levels of abstraction are used to gather

information from data for feature extraction gradually in case on human brain. Hence we can

say that a bigger problem is decomposed into a smaller less complex problem, gathering

different levels of representation in the process.

Imitation of this behaviour is what machine learning algorithms are aimed at. Low level

features are captured first by the system that are invariant to small variations. The invariance

of these features is then increased by transforming them and useful information is extracted

from these. This means generalization of data can be done by the occurrence of frequent

patterns.

For doing all this, a structure is required that has the ability to transform the input in a non-

linear way. This is required by the learning algorithm for the application of mathematical

functions and transformations that are varying and non-linear.

Through the years machine learning algorithms did not have capable enough structures to apply

complex functions that were necessary to solve problems. Classical neural networks were built

with only one hidden layer. This means that there can be only one non-linear transformation of

data. This was overcome by deep architectures as they had more hidden layers stacked on top

of each other hence more transformations of data were allowed in this architecture. But this has

its own drawbacks too, i.e. local minima can be found more easily as the function becomes

complex.

Earlier learning algorithms were ill-equipped with handling of such “deep” architectures as

they had more than one hidden layer in them. Convergence of weights and other parameters

into very small value, almost close to zero while performing backpropagation and gradient

descent on these architectures were the main reasons for bad results.

Convolution neural network was an exception in this case. Yann Le Cunn’s LeNet yielded the

first successful results for such a deep architecture [8]. Due to the sharabilty of parameters

between different parts of the network, the amount of free parameters were reduced greatly in

this structure. But the main drawback for this network was that it performed supervised

learning, i.e. a huge amount of labelled data was required for training, which is difficult to get.

In 2006, Hinton was the first person to achieve success in the unsupervised learning of deep

neural network and called it the Deep Belief Network. This network took advantage of the

unsupervised structure and trained one hidden layer at a time which are called Restricted

Boltzmann Machines. This is suitable for problems having unlabelled data, which is also the

advantage of unsupervised learning.

The drawback of increasing the complexity of the network is that the number of free parameters

rises. This means more time is taken for its estimation or learning. Also more computation

capacity and more data storage is also required. Since there was a limitation of hardware

resources before 2006, the algorithms though theoretically correct could not be tested.

Although there are no hardware limitations now but the computation cost of DNN still presents

some hindrances.

Some open ended challenges that still remain for DNN include how to choose the structure and

parameters of a network to solve a particular problem or how much of a knowledge about a

problem must the network have. As theoretical results have proven, there is no specified depth

of a network, i.e. it is problem related [4]. These issues being open ended challenges can be

considered as drawbacks of DNN but can also be seen as future areas of research.

In conclusion, we can say that given all advantages of DNN and the huge scope of application

it has along with their unresolved issues, DNN can be considered as a new paradigm of machine

learning which requires further explorations.

2.2.2 Supervised and Unsupervised Learning

A learning algorithm can be seen as a method to predict the output from input. Thus prediction

can be seen as a function that is used to match the inputs with the outputs. Learning is

essentially a concept closely related to generalization. For a classification problem, it can be

seen as the ability to correctly classify new data that differ from the data supplied during

training. Therefore, datasets used for machine learning are split in generally two parts:

 Training Data – This is the set that covers samples used for estimating the parameters

of the objective function which should be selected such as the error should be

minimalized for misclassification.

 Testing Data- This is the data by which we prove whether the parameters selected from

among the training data can actually classify correctly. Since these data were not a part

of training data, parameter selection is not hampered.

Learning algorithms as we said above can be classified in two major categories depending on

the availability of labelled or unlabelled data. A third type of learning called reinforcement

learning also exists which is a form of semi-supervised learning but we will be dealing with

the above two only.

 Supervised Learning-

One of the type of machine learning problem is of classification, i.e. given an input, we

have to classify it into a category or class of input. If labelled data is used for training

the network, it is called supervised learning. In this type of learning, the difference

between predicted output and actual output is fond out called the error function. This is

minimized so that the error is reduced thereby minimizing the cost function.

Deep convolutional network, Logistic regression and Multi-layer perceptrons can be

highlighted as falling under this kind of learning algorithms.

 Unsupervised Learning-

The main approach followed by this type of algorithms is clustering. In clustering,

similar data is combined to form a group based on some similarity measure among the

data. Since no labelled data is available for training of the data, no error can be found

out between the target data and the actual output. Generally, the cost function is

minimized based on reduction of a reinforcement error which can be considered as a

parameter for training the algorithm.

Autoencoders and Restricted Boltzmann Machine are a part of this set.

 Aside from this, Hinton et. al in 2006[8] gave a semi-supervised learning algorithm in which

building blocks of RBM were used for initial training but later a supervised learning algorithm

was used to fine tune the network.

2.3 FROM SHALLOW TO DEEP ARCHITECTURES

It was proven theoretically beforehand that the limitations of shallow architectures would be

overcome by the deep ones but due to hardware limitations, implementation of deep structures

was not feasible.

Fig 2.1 Expression computed by a deep architecture with sums and products [1]

The inefficient representation of some functions is the major motivation for the shift towards

deep learning. This simply means that the architectures are too shallow to be trained by such a

few number of parameters. This mostly happens with compact functions. [3]. If the compact

function were to be implemented by an architecture with a single hidden layer, there would be

an exponential rise in the number of parameters used.

All this implies that if an architecture with single hidden layer is used, the training samples

should be large in number with respect to the number of parameters, otherwise training would

not be as efficient as would be in deep architectures.

As seen in figure 2.1, we can see the multiple occurrence of x2x3 and how a deep network

simplifies this calculation. Since it is a deep network, only 12 connections are visible, but in

the similar case of fig 2.2 more than 20 connections would have been used for this.

Fig 2.2 Same expression from Fig 2.1 computed by a shallow architecture with sums and

products.

Inspite of all the advantages being presented by the deep architecture, if the problem is not

complex enough, i.e. a simpler structure can be fitted on it, deep architectures are not always

required for solving a problem, they can make the solution more complex.

Thus, we can say that deep structures are formed using shallow structures a building blocks.

For eg if a supervised learning based classification task is to be performed, the structure similar

to fig 2.3 can be used which is composed of the following –

 Input layer – It defines the inputs used to feed the network.

 Hidden layer – sigmoid and tanh functions are used to apply non-linear transformation

on the input data.

The number of hidden layers depends on the problem where the output of one layer will

serve as the input for the next layer.

 Logistic Regression Classifier – classification is performed by this generally by

maximizing the cost function and generally forms the output layer.

 (2.1)

Fig 2.3 Example of deep architecture for classification.

Where given an input, the selected class would be :

 (2.2)

By using a gradient descent algorithm [Bishop,2007] , the parameters that need to be tuned are

the bias vector and the weight matrix.

2.4 LEARNING METHODS FOR DEEP LEARNING

2.4.1 Convolutional Neural Network

CNNs are a family of multi-layer neural networks particularly designed for use on two-

dimensional data, such as images and videos. The idea of weight sharing in CNNs leads to less

computations and sparse encodings resulting in better training of lower layers as well. CNNs

are the first truly successful deep learning approach where many layers of a hierarchy are

successfully trained in a robust manner, here robust means state of the art error rate on vision

tasks and better generalization. CNNs were proposed as a deep learning framework that is

motivated by minimal data preprocessing requirements.

Figure 1.5 illustrates the convolution process consisting of convolving an input (image in this

case) with filter 𝑓𝑥 then adding a trainable bias 𝑏𝑥 to produce the convolution layer 𝐶𝑥. The

filters are trainable. The subsampling (max pooling) consists of summing a neighborhood (four

pixels), weighting by scalar wx+1, adding trainable bias bx+1, and passing through a sigmoid

function to produce a roughly 2x smaller feature map Sx+1 which is then fed to a multilayer

neural network for gradient based optimization. Convolutional training acts as a feature

extractor. Features extracted can then be fed to a supervised learning algorithm such as a

multilayer neural network, softmax classifier etc.

Fig 2.4 The convolutional and sub sampling process [7]

2.4.2 Deep Belief Network

DBNs are probabilistic generative models that stand in contrast to the discriminative nature of

traditional neural nets which are mainly used for classification tasks. Generative models

provide a joint probability distribution over observable data and labels, facilitating the

estimation of both 𝑃(𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 | 𝐿𝑎𝑏𝑒𝑙) and 𝑃(𝐿𝑎𝑏𝑒𝑙 | 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛), whereas

discriminative models like neural networks only deal with 𝑃(𝐿𝑎𝑏𝑒𝑙 | 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛). Below

are the problems which DBNs address which are faced when traditional neural networks are

trained with back propagation:

 Availability of substantial labelled data set for training

 Large convergence times due to poor training of lower layers.

 Inadequate parameter selection techniques leading to poor local optima.

Fig 2.5 Illustration of layers in a Deep Belief Network [7]

The hidden units are trained to capture higher-order data correlations that are observed at the

visible units. Initially, aside from the top two layers, which form an associative memory, the

layers of a DBN are connected only by directed top-down generative weights. A DBN may be

fine-tuned after initial training for better discriminative performance by utilizing labelled data

through back-propagation. It has been proved by [9] that DBNs perform better than traditional

neural networks since the only task at hand is the local search for better weights as compared

to convergence times, and speedy training.

2.4.3 Autoencoder

Autoencoders or Auto-Associators or Diabolo networks are neural networks which employ

unsupervised learning to gather interesting features inherent in the data. They have a single

hidden layer with input and output layers being the same i.e., they aim at reconstructing the

input when the reconstruction error is minimized using a suitable optimization technique such

as gradient descent with back-propagation. The identity function seems a particularly trivial

function to be trying to learn; but by placing constraints on the network, such as by limiting the

number of hidden units, interesting structure about the data can be discovered. Figure 1.7

depicts an autoencoder framework with input, hidden and output layers. The type depicted is

an under-complete autoencoder where the number of nodes in the hidden layer is less than the

length of input feature vector.

Fig 2.6 Autoencoder Framework [10]

Every autoencoder type has two parts:

Encoder: The deterministic mapping 𝑓𝜃(𝑥) (from layer L1 to L2) that transforms an input

vector 𝑥 into hidden representation 𝑦 is called the encoder. Its typical form is an affine mapping

followed by a sigmoidal nonlinearity.

Decoder: The resulting hidden representation 𝑦 is then mapped back to a reconstructed 𝑑

dimensional vector 𝑧 in input space, 𝑧 = 𝑔𝜃′(𝑥). This mapping 𝑔𝜃′(𝑥) (from layer L2 to L3) is

called the decoder. Its typical form is again an affine mapping optionally followed by a

squashing non-linearity.

In general 𝑧 is not to be interpreted as an exact reconstruction of 𝑥, but rather in probabilistic

terms as the parameters (typically the mean) of a distribution 𝑝(𝑋|𝑍 = 𝑧) that may generate 𝑥

with high probability. There are types of autoencoders depending upon on factors such as

number of nodes in hidden layer, the reconstruction error which is used, sparsity parameters

and noisy inputs.

Autoencoders can be stacked together in a greedy layer-wise fashion for pre-training

(initializing) the weights of a deep network. Stacked Autoencoders consist of multiple layers

of autoencoders in which the outputs of each layer are wired to the inputs of the successive

layer and the activations of the last hidden unit is fed directly as input to a supervised criterion

for training.

2.5 APPLICATIONS OF DEEP LEARNING

There have been several studies demonstrating the effectiveness of deep learning methods in a

variety of application domains. In addition to the Mixed National Institute of Standards and

Technology Database (MNIST) handwriting challenge, there are applications in face detection,

speech recognition and detection, general object recognition, natural language processing, and

robotics. Interest in deep machine learning has not been limited to academic research, the

Defense Advanced Research Projects Agency (DARPA) has announced a research program

exclusively focused on deep learning.

Approach

Un-

Supervised

Pre-training

Required?

Generative v/s

Discriminative
Comments

Convolutional

Neural Networks
No Discriminative

Introduces a notion of spatial

invariance and reduces the

cost of computations

Deep Belief Nets Helpful Generative

Multi-layered recurrent neural

network trained with energy

minimizing methods

Stacked Auto

Encoders
Helpful

Discriminative

(denoising

encoder maps to

generative model)

Stacked neural networks that

learn compressed encodings

through reconstruction error

Hierarchical

Temporal Memory
No Generative

Hierarchy of alternating

spatial recognition and

temporal inference layers with

supervised learning method at

top layer

Table 2.1 Summary of mainstream deep machine learning approaches [7]

Chapter 3

DEEP NEURAL NETWORK APPLIED TO HINDI

NUMERAL RECOGNITION

There can be many applications of deep neural networks as a machine learning tool. The two

major applications are in handwritten recognition and object recognition. In this chapter we

discuss the methodology that has been used to counter the problem statement. There is no work

that has been done on hindi numerals using the methodologies of deep and self-taught learning.

In this chapter we describe the steps that we use to successfully classify a hindi numeral image.

3.1 STACKED AUTOENCODERS

We have come across autoencoders in chapter 2. In this chapter we look at another way they

can be used for the same purpose. Autoencoders we now know can act as dimensionality

reduction agents similar to PCA, keeping in mind certain constraints, but besides

dimensionality reduction they can learn interesting features from data for e.g. in case of images

then can learn edges and gabor like features.

But the question that should be considered is, what if we need to learn more complex features

than just edge strokes? This is where stacked autoencoders come into picture! Stacked

autoencoders can build up on features which have been learnt by a previous autoencoder and

can learn more complex features such as edges which are part of same object. The idea is simple

and abides by the ideology of deep learning i.e. if we have a more complex problem to solve

we need more layers of non-linearities that can efficiently factorize the problem. Below are

steps explaining how stacked setting of autoencoders works taken from [10].

First, you would train a sparse autoencoder on the raw inputs x(k) to learn primary

features h(1)(k) on the raw input as given in the figure 3.1

Fig 3.1: First autoencoder from the stacked series [10]

Next, we will feed the raw input into the above trained sparse autoencoder (figure 3.1),

obtaining the primary feature activations h(1)(k) for each of the inputs x(k). These primary features

will be used as the "raw input" to another sparse autoencoder to learn secondary

features h(2)(k) on these primary features as show in figure 3.2

Fig 3.2: Second autoencoder of the stacked series which takes as input the features learnt by

the first autoencoder [10]

The secondary feature activations h(2)(k) for each of the primary features h(1)(k) (which

correspond to the primary features of the corresponding inputs x(k)). These secondary features

are fed as "raw input" to a classifier. The below figure 3.3 displays all the layers in action where

the encoded input is fed to the classifier.

Figure 3.3: Deep learning setting with stacked autoencoders [10]

3.2 GREEDY LAYER-WISE TRAINING

In section 3.1 we saw how autoencoders can be stacked together to learn features which are

complex. That being said, the questions to be answered are - how will the whole stack be

trained, and what happens when we attach a supervise criterion to the last hidden layer? In the

process, we have to train that classifier. In this section we discuss an approach which has been

used in this research for training a deep network.

In this approach the parameters which include the weights and biases specific to an autoencoder

are trained separately from other autoencoders which are part of the same stack. For example

mentioned in section 3.1 the first autoencoder will be trained using gradient descent and

backpropagation and after the training is finished after a specific criteria has been achieved we

move on to the next autoencoder and train it the same way. This way parameters after being

trained greedily layer wise of the entire stack are saved so that the training inputs can be

encoded and fed as input to a supervise criterion for classification.

3.3 FLOW CHART OF THE MODEL

This flowchart represents the basic workflow of how autoencoders are being used to classify

images containing handwritten hindi numerals.

Start

Input parameters for the first

autoencoder including learning

rate, hidden layer size,

regularization term

Input hindi

numeral

Image

Prepare input vectors for

the first autoencoder from

the numeral image

Initialize weights and

biases for the

autoencoder and

normalize the input

vectors

Start with training the

autoencoder for all

input vectors

After calculating the activations

of last layer, squared error for

that input vector is calculated

Calculate activations of hidden

layer and provide as input to the

last layer of the first

autoencoder

Perform back propagation and

perform weight change by

calculating weight gradients

If average

error >2%

No

The activations of the hidden layer

of first autoencoder are passed as

input to the next autoencoder and

the weights and biases are stored

Now pass the training data from

the whole stacked autoencoder

and save the encoded training

inputs

Yes

Repeat once

Pass the encoded training data to a

neural network with no. of output

units equal to the no. of output

classes for classification

Perform conjugate gradient descent

with early stopping and validation

for improved generalization

End

Fig 3.4: Flow Chart of Model Used

Chapter 4

EXPERIMENTS AND RESULTS

Classification problems for complex data such as images can be solved using neural networks

with multiple hidden layers. Different level of abstraction are helpful in learning features at

each layer. But, it is still difficult to train neural networks with multiple hidden layers.

By training one layer at a time, we can train a neural network effectively. A special type of

network known as an autoencoder can be used for training each anticipated hidden layer.

Classification of digits which are in the form of images has been done in this chapter by training

a neural network with two hidden layers. Hidden layers are trained individually in using

autoencoders in an unsupervised manner. At last, we train a final softmax layer, and all the

layers are joined together to form a deep network, which is trained in a supervised manner just

one time.

4.1 SYSTEM CONFIGURATION

The following system configuration has been used while conducting the experiments:

 Processor: Intel Core i5

 Clock Speed: 2.30 GHz

 Main Memory: 6 GB

 Hard Disk Capacity: 750 GB

 Software Used: MATLAB R2015a

4.2 DATABASE

Since there are no standard databases available for hindi numerals, database built by two

students, Akarshan Sarkar and Kritika Singh who were guided by Prof. Amitabha Mukherjee

was taken as it has nearly 41,000 samples for training with good inter as well as intra-class

variability.

Digits No. of samples

0 25740

1 43060

2 24950

3 24660

4 15840

5 28160

6 13950

7 6690

8 7230

9 29410

Table 4.1 showing number of samples of each numeral in the database

They have used the following two methods to increase the variation between training samples-

 Rotation- Each sample in the original database has been rotated by two arbitrarily

selected angles one in the range +5◦ to +10◦ and other in the range −5 ◦ to −10◦ [1].

Fig 4.1 Before and After performing Rotation

 Elastic Distortion[4] - Uniform distribution is generated for first random displacement

fields(between -1 and +1). Normalization(by a norm of 1) is applied after convolution

with a Gaussian of standard deviation σ on the displacement fields. When values of σ

are neither too high nor too low, where σ stands for the elasticity coefficient, the

displacement fields look like elastic deformation. Moreover, α, which is the scaling

factor is multiplied to displacement field to controls the elasticity of deformation. New

values are generated by applying the displacement field to the original image pixels.

Fig 4.2 Before and After performing Elastic Distortion

4.3 EXPERIMENTAL PROCEDURE

For training the network, we use a matrix where columns are used to represent a single image.

We can build this, by assembling the columns of an image to form a vector, and then creating

a matrix from these vectors. Hence, the input matrix has the dimensions 784-by-41,068 as every

image has size 28*28 and there are 41,068 samples in the database. The labels for the images

are kept in a 10-by-41,068 matrix, where all other elements in the column will be 0 except a

single element which will be 1 that will specify which class that digit belong to.

4.3.1 Training the First Autoencoder

We begin by training a sparse autoencoder on the training data in an unsupervised manner

without the help of labels. An autoencoder is a neural network whose basic functionality is

duplication of its input at its output. Thus, the input and output will be of the same size. A

compacted representation of the input is leaned by the autoencoder as the size of the input is

more than the size of the hidden layer.

A feed-forward network was used to create the autoencoder, and then some of the settings were

modified. The subsequent significant thing is to establish the size of the hidden layer for the

autoencoder. For the autoencoder that we are going to train, hiddenSize1 = 100 is chosen which

is lesser than the input layer size of 784.

The training algorithm used is Scaled Conjugate Gradient Backpropagation and the network is

trained to a maximum of 400 epochs. The transfer function used at both layers is logistic

sigmoid.

hiddenSize1 100

Training function trainscg

Epochs 400

Transfer Function logsig

Dividing Function dividetrain

Table 4.2 Parameter values for training the first layer autoencoder

Regularizers were added to boost the autoencoder to absorb a sparse representation in the first

layer. By using the performance function |msesparse| we can regulate the effect of these

regularizers by setting numerous parameters:

 |L2WeightRegularization| should be typically quite small as it regulates the allowance

of an L2 regularizer for the weights of the network (and not the biases).

 |sparsityRegularization| regulates the allowance of a sparsity regularizer, which inhibits

large fractions of the neurons in the hidden layer from activating in response to an input.

 |sparsity| generally has values between 0 and 1 and regulates the fraction of neurons

that should be activated in the first layer in response to an input.

 The values used by us for training autoencoders at first layer is-

L2WeightRegularization 0.004

sparsityRegularization 4

Sparsity 0.5

Table 4.3 Parameter values for the performance function msesparse

Hence, after training the first autoencoder, the network would look like

Fig 4.3 Network structure of the first autoencoder

After removing the topmost layer, the network now looks like -

Fig 4.4 Modified structure of first layer autoencoder after removing the top layer

4.3.2 Training the Second Autoencoder

The top layer of the modified network having 100 nodes is actually is the hidden later of the

first autoencoder, which actually contains summarized input actually fed to the autoencoder.

Training the next autoencoder on this summarized input is done by again using a feed-forward

network with the input layer n output layer having the same number of nodes, which are greater

than the number of nodes in the hidden layer. The main difference between the first layer

autoencoder and the second layer autoencoder is that the whole of the input vector was fed to

the first layer autoencoder as it is whereas the inputs fed to the second layer autoencoder have

been greatly reduced in dimensionality.

hiddenSize1 50

Training function Trainscg

Epochs 100

Transfer Function Logsig

Dividing Function Dividetrain

Table 4.4 Parameter values for training the first layer autoencoder

|msesparse| is used as the performance function after the creation of network. Mean squared

error with L2 weight and sparsity regularizers are used for the performance function.

L2WeightRegularization 0.002

sparsityRegularization 4

sparsity 0.1

Table 4.5 Parameter values for the performance function msesparse

Thus, the autoencoder created would be

Fig 4.5 Network structure of the second layer autoencoder

And after removing the top layer, the autoencoder now looks like -

Fig 4.6 Modified structure of second layer autoencoder after removing the top layer

4.3.3 Training the final Softmax Layer

The input vector of the training data had 784 dimensions. It was condensed to 100 dimensions

after passing through the first layer autoencoder. This was further condensed to 50 dimensions

after it had passed through the second layer autoencoder. A final layer needs to be trained to

classify these 50 dimensional vectors into 10 digit classes.

We create a softmax layer, and train it on the output from the hidden layer of the second

autoencoder. As the softmax layer comprises of only one layer, hence it is created manually.

hiddenLayerSize None

Training function Trainscg

Epochs 400

Transfer Function softmax

Dividing Function dividetrain

Performance Function Crossentropy

 Table 4.6 Parameter values for training the final softmax layer

Unlike previous layers, this layer is trained in a supervised manner and hence the network looks

like -

Fig 4.7 Network structure of the final softmax layer

4.3.4 Forming a Multilayer Neural Network

Three separate constituents of a deep neural network have been trained in segregation. They

are -

Fig 4.8 First Layer Autoencoder

Fig 4.9 Second Layer Autoencoder

Fig 4.10 Final Softmax Layer

Now these three are joined together to form one network that looks like -

Fig 4.11 Final Network formed by joining the above three networks

For training the final network

hiddenSize1 100

hiddenSize2 50

Final Layer Size 10

Training Function Trainscg

Epochs 100

Transfer Function(1) Logsig

Transfer Function(2) Logsig

Transfer Function(3) Softmax

Dividing Function Dividetrain

Performance Function Crossentropy

Table 4.7 Parameter values for training the final network

Hence the complete structure of the proposed network is complete.

4.4 RESULTS OBTAINED

The results for the deep neural network can be improved by performing backpropagation on

the whole multilayer network. This process is often referred to as fine tuning. We fine-tuned

the network by retraining it on the training data in a supervised fashion. We then viewed the

results again using a confusion matrix.

In confusion matrix, we can see how many samples were classified correctly as well as

incorrectly thus knowing the accuracy of each numeral. Thus, the training accuracy came out

to be 99.8% as shown by this confusion plot.

Fig 4.12 Confusion Plot showing the Training Accuracy for Proposed Method

Explanation of the above confusion plot is further elaborated in the table below.

Digit No. of samples

correctly classified

No. of samples

incorrectly classified

Accuracy

0 4447/4447 0/4447 100%

1 8308/8320 10/8320 99.9%

2 4676/4683 7/4683 99.9%

3 4624/4627 3/4627 99.9%

4 2858/2872 14/2872 99.5%

5 5322/5341 19/5341 99.6%

6 2489/2490 1/2490 100%

7 1281/1285 4/1285 99.7%

8 1383/1385 2/1385 99.9%

9 5582/5590 8/5590 99.9%

Overall Accuracy 99.8%

Table 4.8 Explanation of Training Confusion Plot for Proposed Method

For testing the network, 2500 samples were used which were previously not seen by the

network.

Thus, the testing accuracy came out to be 98.7% as shown by this confusion plot.

Fig 4.13 Confusion Plot showing the Testing Accuracy for Proposed Method

The explanation of the confusion plot can be better understood from the table below.

Digit No. of samples

correctly classified

No. of samples

incorrectly classified

Accuracy

0 298/298 0/298 100%

1 297/302 5/302 98.3%

2 295/303 8/303 97.4%

3 296/298 2/298 99.3%

4 293/294 1/294 99.7%

5 297/303 6/303 98%

6 296/298 2/298 99.3%

7 48/49 1/49 98%

8 49/51 2/51 96.1%

9 299/304 5/304 98.4%

Overall Accuracy 98.7%

Table 4.9 Explanation of the Testing Confusion Plot for the Proposed Method

Chapter 5

CONCLUSION AND FUTURE SCOPE

5.1 CONCLUSION

In this dissertation we saw the opportunities which deep learning brings forward in the domain

of handwriting recognition through classification of hindi numeral images. Deep learning

methods in vision have proven quite successful and in handwriting recognition and we made

an attempt to realize its potential. Handwritten text images contain a lot of variance which is a

lot of information to be exploited and deep learning implementation with unsupervised pre-

training followed by supervised learning proved a viable candidate. In literature review we saw

theoretically how better deep learning can prove at applications which require multiple layers

of non–linear operations i.e. if we need to learn complex features that cannot happen with a

shallow network.

Deep architectures are good but how do you extract features and then train the whole

architecture? The answer to the first part of the question we came across in chapter 4 where we

tried unsupervised pre-training on database and saw how without labels the neurons were able

to learn the strokes of the handwritten digits. The idea of unsupervised pre-training has been

adopted in literature successfully where a deep network has a lot of parameters and to estimate

them it requires a lot of training data so pre-training tunes the parameters in a reduced space

from where the supervise criteria can proceed.

Greedy layer-wise training helps training a deep network where parts of the deep network can

be trained separately and can then be stacked together as a single system to form a deep learning

model. We implemented greedy layer-wise training in all our experiments with the study area

as stated in chapter 4.

5.2 FUTURE SCOPE

There are other intriguing possibilities also posed by Deep Learning which can be used in the

handwritten recognition domain. We looked at how a deep network can be pre-trained and

trained greedily to classify a hindi numeral image. Techniques such as convolutional neural

networks which are excellent at object recognition due to the advantage of their translational

invariance recognition can be used for detecting objects. Deep convolutional networks have

been used for object recognition tasks and state of the art accuracy has been achieved.

Restricted Boltzmann Machines which are energy based models have outperformed normal

autoencoders in terms of dimensionality reduction using neural networks. These flavours of

deep learning can be explored for tasks in handwriting recognition.

REFERENCES

[1] Bengio, Yoshua, "Learning deep architectures for AI." Foundations and trends in

Machine Learning vol 2, no.1 (2009): 1-127. Now Publishers

[2] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio, “A quantitative

theory of immediate visual recognition,” Progress in Brain Research, Computational

Neuroscience: Theoretical Insights into Brain Function, vol. 165 (2007): 33–56

[3] Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine

Manzagol. "Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion." The Journal of Machine Learning Research 11

(2010): 3371-3408.

[4] Yaser Abu-Mostafa, “Lecture notes from Caltech's Machine Learning course -CS 156”,

[online] 2014

https://www.youtube.com/playlist?list=PLjUC8HjyxGTQ5F390csOAAHaQp8sguSx1,

[5] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine

Learning (2012), The MIT Press

[6] Freund, Yoav, and David Haussler. "Unsupervised learning of distributions on binary

vectors using two layer networks." In Advances in Neural Information Processing Systems

(1992): 912-919

[7] Arel, Itamar, Derek C. Rose, and Thomas P. Karnowski. "Deep machine learning-a new

frontier in artificial intelligence research [research frontier]."Computational Intelligence

Magazine, IEEE 5.4 (2010): 13-18

[8] LeCun, Yann A., Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. "Efficient

backprop." In Neural networks: Tricks of the trade (2012): 9-48. Springer Berlin Heidelberg

[9] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of

data with neural networks." Science 313, no. 5786 (2006): 504-507.

[10] Andrew Ng, “Autoencoders and Sparsity”, [online] 2013,

http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity.

[11] Bengio, Yoshua, and Yann LeCun. "Scaling learning algorithms towards AI." Large-

scale kernel machines 34, no.5 (2007). The MIT Press

[12] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Lecun. Unsupervised learning of

invariant feature hierarchies with applications to object recognition. In Computer Vision and

Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pages 1{8. IEEE, 2007. 19.

 [13] LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition."

Neural computation 1.4 (1989): 541-551

[14] Ciresan, Dan Claudiu, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber.

"Deep, big, simple neural nets for handwritten digit recognition." Neural computation 22, no.

12 (2010): 3207-3220

https://www.youtube.com/playlist?list=PLjUC8HjyxGTQ5F390csOAAHaQp8sguSx1
http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

[15] Williams, DE Rumelhart GE Hinton RJ, and G. E. Hinton. "Learning representations

by back-propagating errors." Nature (1986): 323-533

[16] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent. The difficulty of

training deep architectures and the effect of unsupervised pre-training. pages 153{160, Apr.

2009. 3, 17.

[17] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief

nets. Neural Comput., 18(7):1527{1554, July 2006. ISSN 0899-7667. URL

http://dx.doi.org/10.1162/neco.2006.18.7.1527. 3, 14,17, 18.

[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Improving neural networks by preventing co-adaptation of feature detectors. CoRR,

abs/1207.0580, 2012b. 45.

[19] M. Hanmandlu and O. V. Ramana Murthy, “Fuzzy Model Based Recognition of

Handwritten Hindi Numerals”, Pattern Recognition, Vol. 40, Issue 6, pp. 1840-1854, 2006.

[20] R.J. Ramteke, S.C. Mehrotra “Feature extraction based on Invariants Moment for

handwritten Recognition”, Proc. Of 2nd IEEE Int. Conf. On Cybernetics Intelligent System

(CIS2006), Bangkok, pp. 1-6, June 2006.

[21] U. Bhattacharya, S. K. Parui , B. Shaw, K. Bhattacharya, “ Neural Combination of ANN

and HMM for Handwritten Devnagari Numeral Recognition”.

[22] A. Elnagar, S. Harous, Recognition of handwritten Hindu numerals using structural

descriptors, J. Exp. Theor. Artif. Intell. 15 (3) (2003) 299–314.

