
i

Bluetooth Automation using Host Card Emulation

A Dissertation submitted in the partial fulfillment for the award of

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

By

Amit Mani Tewari
Roll no. 2k12/SWT/03

Under the Essential Guidance of

Mrs. DivyaSikha Setia
Assistant Professor

Department of Computer Engineering

Department of Computer Engineering

Delhi Technological University

New Delhi

2012-2015

1

DECLARATION

I hereby declare that the thesis entitled “Bluetooth Automation using Host Card Emulation”.

Which is being submitted to the Delhi Technological University, in partial fulfillment of the

requirements for the award of degree of Master of Technology in Software Engineering is an

authentic work carried out by me. The material contained in this thesis has not been submitted to

any university or institution for the award of any degree.

Amit Mani Tewari

Department of Computer Engineering

Delhi Technological University,

Delhi.

 2

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI-110042

Date:

This is to certify that the thesis entitled “Bluetooth Automation

using Host Card Emulation”submitted by Amit Mani Tewari(Roll Number: 2K12/SWT/03),

in partial fulfillment of the requirements for the award of degree of Master of Technology in

Software Engineering, is an authentic work carried out by her under my guidance. The content

embodied in this thesis has not been submitted by her earlier to any institution or organization for

any degree or diploma to the best of my knowledge and belief.

Project Guide

Mrs. DivyaSikha Setia

Assistant Professor

Department of Computer Engineering

Delhi Technological University, Delhi-110042

 3

ACKNOWLEDGEMENT

I take this opportunity to express my deepest gratitude and appreciation to all those who have

helped me directly or indirectly towards the successful completion of this thesis.

Foremost, I would like to express my sincere gratitude to my mentor guide Mrs. DivyaSikha

Setia, Astt.Professor, Department of Computer Engineering, Delhi Technological

University, Delhi whose benevolent guidance, constant support, encouragement and valuable

suggestions throughout the course of my work helped me successfully complete this thesis.

Without her continuous support and interest, this thesis would not have been the same as

presented here.

Besides my guide, I would like to thank the entire teaching and non-teaching staff in the

Department of Computer Science, DTU for all their help during my course of work.

AMIT TEWARI

 4

ABSTRACT

A health management system will be efficient if medical records of patient maintained smartly so

that it can be accessed faster, easily available and portable. As with technology advancement

there are revolutionary changes in area of handheld devices and wireless communication, this

advancement in technology can be utilized to develop efficient and smart health care system.

Smart cards can be used to store health data securely and it can be embedded in handheld device

i.e. mobile phone, so that it is easily portable. Wireless technology i.e. Bluetooth, NFC can be

used transfer health records between devices; this will avoid dependency on permanent and fixed

storage and avoid traditional cumbersome paper reports.

Major Goal of this thesis is to use wireless communication to HEALTHCARD to make it more

efficient.

 Bluetooth automation has been used for communicating health card devices i.e.

patient handled device (mobile) with smart card device to transfer patient Health

records.

 Bluetooth communication has been automated to involve minimal user interaction

i.e. No PIN exchange or confirmation, No Authentication or Authorization popup

is shown still able to SEND and GET data over Bluetooth.

 Secure Health Card has been used to Maintain Patient Health record on handheld

devices.

 5

TABLE OF CONTENTS

CHAPTER 1 ... 9

INTRODUCTION ... 9

1.1 GENERAL.. 10

1.2 HELATH CARE ELEMENTS ... 11

1.3 PROBLEM PROPSED SOLUTION .. 12

CHAPTER 2 ... 13

LITERATURE SURVEY .. 13

2.1 BLUETOOTH RADIO SYSTEM ARCHITECTURE .. 14

2.2 BLUETOOTH EVOLUTION .. 16

2.3 BLUETOOTH STACK ... 19

2.4 PROTOCOLS AND PROFILES ... 23

2.5 BLUETOOTH SECURITY ... 25

CHAPTER 3 ... 26

DATA TRANSFER OVER BLUETOOTH .. 26

3.1 OBJECT PUSH PROFILE .. 28

3.2 FILE TRANSFER PROFILE .. 30

3.3 SERIAL PORT PROFILE ... 32

3.4 BLUETOOTH LOW ENERGY .. 35

3.5 BLE USE CASES .. 36

3.6 BLE LIMITATION ... 36

CHAPTER 4 ... 37

HOST CARD EMULATION ... 37

4.1 HCE ... 38

4.2 USING SECURE ELEMENT FOR CARD EMULATION ... 38

4.3 USING HOST BASED CARD EMULATION... 39

4.5 HCE SERVICES ... 40

4.6 HCE SERVICES SUPPORT ... 40

CHAPTER 5 ... 41

SYSTEM DESIGN .. 41

5.1 MAJORGOALSFOR BLUETOOTH AUTOMATION ... 42

5.2 TRADITIONAL TRANSFER TECHNIQUES APPLICABILITY ... 42

5.3 BLUETOOTH AUTOMATION ARCHITECTURE .. 43

5.4 RFCOMM .. 44

 6

5.5 DEISGN ... 45

5.6 APPLICATION ARCHITECTURE ... 46

5.7 USE CASES .. 47

CHAPTER 6 ... 48

 SEQUENCE DIAGRAM ... 48

CHAPTER 7 ... 52

AUTOMATION APP: USER INTERACTION... 52

CHAPTER 8 ... 67

CONCLUSION ... 67

RESULTS ... 67

CHAPTER 9 ... 69

FUTURE WORK .. 69

CHAPTER 10 ... 71

SOURCE CODE ... 71

 7

LIST OF FIGURES

FIGURE 1: BLUETOOTH SCATTER-NET .. 15

FIGURE 2: PROTOCOL STACK... 20

FIGURE 3: STAGES IN SDP SESSION ... 22

FIGURE 4: BLUETOOTH PROFILES ... 24

FIGURE 5: OBEX PROTOCOL MODEL ... 28

FIGURE 6: OPP- PUSH AND PULL OPERATIONS ... 29

FIGURE 7: SPP PROFILE STRUCTURES ... 32

FIGURE 8: SPP PROFILE STACK ... 33

FIGURE 9: SPP PROFILE ROLE ... 34

FIGURE 10: NFC CARD EMULATION WITH A SECURE ELEMENT .. 39

FIGURE 11: NFC CARD EMULATION WITHOUT A SECURE ELEMENT………………………………….. .. 39

FIGURE 12: RFCOMM IN BLUETOOTH STACK .. 44

FIGURE 13: HEALTH CARE SYSTEM ARCHITECTURE ... 45

FIGURE 14: SEQUENCE DIAGRAM- MEDICAL P. SENDS REPORT ... 49

FIGURE 15: SEQUENCE DIAGRAM- SEND OPERATION AT PROTCOL .. 50

FIGURE 16: SEQUENCE DIAGRAM-MEDICAL P. GETS REPORT ... 51

FIGURE 17: SEQUENCE DIAGRAM- GET REPORT PROTOCOL LEVEL .. 52

 8

FIGURE 18: APPLICATION MAIN PAGE .. 54

FIGURE 19: HELP BUTTON ... 55

FIGURE 20: BT ON BUTTON .. 56

FIGURE 21: BT OFF BUTTON .. 57

FIGURE 22: TEXT FIELD FOR REMOTE DEVICE BT MAC ADDRESS .. 58

FIGURE 23: SEND BUTTON TO SEND REPORTS ... 59

FIGURE 24: SENDING PROGRESS BAR ... 60

FIGURE 25: FILE SENT SUCCESS TOAST ... 61

FIGURE 26: FILE RECEIVED SUCCESS TOAST ON RECEIVING SIDE ... 62

FIGURE 27: GET REPORTS OPERATION…………………………………………………………... ... 63

FIGURE 28: GET BUTTON PRESS ... 64

FIGURE 29: FILE GET SUCCESS ... 65

FIGURE 30: GET OPERATION SUCCESS ... 66

 9

Chapter-1

INTRODUCTION

 10

1.1 General

With advancement in technology, Medical field has been organized to have advance database

which stores medical information efficiently, still an issue of Infrastructure to access database

should be there. To overcome this and make medical system still efficient, idea of using portable

setup to access medical records has been purposed.

To use this system main requirements were:

 Having efficient storage device which is portable

 Efficient communication System, using which data can be accessed properly without

much user involvement.

To store records efficiently HEALTH CARD can be used with will store large size data and are

secured. To address accessibility issue’s advance wireless techniques can be utilized i.e.NFC,

Bluetooth. Wireless communication should be such that data can be accessed easily still security

should be ensured.

Although NFC communication is easy to use and secure still main drawback of it is its low

bandwidth due to which only small amount of data can be transferred using NFC.

Bluetooth is another technology which is having better range then NFC (up to 100mtrs) and

having high bandwidth of transferring data. Blue low energy (BT 4.0) is advance BT version

where user don’t have to initiate pairing procedure and its range is better the NFC but problem

with BT low energy that is designed with purpose of transferring small chunks of data so that

Battery power consumption should be minimum. As in health care system sizeable amount of

health records needs to be transferred hence BT low energy also not perfectly fits into purpose.

 11

1.2Health Care Elements

Smart Health Cards-This can be used efficiently to store Medical records of large size and

having wireless communication support capability (i.e. NFC, Bluetooth etc) to communicate

with remote device.

Host card emulation (HCE)- is the software architecture that provides exact virtual

representation of various electronic identity (access, transit and banking) cards using only

software. Prior to the HCE architecture, NFC transactions were mainly carried out using secure

elements, which were integrated into carrier-issued SIM cards.HCE enables mobile applications

running on supported operating systems with the ability to offer payment card and access card

solutions independently of third parties while leveraging cryptographic processes traditionally

used by hardware-based secure elements without the need for a physical secure element. This

technology enables the merchants to offer payment cards solutions more easily through mobile

closed-loop contactless payment solutions, offers real-time distribution of payment cards and,

more tactically, allows for an easy deployment scenario that does not require changes to the

software inside payment terminals.

Bluetooth-Wireless LANs can be designed in many different ways depending on their

applications; one kind is a wireless ad-hoc network. An ad-hoc network is a peer-to-peer

network set up temporarily to meet some immediate need. In contrast to the majority of radio

systems in use today, it doesn’t have any centralized server. However, the Bluetooth system is

the first commercial ad hoc radio system envisioned to be used on a large scale and widely

available to the public.

 12

1.3Problem Proposed solution

To develop an efficient Health Care System where Medical information can be maintained

smartly without requiring tedious Infrastructure and Data can be accessed in real time and easily

portable without having resources and technology to access bigger databases. This thesis

purposes use of classical Bluetooth automation as a wireless communication medium to access

data between portable Health card devices.

This work AIMS in providing Bluetooth automation support for communicating Hand held

device with Smart card to exchange information at the same time ensuring no user interaction is

done i.e. PIN exchange or confirmation, No Authentication or Authorization popup is shown still

able to SEND and GET data over Bluetooth.

Smart Card are used to store Health records securely, these smart card supports wireless

communication techniques i.e. HCE. Host Card Emulation technique helps in transferring details

wirelessly and securely which are used for further communication Over Bluetooth.

 13

Chapter-2

LITERATURE

SURVEY

 14

2.1 BLUETOOTH RADIO SYSTEM ARCHITECTURE

Bluetooth devices operate at 2.4GHz, in the globally available, license-free, ISM band.

That is the bandwidth reserved for general use by Industrial, Scientific and Medical applications

worldwide. Since this radio band is free to be used by any radio transmitter as long as it satisfies

the regulations, the intensity and the nature of interference can't be predicted. Therefore, the

interference immunity is very important issue for Bluetooth. Generally, interference immunity

can be obtained by interference suppression or avoidance. Suppression can be obtained by

coding or direct-sequence spreading, but the dynamic range of interfering signals in ad hoc

networks can be huge, so practically attained coding and processing gains are usually inadequate.

Avoidance in frequency is more practical. Since ISM band provides about 80MHz of bandwidth

and all radio systems are band limited, there is a high probability that a part of the spectrum can

be found without a strong interference.

Considering all this, FH-CDMA (Frequency Hopping - Code Division Multiple Access)

technique has been chosen to implement the multiple access scheme for the Bluetooth. It

combines a number of properties, which make it the best choice for an ad hoc radio system. It

fulfills the spreading requirements set in the ISM band, i.e. on average the signal can be spread

over a large frequency range, but instantaneously only a small part of the bandwidth is occupied,

avoiding most of potential interference. It also doesn't require neither strict time synchronization

(like TDMA), nor coordinated power control (like DS-CDMA). In the 2.45GHz ISM band, a set

of 79 hop carriers has been defined, at 1MHz spacing. A nominal hop dwell time is 625 us. Full-

duplex communication is achieved by applying time-division duplex (TDD), and since

transmission and reception take place at different time slots, they also take place at different hop

carriers. A large number of pseudo-random hopping sequences have been defined, and the

particular sequence is determined by the unit that controls the FH channel. That unit is usually

called the master and it also defines timing parameters during the certain session. All other

devices involved in the session, the slaves, have to adjust their spreading sequences and clocks to

the master's.

 15

An FH Bluetooth channel is associated with the piconet. As mentioned earlier, the master

unit defines the piconet channel by providing the hop sequence and the hop phase. All other units

participating in the piconet are slaves. However, since the Bluetooth is based on peer

communications, the master/slave role is only attributed to a unit for the duration of the piconet.

When the piconet is cancelled, the master and slaves roles are canceled too. In addition to

defining the piconet, the master also controls the traffic on the piconet and takes care of access

control. The time slots are alternatively used for master and slaves transmission. In order to

prevent collisions on the channel due to multiple slave transmissions, the master applies a polling

technique, for each slave-to-master slot the master decides which slave is allowed to transmit.

FIGURE1: Bluetooth Scatter-net[4]

 16

2.2BLUETOOTH EVOLUTION

Bluetooth v1.0 and v1.0B

Versions 1.0 and 1.0B had many problems, and manufacturers had difficulty making their

products interoperable. Versions 1.0 and 1.0B also included mandatory Bluetooth hardware

device address (BD_ADDR) transmission in the Connecting process (rendering anonymity

impossible at the protocol level), which was a major setback for certain services.

Bluetooth v1.1

 Ratified as IEEE Standard 802.15.1-2002

 Many errors found in the 1.0B specifications were fixed.

 Added possibility of non-encrypted channels.

 Received Signal Strength Indicator (RSSI).

Bluetooth v1.2

 This version is backward compatible with 1.1 and the major enhancements include the

following:

 Faster Connection and Discovery

 Adaptive frequency-hopping spread spectrum (AFH), which improves resistance to radio

frequency interference by avoiding the use of crowded frequencies in the hopping

sequence.

 Higher transmission speeds in practice, up to 721 kbit/s, than in v1.1.

 Extended Synchronous Connections (eSCO), which improve voice quality of audio links

by allowing retransmissions of corrupted packets, and may optionally increase audio

latency to provide better concurrent data transfer.

 Host Controller Interface (HCI) operation with three-wire UART.

 Ratified as IEEE Standard 802.15.1-2005

 Introduced Flow Control and Retransmission Modes for L2CAP.

 17

Bluetooth v2.0 + EDR

This version of the Bluetooth Core Specification was released in 2004 and is backward

compatible with the previous version 1.2. The main difference is the introduction of an Enhanced

Data Rate (EDR) for faster data transfer. The nominal rate of EDR is about 3 Mbit/s, although

the practical data transfer rate is 2.1 Mbit/s. EDR uses a combination of GFSK and Phase Shift

Keyingmodulation (PSK) with two variants, π/4-DQPSK and 8DPSK. EDR can provide a lower

power consumption through a reduced duty cycle.

The specification is published as “Bluetooth v2.0 + EDR” which implies that EDR is an optional

feature. Aside from EDR, there are other minor improvements to the 2.0 specification, and

products may claim compliance to “Bluetooth v2.0″ without supporting the higher data rate.

Bluetooth v2.1 + EDR

Bluetooth Core Specification Version 2.1 + EDR is fully backward compatible with 1.2, and was

adopted by the Bluetooth SIG on July 26, 2007.

The headline feature of 2.1 is secure simple pairing (SSP): this improves the pairing experience

for Bluetooth devices, while increasing the use and strength of security.

2.1 allows various other improvements, including “Extended inquiry response” (EIR),

Bluetooth v3.0 + HS

Version 3.0 + HS of the Bluetooth Core Specification was adopted by the Bluetooth SIG on

April 21, 2009. Bluetooth 3.0+HS provide theoretical data transfer speeds of up to 24

Mbit/s,though not over the Bluetooth link itself. Instead, the Bluetooth link is used for

negotiation and establishment, and the high data rate traffic is carried over a

collocated 802.11 link.

The main new feature is AMP (Alternate MAC/PHY), the addition of 802.11 as a high speed

transport. The High-Speed part of the specification is not mandatory, and hence only devices

sporting the “+HS” will actually support the Bluetooth over 802.11 high-speed data transfer. A

Bluetooth 3.0 device without the “+HS” suffix will not support High Speed, and needs to only

support a feature introduced in Core Specification Version 3.0 or earlier Core Specification.

 18

Bluetooth 4.0 (BLE) Bluetooth low energy

 This version's development

 Ease of implementation and multi-vendor interoperability

 Ultra-low peak, average and idle mode power consumption

 Low cost of integration

 Power handling

 Resistance to interference

Bluetooth 4.1 (Still to be commercialized)

1. Coexistence

Bluetooth and 4G (LTE) famously don’t get on: their signals interfere degrading one another’s

performance and draining battery life. Bluetooth 4.1 eliminates this by coordinating its radio

with 4G automatically so there is no overlap and both can perform at their maximum potential.

Given most phones will come with 4G next year this is a vital improvement.

2. Smart connectivity

Rather than carry a fixed timeout period, Bluetooth 4.1 will allow manufacturers to specify the

reconnection timeout intervals for their devices. This means devices can better manage their

power and that of the device they are paired to by automatically powering up and down based on

a bespoke power plan.

3. Improved Data Transfer

Bluetooth 4.1 devices can act as both hub and end point simultaneously. This is hugely

significant because it allows the host device to be cut out of the equation and for peripherals to

communicate independently.For example, whereas previously a smartwatch would need to talk

to your phone to get data from a heart monitor, now the smartwatch and heart monitor can talk

directly saving your phone’s battery and then upload their compiled results directly to your

phone.

 19

2.3BLUETOOTH STACK

The Bluetooth protocol stack is defined as a series of layers, though there are some

features which cross several layers. A Bluetooth device can be made up of two parts: a host

implementing the higher layers of the protocol stack, and a module implementing the lower

layers. This separation of the layers can be useful for several reasons. For example, hosts such as

PCs have spare capacity to handle higher layers, allowing the Bluetooth device to have less

memory and a less powerful processor, which leads to cost reduction. Also, the host device can

sleep and be awoken by an incoming Bluetooth connection. Of course, an interface is needed

between the higher and lower layers, and for that purpose the Bluetooth defines the Host

Controller Interface (HCI). But for some small and simple systems, it is still possible to have all

layers of the protocol stack run on one processor. An example of such a system is a headset.

 20

Figure 2: Bluetooth Protocol Stack [4]

BLUETOOTHCONTROLLER:

Baseband- There are two basic types of physical links that can be established between a master

and a slave:

 Synchronous Connection Oriented (SCO)

 Asynchronous Connection-Less (ACL)

The Link Controller - The link control layer is responsible for managing device discoverability,

establishing connections and maintaining them. In Bluetooth, three elements have been defined

to support connection establishment: scan, page and inquiry.

The Link Manager - The host drives a Bluetooth device through Host Controller Interface

(HCI) commands, but it is the link manager that translates those commands into operations at the

 Applications

Logical Link Control and

Applicaton

Host Controller Interface

Link Manager

Baseband/Link Controller

Radio

RFCOMM

TCS SDP

A
T

 C
o
m

m
a
n

d
s

O
B

E
X

 W
A

P

Higher Layers

Audio

L2CAP

Control

HCI Driver

Physical Bus Driver

Physical Bus Driver

HCI Driver

Link Manager

Link Controller

Radio

HCI

Packets

Host

Bluetooth Module

Upper

Layers

on

Host

Lower

Layers

on

Bluetooth

Module

 21

baseband level. Its main functions are to control piconet management (establishing and

destruction of the links and role change), link configuration, and security and QoS functions.

BLUETOOTH HOST:

Logical Link Control and Adaptation Protocol (L2CAP) - Logical Link Control and

Adaptation Protocol takes data from higher layers of the Bluetooth stack and from applications

and sends them over the lower layers of the stack.. The major functions of the L2CAP are:

 Multiplexing between different higher layer protocols to allow several higher layer links

to share a single ACL connection.

 Segmentation and reassembly to allow transfer of larger packets than lower layers

support.

RFCOMM - RFCOMM is a simple, reliable transport protocol that provides emulation of the

serial cable line settings and status of an RS-232 serial port. It provides connections to multiple

devices by relying on L2CAP to handle multiplexing over single connection.

The Service Discovery Protocol - One of the most important members of the Bluetooth protocol

stack is Service Discovery Protocol (SDP). It provides a means for an SDP client to access

information about services offered by SDP servers. An SDP server is any Bluetooth device

which offers services to other Bluetooth devices.

 22

Figure 3: Stages in setting up an SDP session[6]

Inquiry

Paging

LMP_host connection_req

LMP_accepted

LMP_name_req

LMP_name_res

Authentication

LMP_Setup_complete

LMP_Setup_complete

L2CAP_connection_req

L2CAP_connection_res

SDP_inquires

SDP_responses

Terminate Connection

Link Controller

Connection Setup

Link Manager

Connection Setup

L2CAP

Connection Setup

SDP Session

Disconnect

L
o

ca
l

D
ev

ic
e

(S
D

P
 C

li
en

t)

R
em

o
te

 D
ev

ic
e

(S
D

P
 S

er
v

er
)

 23

2.4 PROTOCOLS AND PROFILES

BLUETOOTH PROTOCOLS:

As mentioned at the begin, one of the most important characteristics of the Bluetooth

specification is that it should allow devices from lots of different manufacturers to work with one

another. For that reason, Bluetooth is designed in such a way to allow many different protocols

to be run on top of it. Some of these protocols are:

The Wireless Access Protocol (WAP)

Object Exchange Protocol (OBEX)

The Telephony Control Protocol

Audio / Video Distribution Transport Protocol (AVDTP).

BLUETOOTH PROFILES

Profiles are associated with applications. The profiles specify which protocol elements are

mandatory in certain applications. This concept prevents devices with little memory and

processing power implementing the entire Bluetooth stack when they only require a small

fraction of it. Simple devices like a headset or mouse can thus be implemented with a strongly

reduced protocol stack.

 24

Figure 4: Bluetooth profiles [6]

Bluetooth Profile Example:

GAP -Generic Access Profile

SPP- Serial Port Profile)

DUN-Dial-up Networking,

FTP- File Transfer Profile

OPP-Object PushProfile

A2DP-Advanced Audio Distribution Profile

HFP-Hands Free Profile

MAP-Message Access Profile

Cordless

Telephony Profile
Intercom

Profile

Telephony Control Protocol Specification

File Transfer

Profile

Object Push

Profile

Synchronization

Profile

Generic Object Exchange Profile
Dial-Up Networking

Profile

FAX

Profile

Headset

Profile

LAN Access

Profile

Serial Port Profile

Service Discovery

Application Profile

Generic Access Profile

 25

2.5 CLASSICBLUETOOTH SECURITY

Trusted Device: The device has been previously authenticated, a link key is stored and the

device is marked as "trusted" in the Device Database.

Untrusted Device: The device has been previously authenticated, a link key is stored but the

device is not marked as "trusted" in the Device Database

Unknown Device: No security information is available for this device.

SECURITY MODES:

Mode 1: No Security

Only security at this level is by the nature of the connection: data-hopping and short-distance.All

Bluetooth devices employ “data-hopping”, which entails skipping around the radio band up to

1600 times per second, at 1MHz intervals (79 different frequencies).Most connections are less

than 10 meters, so there is a limit as to eavesdropping possibilities.

Mode 2: Service Level Security

Trusted devices have unrestricted access to all services, fixed relationship to other devices.

UnTrusted devices generally have no permanent relationship and services that it has access to are

limited. Unfortunately, all services on a device are given the same security policy, other than

application layer add-ons.

Services can have one of 3 security levels:

Level 3: Requires Authentication and Authorization. PIN number must be entered.

Level 2: Authentication only, fixed PIN ok.

Level 1: Open to all devices, the default level.

Mode3: Link Level Security

Security is implemented by symmetric keys in a challenge-response system.

Security implementations in Bluetooth units are all the same, and are publicly available: Critical

ingredients: PIN, BD_ADDR, RAND, Link and Encryption Keys.

 26

Chapter-3

DATATRANSFER

OVER

BLUETOOTH

 27

INTRODUCTION

As already explained in section Chapter 2 above there are multiple Bluetooth profile’s designed

for specific target and to achieve a specific functionality. Each profile has its own set of rules and

specification that has to be followed by all profile implementers to achieve that functionality.

This ensures interoperability between different operators. Based on BT SIG supported profiles,

below set of profiles can be used for data transfer. Each profile has specific data types or format

which it can transfer; some operates on bits, while other on files and PIMS object etc.

Protocols followed by each of below profiles are different. Some profiles are designed to operate

on large size of data while others can transfer fix size of bytes only.

Each profile’s has its own set of authentication or encryption technique. Each of these profiles

has been discussed in details in below section.

 OBJECT PUSH PROFILE

 FILE TRANSFER PROFILE

 SERIAL PORT PROFILE

 BT LOW ENRGY (BT 4.0)

 28

3.1OBJECT PUSH PROFILE

Introduction

The Object Push Profile (OPP) defines the requirements for the protocols and procedures that

shall be used by the applications providing the Object Push usage model. This profile makes use

of the Generic Object Exchange Profile (GOEP) [10], to define the interoperability requirements

for the protocols needed by applications. Common devices using these models are notebook PCs,

PDAs, and mobile phones.

The scenarios covered by this profile are the following:

• Use of a Bluetooth device to push an object to the inbox of another Bluetooth device. The

object can for example be a business card or an appointment.

• Use of a Bluetooth device to pull a business card from another Bluetooth device.

• Use of a Bluetooth device to exchange business cards with another Bluetooth device. Exchange

is defined as a push of a business card followed by a pull of a business card.

 FIGURE 5: OBEX Protocol Model[8]

 29

Configurations and Roles

 FIGURE-6: OPP PUSH and PULL OPERATIONS[8]

The following roles are defined for this profile:

Push Server – This device provides an object exchange server. In addition to the interoperability

requirements defined in this profile, the Push Server shall comply with the interoperability

requirements for the server of the GOEP if not defined in the contrary.

Push Client – This device pushes and pulls objects to and from the Push Server. In addition to

the interoperability requirements defined in this profile, the Push client shall also comply with

the interoperability requirements for the client of the GOEP, if not defined to the contrary.

Profile Scenarios:

The scenarios covered by this profile are:

• Use of a Push Client to push an object to a Push Server. The object can, for example, be a

business card or an appointment.

• Use of a Push Client to pull a business card from a Push Server.

• Use of a Push Client to exchange business cards with a Push Server.

The push operation described in this profile pushes objects from the Push Client to the inbox of

the Push Server.

 30

3.2 File Transfer Profile

Introduction

 This profile defines the requirements for the protocols and procedures that shall be used by the

applications providing the file transfer usage model. The file transfer usage model makes use of

the underlying Generic Object Exchange Profile (GOEP) to define the interoperability

requirements for the protocols needed by applications. Typical scenarios covered by this profile

involving a Bluetooth device browsing , transferring and manipulating objects on/with another

Bluetooth device.

Roles/Configurations

The following roles are defined for this profile:

Server – The Server device is the target remote Bluetooth device that provides an object

exchange server and folder browsing capability using the OBEX Folder Listing format. In

addition to the interoperability requirements defined in this profile, the Server must comply with

the interoperability requirements for the Server of the GOEP if not defined in the contrary.

Client – The Client device initiates the operation, which pushes and pulls objects to and from

the Server. In addition to the interoperability requirements defined in this profile, the Client must

also comply with the interoperability requirements for the Client of the GOEP if not defined in

the contrary.

Profile Scenarios

The scenarios covered by this profile are the following:

Usage of the Client to browse the object store of the Server. Clients are required to pull and

understand Folder Listing Objects. Servers are required to respond to requests for Folder Listing

Objects. Servers are required to have a root folder. Servers are not required to have a folder

hierarchy below the root folder.

 31

Usage of the Client to transfer objects to and from the Server. The transfer of objects includes

folders and files. Clients must support the ability to push or pull files from the Server. Clients are

not required to push or pull folders. Servers are required to support file push, pull, or both.

Servers are allowed to have read-only folders and files, which means they can restrict object

pushes. Thus, Servers are not required to support folder push or pull.

Usage of the Client to create folders and delete objects (folders and files) on the Server. Clients

are not required to support folder/file deletion or folder creation. Servers are allowed to support

read-only folders and files, which means they can restrict folder/file deletion and creation. A

device adhering to this profile must support Client capability, Server capability or both.

File Transfer Applications provide the following functions.

 Navigate Folders

 Pull Object

 Push Object

 Delete Object

 Create Folder



When the user selects the Select Server function, an inquiry procedure will be performed to

produce a list of available devices in the vicinity.

 32

3.3SERIAL PORT PROFILE

Introduction

The Serial Port Profile defines the protocols and procedures that shall be used by devices using

Bluetooth for RS232 (or similar) serial cable emulation. The scenario covered by this profile

deals with legacy applications using Bluetooth as a cable replacement, through a virtual serial

port abstraction.

 FIGURE 7: SPP PROFILE STRUCTURE [8]

 33

Profile Stack:

Figure Below shows the protocols and entities used in this profile:

FIGURE 8: SPP PROFILE STACK [8]

 34

Roles and Configuration

FIGURE 9: SPP PROFILE ROLE [8]

Device A (DevA) – This is the device that takes initiative to form a connection to another device.

Device B (DevB) – This is the device that waits for another device to take initiative to connect.

Profile Fundamental:

For the execution of this profile, use of security features such as authorization, authentication and

encryption is optional. Support for authentication and encryption is mandatory, such that the

device can take part in the corresponding procedures if requested from a peer device. If use of

security features is desired, the two devices are paired during the connection establishment phase

Bonding is not explicitly used in this profile, and thus, support for bonding is optional.

Link establishment is initiated by DevA. Service discovery procedures have to be performed to

set up an emulated serial cable connection. There are no fixed master slave roles.

 35

3.4 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is designed to provide significantly lower power consumption.

This allows Android apps to communicate with BLE devices that have low power requirements,

such as proximity sensors, heart rate monitors, fitness devices, and so on

BTLE devices will go into sleep mode and wake only for connection attempts or events. As a

result, the software developer needs to understand a few of the basic concepts in BTLE.

Generic Attribute Profile (GATT)—The GATT profile is a general specification for sending

and receiving short pieces of data known as "attributes" over a BLE link. All current Low Energy

application profiles are based on GATT.

Attribute Protocol (ATT)—GATT is built on top of the Attribute Protocol (ATT). This is also

referred to as GATT/ATT. ATT is optimized to run on BLE devices. To this end, it uses as few

bytes as possible. Each attribute is uniquely identified by a Universally Unique Identifier

(UUID), which is a standardized 128-bit format for a string ID used to uniquely identify

information. The attributes transported by ATT are formatted as characteristics and services.

Characteristic—A characteristic contains a single value and 0-n descriptors that describe the

characteristic's value. A characteristic can be thought of as a type, analogous to a class.

Descriptor—Descriptors are defined attributes that describe a characteristic value. For example,

a descriptor might specify a human-readable description, an acceptable range for a

characteristic's value, or a unit of measure that is specific to a characteristic's value.

Service—A service is a collection of characteristics. For example, you could have a service

called "Heart Rate Monitor" that includes characteristics such as "heart rate measurement.

GATT Operations

These are all commands a client can use to discover information about the server.

 Discover UUIDs for all primary services. This operation can be used to determine if

device supports Device Information Service, for example.

 36

 Discover all characteristics for a given service. For example, some heart rate monitors

also include a body sensor location characteristic.

 Read and write descriptors for a particular characteristic. One of the most common

descriptors used is the Client Characteristic Configuration Descriptor. This allows the

client to set the notifications to indicate or notify for a particular characteristic. If the

client sets the Notification Enabled bit, the server sends a value to the client whenever the

information becomes available. Similarly, setting the Indications Enabled bit will also

enable the server to send notifications when data is available, but the indicate mode also

requires a response from the client.

 Read and write to a characteristic. Using the example of the heart rate monitor, the client

would be reading the heart rate measurement characteristic. Or, a client might write to a

characteristic while upgrading the firmware of the remote device.

3.5BLE USE CASES

Blood pressure profile. Proximity Profile, Heart Rate Profile etc.Each profile is designed with

fix set of characteristics having unique UUID.

3.6 BLE LIMITATION

As BLE is designed to keep connection active for very small time .so only small brust of dataCan

be transferred using BLE in form of characteristics and descriptors as ATT protocol designed.

 37

Chapter-4

HOST-CARD

EMULATION

 38

4.1 HCE

Smartphones have already used as mobile payments. Most of the modern mobile devices are

equipped with NFC module, and by using such devices, it is possible to get rid of carrying heavy,

metal keys, pass-cards, etc. People often forget keys at home and they are relatively small and

easy to lose. Instead of carrying all these keys, we present an NFC- enabled Access Control and

Management System, which by the help of mobile devices, NFC technology and HCE mode,

introduced in Android 4.4, makes possible for people to use only one single key. ISO 7816-4

smart card standard is used for emulation a smart card and the data exchange between the mobile

device and NFC-reader.

4.2 Using Secure Element for Card Emulation

When NFC card emulation is provided using a secure element, the card to be emulated is

provisioned into the secure element on the device through an Android application. Then, when

the user holds the device over an NFC terminal, the NFC controller in the device routes all data

from the reader directly to the secure element. The secure element itself performs the

communication with the NFC terminal, and no Android application is involved in the transaction

at all. After the transaction is complete, an Android application can query the secure element

directly for the transaction status and notify the user.

 39

 FIGURE 10: NFC card emulation with a secure element [9]

4.3 Using Host-based Card Emulation

When an NFC card is emulated using host-based card emulation, the data is routed to the host

CPU on which Android applications are running directly, instead of routing the NFC protocol

frames to a secure element.

FIGURE 11: NFC card emulation without a secure element [9]

 40

4.4 HCE Services

Android Service components (known as "HCE services") serves as the base for the HCE

Architecture in Android. A service can run in the background without any user interface, this is

one of the key features of a service. This is a natural fit for many HCE applications like loyalty

or transit cards, with which the user shouldn't need to launch the app to use it. Instead, tapping

the device against the NFC reader starts the correct service (if not already running) and executes

the transaction in the background. One can also launch additional UI (such as user notifications)

from your service if that makes sense.

When the user taps a device to an NFC reader, the Android system needs to know which HCE

service the NFC reader actually wants to talk to. This is where the ISO/IEC 7816-4 specification

comes in: it defines a way to select applications, centred around an Application ID (AID). An

AID consists of up to 16 bytes. If you are emulating cards for an existing NFC reader

infrastructure, the AIDs that those readers are looking for are typically well-known and publicly

registered (for example, the AIDs of payment networks such as Visa and MasterCard).If one

want to deploy new reader infrastructure for your own application, you will need to register your

own AID(s). The registration procedure for AIDs is defined in the ISO/IEC 7816-5 specification.

Google recommends registering an AID as per 7816-5 if you are deploying a HCE application

for Android, as it will avoid collisions with other applications.

4.5 HCE Services support

To emulate an NFC card using host-based card emulation, a Service component that handles the

NFC transactions needs to be created. The application can check whether a device supports HCE

by checking for the FEATURE_NFC_HOST_CARD_EMULATION feature. The <uses-

feature>tag in the manifest of application should be used to declare that the app uses the HCE

feature, and whether it is required for the app to function or not.

 41

Chapter-5

SYSTEM DESIGN

 42

5.1MAJOR GOALS FOR BLUETOOTH AUTOMATION

1. Devices should not be scanned.

2. No Pairing Process popup should and user should be able to connect without showing any

popup.

3. No Authorization popup should occur while receiving file and user should be able to receive

file directly.

5.2 BT TRANSFER TECHNIQUES APPLICABILITY

As discussed above, Bluetooth has its own set of profiles support to achieve specific

functionality. In case of File or Data Transfer PROFILES designed are OPP (OBJECT PUSH

PROFILE) and FTP (FILE TRANSFER PROFILE) both of these uses OBEX (object exchange

protocol) for transferring data.

OPP: Before we should initiate data transfer over, Bluetooth devices must be scanned and

pairing should be completed. This pairing process will generate the link key using which pairing

keys will be generated. Also once the pairing is complete OBEX protocol has its own

authorization mechanism which ensures that proper user confirmation should be taken before

accepting a file transfer. It requires user involvement and data can be transferred in fixed packet

size mutually agreed upon.

FTP: In case of FTP as well before data transfer is initiated, Bluetooth devices must be scanned

and pairing should be completed. This pairing process will generate the link key using which

pairing keys will be generated. Also once the pairing is complete OBEX protocol has its own

authorization mechanism which ensures that proper user confirmation should be taken before

accepting a file transfer. It requires user involvement and data can be transferred in fixed packet

size mutually agreed upon.

 43

BLE: Using Bluetooth Low Energy user involvement in pairing process can be avoided but with

BLUETOOTH Low energy design only small chunks of data can be transferred and support of

file transfer is not there.

Hence any of above method for FILE TRANSFER is not suitable for efficient health card

communication.

5.3 BLUETOOTH AUTOMATION ARCHITECTURE

1. All communication in Bluetooth is inherently packet based but RFCOMM emulates a serial

cable where bytes can be sent individually. This means that the application sitting on top of

RFCOMM has to detect packet frames. As we can see in BT protocol stack OBEX (Protocol for

file transfer) is sitting on top of RFCOMM. OBEX protocol has its own authorization

mechanism, this will prompt user whether to accept file or not.

To avoid authorization we have two purposed solution

 Changes should be done in BT stack at OBEX layer to avoid authorization

 Avoid using OBEX and Application should directly interact with RFCOMM.

As changes in BT stack is not possible as solution will not be universal so in our case we have

directly interacted with RFCOMM Layer.

2. Bluetooth services generally require either encryption or authentication and as such require

pairing before they let a remote device connect. During pairing, the two devices establish a

relationship by creating a shared secret known as a link key. If both devices store the same link

key, they are said to be paired or bonded. A device that wants to communicate only with a

bonded device can cryptographically authenticate the identity of the other device, ensuring it is

the same device it previously paired with. Once a link key is generated, an

authenticated Asynchronous Connection-Less (ACL) link between the devices may

be encrypted to protect exchanged data.

To authenticate remote Bluetooth device link needs to be generated and pairing should be

performed which will involve BT DEVICES SCAN and user user involvement on pairing popup.

 44

To avoid authentication at RFCOMM layer insecure RFCOMM sockets can be created.

API CreateInsecureRfcommSocket.

This will create Insecure BT Link between two BT devices and link keys will not be generated.

SocketcreateInsecureRfcommSocketToServiceRecord(UUID);

3. As user interaction has to be avoided for BT automation hence BT search for devices is not

allowed. To overcome this BT MAC address of devices is exchanged over HCE (Host CARD

Emulation) and insecure RFCOMM socket is created over exchanged MAC.

5.4RFCOMM:

The RFCOMM protocol emulates the serial cable line settings and status of an RS-232 serial port

and is used for providing serial data transfer. RFCOMM connects to the lower layers of

the Bluetooth protocol stack through the L2CAP layer.

FIGURE 12: RFCOMM IN BLUETOOH STACK [5]

 45

5.5 DESIGN:

Health care system design involves two major modules.

a) Smart Card supporting HCE for Storing data efficiently and provide required security to data

b) Wireless communication over Bluetooth which should be automated i.e. no user interaction

involved.

FIGURE 13: HEALTH_CARE SYSTEM ARCHITECTURE [1]

 46

5.6APPLICATION ARCHITECTURE

BT Automation App is based on CLIENT- SERVER communication over BT RFCOMM

socket. One device will act as CLIENT while other will act as SERVER. These devices will

communicate using insecure RFCOMM sockets is created using RFCOMM LAYER API’s.

Application will be installed on both communication devices, and have three different thread

running.

 MAIN ACTIVITY

 CLIENT THREAD

 SERVER THREAD

CLIENT THREAD:

BT device either Patient Health Card or Doctor Handheld device both can act as Client. Any

device which will initiate transfer of data will be in CLIENT ROLE.

SERVER THREAD:

BT device either Patient Health Card or Doctor Handheld device both can act as Server. Any

device which will accept transferred data will be in SERVER ROLE.

ENCRYPTION/DECRYPTION

Both communicating devices needs to have BT Automation application installed and Client and

Server thread always running on both. Device which needs to transfer data will act as CLIENT

and will initiate RFCOMM socket connection. At Client side data will be read from FILE and

will write to socket using WRITE API. At other end Server thread will read data using READ

API. Client (Doctor Device) will communicate with Server Device (Patient) device using

RFCOMM socket. Client will encrypt data using below bytes sequence at one end, while server

thread will decrypt data using same sequence.

Ist BYTE: To decide whether communication is for data to be sent or command will be sent to

Patient device

IST BYTE= 0*0-> Data

IST BYTE=0*21->command

 47

2nd BYTE: HEADER MSB ,Fixed value already known at server end.

3rd BYTE:HEADER LSB, Fixed value already known at server end.

4th to 7th BYTE: Size of Data to be transferred.

8th to 23rd BYTE: Message Digest to match image using MD5 algorithm.

Next Chunk of bytes is actual data of size 4192 bytes in each CHUNK.

5.7 USE CASES

Use case 1: “Medical Practitioner needs to Transfer Report”

In this case APPLICATION at doctor device will act as client. BT MAC address of patient

device will exchanged using HCE Tap of both devices. On press of SEND button on App, FILE

browser will open and doctor can select desired REPORT. Socket connection will be established

with Patient device which will act as SERVER and Report will be send to Patient. App on

Patient side after receiving report will save it to desired path.

Use case 2:“Medical Practitioner needs to get report from Patient Device”

In this case APPLICATION at doctor device will act as Client as well as Sever. Patient device

will be working in both role of Client and Server. On HCE tap doctor device will get BT MAC

of patient. Doctor will enter full path of report on Patient device in TEXT filed provided on

Application interface and press GET button and will act as Client. Socket’s connection will be

established and Patient device will receive command. On receiving command, patient device will

send medical report from path provided and it will now act as client will establish socket

connection to doctor device will act as SERVER.

Use case 3: “Patient needs to Transfer Report to Medical Practitioner”

In this case APPLICATION at patient device will act as client. BT MAC address of medical

practitioner device will exchanged using HCE Tap of both devices. On press of SEND button on

App, FILE browser will open and doctor can select desired REPORT. Socket connection will be

established with Patient device which will act as SERVER and Report will be send to Patient.

App on medical practitoner side after receiving report will save it to desired path.

 48

Chapter-6

SEQUENCE

DIAGRAM

=

 49

FIGURE 14: SEQUENCE DIAGRAM

MEDICAL P. SENDS REPORT

Sequence diagram for scenario where doctor send medical record to

patient device at application level (user level).

On Tap of Doctor and patient device, Bluetooth address of Patient

device is over HCE to Doctor device. automated pairing over Bluetooth

will be done between Doctor and Patient device, which requires

no user intervention. Doctor can transfer required report to patient device.

 50

FIGURE 15:SEQUENCE DIAGRAM:

SEND OPERATION AT PROTCOL

Doctor and patient devices will communicate

over Bluetooth RFCOMM socket. Two threads (client and Server) will run

at both side. Client thread will send data and Server thread will listen for data.

Bytes sequence as shown in above diagram will be transferred from client(Patient

device) side which will be decrypted at server side (Doctor) side and report will

be received.

 51

FIGURE 16: SEQUENCE DIAGRAM

MEDICAL P. GETS REPORT

On Tap of Doctor and patient device, Bluetooth address of Patient

device is over HCE to Doctor device. Automated pairing over Bluetooth

will be done between Doctor and Patient device, which requires

no user intervention. Doctor will send path of report to Patient device

over Bluetooth, from Patient device, desired report will transfer back to

doctor device.

 52

FIGURE 17::SEQUENCE DIAGRAM:

 GET REPORT PROTOCOL LEVEL

Doctor and patient devices will communicate

Over Bluetooth RFCOMM socket. Two threads (Client and Server) will run

at both side. Client thread will send data and Server thread will listen for data.

. First, sequence of bytes as shown above will be transfer from Doctor to patient

device to transfer command and then from Patient to Doctor device to transfer

Report

 53

Chapter-7

AUTOMATION APP USER

INERACTION

 54

FIGURE18: APPLICATION MAIN PAGE

Medical Practitioner has option to Bluetooth TURN ON, Bluetooth

TURN OFF. A Help Button will be provided to guide user. Medical

Practitioner has to enter Bluetooth MAC address of patient device.

On Pressing SEND button File Browser open to select medical REPORT,

Which needs to be transferred to patient device. Once this App is integrated

with HCE module BT address of patient device will be received through

HCE on tap of devices and report will be shared over Bluetooth.

 55

FIGURE 19: HELP BUTTON

HELP Button will guide the user about how to use Application

 56

FIGURE20: BT ON BUTTON

It is provided to Turn ON Bluetooth of Medical Practitioner

device before transferring reports to remote device.

 57

FIGURE21: BT OFF BUTTON

It is provided to Turn OFF Bluetooth of Medical Practitioner

device in case it is not in use.

 58

FIGURE 22: Text Field for Remote device BT MAC Address

Medical practitioner has to enter Bluetooth MAC address of patient

Device where he wants to wants to Send or Get Reports from.

 59

FIGURE 23:SEND Button to Send Reports

Medical practitioner has press SEND after entering MAC address of Patient

Device.This will open a File Browser to select Report which medical

practitioner wants totransfer to Patient device.

 60

FIGURE 24: Sending Progress Bar

On Press of SEND Button Reports will be sent and progress bar will

be shown.

 61

FIGURE 25: File Sent Success Toast

Once Reports are sent successfully SENT SUCCESS Toast will

be shown.

 62

FIGURE 26: File Received Success Toast on receiving side

Once Reports are sent successfully received successfully toast

will be shown on patient side.

 63

FIGURE 27: GET Reports Operation

Medical practitioner has to enter Bluetooth MAC address of patient device

and Report’s Full path on Patient device along with name of report to

GET the Report from remote Patient device.

 64

FIGURE 28: GET BUTTON PRESS

Once Medical practitioner Press GET Button after entering MAC

address of remote device and full path of Report along with name a

command will be sent to patient device which will indicate that patient

has to transfer report to medical practitioner device from the path received

from medical practitioner device which medical practitioner entered on

Text field.

 65

FIGURE 29:FILE GET SUCCESS

On Successful sent of Report from Patient device on GET
Operation success Toast will be shown.

 66

FIGURE 30: GET OPEARTION SUCCESS

On GET Operation Success toast of File received successfully

will be shown on Medical practitioner device.

 67

Chapter-8

CONCLUSION

 68

Introduction

Millions of people suffer from medical conditions that should be made known to healthcare

practitioners prior to treatment. Paramedics and emergency room doctors cannot provide optimal

care without sufficient knowledge of a patient’s medical history. Lacking patient information

such as allergies, current prescriptions, and pre-existing conditions, medical professionals are

often forced to either delay treatment or rely on instincts

In this thesis work, Bluetooth Automation App has been developed which enables medical

practitioner and Patient to exchange MEDICAL information wirelessly without any complexity

and minimal user interaction. Health care system as developed in this thesis allows individuals to

store personal medical information using portable electronic devices.

The Health Care System architecture is designed to allow an individual to carry personal

electronic medical information on a wireless handheld device such as a cell phone, PDA, or

enhanced smart card. Medical workers can obtain this information wirelessly using handheld

devices, desktop computers, network access points, etc. In this way, patients become an active

component of the medical information infrastructure, facilitating better delivery of medical care.

Results

Medical records of patient has been successfully transferred from Medical practitioner device to

patient device using BT automation application and HCE also medical reports of patient from

patient device has been successfully retrieved at doctor device using BT automation application.

These operations required no Human interference and BT pairing and Transfer done

automatically with help of Host Card Emulation.

 69

Chapter-9

FUTURE WORK

 70

Health Care system involving Bluetooth automation has ensured that Health Data can be

efficiently exchanged between medical practitioner and patient without complex infrastructure

and minimal user interaction.

Medical information is highly confidential. All sensitive data must be secure from unauthorized

Access. Initial prototypes include security features such as secure key-exchange and strong data

encryption as well as multiple levels of access to information via password protection.

In Bluetooth automation RFCOMM communication has been done directly and standard OBEX

protocol of data transfer has not been used. Also BT pairing procedure has been bypassed which

generates LINK KEY which is used for encrypting data transferred over Bluetooth.

Hence work will be done in future to develop efficient encryption scheme to be used for

transferring data over BT automation.

One of the primary vulnerabilities inherent in wireless communication is the threat of

eavesdropping. Experts suggest that this is a significant danger, even if two devices are

communicating only at short range. Bluetooth provides a limited number of low-level security

measures to prevent eavesdropping, and more advanced security procedures (e.g., public keys,

certificates) can be implemented within the Health care System to provide greater protection. To

authenticate Patient and medical practitioner devices a mechanism will be developed to store

predefined keys on both sides which will be used in authenticating devices.

Feasibility study of using BT Low energy in BT Health care system will be done as BT Low

energy is inherently designed to avoid pairing process still it has its own security protocol SMP

to ensure data transferred securely over air.

 71

Chapter-10

SOURCE CODE

 72

MainActivity.java: This file is the main application FILE which will have implementation of all

APPLICATION INTERFACE and it will create CLIENT and SERVER Thread. It will have

implementation of event handling of CLIENT and SEVER Thread.

package com.example.ronakb3.share;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.ProgressDialog;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.database.Cursor;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.net.Uri;

import android.os.Bundle;

import android.os.Environment;

import android.os.Handler;

import android.os.Message;

import android.provider.MediaStore;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Spinner;

import android.widget.Toast;

import java.io.ByteArrayOutputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.net.URISyntaxException;

import java.util.Random;

public class MainActivity extends Activity {

private static final String TAG = "BTPHOTO/MainActivity";

private Spinner deviceSpinner;

private ProgressDialog progressDialog;

 BluetoothAdapter BA = BluetoothAdapter.getDefaultAdapter();

 BluetoothDevice device;

 EditText edit;

 EditText name;

 String addr;

static String command;

 String FileName;

 String createfile;

 73

boolean is_GET;

boolean is_Server;

private static final int FILE_SELECT_CODE = 0;

 @Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

 MainApplication.clientHandler = new Handler() {

 @Override

public void handleMessage(Message message) {

Log.i(TAG, "Value of COMMAND,GETFLE are " + is_GET + is_Server);

switch (message.what) {

case MessageType.READY_FOR_DATA: {

if (is_GET) {

Log.i(TAG, "GET OPERATION: Preseed Need to SEND Command Here");

name = (EditText) findViewById(R.id.editFile);

command = name.getText().toString();

Log.i(TAG, "FILE NAME TO RECEIVE IS " + command);

 Message messagedata = new Message();

 messagedata.obj = command.getBytes();

 MainApplication.serverThread.is_file_cmd =

true;

 is_GET = false;

MainApplication.clientThread.incomingHandler.sendMessage(messagedata);

 } else if

(MainApplication.clientThread.server) { //use clientthread.server if

this does not work

Log.i(TAG, "GET OPERATION: FILE command recived from Remote Need to

SEND file");

Log.v(TAG, "FILE NAME RECIVED IN CLIENT THREAD IS" + FileName);

Log.v(TAG, "FILE NAME RECIVED IN CLIENT THREAD USING THread Var." +

MainApplication.clientThread.RecvdFile);

readFile(MainApplication.clientThread.RecvdFile);//Get The File From

Fixed Folder Here.

 is_Server = false;

 } else {

Log.i(TAG, "SEND OPERATION: Need to SEND NORMAL File");

 Intent intent = new

Intent(Intent.ACTION_GET_CONTENT);

intent.setType("*/*");

intent.addCategory(Intent.CATEGORY_OPENABLE);

try {

startActivityForResult(

Intent.createChooser(intent, "Select a File to Upload"),

 FILE_SELECT_CODE);

 } catch

(android.content.ActivityNotFoundException ex) {

 74

 // Potentially direct the user to the

Market with a Dialog

Log.d("asa", "asa");

 }

 }

break;

 }

case MessageType.COULD_NOT_CONNECT: {

Toast.makeText(MainActivity.this, "COULD NOT CONNECT TO DEVICE",

Toast.LENGTH_SHORT).show();

break;

 }

case MessageType.SENDING_DATA: {

progressDialog = new ProgressDialog(MainActivity.this);

progressDialog.setMessage("SENDING FILE...");

progressDialog.setProgressStyle(ProgressDialog.STYLE_SPINNER);

progressDialog.show();

break;

 }

case MessageType.SENDING_COMMAND: {

Toast.makeText(MainActivity.this, "SENT COMMAND TO GET-FILE",

Toast.LENGTH_SHORT).show();

break;

 }

case MessageType.DATA_SENT_OK: {

if (progressDialog != null) {

progressDialog.dismiss();

progressDialog = null;

 }

Toast.makeText(MainActivity.this, "FILE SENT SUCESSFULLY",

Toast.LENGTH_SHORT).show();

finish();

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

startActivity(i);

break;

 }

case MessageType.DIGEST_DID_NOT_MATCH: {

Toast.makeText(MainActivity.this, "FILE SENT",

Toast.LENGTH_SHORT).show();

finish();

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

startActivity(i);

break;

 }

 75

case MessageType.FILE_NOT_PRESENT: {

Toast.makeText(MainActivity.this, "REQUESTED FILE NOT PRESENT",

Toast.LENGTH_SHORT).show();

finish();

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

startActivity(i);

break;

 }

 }

 }

 };

 MainApplication.serverHandler = new Handler() {

 @Override

public void handleMessage(Message message) {

switch (message.what) {

case MessageType.DATA_RECEIVED: {

if (progressDialog != null) {

progressDialog.dismiss();

progressDialog = null;

 }

 BitmapFactory.Options options = new

BitmapFactory.Options();

 options.inSampleSize = 2;

 Bitmap image =

BitmapFactory.decodeByteArray(((byte[]) message.obj), 0, ((byte[])

message.obj).length, options);

 String root =

Environment.getExternalStorageDirectory().toString();

 File myDir = new File(root + "/req_images");

myDir.mkdirs();

 Random generator = new Random();

int n = 10000;

 File file;

 n = generator.nextInt(n);

if(MainApplication.serverThread.is_file_cmd) {

Log.v(TAG, "Parse the file name from PATH: " + command);

getfileName(command);//"Image-" + n + ".jpg";

Log.v(TAG, "File Name to Create is: " + createfile);

file = new File(myDir, createfile);

Log.i(TAG, "" + file);

MainApplication.serverThread.is_file_cmd=false;

 }

else {

 String fname = "Image-" + n + ".jpg";

 76

Log.v(TAG, "File Name to Create is: " + fname);

file = new File(myDir, fname);

 }

Log.i(TAG, "" + file);

if (file.exists())

file.delete();

try {

 FileOutputStream out = new

FileOutputStream(file);

image.compress(Bitmap.CompressFormat.JPEG, 90, out);

out.flush();

out.close();

 } catch (Exception e) {

e.printStackTrace();

 }

Toast.makeText(MainActivity.this, "FILE RECEIVED SUCESSFULY",

Toast.LENGTH_SHORT).show();

finish();

 Intent i = new

Intent(getApplicationContext(),MainActivity.class);

startActivity(i);

break;

 }

case MessageType.DIGEST_DID_NOT_MATCH:

 {

Toast.makeText(MainActivity.this, "FILE RECEIVED",

Toast.LENGTH_SHORT).show();

break;

 }

case MessageType.DATA_PROGRESS_UPDATE: {

 // some kind of update

 MainApplication.progressData = (ProgressData)

message.obj;

double pctRemaining = 100 - (((double)

MainApplication.progressData.remainingSize /

MainApplication.progressData.totalSize) * 100);

 /* if (progressDialog == null) {

progressDialog = new ProgressDialog(MainActivity.this);

progressDialog.setMessage("Receiving photo...");

progressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);

progressDialog.setProgress(0);

progressDialog.setMax(100);

progressDialog.show();

 }*/

 // progressDialog.setProgress((int)

Math.floor(pctRemaining));

break;

 }

case MessageType.INVALID_HEADER: {

 77

Toast.makeText(MainActivity.this, "Photo was sent, but the header was

formatted incorrectly", Toast.LENGTH_SHORT).show();

break;

 }

case MessageType.CMD_RECEIVED: {

Log.i(TAG, "INSIDE SERVER HANDLER: CMD RECIVED");

if (MainApplication.clientThread != null) {

MainApplication.clientThread.cancel();

 }

 is_Server=true;

byte[] payload = (byte[]) message.obj;

 FileName=new String (payload);

 // MainApplication.clientThread.RecvdFile=new

String (payload); //BB_CH_25

Log.v(TAG, "FILE NAME RECIVED IN SERVER THREAD IS"+FileName);

device = BA.getRemoteDevice(ServerThread.remoteaddr);

if (MainApplication.clientThread != null) {

MainApplication.clientThread.cancel();

 }

 MainApplication.clientThread = new

ClientThread(device, MainApplication.clientHandler, false,true);

 MainApplication.clientThread.RecvdFile=new

String (payload); //BB_CH_25

MainApplication.clientThread.start();

break;

 }

 }

 }

 };

if (MainApplication.pairedDevices != null) {

if (MainApplication.serverThread == null) {

Log.v(TAG, "Starting server thread. Able to accept photos.");

 MainApplication.serverThread = new

ServerThread(MainApplication.adapter, MainApplication.serverHandler);

MainApplication.serverThread.start();

 }

 }

if (MainApplication.pairedDevices != null)

 {

edit = (EditText) findViewById(R.id.edit);

edit.setText("00:00:00:00:00:00");

addr = edit.getText().toString();

 Button clientButton = (Button)

findViewById(R.id.clientButton);

 Button serverButton = (Button)

findViewById(R.id.serverButton);

clientButton.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View view) {

edit = (EditText) findViewById(R.id.edit);

 78

addr = edit.getText().toString();

device = BA.getRemoteDevice(addr);

 is_GET=false;

Log.v(TAG, "Starting client thread in SEND");

if (MainApplication.clientThread != null) {

MainApplication.clientThread.cancel();

 }

 MainApplication.clientThread = new

ClientThread(device, MainApplication.clientHandler, false, false);

MainApplication.clientThread.start();

 }

 });

serverButton.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View view) {

edit = (EditText) findViewById(R.id.edit);

name = (EditText) findViewById(R.id.editFile);

addr = edit.getText().toString();

device = BA.getRemoteDevice(addr);

 is_GET=true;

Log.v(TAG, "Starting client thread in GET");

Log.v(TAG, "FILE NAME ENTERED BY usr is " +

name.getText().toString());

if (MainApplication.clientThread != null) {

MainApplication.clientThread.cancel();

 }

 MainApplication.clientThread = new

ClientThread(device, MainApplication.clientHandler,true,false);

MainApplication.clientThread.start();

 }

 });

 } else {

Toast.makeText(this, "Bluetooth is not enabled or supported on this

device", Toast.LENGTH_LONG).show();

 }

 }

 @Override

protected void onStop() {

super.onStop();

if (progressDialog != null) {

progressDialog.dismiss();

progressDialog = null;

 }

 }

 @Override

protected void onResume() {

super.onResume();

 }

 79

 @Override

protected void onActivityResult(int requestCode, int resultCode,

Intent data) {

super.onActivityResult(requestCode, resultCode, data);

switch (requestCode) {

case FILE_SELECT_CODE:

if (resultCode == RESULT_OK) {

 // Get the Uri of the selected file

 Uri uri = data.getData();

Log.d(TAG, "File Uri: " + uri.toString());

 // Get the path

 String path = null;

try {

path = getPaths(this, uri);

 } catch (URISyntaxException e) {

e.printStackTrace();

 }

Log.d(TAG, "File Path: " + path);

 File file = new File(path);

 BitmapFactory.Options options = new

BitmapFactory.Options();

 options.inSampleSize = 2;

 Bitmap image =

BitmapFactory.decodeFile(file.getAbsolutePath(), options);

 ByteArrayOutputStream compressedImageStream = new

ByteArrayOutputStream();

image.compress(Bitmap.CompressFormat.JPEG,

MainApplication.IMAGE_QUALITY, compressedImageStream);

byte[] compressedImage = compressedImageStream.toByteArray();

Log.v(TAG, "Compressed image size: " + compressedImage.length);

 Message message = new Message();

 message.obj = compressedImage;

MainApplication.clientThread.incomingHandler.sendMessage(message);

 }

break;

 }

super.onActivityResult(requestCode, resultCode, data);

 } public String getPaths(Context context, Uri uri) throws

URISyntaxException {

 Cursor cursor = getContentResolver().query(uri, null,

null, null, null);

cursor.moveToFirst();

 String document_id = cursor.getString(0);

 document_id =

document_id.substring(document_id.lastIndexOf(":")+1);

 80

cursor.close();

cursor = getContentResolver().query(

android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI,

null, MediaStore.Images.Media._ID + " = ? ", new

String[]{document_id}, null);

cursor.moveToFirst();

 String path =

cursor.getString(cursor.getColumnIndex(MediaStore.Images.Media.DATA));

cursor.close();

return path;

 }

public void readFile(String filename)

 {

Log.v(TAG, "Inside readFile: ");

boolean isfile_present;

byte[] compressedImage =null;

 String root =

Environment.getExternalStorageDirectory().toString();

 //String cmd="Test.jpg";

Log.v(TAG, "FILE NAME received inreaFile" +filename);

 //File myDir = new File(root);

 //Log.v(TAG, "DIRECTORY is" +myDir);

 // myDir.mkdirs();

 File file = new File(root +"/"+ filename);

Log.i(TAG, "" + file);

 isfile_present=file.exists();

if(isfile_present){

 BitmapFactory.Options options = new

BitmapFactory.Options();

 options.inSampleSize = 2;

 Bitmap image =

BitmapFactory.decodeFile(file.getAbsolutePath(), options);

 ByteArrayOutputStream compressedImageStream = new

ByteArrayOutputStream();

image.compress(Bitmap.CompressFormat.JPEG,

MainApplication.IMAGE_QUALITY, compressedImageStream);

compressedImage = compressedImageStream.toByteArray();

Log.v(TAG, "Compressed image size: " + compressedImage.length);

 }

 Message message = new Message();

 message.obj = compressedImage;

MainApplication.clientThread.incomingHandler.sendMessage(message);

 }

public void getfileName(String Path)

 {

Log.v(TAG, "Inside Fuction getfileName Path is: " +Path);

 81

createfile =Path.substring(Path.lastIndexOf("/") + 1);

if(createfile==null)

createfile=Path;

Log.v(TAG, "File Name from Path is: " + createfile);

 }

public void on(View view){

if (!BA.isEnabled())

 {

BA.enable();

Toast.makeText(getApplicationContext(),"Turned on"

,Toast.LENGTH_LONG).show();

 }

else

 {

Toast.makeText(getApplicationContext(),"Already on",

 Toast.LENGTH_LONG).show();

 }

 }

public void off(View view){

BA.disable();

Toast.makeText(getApplicationContext(),"Turned off" ,

 Toast.LENGTH_LONG).show();

 }

public void help(View view)

 {

new AlertDialog.Builder(this)

 .setTitle("HELP")

 .setMessage("MAKE SURE THE BLUETOOTH OF REMOTE DEVICE

IS ON")

 .setPositiveButton(android.R.string.yes, new

DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

dialog.cancel();

 }

 })

 .setIcon(android.R.drawable.ic_dialog_alert)

 .show();

 }

}

 82

ClientThread.java: This file be implement Client thread for socket communication.
It will maintain different STATE of client and handling of different EVENTS that Client thread can
receive

//CODE For CLIENT THREAD

package com.example.ronakb3.share;

import android.bluetooth.BluetoothDevice;

import android.bluetooth.BluetoothSocket;

import android.os.Handler;

import android.os.Looper;

import android.os.Message;

import android.util.Log;

import android.widget.Toast;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.UUID;

import java.lang.reflect.Method;

public class ClientThread extends Thread {

private final String TAG = "android-btxfr/ClientThread";

private /*final*/ BluetoothSocket socket;

private final Handler handler;

public Handler incomingHandler;

public boolean get;

public static boolean server;

public static String RecvdFile;

public BluetoothDevice tempdevice;

public ClientThread(BluetoothDevice device, Handler handler, boolean

is_get, boolean is_server) {

 BluetoothSocket tempSocket = null;

 this.handler = handler;

Log.v(TAG, "Inside Client thread GET value is" + is_get);

get=is_get;

server=is_server;

tempdevice=device;

try {

Log.v(TAG, "Bluetooth Address of remote device b4 creating Client

thread is " + device.getAddress());

tempSocket =

device.createInsecureRfcommSocketToServiceRecord(UUID.fromString(Const

ants.UUID_STRING));

if(tempSocket==null)

Log.v(TAG, "Client Socket Creatin FAIL");

 83

 } catch (Exception e) {

Log.e(TAG, e.toString());

 }

 this.socket = tempSocket;

 }

public void run() {

try {

 //Log.v(TAG, "Opening client socket");

Log.v(TAG, "Opening client socket: BT Address of remote device" +

socket.getRemoteDevice().getAddress());

socket.connect();

Log.v(TAG, "Connection established");

 } catch (IOException ioe) {

try {

Log.e(TAG, ioe.toString());

Log.v(TAG,"Connect FAIL: Trying fallback ...");

 this.socket =(BluetoothSocket)

tempdevice.getClass().getMethod("createInsecureRfcommSocket",

new Class[]{int.class}).invoke(tempdevice,1);

socket.connect();

Log.v(TAG, "Connected in Fall back");

 }

catch (Exception e) {

Log.v(TAG, "Connection Failed in Fall BACK!");

try {

socket.close();

 } catch (IOException ce) {

Log.e(TAG, "Socket close exception: " + ce.toString());

 }

 }

handler.sendEmptyMessage(MessageType.COULD_NOT_CONNECT);

 }

Looper.prepare();

incomingHandler = new Handler(){

 @Override

public void handleMessage(Message message)

 {

Log.v(TAG, "Inside Client Thread Handle Data");

if (message.obj != null) {

Log.v(TAG, "Handle received data to send");

byte[] payload = (byte[]) message.obj;

try {

Log.v(TAG, "TRY: Handle received data to send");

 84

 OutputStream outputStream =

socket.getOutputStream();

 // Send the header control first

if (get) {

byte[] bytes = new byte[32];

Log.v(TAG, "Inside Client GET , need to send one Extra byte");

handler.sendEmptyMessage(MessageType.SENDING_COMMAND);

outputStream.write(0x21);

 // String cmd = "TEST.jpg";// logic to

convert to 32 byte command file name

 // bytes = cmd.getBytes();

bytes=payload;

outputStream.write(payload);

get=false;

 } else {

handler.sendEmptyMessage(MessageType.SENDING_DATA);

outputStream.write(0x00);

outputStream.write(Constants.HEADER_MSB);

outputStream.write(Constants.HEADER_LSB);

Log.v(TAG, "Inside CLIENT SEND ");

Log.v(TAG, "TRY: Write HEADER to Scket data to send");

 // write size

outputStream.write(Utils.intToByteArray(payload.length));

Log.v(TAG, "TRY: Write Digest to Scket data to send");

 // write digest

byte[] digest = Utils.getDigest(payload);

outputStream.write(digest);

Log.v(TAG, "TRY: Write payload to Scket data to send");

 // now write the data

outputStream.write(payload);

outputStream.flush();

Log.v(TAG, "Data sent. Waiting for return digest as confirmation");

 InputStream inputStream =

socket.getInputStream();

byte[] incomingDigest = new byte[16];

int incomingIndex = 0;

try {

while (true) {

byte[] header = new byte[1];

inputStream.read(header, 0, 1);

incomingDigest[incomingIndex++] = header[0];

if (incomingIndex == 16) {

if (Utils.digestMatch(payload, incomingDigest)) {

Log.v(TAG, "Digest matched OK. Data was received OK.");

ClientThread.this.handler.sendEmptyMessage(MessageType.DATA_SENT_OK);

 } else {

 85

Log.e(TAG, "Digest did not match. Might want to resend.");

ClientThread.this.handler.sendEmptyMessage(MessageType.DIGEST_DID_NOT_

MATCH);

 }

break;

 }

 }

 } catch (Exception ex) {

Log.e(TAG, ex.toString());

 }

 }

Log.v(TAG, "Closing the client socket.");

socket.close();

 } catch (Exception e) {

Log.e(TAG, e.toString());

 }

 }

else{

ClientThread.this.handler.sendEmptyMessage(MessageType.FILE_NOT_PRESEN

T);

Log.v(TAG, "Closing the client socket in ELSE condition.");

try {

socket.close();

}catch(IOException e)

 {

Log.e(TAG, "Socket Close faile in else" + e.toString());

 }

 }

 }

 };

handler.sendEmptyMessage(MessageType.READY_FOR_DATA);

Looper.loop();

 }

public void cancel() {

try {

if (socket.isConnected()) {

socket.close();

 }

 } catch (Exception e) {

Log.e(TAG, e.toString());

 }

 }

}

 86

Serverthread.java: This file will implement server Thread functionlity

//code

package com.example.ronakb3.share;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothServerSocket;

import android.bluetooth.BluetoothSocket;

import android.os.Handler;

import android.util.Log;

import java.io.IOException;

import java.util.UUID;

public class ServerThread extends Thread {

private final String TAG = "android-btxfr/ServerThread";

private final BluetoothServerSocket serverSocket;

private Handler handler;

public static String remoteaddr;

public static boolean is_file_cmd=false;

public ServerThread(BluetoothAdapter adapter, Handler handler) {

 this.handler = handler;

 BluetoothServerSocket tempSocket = null;

try {

tempSocket =

adapter.listenUsingInsecureRfcommWithServiceRecord(Constants.NAME,

UUID.fromString(Constants.UUID_STRING));

 } catch (IOException ioe) {

Log.e(TAG, ioe.toString());

 }

serverSocket = tempSocket;

 }

public void run() {

 BluetoothSocket socket = null;

if (serverSocket == null)

 {

Log.d(TAG, "Server socket is null - something went wrong with

Bluetooth stack initialization?");

return;

 }

while (true) {

try {

Log.v(TAG, "Opening new server socket");

socket = serverSocket.accept();

remoteaddr= socket.getRemoteDevice().getAddress();

Log.d(TAG, "SERVER SIDE: Bluetoth address of remote is" +remoteaddr);

try {

 87

Log.v(TAG, "Got connection from client. Spawning new data transfer

thread.");

 DataTransferThread dataTransferThread = new

DataTransferThread(socket, handler);

dataTransferThread.start();

 } catch (Exception e) {

Log.e(TAG, e.toString());

 }

 } catch (IOException ioe) {

Log.v(TAG, "Server socket was closed - likely due to cancel method on

server thread");

break;

 }

 }

 }

public void cancel() {

try {

Log.v(TAG, "Trying to close the server socket");

serverSocket.close();

 } catch (Exception e) {

Log.e(TAG, e.toString());

 }

 }

}

DataTransferThread.java: This file will implement data transfer thread which will do data

handling of all received data i.e. data received at Server side.

// code for data transfer thread

package com.example.ronakb3.share;

import android.bluetooth.BluetoothSocket;

import android.os.Handler;

import android.os.Message;

import android.util.Log;

import java.io.ByteArrayOutputStream;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.Arrays;

class DataTransferThread extends Thread {

private final String TAG = "android-btxfr/DataTransferThread";

private final BluetoothSocket socket;

 88

private Handler handler;

public DataTransferThread(BluetoothSocket socket, Handler handler) {

 this.socket = socket;

 this.handler = handler;

 }

public void run() {

try {

Log.d("RONAK","24");

 InputStream inputStream = socket.getInputStream();

boolean waitingForHeader = true;

boolean cmd=false;

 ByteArrayOutputStream dataOutputStream = new

ByteArrayOutputStream();

byte[] headerBytes = new byte[23];

byte[] cmdbytes = new byte[32];

byte[] digest = new byte[16];

int headerIndex = 0;

byte[] datacmd = new byte[32];

 ProgressData progressData = new ProgressData();

while (true) {

if (waitingForHeader && !cmd) {

Log.d("RONAK", "25");

byte[] header = new byte[1];

inputStream.read(header, 0, 1);

Log.v(TAG, "Received Command Byte: " + header[0]);

if(header[0]==0x21 && (headerIndex==0))

 {

Log.v(TAG, "INSIDE COMMAND CONDITION SERVER: " + header[0]);

cmd=true;

Log.v(TAG, "Header Received. Now obtaining length");

byte[] buffer = new byte[32];

int bytesRead = inputStream.read(buffer);

Log.v(TAG, "Read cmd" + bytesRead + " bytes into buffer");

dataOutputStream.write(buffer, 0, bytesRead);

datacmd= dataOutputStream.toByteArray();

break;

 }

if(header[0]==0x0 && (headerIndex==0))

 {

Log.v(TAG, "INSIDE NO COMMAND CONDITION SERVER: " + header[0]);

cmd=false;

 }

Log.v(TAG, "Received Header Byte: " + header[0]);

headerBytes[headerIndex++] = header[0];

if (headerIndex == 23)

 {

 89

Log.d("RONAK","26");

if ((headerBytes[1] == Constants.HEADER_MSB) && (headerBytes[2] ==

Constants.HEADER_LSB)) {

Log.v(TAG, "Header Received. Now obtaining length");

byte[] dataSizeBuffer = Arrays.copyOfRange(headerBytes, 3, 7);

 progressData.totalSize =

Utils.byteArrayToInt(dataSizeBuffer);

 progressData.remainingSize =

progressData.totalSize;

Log.v(TAG, "Data size: " + progressData.totalSize);

digest = Arrays.copyOfRange(headerBytes, 7, 23);

waitingForHeader = false;

sendProgress(progressData);

 } else {

Log.e(TAG, "Did not receive correct header. Closing socket");

socket.close();

handler.sendEmptyMessage(MessageType.INVALID_HEADER);

break;

 }

 }

 } else

 {

 // Read the data from the stream in chunks

byte[] buffer = new byte[Constants.CHUNK_SIZE];

Log.v(TAG, "Waiting for data. Expecting " +

progressData.remainingSize + " more bytes.");

int bytesRead = inputStream.read(buffer);

Log.v(TAG, "Read " + bytesRead + " bytes into buffer");

dataOutputStream.write(buffer, 0, bytesRead);

 progressData.remainingSize -= bytesRead;

sendProgress(progressData);

if (progressData.remainingSize <= 0) {

Log.v(TAG, "Expected data has been received.");

break;

 }

 }

 }

 // check the integrity of the data

if(cmd)

 {

 Message message = new Message();

 message.obj = datacmd;

 String val = new String (datacmd);

Log.v(TAG, "Inside CMD recived VALUE of CMD is"+ val);

 message.what = MessageType.CMD_RECEIVED;

handler.sendMessage(message);

cmd=false;

 90

 }

else {

final byte[] data = dataOutputStream.toByteArray();

if (Utils.digestMatch(data, digest)) {

Log.v(TAG, "Digest matches OK.");

 Message message = new Message();

 message.obj = data;

 message.what = MessageType.DATA_RECEIVED;

handler.sendMessage(message);

 // Send the digest back to the client as a

confirmation

Log.v(TAG, "Sending back digest for confirmation");

 OutputStream outputStream =

socket.getOutputStream();

outputStream.write(digest);

 } else {

Log.e(TAG, "Digest did not match. Corrupt transfer?");

handler.sendEmptyMessage(MessageType.DIGEST_DID_NOT_MATCH);

 }

Log.v(TAG, "Closing server socket");

socket.close();

 }

 // Log.v(TAG, "Closing server socket");

 //socket.close();

 } catch (Exception ex) {

Log.d(TAG, ex.toString());

 }

 }

private void sendProgress(ProgressData progressData) {

 Message message = new Message();

 message.obj = progressData;

 message.what = MessageType.DATA_PROGRESS_UPDATE;

handler.sendMessage(message);

 }

}

 91

Util.java: This files have all utility functions defined

//code for utils.java

package com.example.ronakb3.share;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.Environment;

import android.os.Message;

import android.util.Log;

import java.io.ByteArrayOutputStream;

import java.io.File;

import java.security.MessageDigest;

import java.util.Arrays;

class Utils {

private final static String TAG = "android-btxfr/Utils";

public static byte[] intToByteArray(int a) {

byte[] ret = new byte[4];

ret[3] = (byte) (a & 0xFF);

ret[2] = (byte) ((a >> 8) & 0xFF);

ret[1] = (byte) ((a >> 16) & 0xFF);

ret[0] = (byte) ((a >> 24) & 0xFF);

return ret;

 }

public static int byteArrayToInt(byte[] b) {

return (b[3] & 0xFF) + ((b[2] & 0xFF) << 8) + ((b[1] & 0xFF) << 16) +

((b[0] & 0xFF) << 24);

 }

public static boolean digestMatch(byte[] imageData, byte[] digestData)

{

return Arrays.equals(getDigest(imageData), digestData);

 }

public static byte[] getDigest(byte[] imageData) {

try {

 MessageDigest messageDigest =

MessageDigest.getInstance("MD5");

return messageDigest.digest(imageData);

 } catch (Exception ex) {

Log.e(TAG, ex.toString());

throw new UnsupportedOperationException("MD5 algorithm not available

on this device.");

 }

 }

}

 92

Messagetype.java: This file have all messages registered which is handled at CLEINT and
SERVER THREAD

//Code for Messagetype.java

package com.example.ronakb3.share;

public class MessageType

{

public static final int DATA_SENT_OK = 0x00;

public static final int READY_FOR_DATA = 0x01;

public static final int DATA_RECEIVED = 0x02;

public static final int DATA_PROGRESS_UPDATE = 0x03;

public static final int SENDING_DATA = 0x04;

public static final int CMD_RECEIVED = 0x05;

public static final int FILE_NOT_PRESENT=0x06;

public static final int SENDING_COMMAND=0x07;

public static final int DIGEST_DID_NOT_MATCH = 0x50;

public static final int COULD_NOT_CONNECT = 0x51;

public static final int INVALID_HEADER = 0x52;

}

Constants.java: This file have all the constants values defined

// code for constants.java

package com.example.ronakb3.share;

class Constants

{

protected static final int CHUNK_SIZE = 4192;

protected static final int HEADER_MSB = 0x10;

protected static final int HEADER_LSB = 0x55;

protected static final int REQUEST_BROWSE = 0x55;

protected static final String NAME = "ANDROID-BTXFR";

protected static final String UUID_STRING = "00001101-0000-1000-8000-

00805F9B34FB;//AC";

protected static final int CMD_LEN = 20;

}

 93

activity_main.xml: xml file for Application layout

// code for activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

 android:background="@drawable/d"

>

<ImageView

android:layout_width="fill_parent"

android:layout_height="fill_parent"

 android:id="@+id/imageView"

android:layout_gravity="center_vertical|left"

 android:layout_below="@+id/clientButton"

 android:layout_toRightOf="@+id/textView"

 android:layout_toEndOf="@+id/textView" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:textAppearance="?android:attr/textAppearanceLarge"

android:text="ENTER THE BT ADDRESS"

 android:id="@+id/textView"

android:layout_centerVertical="true"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

android:textColor="#000000"/>

<EditText

android:layout_width="wrap_content"

android:layout_height="wrap_content"

 android:id="@+id/edit"

android:textColor="#000000"

android:layout_alignParentLeft="true"

android:layout_marginTop="10dp"

android:layout_marginLeft="20dp"

android:layout_marginRight="20dp"

 android:layout_below="@+id/textView"

 android:layout_alignRight="@+id/imageView"

 android:layout_alignEnd="@+id/imageView" />

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="SEND FILE"

 android:id="@+id/clientButton"

 94

android:layout_gravity="center"

 android:layout_below="@+id/edit"

android:layout_centerHorizontal="true"

android:textColor="#000000"

android:background="#008880"

 />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:textAppearance="?android:attr/textAppearanceLarge"

android:layout_marginTop="20dp"

android:text="ENTER THE FILE NAME"

 android:id="@+id/File"

android:textColor="#000000"

 android:layout_alignTop="@+id/imageView"

 />

<EditText

android:layout_width="wrap_content"

android:layout_height="wrap_content"

 android:id="@+id/editFile"

android:textColor="#000000"

 android:layout_below="@+id/File"

android:layout_alignParentLeft="true"

android:layout_marginTop="10dp"

android:layout_alignParentStart="true"

android:layout_marginRight="20dip"

android:layout_marginLeft="20dip"

 android:layout_alignRight="@+id/imageView"

 android:layout_alignEnd="@+id/imageView" />

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="GET FILE"

 android:id="@+id/serverButton"

android:layout_gravity="center"

android:layout_centerHorizontal="true"

android:textColor="#000000"

android:background="#008880"

 android:layout_below="@+id/editFile"

 />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:textAppearance="?android:attr/textAppearanceLarge"

android:text="SHARE VIA BLUETOOTH"

 android:id="@+id/textView2"

android:layout_alignParentTop="true"

android:layout_centerHorizontal="true"

 95

android:textColor="#000000"/>

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="TURN ON"

 android:id="@+id/button"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

android:layout_marginTop="75dp"

android:textColor="#000000"

android:background="#008880"

android:onClick="on"/>

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="TURN OFF"

 android:id="@+id/button2"

 android:layout_alignTop="@+id/button"

 android:layout_alignRight="@+id/imageView"

 android:layout_alignEnd="@+id/imageView"

android:textColor="#000000"

android:background="#008880"

android:onClick="off"/>

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="HELP"

 android:id="@+id/button3"

android:textColor="#000000"

android:background="#008880"

android:onClick="help"

 android:layout_below="@+id/button"

android:layout_centerHorizontal="true"

android:elegantTextHeight="false" />

</RelativeLayout>

 96

REFERENCES

1. ERIC S. HALL, DAVID K. VAWDREY, CHARLES D. KNUTSON, and JAMES K

ARCHIBALD“Enabling Remote Accessto Personal ElectronicMedical Records”

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE June 2003.

2. Divyashikha, et al.”Portable computing device based securemedical records

management”, filed in India, Application#1313/DEL/2015, 12 December 2015.

3. Sethia, Divyashikha, et al. "NFC based secure mobile healthcare

system."Communication Systems and Networks (COMSNETS), 2014 Sixth International

Conference on. IEEE, 2014.

4. Yujin Noishiki Hidetoshi Yokota Akira Idou et al “Design and Implementation of Ad-

hoc Communication and Application on Mobile Phone Terminals” KDDI R&D

Laboratories, Inc. 2-1-15 Ohara, Fujimino-Shi, Saitama

5. Nikita Mahajan et al, Design of Chatting Application Based on Android Bluetooth

International Journal of Computer Science and Mobile Computing, Vol.3 Issue.3, March-

2014,

6. Juha T. Vainio et al “Bluetooth Security” Helsinki University of Technology 2000-05-

25

7. Saparkhojayev, Nurbek, et al. "NFC-enabled access control and management

system." Web and Open Access to Learning (ICWOAL), 2014 International Conference

on. IEEE, 2014.

8. The Bluetooth Special Interest Group.Bluetooth Specification Core v4.0.(2009-

02).Http://www.bluetooth.org.

 97

9. Host Based Card Emulation.

https://developer.android.com/guide/topics/connectivity/nfc/hce.html

10. Host card emulation

 http://en.wikipedia.org/wiki/Host_card_emulation

11. Android Developers,// http://developer.android.com/index.html

https://developer.android.com/guide/topics/connectivity/nfc/hce.html

	Bluetooth v1.0 and v1.0B
	Bluetooth v1.1
	Bluetooth v1.2
	Bluetooth v2.0 + EDR
	Bluetooth v2.1 + EDR
	Bluetooth v3.0 + HS
	2.3BLUETOOTH STACK
	BLUETOOTHCONTROLLER:
	BLUETOOTH HOST:
	2.5 CLASSICBLUETOOTH SECURITY
	DATATRANSFER
	OVER
	Introduction
	Roles/Configurations
	Profile Scenarios
	File Transfer Applications provide the following functions.
	GATT Operations

