SEISMIC EVALUATION OF UN-REINFORCED MASONARY HOSPITAL BUIDLING

(MAJOR PROJECT REPORT - II)

For partial fulfilment of the requirements For the award of the degree of

MASTER OF TECHNOLOGY IN STRUCTURES

In CIVIL ENGINEERING

Submitted By MOHAN SINGH YADAV

ROLL NO. 2K11/STE/07

under the guidance of

DR. MUNENDRA KUMAR

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING, DELHI TECHNOLOGICAL UNIVERSITY, SHAHBAD DAULATPUR, BAWANA ROAD, DELHI-110042, INDIA

CERTIFICATE

This is to certify that the project titled "SEISMIC EVALUATION OF UN-REINFORCED MASONARY HOSPITAL BUIDLING" is a bonafide dissertation work carried out by me, Mohan Singh Yadav, Roll No. 2K11/STE/07, student of Master of Technology in Structures (Civil Engineering) from Delhi Technological University, New Delhi, during the session 2015-2016 towards the partial fulfilment of the requirements for award of the degree of Master of Technology in Structures (Civil Engineering).

MOHAN SINGH YADAV Roll No. 2K11/STE/07 IV Semester

Date:

The above statements by Mohan Singh Yadav, is correct to the best of my knowledge.

Dr. Munendra Kumar (Supervisor)

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING, DELHI TECHNOLOGICAL UNIVERSITY, SHAHBAD DAULATPUR, BAWANA ROAD, DELHI-110042, INDIA

ACKNOWLEDGEMENT

I wish to express my sincere gratitude and indebtedness to my supervisor, Dr.MUNENDER KUMAR for initiating, supporting and guiding me in analytical research on non-linear static pushover analysis. His guidance has given me the chance to develop a deep love for research in my field and the innumerable discussions that I had with him, has made a deep impact on my understandings. He was always ready to welcome his students with doubts in any sphere.

I would like to thank also my colleagues and friends in the Department of Structural Engineering, for sharing this adventure with me and exchanging knowledge about several topics. Special thanks to Er.Y.S. Chaudhary, Er. Nitin Behl, Er.S.R.Bhati & Er. Sandeep for the help they have extended in their own way in keeping me energised and encouraged me whenever I felt disheartened during the difficult stages of compilation of this dissertation. Without their support, this significant achievement would not have been possible.

Finally, I am particularly grateful to my entire family for their love, patience and support they showed every day during my M.Tech studies.

ABSTRACT

KEYWORDS: Seismic evaluation, un-reinforced masonry, demand-to-capacity ratio, pushover analysis, plastic hinge, shear stress.

It is well known that masonry buildings suffer a great deal of damage during earthquakes, leading to significant loss of lives. Almost 75% of the fatalities, attributed to earthquake in last century, is caused by collapse of buildings of which the greatest portion (more than 70%) is due to collapse of masonry buildings. A majority of the tenements in India are Unreinforced Masonry (URM) buildings that are weak and vulnerable even under moderate earthquakes. On the other hand, a cursory glance through the literature on earthquake resistant structures reveals that a bulk of research efforts is on RC structures. Clearly there is a great need to expend more effort in understanding masonry buildings subjected to earthquake induced dynamic loads.

The main aim of this thesis is to study the methodology given in various masonry structure related IS codes such as IS 1905-1987, IS 4326-1992 etc. for seismic evaluation of an more than 40 yrs old hospital building made of stone masonry. In hospital buildings more emphasis is given to non structural elements as they are part of important life line services therefore consideration of NSE is also incorporated. We have done firstly preliminary survey which include geometric properties of building as per ground and as per ledger, visual inspection and interaction with user and surrounding area. Then secondly we have gone for detailed seismic evaluation as per IS 1893 : 2002 & IS 1905 : 1987 for various failure mechanisms both local & global. Thirdly, we have suggested retrofitting measures as per various IS codes and also done cost comparison of retrofitting with respect to new construction. Lastly we have suggested some more measure keeping in view criticality of hospital.

TABLE OF CONTENTS

Title Page No. ACKNOWLEDGEMENTS i ABSTRACT ii TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES v ABBREVIATIONS vi NOTATION vii

CHAPTER 1 INTRODUCTION

1.1 Background and Motivation	1
1.2 Objective of the Thesis	3
1.3 Scope of the Study	3
1.4 Methodology	3
1.5 Organisation of the Thesis	4

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction	. 5
2.2 Seismic Evaluation Methods	8
2.2.1 Equivalent Static Method	9
2.2.2 Response Spectrum Analysis	11
2.2.3 Evaluation Results	13
2.3 Pushover Analysis-An Overview	15

CHAPTER 3 SEISMIC EVALUATION CASE STUDY OF AN EXISTING UN-REINFORCED MASONRY HOSPITAL BUILDING

3.1 Introduction	17
3.2 Site Observations	20
3.3 Non-Structural Components / Contents / Equipments / Elements	34
3.4 3D Model & Plan of Building	40
3.5 Detailed Seismic Evaluation Of Masonry Structure	.41
3.6 Result and discussion	49

CHAPTER 4 SUMMARY AND CONCLUSIONS

REFERENCES	.89
4.2 Conclusions	88
4.1 Summary	87

LIST OF TABLES

Table No.	Title	Page No.
3.1 Distributi	ion of Translational & Torsional Shears at Ground floor w	hen load 49
is in para	llel to long walls.	
3.2 Distributi	ion of overturning moment to piers in short wall, as Axial	Forces 55
3.3 Distribut	tion of overturning moment to piers in long wall, as Axial	Forces 56
5.5 District	tion of overtaining moment to piers in long wan, as rista	101005
3.4 Forces ir	n different piers due to different loads	63
3.5 Permissit	ble stresses for different combination	66
3.6 Steel prov	vided in form of bars & flats	
I		
3.7 Cost of st	tructural retrofitting	
3.8 Cost of N	Iew Construction	

LIST OF FIGURES

Figure No.	Title	Page No.
1.1 Typical load bearing mas	onry construction for a residential bui	lding1
1.2 Failure of an URM build	ing during 2010 Haiti earthquake	2
2.1 Response spectra for 5 pe	ercent damping (IS 1893:2002)	10
2.2 Building model under sei	smic load	11
3.1 3D Model & Plan of Bui	lding	40
3.2 Arrangement of Bands		74
3.3 Arrangement of flats at W	Vindow Openings	76
3.4 Arrangement of flats at D	Door openings	77

ABBREVIATIONS

URM	-	Un-Reinforced Masonry
NSE	-	Non Structural Element
IS	-	Indian Standard
EQ	-	Earthquake
ATC	-	Applied Technology Council
CQC	-	Complete Quadratic Combination
CSM	-	Capacity Spectrum Method
DCM	-	Displacement Coefficient Method
FEMA	-	Federal Emergency Management Agency
IS	-	Indian Standard
PGA	-	Peak Ground Acceleration
RC	-	Reinforced Concrete
SAP	-	Structural Analysis Program
SDOF	-	Single Degree of Freedom
FE	-	Finite Element
SRSS	-	Square Root of Sum of Square
DCR	-	Demand to Capacity Ratio
ADRS	-	Acceleration Displacement Response Spectrum
ISMC	-	Indian Standard Medium Channel
MCE	-	Maximum Considered Earthquake
DBE	-	Design Basis Earthquake

NOTATION

English Symbols

а	_	regression constant
с	_	classical damping
CO	_	factor for MDOF displacement
<i>C1</i>	_	factor for inelastic displacement
<i>C2</i>	_	factor for strength and stiffness degradation
C3	_	factor for geometric nonlinearity
d	_	effective depth of the section
db	_	diameter of the longitudinal bar
dp	_	spectral displacement corresponding to performance point
D	_	overall depth of the beam.
$D_{n}\left(t ight)$	_	displacement response for an equivalent SDOF system,
Ec	-	short-term modulus of elasticity of concrete
E_D	-	energy dissipated by damping
Es	-	modulus of elasticity of steel rebar
ES	-	maximum strain energy
E_{sec}	-	elastic secant modulus
EI	-	flexural rigidity of beam
fc	-	concrete compressive stress
f_{cc}	-	compressive strength of confined concrete
f_{co}	-	unconfined compressive strength of concrete
f_{ck}	-	characteristic compressive strength of concrete
Fe	-	elastic strength
f_y	-	yield stress of steel rebar
F_y	-	defines the yield strength capacity of the SDOF
f_{yh}	-	grade of the stirrup reinforcement
G	-	shear modulus of the reinforced concrete section
h	_	overall building height (in m)
k	_	lateral stiffness
<i>k</i> _e	_	confinement effectiveness coefficient
K_{eq}	-	equivalent stiffness

K_i	-	initial stiffness
l	-	length of frame element
l_p	-	equivalent length of plastic hinge
т	-	storey mass
M_n	-	modal mass for <i>n</i> th mode
Ν	-	number of modes considered
$P_{eff}(t)$	-	effective earthquake force
$q_n(t$	-	the modal coordinate for <i>n</i> th mode
R	-	Regular frame considered for study
$\{s\}$	-	height-wise distribution of effective earthquake force
S_a	-	spectral acceleration
S_d	-	spectral displacement

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

It is well known that masonry buildings suffer a great deal of damage during earthquakes. This is especially true for the unreinforced masonry (URM) buildings built in rural and semi-urban areas of developing countries. Fig. 1.1 shows a typical load bearing URM building. Many heritage buildings around the world are of old and thick walled masonry. Their value, historic, artistic, social or financial, is great and damage to them in an earthquake involves very costly repair.

Fig.1.1: Typical load bearing masonry construction for a residential building

Normally thick walled URM buildings were designed for vertical loads, since masonry has adequate compressive strength the structure behaves well as long as the loads are vertical. When such a masonry structure is subjected to lateral inertial loads during an earthquake, the walls develop shear and flexural stresses. The strength of masonry under these conditions often depends on the bond between brick and mortar. A masonry wall can also undergo in-plane shear stresses if the lateral forces are in the plane of the wall. Shear failure in the form of diagonal cracks is observed due to this. However, catastrophic collapses take place when the wall experiences out-of-plane flexure. This can bring down a roof and cause more damage. Fig. 1.2 shows typical failure of an URM building during 2010 Haiti earthquake.

Fig.1.2: Failure of an URM building during 2010 Haiti earthquake

Masonry buildings with light roof such as tiled roof are more vulnerable to out-of-plane vibrations since the top edge can undergo large deformations, due to lack of lateral restraint. Damage to masonry buildings in earthquakes may be influenced by four general categories: quality of materials and construction, connections between structural elements, structural layout and soil-structure interaction.

1.2 OBJECTIVE OF THE THESIS

Based on the literature review presented in Chapter 2 the salient objective of this research is defined as:

To do sesmic evaluation of an unreinforced masonry hospital building located in sesmic zone 5 with respect to structural and non structural element both and suggest retrofitting measures if any along with there rate analysis as compared to new contruction.

1.3 SCOPE OF THE STUDY

Most of the old buildings are masonry in nature which does not have seismic provisions as compared to new r.c.c. framed structure for which many IS codes are there to incorporate seismic resistance. Therefore it is very necessary to do seismic analysis and suggest corresponding retrofitting measures to ensure minimum damage to old buildings which are most vulnerable in case of natural disasters.

1.4 METHODOLOGY

The steps undertaken in the present study to achieve the above-mentioned objectives are as follows:

- a) Carry out extensive literature review, to establish the objectives of the research work.
- b) Preliminary survey of site such as length and breadth of building, year of construction, type of contruction, visual inspection, etc.
- c) Detailed sesmic analysis as per is 1893:2002 with linear static procedure has been carried out for masonry structure with the help of IS codes 1905:1987, IS 4326:1992, IS 13935"

- d) To check individual structural members and provide with retrofitting measures if necessary.
- e) Comparisons of rate of retrofitting measures as with that of new construction.
 Based on DSR (Delhi Schedule of Rates).

1.5 ORGANISATION OF THE THESIS

This introductory chapter has presented the background, objective, scope and methodology of the present study. Chapter 2 starts with a description of the previous work done on unreinforced masonry wall by other researchers.

Chapter 3 deals with the case study for seismic evaluation & corresponding retrofitting measures.

Finally, Chapter 4 presents a summary including salient features, significant conclusions from this study and the future scope of research in this area.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The first half of this chapter is devoted to a review of published literature on unreinforced masonry (URM) buildings. This part describes a number of experimental and analytical works on unreinforced masonry buildings.

The second half of this chapter is devoted to a review of seismic evaluation methods available in literature. This includes different evaluation methods based on linear and nonlinear analyses.

There are a number of research papers and design guidelines found on the structural properties of unreinforced masonry buildings

A number of studies were carried out by Jai Krishna and Chandra (1965) and Jai Krishna *et. al.* (1966). They studied the static in-plane strength of walls with and without reinforcement. They carried out the building analysis by considering the shear walls alone, with different parameters such as the aspect ratio of shear walls and size and location of openings in shear walls.

Arioglu and Anadol (1973) refer to the several earthquakes in Turkey and point out that plain masonry buildings are most vulnerable to earthquake damage. They refer to the special indigenous technique of producing horizontal wooden reinforcement on both faces at some vertical intervals to prevent collapse of masonry structures. Such practices have been traditionally in vogue in Turkey.

Abrams (1992) examines the in-plane lateral load behaviour of un-reinforced masonry elements under monotonic and cyclic loading. He argues that although masonry is

considered to be brittle it has considerable deformation capacity after the development of first crack. Several suggestions have been made to evaluate the masonry strength characteristics under seismic loading.

Bruneau (1994) makes a number of observations on the seismic performance of unreinforced masonry buildings (URM). Some of the types of failures are listed as

- a) Lack of anchorage between floor and walls
- b) Anchor failure when joists are anchored to walls
- c) In-plane failure
- d) Out-of-plane failure
- e) Combined in-plane

Among these he emphasis that URM buildings are most vulnerable to flexural our-ofplane failure. In-plane failure may not right away lead to collapse since the load carrying capacity of a wall is not completely lost by diagonal cracking. However, our-of-plane failure leads to unstable and explosive collapse. Sometimes an initial in-plane failure may weaken the wall and subsequent out-of-plane motion can lead to collapse.

Rai and Goel (1996) also studied the seismic strengthening of un-reinforced masonry piers with steel elements. They considered the in-plane behaviour of masonry piers. The strengthening system showed significant improvement in stiffness and ductility.

Scrivener (1996) has done a survey of the damage to old masonry buildings in earthquakes around the world. He also reported the cause of the damage under four headings: quality of materials and construction, connections between structural elements, structural layout and soilstructure interaction.

Tomazevic (1999) and his colleagues carried out a large number of Earthquake Resistant Masonry Structures. He has discussed a number of concepts for designing earthquake resistant masonry and for retrofitting partially damaged masonry structures. The following concepts may be mentioned;

- a) Traditional stone masonry walls with horizontal RC bond beams connecting the walls around the building at vertical spacing of 1.0 m or 2.0 m depending on the expected seismic intensity.
- b) Masonry confined in its own plane by RC bond beams and columns. The columns have to be connected to the walls through shear keys. The spacing of columns is not more than 4.0 m.
- c) Vertical reinforcement is provided n grouted holes of hollow block masonry and small pockets inside brick masonry. Horizontal reinforcements in the shape of truss like arrangements are also provided in bed joints. There are Euro code specifications for such reinforcements.
- d) Horizontal tie rods are provided as a retrofitting measure in grooves cut in the mortar, below the floor level, on both sides of a wall. They are anchored to steel plates at both ends of the wall.

A steel mesh is anchored to the walls on the faces and covered with plaster.

A report by Navalli (2001) refers to the practice Uttaranchal where they use horizontal timber bands at different level improve the integrity of the masonry structure. Such houses suffered little damage during the October 1991 Uttarkashi earthquake. The paper by Jai Krishna and Arya (1962) also refers to such practices.

This section, however, discusses the previous research work on the lateral load behaviour of URM buildings. Andreas *et. al.* (2002) discussed the analysis of un-reinforced

masonry buildings, and also discussed, and under what conditions, a simple equivalent frame model can be used for assessment purposes. Several parametric analyses involving finite element (FE) models of two-dimensional and three-dimensional structures have been performed in the elastic range, using both refined and coarse planar meshes.

Bulk of publication on earthquake resistance of structures deals with RC structures. There have been quite a few publications on earthquake resistant of masonry structures, from different parts of the world. A representative list of publications on such masonry is discussed here. Unreinforced Masonry Buildings and Earthquakes (FEMA P-774) described the risk assessment and guidelines how to minimise the risk of failure for existing URM Building in the year 2009 in California.

Bilgin and Korini (2012) examined the reason and capacity to failure by earthquake at Albania for the pre-defined template residential building. They carried out mainly three template building and analysed accordingly to ASC guideline.

2.2 SEISMIC EVALUATION METHODS

The following are the methods recommended for detailed seismic evaluation of buildings: (i) Linear static analysis – Equivalent static analysis, (ii) Linear dynamic analysis – Response spectrum analysis and (iii) Non-linear static analysis – Push-over analysis. It is recommended that all the above methods be performed sequentially for a proper assessment of the seismic vulnerability in a building. It may be noted that more rigorous analysis (nonlinear dynamic timehistory analysis) is possible, but this is not recommended as it is more involved and time consuming and not recommended for normal building. This section briefly explains the linear static and linear dynamic

analyses as recommended in Indian Standard IS 1893: 2002. The main purpose of these analyses, from the seismic evaluation perspective, is to check the demand-tocapacity ratios of the building components and thereby ascertain code compliance. The two different linear analysis methods recommended in IS 1893: 2002 are explained in this Section. Any one of these methods can be used to calculate the expected seismic demands on the lateral load resisting elements.

2.2.1 Equivalent Static Method

In the equivalent static method, the lateral force equivalent to the design basis earthquake is applied statically. The equivalent lateral forces at each storey level are applied at the floor level. The base shear ($V = V_B$) is calculated as per Clause 7.5.3 of IS 1893: 2002.

$$V_B = A_h W \tag{2.1}$$

$$A_{\rm h} = \left(\frac{Z}{2}\right) \frac{I}{R} \frac{S_a}{g} \tag{2.2}$$

where W= seismic weight of the building, Z= zone factor, I = importance factor,

R = response reduction factor, S_a /g = spectral acceleration coefficient determined from Fig. 2.1, corresponding to an approximate time period (T_a) which is given by

 $T_a = 0.075h_{0.75}$ for RC moment resisting frame without masonry infill (2.3a)

$$T_a = \frac{0.09h}{\sqrt{d}}$$
 for RC moment resisting frame with masonry infill (2.3b)

The base dimension of the building at the plinth level along the direction of lateral forces is represented as d (in metres) and height of the building from the support is represented as h (in metres). The response spectra functions can be calculated as follows:

For Type I soil (rock or hard soil sites):
$$\frac{S_a}{g} = \begin{cases} 1+15T & 0.00 \le T \le 0.10\\ 2.50 & 0.10 \le T \le 0.40\\ \frac{1}{T} & 0.40 \le T \le 4.00 \end{cases}$$

For Type II soil (medium soil):
$$\frac{S_a}{g} = \begin{cases} 1+15T & 0.00 \le T \le 0.10\\ 2.50 & 0.10 \le T \le 0.55\\ \frac{1.36}{T} & 0.55 \le T \le 4.00 \end{cases}$$

For Type III soil (soft soil):
$$\frac{S_a}{g} = \begin{cases} 1+15T & 0.00 \le T \le 0.10\\ 2.50 & 0.10 \le T \le 0.55\\ \frac{1.36}{T} & 0.55 \le T \le 4.00\\ 2.50 & 0.10 \le T \le 0.67\\ \frac{1.67}{T} & 0.67 \le T \le 4.00 \end{cases}$$

The design base shear is to be distributed along the height of building as per Clause 7.7.1 of IS1893: 2002.

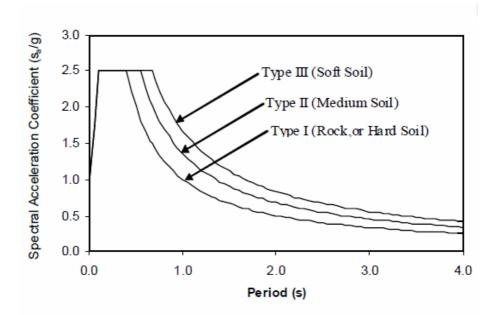


Fig. 2.1: Response spectra for 5 percent damping (IS 1893: 2002)

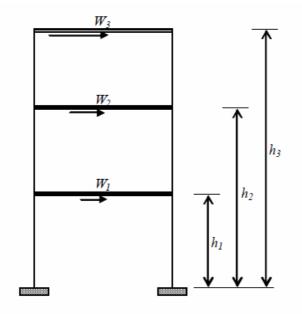


Fig. 2.2: Building model under seismic load

The design lateral force at floor i is given as follows

$$Q_i = V_B \frac{W_i h_i^2}{\sum_{j=1}^n W_i h_1^2}$$

Here W_i =Seismic weight of floor i, h_i =Height of floor measured from base, *n*= Number of storeys in the building equal to the number of levels at which masses are located (Fig. 2.2).

2.2.2 Response spectrum analysis

The equations of motion associated with the response of a structure to ground motion are given by:

$$\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{C}\dot{\mathbf{u}}(t) + \mathbf{K}\mathbf{u}(t) = \mathbf{m}_{\mathbf{x}}\ddot{u}_{ex}(t) + \mathbf{m}_{\mathbf{x}}\ddot{u}_{ev}(t) + \mathbf{m}_{\mathbf{x}}\ddot{u}_{ez}(t)$$

Here, **M** is the diagonal mass matrix, **C** is the proportional damping matrix, **K** is the stiffness matrix, $\ddot{\mathbf{u}}$, $\dot{\mathbf{u}}$ and \mathbf{u} are the relative (with respect to the ground) acceleration, velocity and displacement vectors, respectively, \mathbf{m}_x , \mathbf{m}_y , and \mathbf{m}_z are the unit acceleration loads and $\ddot{\mathbf{u}}_{gx}$, $\ddot{\mathbf{u}}_{gy}$ and $\ddot{\mathbf{u}}_{gz}$, are the components of uniform ground acceleration.

The objective of response spectrum analysis is to obtain the likely maximum response from these equations. The earthquake ground acceleration in each direction is given as a response spectrum curve. The response spectrum is a plot of the maximum response (maximum displacement, velocity, acceleration or any other quantity of interest) to a specified load function for all possible single degree-of-freedom systems. The abscissa of the spectrum is the natural period (or frequency) of the system and the ordinate is the maximum response. It is also a function of damping. Fig.2.1 shows the design response spectra given in IS 1893: 2002 for a 5% damped system. According to IS 1893: 2002, high rise and irregular buildings must be analysed by the response spectrum method. However, this method of linear dynamic analysis is also recommended for regular buildings.

Response spectrum analysis is performed using mode superposition, where free vibration modes are computed using eigenvalue analysis. The maximum modal response (λ_k) of a quantity (considering the mass participation factor) is obtained for each mode of all the modes considered. Sufficient modes (*r*) to capture at least 90% of the participating mass of the building (in each of the orthogonal horizontal directions), have to be considered in the analysis. The modal responses of all the individual modes are then combined together using either the square root of the sum of the squares (SRSS) method or complete quadratic combination (CQC) method. The SRSS method is based on probability theory and is expressed as follows.

$$\lambda = \sqrt{\sum_{k=1}^{r} (\lambda_k)^2}$$

If the building has very closely spaced modes then the CQC method is preferable.

The base shear is calculated for response spectrum analysis in the following manner. The Sa/g value corresponding to each period of all the considered modes is first calculated from Fig. 2.1.

The base shear corresponding to a mode is then calculated as per the design code. Each base shear is multiplied with the corresponding mass participation factor and then combined as per the selected mode combination method, to get the total base shear of the building.

If the base shear calculated from the response spectrum analysis (V'_B) is less than the design base shear (V_B) calculated from Equation 2.1, then as per IS 1893: 2002, all the response quantities (member forces, displacements, storey shears and base reactions) have to be scaled up by the factor V_B / V'_B .

2.2.3 Evaluation Results

The demands (moments, shears and axial forces) obtained at the critical sections from the linear analyses are compared with the capacities of the individual elements. The capacities of RC members are to be calculated as per IS 456: 2000. The demand-to-capacity ratio (DCR) for each element should be less than 1.0 for code compliance. For a beam, positive and negative bending moment demands at the face of the supports and the positive moment demands at the span need to be compared with the corresponding capacities. For a column, the moment demand due to biaxial bending under axial compression must be checked using the P-M_x-M_y surface (interaction surface), generated according to IS 456: 2000.

2.3 PUSHOVER ANALYSIS – AN OVERVIEW

The use of the nonlinear static analysis (pushover analysis) came in to practice in 1970's but the potential of the pushover analysis has been recognized for last 10-15 years. This procedure is mainly used to estimate the strength and drift capacity of existing structure and the seismic demand for this structure subjected to selected earthquake. This procedure can be used for checking the adequacy of new structural design as well. The effectiveness of pushover analysis and its computational simplicity brought this procedure in to several seismic guidelines (ATC 40, FEMA 356 and ASCE/SEI 41-06) and design codes (Eurocode 8 and PCM 3274) in last few years.

Pushover analysis is defined as an analysis wherein a mathematical model directly incorporating the nonlinear load-deformation characteristics of individual components and elements of the building shall be subjected to monotonically increasing lateral loads representing inertia forces in an earthquake until a 'target displacement' is exceeded. Target displacement is the maximum displacement (elastic plus inelastic) of the building at roof expected under selected earthquake ground motion. Pushover analysis assesses the structural performance by estimating the force and deformation capacity and seismic demand using a nonlinear static analysis algorithm. The seismic demand parameters are global displacements (at roof or any other reference point), storey drifts, storey forces, component deformation and component forces. The analysis accounts for geometrical nonlinearity, material inelasticity and the redistribution of internal forces. Response characteristics that can be obtained from the pushover analysis are summarised as follows:

- a) Estimates of force and displacement capacities of the structure. Sequence of the member yielding and the progress of the overall capacity curve.
- b) Estimates of force (axial, shear and moment) demands on potentially brittle elements and deformation demands on ductile elements.
- c) Estimates of global displacement demand, corresponding inter-storey drifts and damages on structural and non-structural elements expected under the earthquake ground motion considered.
- d) Sequences of the failure of elements and the consequent effect on the overall structural stability.
- e) Identification of the critical regions, where the inelastic deformations are expected to be high and identification of strength irregularities (in plan or in elevation) of the building.

Pushover analysis delivers all these benefits for an additional computational effort (modelling nonlinearity and change in analysis algorithm) over the linear static analysis. Step by step procedure of pushover analysis is discussed next.

CHAPTER 3

SESMIC EVALUATION A CASE STUDY OF AN EXISTING UN-REINFORCED MASONRY BUILDING

3.1 INTRODUCTION

The District Hospital, Dharmshala in Kangra District of Himachal Pradesh is 300 bedded hospital. Apart from the casualty ward, on an average 352 patients visit the District Hospital on daily basis.

It constitutes of five blocks/buildings namely Block-A, Block-B, Block-C, Laboratory Block and Nurse Hostel wherein all hospital facilities including the administrative department are present. The Ramp is in another six storied building by itself and also acts as a medium for connection between Block-A, Block-B and Block-C which are in proximity of each other.

Block-A and Block-B are stone masonry structures constructed in year 1969 while Block-C and the ramp structure are RC Framed structures constructed in 1989. The Laboratory Block comprised of two structures. The old structure of stone masonry constructed around 1983 and a new structure in both stone masonry and brick masonry constructed at a later date. The Nurse hostel was also a stone masonry structure constructed around the same period as that of Block-A.

Block-A and Block-C were constructed on sloping terrain while Block-B, Laboratory Block and the ramp structure were all constructed on flat terrain.

The soil type informed by the local engineer was sandy with gravel with bearing capacity of $15t/m^2$ at a depth of 1.5meters below ground level. The depth of water table on average basis was informed as 60meters below ground level.

Dharmshala lies in seismic zone V as per IS1893:2002 and as the hospital buildings in consideration have an importance factor I=1.5, hence as per IS4326:1993, all blocks fall under the most critical i.e. 'E' category.

Block-A

Block-B

Part of Block-C

Laboratory Block & Nurse Hostel in lower left hand corner

3.2 SITE OBSERVATIONS

LOAD BEARING / MASONRY STRUCTURES

BLOCK NAME	BLOCK-A
YEAR, TYPE OF STRUCTURE	1969, Load Bearing Structure.
TOTAL FLOOR AREA	3862.50 m2
FACILITIES PRESENT	Zonal Medical Store, District Medical Store, X-Ray rooms, Operation Theater & ICU, Administrative Block, ENT, Lecture Theater, Orthopedic, dental clinic, etc.
CONFIGURATION IRREGULARITIES (PLAN & VERTICAL)	Vertical geometric Irregularity was observed. The entire structure is G+2 storeys, but in one end of the block it is B+G+2 making it more than 3 storeys. IS Code does not permit more than 3 storeys for 'E' category buildings which makes the present structure very vulnerable and hence can be categorised as 'E+' category. This can also cause Torsional irregularity in the building structure.
FOUNDATION DETAILS	Step foundation in stone masonry of width 1.0 meter and depth 1.05 meters below ground level.

Plinth band of 400mm width and 150mm depth provided in exterior longitudinal walls only making it ineffective to tie the structure as per IS4326:1993.
Dressed Stone Masonry walls constituting of multi wythes and having total thickness of 400mm. General ratio of openings found in walls was found to range between 0.4 - 0.9 making it unsafe as per IS4326:1993.
Continuous lintel beam of 400mm width and 150mm depth provided in exterior longitudinal walls only, making it ineffective to tie the structure as per IS4326:1993.
All intermediate Floors are cast in-situ RCC Floors of 150mm thickness, simply rested on the RCC beams / Stone masonry walls as applicability.
Not observed. To be provided as per IS4326:1993.
Not observed. To be provided as per IS4326:1993.

<section-header><section-header></section-header></section-header>	Pitched roof comprising of Kingpost Wooden truss @ 3.0meters center to center with asbestos sheeting above was found at site. The purlin & rafter sections of 80mmX150mm and tie, struts & inclined members of size 80mmX125mm were measured. The Trusses were not fixed to the wall. There was no bracing between the trusses in horizontal or inclined pane. This makes it more vulnerable as per criteria given in IS4326:1993.
OTHER STRUCTURAL FEATURES OBSERVED	
Expansion Joint	The dimensions of Block-A is 82.6X15meters. Two expansion joints of 40mm each were observed perpendicular to the length of building, dividing the structure into three lengths. The end parts are each of length of 25.4meters while the middle part is of length 31.4meters. Though the expansion joints were clear in the walls, but they had been compromised with continuous floor finish.
Mezzanine Floor	RCC Roof cast at a later date above the Toilet zone in Operation Theater Portion to house 8 nos. 1000lts. Sintex Water Tanks.
DISTRESS OBSERVATIONS	

Dampness	Observed in many areas near ducts and internal face of exterior walls where water drainage pipelines were attached.
Plaster Chip-off	Observed in damp areas.
Cracks	Separation of the longitudinal wall and cross wall was observed in Post OT room suggesting no proper connection between longitudinal wall and cross walls. Moreover it was informed by the OTA that such cracks had come in many walls but they were filled up during renovation.
Termites	Observed in corner of passage way in OT zone.

BLOCK NAME	BLOCK-B
YEAR, TYPE OF STRUCTURE	1969, Load Bearing Structure.
TOTAL FLOOR AREA	840 m ²
FACILITIES PRESENT	Blood Bank, Imaging Department (Ultrasound & CT Scan), Gynaecological Dept, Minor OT - Labour Room, Gynaecology Ward, etc.
CONFIGURATION IRREGULARITIES (PLAN & VERTICAL)	No irregularity was observed.
FOUNDATION DETAILS	Step foundation in stone masonry of width 1.0 meter and depth 1.05 meters below ground level.
PLINTH BAND / BEAM	Not observed. As per IS4326:1993, the plinth band must be provided for better seismic performance.
WALL / INFILL PANEL	Dressed Stone Masonry walls constituting of multi wythes and having total thickness of 400mm. Partition/Cross walls of Half Brick thickness i.e. 150mm were observed. General ratio of openings found in walls was found to range between 0.4 - 0.9 making it unsafe as per IS4326:1993.

LINTEL BAND / BEAM	Continuous Lintel Beam of size 400mmX150mm depth provided along exterior longitudinal walls for ground floor only making it ineffective to tie the structure as per IS4326:1993.
INTERMMEDIATE ROOF / FLOOR	All intermediate Floors are cast in- situ RCC Floors of 150mm thickness, simply rested on the RCC beams / Stone masonry walls as applicability.
ROOF / EAVE LEVEL BAND / BEAM	Not observed. To be provided as per IS4326:1993.
GABLE BAND / BEAM	Not observed. To be provided as per IS4326:1993.
<image/>	The First Storey had a false ceiling above which was a pitched roof made of Wooden Truss like members (The Truss was in two separate parts being disjointed at the tie level and at the ridge level) placed at the center to center distance of 3.0 meters with purlin sections of 100mmX160mm and rafters, tie, struts & inclined members of size 80mmX100mm.Steel Flats were welded and bolted to connect the wooden members. This connection was improper and needs to be replaced with proper joint system. Bracing in lateral plane and inclined plane were absent. This made it very vulnerable under seismic activity. Asbestos sheeting was used as sheeting material. Many of the asbestos sheets were damaged and

	water was pouring inside the building.
OTHER STRUCTURAL FEATURES OBSERVED	None Observed.
DISTRESS OBSERVATIONS	
<image/>	In almost all rooms due to cracked Asbestos sheet roofing on top floor, dampness and Moss generation was observed on the walls and bottom of roof.

Plaster Chip-Offs	Due to Dampness Plaster had peeled off in few locations.
Termites	Termites were also observed on damp areas on walls.

BLOCK NAME	LABORATORY BLOCK
YEAR, TYPE OF STRUCTURE	1983, Load Bearing Structure.
TOTAL FLOOR AREA	665 m ²
FACILITIES PRESENT	All labs related to pathology i.e. aids, tuberculosis, biochemistry lab, etc. are present in the entire block.
CONFIGURATION IRREGULARITIES (PLAN & VERTICAL)	Vertical irregularity was observed due to basement toilet at one end of the old block. This can also result in creating Torsional irregularity.
FOUNDATION DETAILS	Foundation is stripped foundation.
PLINTH BAND / BEAM	Not observed. As per IS4326:1993, the plinth band must be provided for better seismic performance.
<section-header></section-header>	In Old Block walls are stone masonry in cement mortar in two separate wythes of total thickness of 400mm. All interior walls also made of Stone Masonry similar to exterior walls. In New Block Stone Masonry Wall in cement Mortar of thickness 400mm was observed. All internal walls were constructed of Brick masonry of thickness 250mm. Ratio of openings was calculated to be ranging between 0.4 -0.9 which is much higher than limited as per IS code.

LINTEL BAND / BEAM	Continuous in new block on both floors in longitudinal exterior walls of size 400mmX150mm depth making it ineffective to tie the structure as per IS4326:1993.
INTERMMEDIATE ROOF / FLOOR	Intermediate Floor are cast in-situ RCC Floors of 150mm thickness, simply rested on the RCC beams / Stone masonry and brick walls as applicability.
ROOF / EAVE LEVEL BAND / BEAM	Not observed. To be provided as per IS4326:1993.
<section-header></section-header>	Observed only in one end of new block. In old Block this was absent. To be provided as per IS4326:1993.
ROOF DETAILS i/c CONNECTIONS, ETC.	The first Storey had a false ceiling above which was a sloping roof. The arrangement observed was C.G.I sheeting fixed over Steel Truss in new Block. In Old Block the original RCC roof existed, but due to leakage in due course of time a steel truss roof was erected over the RCC Roof. Details could not be verified due to inaccessibility.

	None Observed.
OTHER STRUCTURAL FEATURES OBSERVED	None Observed.
DISTRESS OBSERVATIONS	
Dampness	Dampness observed on exterior walls and underneath water tank over corridor connecting old and new block.
Cracks	Structural crack due to settlement observed in store and bathroom in corner of old block. This is likely due to washing away of soil beneath the Water Closet located at basement level. Cracks also observed on RCC Columns in corridor under Steel Water Tank. Numerous cracks observed in all rooms coming from false ceiling towards lintel level.

RC FRAMED STRUCTURES

BLOCK NAME	BLOCK-C
YEAR, TYPE OF STRUCTURE	1989, RC Framed Structure.
TOTAL FLOOR AREA	7000 m^2
FACILITIES PRESENT	Casualty, Medical Ward,

	Gynaelogical Ward, Minor OT, Child
	Ward, Kitchen, etc.
CONFIGURATION IRREGULARITIES (PLAN & VERTICAL)	Vertical irregularity was observed due to double basement at one end of the block. This can also result in creating Torsional irregularity. Re- Entrant corners were also observed at the basement end of the block. The block had a Non-Parallel system arrangement of columns.
FOUNDATION DETAILS	Isolated Foundation.
PLINTH BAND / BEAM	Not observed.
WALL / INFILL PANEL	Exterior walls comprising of 50mm thick concrete panel with 150mm stone fascia cladding making it total of 200mm thick exterior walls. Interior walls of brickwork generally 250mm thick with partition walls of thickness 130mm at few locations in cement mortar was observed. Partition wall of 1.0 meter height and 130mm thickness was also observed in Wards having unsupported length of 7.0 meters. Ratio of openings was found 0.4 to 0.9 which is greater than the limit mentioned in the IS codes.
LINTEL BAND / BEAM	Present and continuous on long exterior walls of size 150mmX200mm with projecting sun shades.
INTERMMEDIATE ROOF / FLOOR	Intermediate Floors are cast in-situ RCC Floors of 150mm thickness, simply rested on the RCC beams.

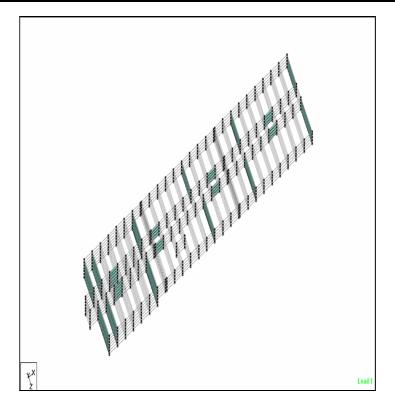
ROOF / EAVE LEVEL BAND / BEAM	Eave level Band provided.
GABLE BAND / BEAM	Absent.
ROOF DETAILS i/c CONNECTIONS, ETC.	The third Storey had a false ceiling above which was a pitched roof. The arrangement observed was C.G.I sheeting fixed over Angle section purlins and rafters rested on Slender RCC Columns at intervals of 115mm c/c.
OTHER STRUCTURAL FEATURES OBSERVED	
Expansion Joint	Two expansion joints of 20mm each were observed perpendicular to the length of building, dividing the structure into three lengths.
Mezzanine Floor	RCC Roof cast above the Toilet zone in Operation Theater Portion to house 8 nos. 1000lts.

Dampness observed near all ducts housing water drain pipelines, etc. Moss generation was also seen in these locations.
Observed in almost all places where dampness had occurred. Especially in the Electrical room in basement 2 of the building.

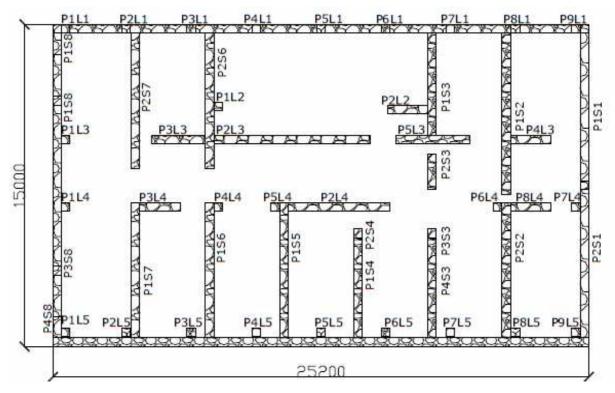
3.3 <u>NON-STRUCTURAL</u> <u>COMPONENTS/CONTENTS/EQUIPMENTS/</u>

NON-STRUCTURAL ELEMENTS	WATER SUPPLY SYSTEM
1- Waters tanks	
	BLOCK A
<image/>	8nos. Sintex Water Tanks each of 1000lts. are placed on Steel Frame resting on newly constructed RCC roof over Toilets in Operation Theatre zone. Sway and overturning of Four nos. of Sintex tanks is prevented by a Steel Channel Section fixed in the Brick wall provided above RCC roof. The remaining 4 nos. Sintex Tanks need to be protected from sway or overturning effect by proper anchoring with structural members.
	BLOCK C 8nos. in groups of two steel
	water tanks of size 1.4mX1.4mX2.27m water tank placed over ISMB250 sections which rest on RCC Floor of 100mm thickness over toilets on topmost floor. Water tanks are not fixed and can be likely cause of danger in case of seismic activity. The water tanks need to be either relocated or anchored properly to prevent any sway or overturning during seismic activity.

	LABORATORY BLOCK
	Two number steel water tanks placed over RCC roof over Corridor. Water tank not fixed and can be likely cause of danger in case of seismic activity.
2- Pipelines	
Utility pipelines details:	Water drainage pipelines were observed within RCC Column.
	MEDICAL FACILITIES
3- Cabinets	
Storage units of Storage Cabinets, Computers, etc.:	Not fixed to the Wall or anchored to any structural member, in case of seismic activity likely to overturn. In few places almirahs were placed in the middle of the room making it more dangerous. Also in administrative block rooms, the furniture is so placed that there is minimal space for the person inside the room to move efficiently.


	MEDICALS EQUIPMENT
4- Ot lights ,oxygen cylinder etc	
Layout of Medical Lab and Medical unit Equipment in rooms such as OT lights, autoclave machine, blood bank refrigerator, OT equipment oxygen cylinder, etc.:	In OT, the heavy lights were clamped to steel pipe resting on the RCC beams / Stone masonry walls (as applicable). The Equipment in general was freely standing in the center of the room or placed against the walls. In other places the equipment was placed over the slab projecting from the wall. The equipment was lying freely which are likely cause of creating hazardous situation.
5- Layout of beds	
Layout of beds and equipment in ward rooms:	Equipment with beds not fixed to the walls or any attachment with bed i.e. they were in loose sate. The equipment need to be anchored as per Clause 7.13 in IS1893 (Part 1) Draft Code.
6- Condition of Passage Way	
	BLOCKA
	Few Cupboards were found placed against the wall in the passage way without fastening to the wall. Likely to fall and block passageway.

eft aft refer tres securation ats ar-fibra fear fear securation ats Bible securation - Listing	BLOCK B The entire imaging dept had only one Door of clear width of 2.0m to escape during any emergency.
	LABORATORY The passage way had unanchored almirahs blocking the path. Even on first floor corridor unanchored almirahs were found standing against the walls, thereby reducing the clear passageway.


	GENERAL ITEMS, ELECTRICAL & MECHANICAL EQUIPMENT
7- Air conditioners ,etc	
Mechanical and electrical equipments such as control and distribution panels, pumps, generators, communication control equipment, Air Conditioners, etc.	All such equipments were found in unanchored /unsecured position. Air-Conditioners were placed on exterior walls most of them in Operation Theatre zone. They were resting on steel frame without any anchoring. They need to be anchored either vertically or horizontally as the case arises as per Clause 7.13 of IS1893 (Part 1) Draft version.
8- Electrical wirings & fittings	
Type & condition of electrical Wiring & Fittings, presence of hanging fans, bulbs, etc.:	All wirings done internally. In wards the Tubes were found in hanging condition. They need to be fastened properly to prevent sway during seismic activity.

9- Geysers	
Falling Hazards such as geysers, stabilizers, window A.C., etc.	Geysers were fixed onto the wall above lintel height in few rooms. They need to be anchored as per clause 7.13 of draft version of IS1893.
10- Fire fighting facilities	
	Fire Fighting System nor fire Extinguishers were observed. When provided, they need to be anchored as per guidelines given in Clause 7.13 of IS1893 (Part 1) Draft version.

3.4 3D MODEL & PLAN OF BUILDING

3.5<u>DETAIL ANALYSIS REPORT OF MASONRY STRUCTURE</u>

Masonry Structure Block A

GIVEN DATA

Length of building(L)	25.20	m
Breadth of building (B)	15.00	m
Thickness of walls (T)	0.40	m
Cast in-situ RCC slab thickness	0.15	m
Floor finish above slab	0.08	m

LOADING DATA (Loads taken from IS 875:1987(part1 & part2))

R.C.C =	26.00	KN / m^3
Stone masonry =	22.00	KN /m³
Floor Finish =	24.00	KN /m³
Asbestos sheeting =	0.13	KN/m²
Floor dead load =	5.70	KN/m²
Floor Live load =	4.00	KN/m²
Unit wt of stone masonry per unit area	8.80	KN/m²

LOAD CALCULATION:

Roof dead load:	51.80 KN
Intermediate floor dead load:	2154.60 KN
Intermediate floor live load:	1512.00 KN
Due to wall load on roof level	2117.94 KN
Due to wall load on second floor level	4270.20 KN
Due to wall load on first floor	4297.26 KN
Due to wall load on ground floor	2775.96 KN

CALCULATION OF SEISMIC WEIGHT

As per clause 7.3.1 of IS 1893:2002

Imposed load to be considered in seismic weight

25% of imposed load =	1.00 KN/m ²
Seismic weight on roof =	2169.74 KN
Seismic weight on second floor =	6802.80 KN
Seismic weight on first floor =	6829.86 KN
Seismic weight on ground floor =	5308.56 KN
Total seismic weight	21110.96 KN

CALCULATION OF BASE SHEAR

Z = 0.36 (seismic zone v)

I= 1.50 (Importance factor)

R= 2.50 (Response reduction factor: Since Horizontal Bands have already been provided)

H= 12.50 (Height of Building)

Ta= $.09h/\sqrt{d}$

When lateral force is perpendicular to width

Ta= 0.22 sec

When lateral force is perpendicular to width

Ta= 0.29 sec

Sa/g= 2.50

Sa/g= Average response acceleration

The distribution of shear force in the vertical direction is made as per IS: 1893:2002

 $V_B = ((Z X I)/(2 X R))X Sa/g x W = 5699.96$ KN

DESIGN LATERAL FORCES AT EACH FLOOR LEVEL

Total height from basement level to roof level =	12.50 m
Total height from basement	
level to second floor level =	9.38 m
Total height from basement	
level to first floorlevel =	6.23 m
Total height from basement	
level to ground floor level =	3.08 m

LATERAL FORCE DISTRIBUTION As per clause 7.7.1 of IS 1893:2002

Storey	Wi (kn)	hi (m)	Wihi ²	Wihi ² /ΣWihi ²	Lateral
			(KNm²)		force at
					level(KN)
Roof	2545.60	12.50	397750.00	0.28	1603.42
Second	7580.00	9.38	666210.94	0.47	2685.64
First	7611.75	6.23	294960.07	0.21	1189.05
GF	5820.00	3.08	55031.74	0.04	221.85
Σ			1413952.74		5699.96

Distribution of shears among different walls at ground floor level Calculation of center of gravity-:

	Area (m ²)	Distance of C.G
		(m)
L1	46.35	14.225
L2	8.42	10.450
L3	62.75	8.925
L4	38.79	6.075
L5	44.73	0.775
C _{gy} =	7.85 m	

	Area (m ²)	Distance
		of C.G (m)
S1	45.08	25.00
S2	44.36	21.90
S3	40.04	18.80
S4	22.61	15.70
S5	25.13	12.60
S6	39.38	9.50
S7	39.38	6.40
S8	10.58	0.20
C _{gx} =	15.57 m	

Determination of Stiffness of Walls:

The piers are assumed top be fixed at both ends, therefore the following formula is used to calculate stiffness:

 $K_{i} = (E_{m}.t)/((h/l)^{3} + 3^{*}(h/l))$ Where $E_{m} = 550 \text{ X } f_{m}$

From IS: 1905:1987, we get fm = 750000 N/m² Therefore, $E_m = 412.5 \text{ MN/m}^2$

Pier No.	Length 1	Height h	C _i (m)	h/l	K _i	K _i /∑Ki
	(m)	(m)			(MN/m)	
DC	6.00	1.50		0.00	240.076	0.500
$\frac{P_1S_1}{P_1S_1}$	6.90	1.50		0.22	249.076	0.500
P_2S_1	6.90	1.50		0.22	249.076	0.500
S ₁			25.00		498.153	
P_1S_2	7.50	2.10		0.28	191.426	0.546
P_2S_2	6.30	2.10		0.33	159.107	0.454
\mathbf{S}_2	0.50	2.10	21.90	0.55	350.533	0.434
52			21.70		550.555	
P_1S_3	4.65	2.10		0.45	114.033	0.367
P_2S_3	1.65	2.10		1.27	28.062	0.090
P_3S_3	0.45	1.50		3.33	3.508	0.011
P_4S_3	4.65	1.50		0.32	164.784	0.531
S ₃			18.80		310.388	
P_1S_4	4.65	2.10		0.45	114.033	0.988
P_2S_4	0.45	2.10		4.67	1.427	0.012
S4			15.70		115.460	
P_1S_5	6.30	3.00		0.48	107.383	1.000
S ₅			12.60		107.383	
P_1S_6	6.30	3.00		0.48	107.383	0.500
P_2S_6	6.30	3.00		0.48	107.383	0.500
S ₆			9.50		214.767	
P_1S_7	6.30	3.00		0.48	107.383	0.500
P_2S_7	6.30	3.00		0.48	107.383	0.500
S ₇	0.50	5.00	6.40	0.10	214.767	0.500
P_1S_8	1.00	3.00		3.00	4.583	0.449
P_2S_8	0.45	3.00		6.67	0.522	0.051
P ₃ S ₈	0.45	3.00		6.67	0.522	0.051
P_4S_8	1.00	3.00		3.00	4.583	0.449
S ₈			0.20		10.210	

 Table : Calculation of Stiffness of piers and walls in short walls:

Location of C_s from the center of the end short wall:

 $C_{sx} = 17.87 \text{ m}$

Pier No.	Length	Height	C _i (m)	h/l	K _i	K _i /∑Ki
	L(m)	H(m)			(MN/m)	
P_1L_1	0.40	1.50		3.75	2.579	0.111
P_2L_1	0.40	1.50		3.75	2.579	0.111
P ₃ L ₁	0.40	1.50		3.75	2.579	0.111
P ₄ L ₁	0.40	1.50		3.75	2.579	0.111
P ₅ L ₁	0.40	1.50		3.75	2.579	0.111
P_6L_1	0.40	1.50		3.75	2.579	0.111
P_7L_1	0.40	1.50		3.75	2.579	0.111
P_8L_1	0.40	1.50		3.75	2.579	0.111
P_9L_1	0.40	1.50		3.75	2.579	0.111
L ₁			14.23		23.209	
P_1L_2	0.40	2.10		5.25	1.028	0.028
P_2L_2	1.90	2.10		1.11	35.362	0.972
L ₂			10.45		36.391	
P_1L_3	0.40	2.10		5.25	1.028	0.002
P_2L_3	8.10	2.10		0.26	207.494	0.462
P_3L_3	3.50	2.10		0.60	81.845	0.182
P_4L_3	1.90	2.10		1.11	35.362	0.079
P ₅ L ₃	5.00	2.10		0.42	123.680	0.275
L ₃			8.93		449.410	
P_1L_4	0.40	2.10		5.25	1.028	0.005
P_2L_4	5.00	2.10		0.42	123.680	0.625
P_3L_4	1.90	2.10		1.11	35.362	0.179
P_4L_4	0.40	2.50		6.25	0.628	0.003
P_5L_4	0.40	2.50		6.25	0.628	0.003

Calculation of stiffness of piers and walls in Long walls:

P_6L_4	0.40	2.50		6.25	0.628	0.003
P_7L_4	0.40	2.50		6.25	0.628	0.003
P_8L_4	1.90	2.10		1.11	35.362	0.179
L ₄			6.08		197.943	
P_1L_5	0.40	1.50		3.75	2.579	0.128
P_2L_5	0.40	1.50		3.75	2.579	0.128
P_3L_5	0.40	1.50		3.75	2.579	0.128
P_4L_5	0.40	1.50		3.75	2.579	0.128
P_5L_5	0.40	1.50		3.75	2.579	0.128
P_6L_5	0.40	2.10		5.25	1.028	0.051
P ₇ L ₅	0.40	2.10		5.25	1.028	0.051
P ₈ L ₅	0.40	1.50		3.75	2.579	0.128
P ₉ L ₅	0.40	1.50		3.75	2.579	0.128
L ₅			0.78		20.108	

Location of C_s from the center of the backside long wall: $C_{sy} = 8.17 \text{ m}$

 $\begin{array}{ll} C_{sx} = 17.87 \ m & C_{sy} = 8.17 \ m \\ C_{Gx} = 15.57 \ m & C_{Gy} = 7.85 \ m \end{array}$

As Per Clause 7.9.2 of IS: 1893 :(Part 1) 2002

Eccentricity, $e_{di} = 1.5 * e_{si} + 0.05 b_i$

When load is in direction parallel to short walls: $e_{di} = 4.70 \text{ m}$

When load is in direction parallel to long walls: $e_{di} = 1.23 \text{ m}$

So, torsional moment developed due to eccentricity

Parallel to Long Walls $M_T = 7024.96$ KNm Parallel to short Walls $M_T = 26797.72$ KNm

3.6 RESULT & DISCUSSION

Table 3.1 : Distribution of Translational & Torsional Shears at Ground Floor when load is in parallel to long walls:

			FO	RCE P	ERPENDI	CUAR		FORCE	E PERPEN	DICUAR			
			TO	O LON	G WALLS	5 VB & MT	= 49840.20	TO SHO	ORT WAL	LS VB & M	T = 13065.49		
Wall	K _{ix} (MN/m)	K _{iy} (MN/m)	D _x (m)	D _y (m)	K _i * D	$K_i * D^2$	$V=(K_i/\sum K_i)$ * V _B (KN)	$V_{M} = (K_{i}.D_{y} / \sum K_{i}.D_{y}^{2}) $ * M_{T} (KN)	V _T =V _M +V (KN)	$V=(K_i/\sum K_i) \\ * V_B(KN)$	$V_{M} = (K_{i}.D_{y}/\sum_{k} K_{i}.D_{y}^{2})*M_{T} (KN)$	V _T =V _M +V (KN)	Total Shear V _T
S ₁	_	498.15	-	17.87	8900.70	159032.54	1558.72	-1092.84	1558.72	-	286.49	286.49	1845.20
\mathbf{S}_2	-	350.53	-	4.03	1413.55	5700.27	1096.82	-173.56	1096.82	-	45.50	45.50	1142.31
S ₃	-	310.39	-	0.93	289.46	269.95	971.20	-35.54	971.20	-	9.32	9.32	980.52
\mathbf{S}_4	-	115.46	-	2.17	250.25	542.40	361.27	-30.73	361.27	-	8.05	8.05	369.33
S ₅	-	107.38	-	5.27	565.63	2979.43	336.00	-69.45	336.00	-	18.21	18.21	354.21
S ₆	-	214.77	-	8.37	1797.04	15036.61	672.00	-220.64	672.00	-	57.84	57.84	729.84
S ₇	-	214.77	-	11.47	2462.82	28242.18	672.00	-302.39	672.00	-	79.27	79.27	751.27
S ₈	-	10.21	-	17.67	180.38	3186.92	31.95	22.15	54.09	-	5.81	5.81	59.90
		1821.66				214990.29							
L ₁	23.21	-	6.06	-	140.55	851.13	_	17.26	17.26	181.95	4.52	186.47	203.73
L ₂	36.39	-	2.28	-	83.00	189.31	-	10.19	10.19	285.29	-2.67	285.29	295.48
L_3	449.41	-	0.76	-	339.67	256.72	-	41.70	41.70	3523.25	-10.93	3523.25	3564.96
L_4	197.94	-	2.09	-	414.53	868.11	-	50.90	50.90	1551.82	-13.34	1551.82	1602.72
L ₅	20.11	-	7.39	-	148.68	1099.38	-	18.26	18.26	157.64	-4.79	157.64	175.90
	727.06					3264.66							
					Σ	218254.95							

Geometric Properties of the piers in short walls:

Pier No.	Length L (m)	Area (m ²)	C _i (m)	$(I_g)_i m^4$
P_1S_1	6.90	2.76	3.45	10.950
P_2S_1	6.90	2.76	3.45	10.950
P_1S_2	7.50	3.00	3.75	14.063
P_2S_2	6.30	2.52	3.15	8.335
P ₁ S ₃	4.65	1.86	2.33	3.351
P_2S_3	1.65	0.66	0.83	0.150
P ₃ S ₃	0.45	0.18	0.23	0.003
P ₄ S ₃	4.65	1.86	2.33	3.351
P_1S_4	4.65	1.86	2.33	3.351
P_2S_4	0.45	0.18	0.23	0.003
P ₁ S ₅	6.30	2.52	3.15	8.335
P ₁ S ₆	6.30	2.52	3.15	8.335
P_2S_6	6.30	2.52	3.15	8.335
P_1S_7	6.30	2.52	3.15	8.335
P_2S_7	6.30	2.52	3.15	8.335
P ₁ S ₈	1.00	0.40	0.50	0.033
P ₂ S ₈	0.45	0.18	0.23	0.003
P ₃ S ₈	0.45	0.18	0.23	0.003
P_4S_8	1.00	0.40	0.50	0.033

Geometric Properties of the piers in Long walls:

Pier No.	Length L (m)	Area	Ci	$(I_g)_i (m^4)$
		(m ²)	(m)	
P_1L_1	0.40	0.16	0.20	0.002
P_2L_1	0.40	0.16	0.20	0.002
P ₃ L ₁	0.40	0.16	0.20	0.002
P_4L_1	0.40	0.16	0.20	0.002
P ₅ L ₁	0.40	0.16	0.20	0.002
P_6L_1	0.40	0.16	0.20	0.002
P ₇ L ₁	0.40	0.16	0.20	0.002
P ₈ L ₁	0.40	0.16	0.20	0.002
P ₉ L ₁	0.40	0.16	0.20	0.002
P_1L_2	0.40	0.08	0.20	0.001
P_2L_2	1.90	0.38	0.95	0.114
P_1L_3	0.40	0.16	0.20	0.002
P ₂ L ₃	8.10	3.24	4.05	17.715
P ₃ L ₃	3.50	1.40	1.75	1.429
P ₄ L ₃	1.90	0.76	0.95	0.229
P ₅ L ₃	5.00	2.00	2.50	4.167
P_1L_4	0.40	0.16	0.20	0.002
P_2L_4	5.00	2.00	2.50	4.167
P ₃ L ₄	1.90	0.76	0.95	0.229
P ₄ L ₄	0.40	0.16	0.20	0.002
P ₅ L ₄	0.40	0.16	0.20	0.002
P ₆ L ₄	0.40	0.16	0.20	0.002
P ₇ L ₄	0.40	0.16	0.20	0.002
P ₈ L ₄	1.90	0.76	0.95	0.229

P_1L_5	0.40	0.16	0.20	0.002
P_2L_5	0.40	0.16	0.20	0.002
P_3L_5	0.40	0.16	0.20	0.002
P_4L_5	0.40	0.16	0.20	0.002
P_5L_5	0.40	0.16	0.20	0.002
P_6L_5	0.40	0.16	0.20	0.002
P_7L_5	0.40	0.16	0.20	0.002
P_8L_5	0.40	0.16	0.20	0.002
P_9L_5	0.40	0.16	0.20	0.002

Distribution of Lateral Shear among Piers in short walls:

Pier No.	$V_T(K_i / \sum K_i) (KN)$	Total
P_1S_1	922.60	1845.20
P_2S_1	922.60	
P_1S_2	623.82	1142.31
P_2S_2	518.50	
P_1S_3	360.23	
P_2S_3	88.65	
P ₃ S ₃	11.08	980.52
P_4S_3	520.55	
P_1S_4	364.76	369.33
P_2S_4	4.56	
		354.21
P_1S_5	354.21	
P_1S_6	364.92	729.84
P_2S_6	364.92	

P_1S_7	375.64	751.27
P_2S_7	375.64	
P_1S_8	26.89	
P_2S_8	3.06	59.90
P ₃ S ₈	3.06	
P_4S_8	26.89	

Distribution of Lateral Shear among Piers in long walls:

Pier No.	$V_T(K_i/\Sigma K_i)$ (KN)	Total
P_1L_1	22.64	
P_2L_1	22.64	
P_3L_1	22.64	
P ₄ L ₁	22.64	203.73
P ₅ L ₁	22.64	
P_6L_1	22.64	
P ₇ L ₁	22.64	295.48
P_8L_1	22.64	
P ₉ L ₁	22.64	
P_1L_2	8.35	
P ₂ L ₂	287.13	
		3564.96
P ₁ L ₃	8.16	
P ₂ L ₃	1645.95	
P ₃ L ₃	649.24	
P ₄ L ₃	280.51	
P ₅ L ₃	981.10	

P_1L_4	8.33	
	1001.42	
P_2L_4		
P_3L_4	286.32	1602.72
P_4L_4	5.08	
P_5L_4	5.08	
P ₆ L ₄	5.08	
P ₇ L ₄	5.08	
P ₈ L ₄	286.32	
P_1L_5	22.56	
P_2L_5	22.56	
P_3L_5	22.56	
P ₄ L ₅	22.56	175.90
P ₅ L ₅	22.56	
P ₆ L ₅	9.00	
P ₇ L ₅	9.00	
P ₈ L ₅	22.56	
P ₉ L ₅	22.56	

Pier No.	x _i (m)	A_i (m ²)	$A_i X x_i$ (m ³)	$\begin{array}{c} y_{NA} = \\ \sum (A_i * x_i) / \sum A_i \\ (m) \end{array}$	Distance of the central line of pier from N.A.
P_1S_1	3.45	2.76	9.52		4.05
P_2S_1	11.55	2.76	31.88		-4.05
		5.52	41.40	7.50	
P_1S_2	3.75	3.00	11.25		3.70
P_2S_2	11.85	2.52	29.86		-4.40
		5.52	41.11	7.45	
DS	2.33	1.86	4.32		5.06
P_1S_3			4.32		5.06
P_2S_3	6.68 7.73	0.66	1.39		0.71 -0.34
P_3S_3					
P_4S_3	12.68	1.86 4.56	23.58 33.70	7.39	-5.29
		4.50	55.70	1.55	
P_1S_4	2.33	1.86	4.32		0.33
P_2S_4	6.08	0.18	1.09		-3.42
		2.04	5.42	2.66	
P ₁ S ₅	3.15	2.52	7.94		0.00
		2.52	7.94	3.15	
P ₁ S ₆	3.15	2.52	7.94		4.35
P_2S_6	11.85	2.52	29.86		-4.35
		5.04	37.80	7.50	
P ₁ S ₇	3.15	2.52	7.94		4.35
P_2S_7	11.85	2.52	29.86		-4.35
		5.04	37.80	7.50	
P ₁ S ₈	0.50	0.40	0.20		7.00
P_2S_8	6.09	0.18	1.10		1.42
P ₃ S ₈	8.93	0.18	1.61		-1.42
P_4S_8	14.50	0.40	5.80		-7.00
		1.16	8.70	7.50	

 Table 3.2 : Distribution of Overturning Moment to Piers in short wall, as Axial Forces:

Pier No.	y _i (m)	A_i (m ²)	$A_i X y_i(m^3)$	$\begin{array}{c} y_{NA} = \\ \sum (A_i^* y_i) / \sum A_i \\ (m) \end{array}$	Distance of the central line of pier from N.A.
P_1L_1	0.20	0.16	0.032	(111)	12.40
P_2L_1	3.30	0.16	0.528		9.30
P_3L_1	6.40	0.16	1.024		6.20
P_4L_1	9.50	0.16	1.52		3.10
P_5L_1	12.60	0.16	2.016		0.00
P_6L_1	15.70	0.16	2.512		-3.10
P ₇ L ₁	18.80	0.16	3.008		-6.20
P_8L_1	21.90	0.16	3.504		-9.30
P_9L_1	25.00	0.16	4		-12.40
Σ		1.44	18.144	12.60	
P_1L_2	0.20	0.08	0.016		1.94
P_2L_2	2.55	0.38	0.969		-0.41
Σ		0.46	0.985	2.14	
P_1L_3	0.20	0.16	0.032		12.67
P_2L_3	5.65	3.24	18.306		7.22
P_3L_3	14.15	1.40	19.81		-1.28
P_4L_3	18.05	0.76	13.718		-5.18
P_5L_3	22.70	2.00	45.4		-9.83
Σ		7.56	97.266	12.87	
P_1L_4	0.20	0.16	0.032		10.07
P_2L_4	4.10	2.00	8.2		6.17
P_3L_4	8.75	0.76	6.65		1.52
P_4L_4	12.60	0.16	2.016		-2.33
P_5L_4	15.70	0.16	2.512		-5.43
P_6L_4	18.80	0.16	3.008		-8.53
P_7L_4	21.90	0.16	3.504		-11.63
P_8L_4	24.25	0.76	18.43		-13.98
Σ		4.32	44.352	10.27	
P_1L_5	0.20	0.16	0.032		12.40
P_2L_5	3.30	0.16	0.528		9.30
P_3L_5	6.40	0.16	1.024		6.20
P_4L_5	9.50	0.16	1.52		3.10
P_5L_5	12.60	0.16	2.016		0.00

Table 3.3 : Distribution of Overturning Moment to Piers in long wall, as Axial Forces:

P_6L_5	15.70	0.16	2.512		-3.10
P_7L_5	18.80	0.16	3.008		-6.20
P_8L_5	21.90	0.16	3.504		-9.30
P_9L_5	25.00	0.16	4		-12.40
Σ		1.44	18.144	12.60	

Lateral Force Distribution among short walls:

Wall Name	Floor	Dist.	Lateral Force	Total Overturning Moment
	Level	Factor		(M _o)
\mathbf{S}_1	Roof	0.28	519.06	
	Second	0.47	869.40	17255.89
	First	0.21	384.92	
	GF	0.04	71.82	
S ₂	Roof	0.28	321.34	
	Second	0.47	538.22	10682.64
	First	0.21	238.29	
	GF	0.04	44.46	
S_3	Roof	0.28	275.82	
	Second	0.47	461.99	9169.56
	First	0.21	204.54	
	GF	0.04	38.16	
S ₄	Roof	0.28	103.89	
~4	Second	0.47	174.02	3453.87
	First	0.21	77.04	
	GF	0.04	14.37	
S ₅	Roof	0.28	99.64	
	Second	0.47	166.89	3312.47

	First	0.21	73.89		
	GF	0.04	13.79		
S ₆	Roof	0.28	205.31		
	Second	0.47	343.88	6825.33	
	First	0.21	152.25		
	GF	0.04	28.41		
S ₇	Roof	0.28	211.34		
	Second	0.47	353.98	7025.73	
	First	0.21	156.72		
	GF	0.04	29.24		
S ₈	Roof	0.28	16.85		
	Second	0.47	28.22	560.18	
	First	0.21	12.50		
	GF	0.04	2.33		

Lateral Force Distribution among long walls:

Wall Name	Floor	Dist.	Lateral	Total Overturning
	Level	Factor	Force	Moment (M _o)
L ₁	Roof	0.28	57.31	
	Second	0.47	95.99	1905.25
	First	0.21	42.50	
	GF	0.04	7.93	
L ₂	Roof	0.28	83.12	
	Second	0.47	139.22	2763.29
	First	0.21	61.64	

	GF	0.04	11.50		
L ₃	Roof	0.28	1002.83		
	Second	0.47	1679.70	33338.62	
	First	0.21	743.67		
	GF	0.04	138.75		
L ₄	Roof	0.28	450.85		
	Second	0.47	755.15	14988.26	
	First	0.21	334.34		
	GF	0.04	62.38		
L ₅	Roof	0.28	49.48		
	Second	0.47	82.88	1644.94	
	First	0.21	36.69		
	GF	0.04	6.85		

 Table 4 : Distribution of Overturning Moment to Piers as Axial Forces:

Pier	A _i	$(y_b)_i$	$A_i(y_b)_i^2$	$(I_g)_i$	(I _{NA}) _i	$A_i(y_b)_i$	$A_i(y_b)_i\!/\!\sum(I_{NA})$	(P _e) _i
No.	(m ²)	(m)	(m ⁴)	(m ⁴)	(m ⁴)	(m ³)	(m^{-1})	(KN)
P_1S_1	2.760	4.050	45.271	10.950	56.221	11.178	0.099	1715.423
						-		-
P_2S_1	2.760	-4.050	45.271	10.950	56.221	11.178	-0.099	1715.423
Σ	5.520		90.542	21.901	112.442	0.000	0.000	0.000
P_1S_2	3.000	3.698	41.022	14.063	55.084	11.093	0.099	1055.704
						-		-
P_2S_2	2.520	-4.402	48.835	8.335	57.170	11.093	-0.099	1055.704
Σ	5.520		89.857	22.397	112.255	0.000	0.000	0.000

P_1S_3	1.860	5.064	47.707	3.351	51.058	9.420	0.088	808.146
P_2S_3	0.660	0.714	0.337	0.150	0.487	0.472	0.004	40.455
P ₃ S ₃	0.180	-0.336	0.020	0.003	0.023	-0.060	-0.001	-5.181
P_4S_3	1.860	-5.286	51.962	3.351	55.314	-9.831	-0.092	-843.420
Σ	4.560		100.027	6.856	106.882	0.000	0.000	0.000
P_1S_4	1.860	0.331	0.204	3.351	3.555	0.615	0.109	375.397
P_2S_4	0.180	-3.419	2.104	0.003	2.107	-0.615	-0.109	-375.397
Σ	2.040		2.308	3.355	5.662	0.000	0.000	0.000
P_1S_5	2.520	0.000	0.000	8.335	8.335	0.000	0.000	0.000
Σ	2.520		0.000	8.335	8.335	0.000	0.000	0.000
P_1S_6	2.520	4.350	47.685	8.335	56.020	10.962	0.098	667.796
						-		
P_2S_6	2.520	-4.350	47.685	8.335	56.020	10.962	-0.098	-667.796
Σ	5.040		95.369	16.670	112.039	0.000	0.000	0.000
P_1S_7	2.520	4.350	47.685	8.335	56.020	10.962	0.098	687.403
						-		
P_2S_7	2.520	-4.350	47.685	8.335	56.020	10.962	-0.098	-687.403
Σ	5.040		95.369	16.670	112.039	0.000	0.000	0.000
P_1S_8	0.40	7.002	19.609	0.033	19.642	2.801	0.070	39.223
P_2S_8	0.18	1.417	0.361	0.003	0.364	0.255	0.006	3.571
P ₃ S ₈	0.18	-1.423	0.365	0.003	0.368	-0.256	-0.006	-3.588
P_4S_8	0.40	-6.998	19.591	0.033	19.625	-2.799	-0.070	-39.205
Σ	1.16		39.926	0.073	39.999	0.000	0.000	0.000
P_1L_1	0.160	12.400	24.602	0.002	24.604	1.984	0.022	40.964
P_2L_1	0.160	9.300	13.838	0.002	13.841	1.488	0.016	30.723

P_3L_1	0.160	6.200	6.150	0.002	6.153	0.992	0.011	20.482
P_4L_1	0.160	3.100	1.538	0.002	1.540	0.496	0.005	10.241
P_5L_1	0.160	0.000	0.000	0.002	0.002	0.000	0.000	0.000
P_6L_1	0.160	-3.100	1.538	0.002	1.540	-0.496	-0.005	-10.241
P ₇ L ₁	0.160	-6.200	6.150	0.002	6.153	-0.992	-0.011	-20.482
P ₈ L ₁	0.160	-9.300	13.838	0.002	13.841	-1.488	-0.016	-30.723
P_9L_1	0.160	- 12.400	24.602	0.002	24.604	-1.984	-0.022	-40.964
Σ	1.440		92.256	0.019	92.275	0.000	0.000	0.000
P_1L_2	0.400	1.941	1.507	0.001	1.509	0.777	0.400	1105.941
								-
P_2L_2	1.900	-0.409	0.317	0.114	0.432	-0.777	-0.400	1105.941
Σ	2.300		1.825	0.115	1.940	0.000	0.000	0.000
P_1L_3	0.160	12.666	25.668	0.002	25.670	2.027	0.005	155.649
P_2L_3	3.240	7.216	168.703	17.715	186.418	23.379	0.054	1795.667
P ₃ L ₃	1.400	-1.284	2.309	1.429	3.738	-1.798	-0.004	-138.079
P_4L_3	0.760	-5.184	20.425	0.229	20.654	-3.940	-0.009	-302.609
						-		-
P_5L_3	2.000	-9.834	193.420	4.167	197.587	19.668	-0.045	1510.629
Σ	7.560		410.525	23.541	434.066	0.000	0.000	0.000
P_1L_4	0.160	10.067	16.214	0.002	16.216	1.611	0.006	84.363
P_2L_4	2.000	6.167	76.056	4.167	80.222	12.333	0.043	645.993
P_3L_4	0.760	1.517	1.748	0.229	1.977	1.153	0.004	60.374
P ₄ L ₄	0.160	-2.333	0.871	0.002	0.873	-0.373	-0.001	-19.554
P ₅ L ₄	0.160	-5.433	4.723	0.002	4.726	-0.869	-0.003	-45.534
P ₆ L ₄	0.160	-8.533	11.651	0.002	11.653	-1.365	-0.005	-71.513
		-						
P_7L_4	0.160	11.633	21.654	0.002	21.656	-1.861	-0.007	-97.493
		-				-		
P_8L_4	0.760	13.983	148.606	0.229	148.834	10.627	-0.037	-556.636

Σ	4.320		281.522	4.635	286.157	0.000	0.000	0.000
P_1L_5	0.160	12.400	24.602	0.002	24.604	1.984	0.022	35.368
P_2L_5	0.160	9.300	13.838	0.002	13.841	1.488	0.016	26.526
P_3L_5	0.160	6.200	6.150	0.002	6.153	0.992	0.011	17.684
P_4L_5	0.160	3.100	1.538	0.002	1.540	0.496	0.005	8.842
P_5L_5	0.160	0.000	0.000	0.002	0.002	0.000	0.000	0.000
P_6L_5	0.160	-3.100	1.538	0.002	1.540	-0.496	-0.005	-8.842
P ₇ L ₅	0.160	-6.200	6.150	0.002	6.153	-0.992	-0.011	-17.684
P_8L_5	0.160	-9.300	13.838	0.002	13.841	-1.488	-0.016	-26.526
		-						
P_9L_5	0.160	12.400	24.602	0.002	24.604	-1.984	-0.022	-35.368
Σ	1.440		92.256	0.019	92.275	0.000	0.000	0.000

Load Calculation on Walls:

Wall	Dead Load	Live Load
Name		
S ₁	423.60	47.04
S ₂	785.60	174.48
S ₃	724.00	160.80
S_4	724.00	160.80
S ₅	724.00	160.80
S ₆	724.00	160.80
S ₇	724.00	160.80
S ₈	362.00	80.40
L ₁	799.28	177.52
L ₂	81.05	18.00
L ₃	1888.53	419.44
L ₄	1888.53	419.44
L ₅	799.28	177.52

				(7.7.)
Pier No.	$(P_d)_i (KN)$	$(P_l)_i$ (KN)	$(P_e)_i$ (KN)	$(V_e)_i (KN)$
P_1S_1	211.80	23.52	1429.52	768.83
P_2S_1	211.80	23.52	-1429.52	768.83
Σ	423.60	47.04	0.00	1537.67
P_1S_2	424.22	94.22	879.75	519.85
P_2S_2	361.37	80.26	-879.75	432.08
Σ	785.60	174.48	0.00	951.93
P_1S_3	253.40	56.28	673.46	300.19
P_2S_3	137.56	30.55	33.71	73.87
P_3S_3	79.64	17.69	-4.32	9.23
P_4S_3	253.40	11.26	-702.85	433.80
Σ	724.00	115.78	0.00	817.10
P_1S_4	613.07	136.16	312.83	303.97
P_2S_4	122.61	27.23	-312.83	3.80
Σ	735.68	163.39	0.00	307.77
P_1S_5	724.00	160.80	0.00	295.17
Σ	724.00	160.80	0.00	295.17
P_1S_6	362.00	80.40	556.50	304.10
P_2S_6	362.00	80.40	-556.50	304.10
Σ	724.00	160.80	0.00	608.20
P_1S_7	362.00	80.40	572.84	313.03
P_2S_7	362.00	80.40	-572.84	313.03
L	1	I	I	1

 Table 3.4 : Forces in different piers due to different loads:

Σ	724.00	160.80	0.00	626.06
P_1S_8	82.66	18.36	32.69	22.41
P_2S_8	98.34	21.84	2.98	2.55
P ₃ S ₈	98.34	21.84	-2.99	2.55
P ₄ S ₈	82.66	18.36	-32.67	22.41
Σ	362.00	80.40	0.00	49.92
P_1L_1	55.51	12.33	34.14	18.86
P_2L_1	98.32	21.84	25.60	18.86
P_3L_1	98.32	21.84	17.07	18.86
P_4L_1	98.32	21.84	8.53	18.86
P_5L_1	98.32	21.84	0.00	18.86
P_6L_1	98.32	21.84	-8.53	18.86
P_7L_1	98.32	21.84	-17.07	18.86
P_8L_1	98.32	21.84	-25.60	18.86
P_9L_1	55.51	12.33	-34.14	18.86
Σ	799.28	177.52	0.00	169.78
P_1L_2	23.16	5.14	921.62	6.96
P_2L_2	57.89	12.86	-921.62	239.28
Σ	81.05	18.00	0.00	246.24
P_1L_3	74.94	16.64	129.71	6.80
P_2L_3	753.16	167.28	1496.39	1371.63
P_3L_3	408.43	90.71	-115.07	541.03
P_4L_3	232.32	51.60	-252.17	233.76
P_5L_3	419.67	93.21	-1258.86	817.58
Σ	1888.53	419.44	0.00	2970.80
P_1L_4	74.94	16.64	70.30	6.94
P_2L_4	464.64	103.20	538.33	834.52

P ₃ L ₄	288.53	64.08	50.31	238.60
P ₄ L ₄	232.32	51.60	-16.30	4.23
P_5L_4	232.32	51.60	-37.94	4.23
P_6L_4	232.32	51.60	-59.59	4.23
P_7L_4	176.11	39.11	-81.24	4.23
P ₈ L ₄	187.35	41.61	-463.86	238.60
Σ	1888.53	419.44	0.00	1335.60
P_1L_5	55.51	12.33	29.47	18.80
P_2L_5	98.32	21.84	22.10	18.80
P_3L_5	98.32	21.84	14.74	18.80
P_4L_5	98.32	21.84	7.37	18.80
P ₅ L ₅	98.32	21.84	0.00	18.80
P_6L_5	98.32	21.84	-7.37	7.50
P ₇ L ₅	98.32	21.84	-14.74	7.50
P ₈ L ₅	98.32	21.84	-22.10	18.80
P ₉ L ₅	55.51	12.33	-29.47	18.80
Σ	799.28	177.52	0.00	146.58

Table 3.5 : As per IS 1905:1987

Permissible Compressive Stress =	1.9 N/mm²
Permissible Bending Stress =	2.375 N/mm ²

	Direct	Overturning	Bending	
Pier	Stress	Stress	Stress	
Nos.	(N/mm ²)	(N/mm^2)	(N/mm ²)	$(fa/Fa) + (fb/Fb) \leq 1.33$
P_1S_1	0.085	0.622	0.218	0.46
P_2S_1	0.085	-0.622	0.218	0.46
P_1S_2	0.173	0.352	0.175	0.35
P_2S_2	0.175	-0.419	0.206	0.40
P_1S_3	0.166	0.434	0.262	0.43
P_2S_3	0.255	0.061	0.513	0.38
P_3S_3	0.541	-0.029	0.616	0.56
P_4S_3	0.142	-0.453	0.271	0.43
P_1S_4	0.403	0.202	0.266	0.43
P_2S_4	0.832	-2.086	0.355	1.69
P_1S_5	0.351	0.000	0.201	0.27
P_1S_6	0.176	0.265	0.207	0.32
P_2S_6	0.176	-0.265	0.207	0.32
P_1S_7	0.176	0.273	0.213	0.33
P_2S_7	0.176	-0.273	0.213	0.33
P_1S_8	0.253	0.098	0.605	0.44

P_2S_8	0.668	0.020	0.340	0.51
P_3S_8	0.668	-0.020	0.340	0.51
P_4S_8	0.253	-0.098	0.605	0.44
P_1L_1	0.424	0.256	1.592	1.03
P_2L_1	0.751	0.192	1.592	1.17
P_3L_1	0.751	0.128	1.592	1.13
P_4L_1	0.751	0.064	1.592	1.10
P_5L_1	0.751	0.000	1.592	1.07
P_6L_1	0.751	-0.064	1.592	1.10
P_7L_1	0.751	-0.128	1.592	1.13
P_8L_1	0.751	-0.192	1.592	1.17
P_9L_1	0.424	-0.256	1.592	1.03
P_1L_2	0.354	2.765	1.644	2.33
P_2L_2	0.186	-0.582	2.505	1.46
P_1L_3	0.572	0.973	0.803	1.15
P_2L_3	0.284	0.554	0.395	0.61
P_3L_3	0.357	-0.099	0.835	0.59
P_4L_3	0.374	-0.398	1.224	0.92
P_5L_3	0.256	-0.755	0.618	0.79
P_1L_4	0.572	0.527	0.820	0.92
P_2L_4	0.284	0.323	0.631	0.59
P_3L_4	0.464	0.079	1.249	0.81
P_4L_4	1.774	-0.122	0.596	1.25
P_5L_4	1.774	-0.285	0.596	1.33
P_6L_4	1.774	-0.447	0.596	1.42
P_7L_4	1.345	-0.609	0.596	1.28
P_8L_4	0.301	-0.732	1.249	1.07
P_1L_5	0.424	0.221	1.586	1.01

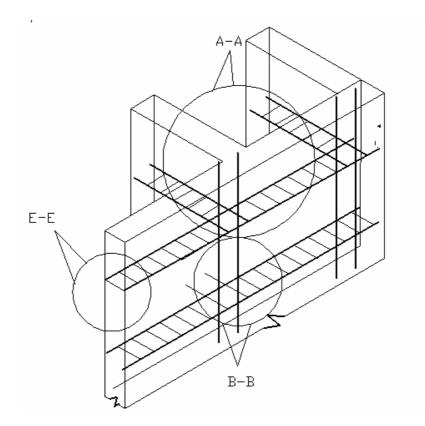
P_2L_5	0.751	0.166	1.586	1.15
P_3L_5	0.751	0.111	1.586	1.12
P_4L_5	0.751	0.055	1.586	1.09
P_5L_5	0.751	0.000	1.586	1.06
P_6L_5	0.751	-0.055	0.885	0.80
P_7L_5	0.751	-0.111	0.885	0.83
P_8L_5	0.751	-0.166	1.586	1.15
P_9L_5	0.424	-0.221	1.586	1.01

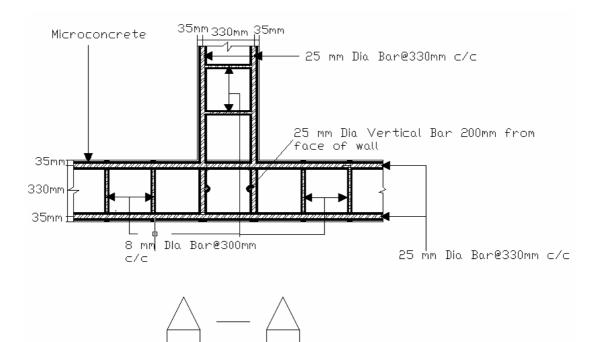
*In case of P_2S_4 , P_1L_2 , P_2L_2 , P_6L_4 extra steel will be provided to make it safe

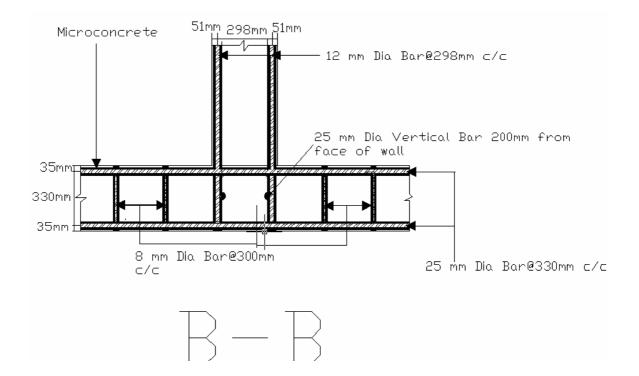
Table 3.6 : Steel provided in form of Bars and Flats:

			Area of		Steel provided
	$(M_e)_i =$	Effective	Jamb Steel		(In form of flat
	$(V_e)_{i.}(h_i/2)$	Depth	(A_s)	No. of	on both faces)
Pier No.	(KNm)	(mm)	(mm ²)	Bars	(t mm X b mm)
P ₁ S ₁	691.95	6860	487.28	<u>1@25Ф</u>	
P_2S_1	691.95	6860	438.55	1 @ 25Ф	
P_1S_2	655.01	7460	381.75	_	8 X 125
P_2S_2	544.42	6260	378.12	-	8 X 125
DS	378.24	4610	356.73		8 X 125
P_1S_3	93.08	1610	251.37	-	8 X 125
$\frac{P_2S_3}{P_3S_3}$	8.31	410	88.13	-	8 X 125
P_3S_3 P_4S_3	390.42	410	368.21	-	8 X 125
P_1S_4	383.00	4610	361.22	-	8 X 125
P_2S_4	4.79	410	50.82	-	8 X 125
P_1S_5	531.31	6260	369.02	-	8 X 125
P_1S_6	547.38	6260	380.18	-	8 X 125
P_2S_6	547.38	6260	380.18	-	8 X 125
P_1S_7	563.46	6260	391.34	-	8 X 125
P_2S_7	563.46	6260	391.34	-	8 X 125
P_1S_8	40.33	960	182.68	-	8 X 125
P_2S_8	4.59	410	48.68	-	8 X 125

4.59	410	48.68	-	8 X 125
40.33	960	182.68	-	8 X 125
16.98	360	205.04	<u>1@25Φ</u>	-
				_
				-
				_
				-
				_
				-
				_
16.98	360	205.04	<u>1 @ 25Ф</u>	-
8.77	360	105.89	-	8 X 125
301.49	1860	704.75	-	8 X 125
8 57	360	103 44		8 X 125
				8 X 125
				8 X 125
				8 X 125
1030.15	4960	903.01	-	8 X 125
8.74	360	105.59	-	8 X 125
1051.49	4960	921.71	-	8 X 125
300.64	1860	702.76	-	8 X 125
6.35	360	76.72	-	8 X 125
6.35	360	76.72	-	8 X 125
6.35	360	76.72		8 X 125
6.35	360	76.72	-	8 X 125
300.64	1860	702.76	-	8 X 125
16.92	360	204.33	1 @ 25 Φ	
	40.33 16.98 8.77 301.49 8.57 1728.25 681.70 294.54 1030.15 8.74 1051.49 300.64 6.35 6.35 6.35 6.35 6.35 300.64	40.33 960 16.98 360 1728.25 8060 681.70 3460 294.54 1860 10	40.33 960 182.68 16.98 360 205.04 1728.25 8060 932.27 681.70 3460 88.49 <	40.33 960 182.68 - 16.98 360 205.04 1 @ 25Φ 301.49 1860 704.75 - 8.77 360 103.44 - 1728.25 8060 932.27


P_2L_5	16.92	360	204.33	1 @ 25Φ	-
P ₃ L ₅	16.92	360	204.33	1 @ 25Φ	-
P_4L_5	16.92	360	204.33	1 @ 25Φ	-
P_5L_5	16.92	360	204.33	1 @ 25 Φ	-
P_6L_5	9.45	360	114.07	1 @ 25 Φ	-
P_7L_5	9.45	360	114.07	1 @ 25 Φ	-
P_8L_5	16.92	360	204.33	1 @ 25 Φ	-
P_9L_5	16.92	360	204.33	1 @ 25Φ	-


SEQUENCE OF EXECUTION OF RECOMMENDED STRUCTURAL RETROFITTING MEASURES


- **1.**) At plinth level coring of 50 mm dia. maintaining the center of core hole at 35 mm from face of wall. Similar coring is done at other face as well. Thereafter coring of 32 mm dia. at 300 mm c/c distance should be done in transverse direction, such that the centre of the transverse core hole is 40mm above the centre of the longitudinal core hole. Insert bars of 25 mm in 50 mm dia. core hole with chairs of 12 mm placed beneath the 25 mm bar at every 600 mm c/c. The 8 mm dia. bars is then inserted in 32 mm dia. core hole. tying of transverse bars with longitudinal bars is done by binding wires to form a ladder shaped steel band.
- 2.) Same procedure mentioned above is to be followed for lintel band.
- **3.**) At sill level coring of 32 mm dia. is done through the junction of long wall with cross walls such that the core hole center is 51 mm from face of cross wall and extends 1 m beyond the thickness of long wall this is to be done for both face of cross wall. Once coring is done 12 mm dia. bar is then inserted to these core holes and binding of these bars with the vertical bars is done to make proper stitching together of walls.
- **4.**) Coring of 50 mm dia. for providing vertical reinforcement is then done from roof level to bottom of foundation within the wall at distance of 200 mm from face of the long wall along both face of cross wall.
- 5.) The same method as mentioned in step 4 above is to be followed for providing the jamb steel for all piers in exterior walls.
- 6.) Once all coring is done and respective bars are inserted, micro concreting of grade M30 is carried out to fill the vacant core holes area. This results in making a proper skeleton system within the structure with minimum activities of the hospital being affected.

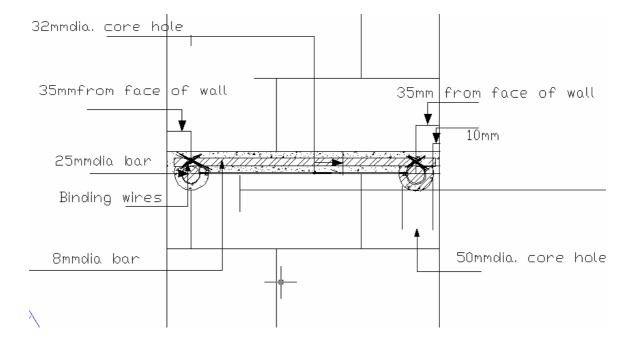

- **7.**) For the piers in interior walls flats of size 125 mm width of 8 mm thickness is to be provided as described in the following steps.
- 8.) The room in which the jamb steel around openings is to be provided should be vacated. Thereafter chiseling of the wall for a width of 150 mm is done on both the vertical sides of the opening on both face of the wall. The specified flats are placed on both faces of the walls such that one end along its width is flush with the opening and joined together by nut bolts of 8 mm dia. rebar in drilled hole @ 300 mm c/c.
- **9.**) At lintel level the transverse rebar (8 mm dia.) is bolted to both plates to make proper connections. In case of door openings apart from the connections at lintel and sill level, the flats placed vertically are extended beyond the floor finish upto the concrete slab.
- **10.**) During performing step 7 above simultaneously grouting in walls and pilaster construction (if required) is to be done.
- **11.**) False ceiling and entire roofing material is removed for providing roof band and gable band.
- 12.) Roof band and gable band is provided as `Γ section of size 75 x 40 mm and after that trusses are placed on the roof beam. The rafters are then attached with the roof and purlins with the gable band by 12 mm dia. rod in the form of U hook which is welded with the `Γ section.
- **13.**) In-Plane bracing at tie level is done with 25 mm dia. bars which are fixed the wooden tie member by U hook of 12 mm dia. bars.
- **14.**) Once the above bands are constructed the false ceiling is then hung from the purlins with secure connection to prevent any sway.

Fig. 3.3 : Arrangement of bands is shown in figure-:

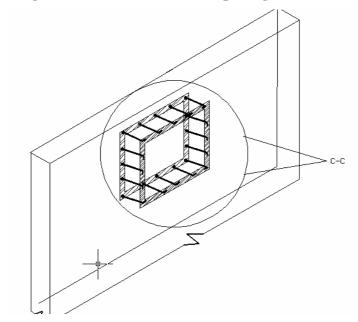
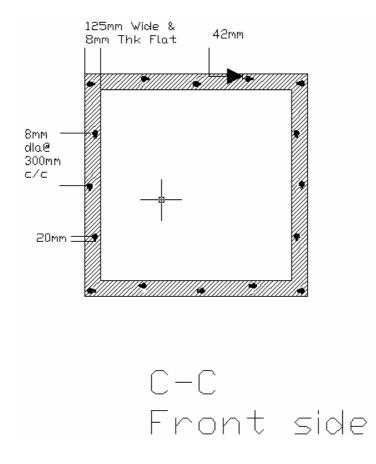



Fig. 3.4 : Arrangement of Flats at window openings-:

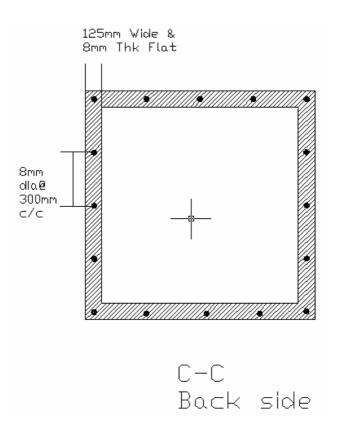
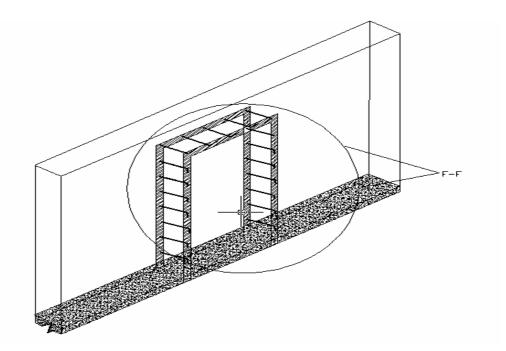
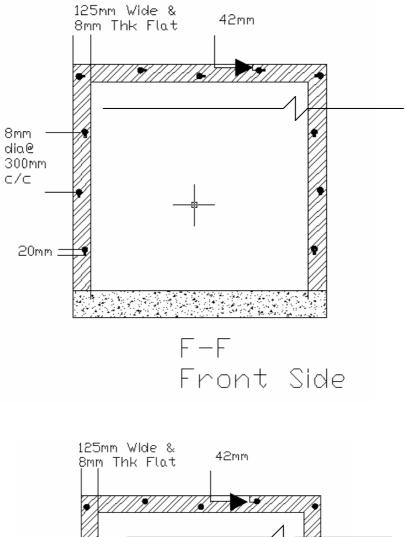
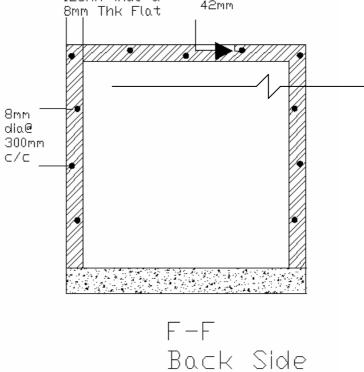





Fig. 3.5 : Arrangement of Flats at Door openings-:

3.7 <u>COST CALCULATION & COMPARISON WITH RATE OF</u> <u>NEW CONSTRUCTION</u>

(1A) Cost of structural retrofitting

S.No.	Description	Unit	Qty.	Rate(Rs.)	Amount(Rs.)
	^				
	Steel bars to be provided upto 8mm dia. including fabrication				
Α	charges	kg	439.47	44.87	19719.02
	Steel bars of 25 mm to be				
	provided including fabrication				
В	charges	kg	11592.49	44.34	514011.00
		0			
	Steel bars of 12 mm to be				
~	provided including fabrication				
С	charges	kg	83.2	44.87	3733.19
	Droviding and fiving of flats up to				
D	Providing and fixing of flats upto size of 10mm thick.	kg	2468.88	42.77	105593.99
D		кg	2-00.00	72.77	103373.77
	providing and fixing of I section				
Ε	of 75X40	kg	1093.5	42.15	45091.03
	Quantity of coring of following mm dia. to be done including all				
	charges				
	I) $32 \text{ mm} = 1363.16 \text{ meters}$				
F	II) $50 \text{ mm} = 2703.71 \text{ meters}$	m	4066.87	1270.39	5166510.98
~	Amount of micro concreting to be		2 00 5		
G	done including all the charges	cum	2.095	55556.8	116376.88
	Amount of grouting of cement to				
Н	be done	cum	105.56	11440	1207592.1
	Demolishing cement concrete				
	work manually/ by mechanical				
	means including stacking of serviceable material and disposal				
	of unserviceable material within				
	50 meters leas as per direction of				
	Engineer-in-charge. In cement				
Ι	mortar.	cum	1.52	226.90	344.88
	Droviding and fiving halts of 9				
	Providing and fixing bolts of 8 mm dia. including nuts and				
J	washers complete.	kg	79.45	62.75	4985.49

K	Providing plaster with a mixture of cement & sand 1:4 (1 cement: 4 fine sand) of thickness 15 mm.	sqm	156.84	110	56775.785
L	Interior Finishing-Painting Distempering with oil bound washable distemper of approved brand and manufacture to give an even shade New work (two or more coats) over and including priming coat		2628.54	41.55	100015 025
M	with cement primer Exterior Finishing-Painting Finishing walls with textured exterior paint of required shade Two or more coat applied @ 3.28 ltr/10 sqm over and including base coat of water proofing cement paint applied @ 2.20 kg/10 sqm	sqm sqm	<u>2628.54</u> 625.5	<u>41.55</u> 96.25	<u>109215.837</u> 60204.375
		Sqiii	025.5	70.25	00204.575
Ν	Scaffolding for painting, coring & plastering, providing double scaffolding system (cup lock type) on the exterior side, up to seven storey height made with 40 mm dia. M.S tube 1.5 m center to center horizontal & vertical tubes joining with cup & lock system with M.S tubes, M.S tube challis, M.S clamps and M.S stair case system in the scaffolding for working platform etc and maintaining in a serviceable condition for the required duration as approved and removing it thereafter. The scaffolding system shall be stiffened with bracings, runners, connection with the building etc where ever required for inspection of works at required locations with essential safety features for the workmen etc. complete as per directions and approval for engineer-in-charge. The lavational area of the scaffolding shall be measured for payment mumous.		901 6	00.7	
N	purpose	sqm	801.6	82.7	66292.32

0	Repair and strengthening of damaged porches by RCC	cum	7.5	3257.45	24430.88
Р	Dismantling and removing from site wooden false ceiling.	sqm	378	28	10584
Q	Internal Water Supply & Sanitary Installations @ 10% of new construction	sqm	383.85	1666.1	639532.49
R	External Service connection @ 5 % of new construction	sqm	383.85	833.05	319766.25
S	Internal Electric Installation @ 12.5 % of new construction	sqm	383.5	2082.63	798688.61
	Sub Total				9269449
	Contingencies @ 5%				463472.45
	TOTAL				9732921.45
	Present cost Index for Delhi is 19%. Therefore Unit rate of civil works for retrofitting (Per sqm) area is as on date =				1040055.00
	9732921.45*19%				1849255.08
	TOTAL COST i/c Delhi cost index				11582176.53
	Per sqm rate for civil works for retrofitting				9052.12

(1B) Miscellaneous Costs / Special Feature Costs

2.5% of new construction Rs/sqm 542.73
--

1)

TOTAL COST OF RETROFITTING (1A+1B)	Rs/sqm	<u>9594.85</u>

1.) Cost for Non-Structural Components/Contents/Equipments/Elements

Cost for non-structural components @				
5% of new construction	sqm	1279.5	1085.45	1388833.28

2.) Inconvenience & Shifting Cost

2.) Inconvenience & Sinting Cos		-		
This cost includes the following:				
i) Renting of another equivalent area				
premises				
ii) Shifting of facilities to new				
premises.				
iii) Breakage of medical and non-				
medical equipment during shifting				
and erecting.				
iv) Creation of similar facilities in				
new premises i/c civil works.				
v) Inconvenience caused to patients				
and working staff during shifting.				
vi) Re-Shifting of facilities to				
retrofitted premises.				
vii) Breakage of medical and non-				
medical equipment during re-shifting				
and re-erecting.				
viii) Re-Creation of facilities in				
retrofitted structure.				
			@20% of	
ix) Inconvenience caused to patients			New	
and working staff during re-shifting			construction	
and working staff during re-shifting.	sqm	1279.5	4341.8	5555333.1

3.) Abstract Cost Sheet

		Area		Amount
Items	Unit	(sqm)	Rate	(Rs.)
Total Cost of retrofitting	Rs./sqm	5487.5	9594.85	52651739.38
Non-Structural cost	Rs./sqm	5487.5	1085.45	5956406.88
Inconvenience & Shifting Cost	Rs./sqm	5487.5	4341.8	23825627.50
GRAND TOTAL				82433773.76

4.) Rate of New Construction

	ANNEXURE-A		
COST	ESTIMATE FOR RETROFITTING OF HOSPITAL BUILDING	AT DHAR	AMSALA
	Based on C.P.W.D Plinth Area Rates-01.10.2007		
PAR NO.	DESCRIPTION	UNIT	RATE (Rs.)
2.0	LOAD BEARING CONSTRUCTION		
2.1	Floor Height 3.35 Mtr		
2.1.4	Three Storeyed	Sqm	8250.00
2.5	EXTRA FOR		
2.5.3	Every 0.30 mt. deeper foundations over normal depth of 1.20 mt. (on G.F. area only)	Sqm	150.00
2.6.1	Resisting earthquake forces	Sqm	588.00
2.7	Stronger structural member to take heavy load above 500Kgs./sqm upto 1000 Kgs,/sqm	Sqm	850.00
2.8	Large modules over 35 Sqm	Sqm	990.00
	A	TOTAL	10828.00
2.9	FIRE FIGHTING		
2.9.2	With Sprinkler System	Sqm	450.00
2.10	FIRE ALARM SYSTEM		
2.10.2	Automatic Fire Alarm System	sqm	300.00
2.11	Operation Theatre (OPD)	sqm	1235.00
	В	TOTAL	1985.00
3.0	SERVICES		
3.1	Internal Water Supply & Sanitary Installations	Sqm	10.0%
3.2	External Service connection	Sqm	5.0%
3.3	Internal Electric Installation	Sqm	12.50%
3.6	Extra for		

3.6.1	Power Wiring and Plug	Sqm	4.0%
3.6.3	Lighting Conductor		
3.6.3.1	upto 4 storeyed building	sqm	0.50%
3.6.4	Telephone Conduits	Sqm	0.50%
3.6.6	Computor Conduting	Sqm	0.50%
3.6.7	Quality Assurance	Sqm	1.00%
	Extra for Higher Specifications	Sqm	5.00%
	С	TOTAL	39.0%
5.0	Water Tank (Rcc only)		
	Overhead tank without independent staging	per	
5.1		Litre	9.00
	minimum water rquirment70000 Ltr per day, hence rate is on	TOTAL	
	1000sqm area basis		
	D		630.00
	Other Work		
1	COST FOR HVAC WORKS	Sqm	500.00
2	COST FOR SPECIAL FINISHES FOR HOSPITAL		
	INTERIOR WORKS	Sqm	800.00
	E	Total	1300.00
	TOTAL OF A To E	F	16661.00
	NOTE:-		
1	Present Cost Index for Delhi is 19%. Therefore Unit Rate (per	C	01 65 50
	Sq.M.) area is as on date = $16478 \times 19\%$	G	3165.59
	Total of F to G		19826.59
	Other Work (Based on Market Rate)		
2	F		1300.00
			21126.59
		SAY	
	Net Total	Rs.	21127.00

Table 3.8

	ANNEXURE-B		
	Based on C.P.W.D Plinth Area Rates-01.10.200	7	
PAR NO.	DESCRIPTION OF ITEM	UNIT	RATE (Rs.)
6.0	DEVELOPMENT OF SITE		
6.1	Levelling	Sqm	55.00
6.2	Internal roads & paths	Sqm	83.00
6.3	Sewer	Sqm	63.00
6.4	Filter Water Supply		
6.4.1	Distribution lines 100mm dia and below	Sqm	46.00
6.5	Strom Water Drains	Sqm	50.00
6.6	Horticulture Operations	Sqm	47.00
	A	TOTAL	344.00
6.7	Street Lighting		
6.7.1	With HPSV LAMPS	Sqm	95.00
6.7.4	Exit Sign Board i/c electric signage	Sqm	50.00
	В	TOTAL	145.00
	TOTAL OF A To B	С	489.00
	NOTE:-		
1	Present Cost Index for Delhi is 19%. Therefore Unit Rate (per Sq.M.) area is as on date = 23396 x 19%	D	92.91
	Total of C to D		581.91
		SAY	
	Net Total	Rs.	582.00
	TOTAL COST ANNEXURE (A +B)	Rs.	21709.00

5.) Comparison of Retrofitting Cost vis-à-vis the Cost of New Construction

Plinth Area Rate for New Construction =. 21709.00 /sqm

Total Area of Hospital considered = 5487.5 sqm.

Therefore the total cost of construction of new hospital of equivalent area = 5487.5×21709 = Rs. 119128137.5

Total cost for retrofitting old hospital comprising of structural, non-structural and miscellaneous works = Rs. 52651739.38

SPECIFIC ISSUES

- 1) The entire pitched roofing arrangement in Block-C needs to be replaced.
- 2) Since each truss in Block-B is in two separate parts and it would incur huge cost to rectify the same, hence it is advisable to replace the entire truss arrangement with inclined RCC roof.
- 3) Foundation Not considered for load bearing structures as no mention in code.
- Openings in masonry structure needs to be reduced to achieve the permissible level mentioned in the codes.
- 5) Doctors residences, Nurses Hostel, etc have not been considered for arriving at the retrofitting costs.

CHAPTER 4 SUMMARY & CONCLUSION

4.1 SUMMARY

Inadequacies of many un-reinforced masonry (URM) buildings have been realized in recent earthquakes in India and hence method of ensuring adequacy of such buildings is of urgent need. Although a considerable research is directed to study the reinforced concrete building, there is no structured methodology to assess the URM building in our country is available. It is important to develop systematic method of evaluation of existing URM buildings.

It is a general finding that masonry structures generally lacks bands due to which long structural crack / hair line crack develops which ultimately led structure loss of its load carrying capacity. Therefore their is need to break this continuity and provides bands at vlarious levels.

Their is not provision for lateral load resistance therefore shear walls must be additionally built which helps in providing seismic resistance to existing building to resist earthquake loads. Also it is seen that structure should be more of ductile nature to avoid sudden collapse of building. Their is also a great need to develop new IS codes as per latest seismic provision as that of R.C.C. structure to enhance the seismic behaviour of old masonry structure which accounts for more than 70% of building in India.

From on analysis we have found that bands (such as plinth, sill level, lintel, roof, gable), jacketing, epoxy grouting, fibre reinforced fabric, base isolation, steel bracing, friction damper, post tensioning and various mechanical anchors etc are very important retrofitting techniques.

4.2 CONCLUSION

IS 1905-1987 provides a semi empirical approach to the design of un reinforced masonry especially for stresses arising from vertical and moderate lateral loads, such as wind. The permissible stress values are not directly linked to the prism test values and do not address the strength and ductility of masonry members under large lateral loads due to earthquakes. Further use of reinforcement is necessary to improve its flexural resistance and ductility required for seismic loads. The masonry codes of other countries provide detailed provision for the design of reinforced masonry members.

IS : 1905 should be expanded to incorporate such provisions. The design approach in IS 1905-1987 is semi empirical, which combines allowable stress design with rules of thumb for unreinforced masonry only. Neither limit state methodology has been adopted in this code nor there are any provisions related to reinforced masonry for any design philosophies. Enhancements and modifications of IS : 1905-1987 is urgently required to address these issues.

Apart from these direct detailed analysis additionally, one can also go for nondestructive test and other indirect methods to check strength & durability & building such as rebound hammer, UPSV (Ultra Sonic Pulse velocity test), Abrasion test, penetration test, Half cell potential test, core cutting tests etc.

REFERENCES

- Abrams, D. P. (1992), "Strength and Behaviour of Un-reinforced Masonry Elements", 10th world conference on Earthquake Engineering, Balkema, Rotterdam.
- 2. Agarwal, P. and Takkar, S. K. (2001), "A comparative Study of Brick Masonry House Model Under Quasi-Static and Dynamic Loading", *Journal of Earthquake technology*, vol. 38, pp. 103-122.
- 3. Arioglu, E. and Anadol, K. (1973), "The Structural Performance of Rural Dwellings during Recent Destructive Earthquakes in Turkey (1969 -72)", 5th world conference on earthquake engineering, Rome.
- 4. **ASCE/SEI-41 (2006)**, Seismic Rehabilitation of Existing Buildings. American Society of Civil Engineers.
- ATC 40 (1996), Seismic Evaluation and Retrofit of Concrete Buildings: Vol. 1, Applied Technology Council, USA
- Bruneau, M. (1994) "Seismic evaluation of unreinforced masonry buildings a state-of-the-art report", *Canadian Journal of Civil Engineering*, vol. 21, no. 3, pp. 512-539
- Eurocode 8 (2004), Design of Structures for Earthquake Resistance, Part-1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization (CEN), Brussels.
- 8. **FEMA 356** (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, American Society of Civil Engineers, USA.
- FEMA 440 (2005), Improvement of nonlinearstatic seismic analysis procedures, Applied Technology Council (ATC) Washington, D.C.
- FEMA 273 (1997), NEHRP Guidelines for the seismic rehabilitation of buildings. *Federal Emergency Management Agency*, Applied Technology Council, Washington D.C., USA.

- FEMA 274 (1997), NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings. *Federal Emergency Management Agency*, Applied Technology Council, Washington D.C., USA.
- Gupta, B. and Kunnath, S.K. (2000). Adaptive spectra-based pushover procedure for seismic evaluation of structures. *Earthquake Spectra*, 16(2), 367-391.
- 13. **IS 1893.** (2002). Indian Standard Criteria for Earthquake Resistant Design of Structures, Bureau of Indian Standards, New Delhi.
- 14. **IS 1905.** (1987) Code of Practice for Structural use of Un-reinforced Masonry, Bureau of Indian Standards, New Delhi.
- IS 2212. (1991). Brick Work Code of Practice, Bureau of Indian Standards, New Delhi.
- 16. **IS 3828 (1976),** "Improving Earthquake Resistance of Low Strength Masonry Buildings Guidelines", Bureau of Indian Standards, New Delhi.
- 17. **IS 456** (2000). Indian Standard for Plain and Reinforced Concrete Code of Practice, Bureau of Indian Standards, New Delhi.
- Jai Krishna and Brijesh Chandra (1965), "Strengthening of Brick Buildings Against Earthquake Forces", Proceedings 3rd world conference on earthquake engineering, New Zealand, Vol. III, pp. 324-341.
- Jurina, L. and Peano, A. (1982). "Characterization of brick masonry stiffness by numerical modelling and in situ flat-jack test results" Sixth international brick masonry conference. Rome, 16th - 19th may, 1982, Pages 177-188.
- Kappos, A. J.; Penelis, G. G. and Drakopoulos C. G. (2002), "Evaluation of Simplified Models for Lateral Load Analysis of Unreinforced Masonry Buildings", Journal of Structural Engineering, July, pp. 890-897.
- Mebarki, A.; Bui, Q. H.; Sadda, R. A.; Delmotte, P. and Tizapa, S. S. (2008). A simplified mechanical model to assess the bearing capacity of masonry walls: Theory and experimental validation, *Construction and Building Material*, vol. 23, pp. 1109–1117

- 22. **Menjivar, M.A.L.** (2004). A Review of Existing Pushover Methods for 2-D Reinforced Concrete Buildings. Ph.D. Thesis, ROSE School, Italy.
- 23. Mwafy, A.M. and Elnashai, S.A. (2000). Static pushover versus dynamictocollapse analysis of RC buildings. Engineering Seismology and Earthquake Engineering Section, Imperial College of Science, Technology and Medicine. Report No. 00/1.
- 24. **Navalli, S. S.** (2001), "Uttarkashi: Houses that hold on", Down to Earth, Centre for Science and Environment pub.
- 25. **Paulay, T.** and **Priestley, M. J. N.** (1992). Seismic design of reinforced concrete and masonry buildings, John Wiley and Sons, New York
- 26. **PCM 3274** (2003). Primi Elementi in Materia di Criteri Generali per la Classificazione Sismica del Territorio Nazionale e di Normative Tecniche per le Costruzioni in Zona Sismica (in Italian), Roma, Italy.
- 27. **Raghunath, S. (2003)**, "*Static and Dynamic Behaviour of Brick Masonry with Containment Reinforcement*", PhD thesis, Department of civil engineering, Indian Institute of Science, Bangalore.
- Rai, D. C. and Goel, S. C., (1996), "Seismic Strengthening of Un-reinforced Masonry Piers With Steel Elements", Earthquake spectra, Vol. 12, no. 4, pp. 845-862.
- 29. **SAP 2000** (2009). Integrated Software for Structural Analysis and Design, Version 14.0. Computers & Structures, Inc., Berkeley, California.
- Scrivener, J. C. (1972), Reinforced masonry seismic behaviour and design. Bulletin of the New Zealand National Society for Earthquake Engineering, vol. 5, no. 4, pp. 143-155
- 31. **SP 20 (S&T).** (1991). Code of Practice for Structural use of Un-reinforced Masonry, Bureau of Indian Standards, New Delhi.
- 32. **Tiany Yi, Franklin L Moon, Roberto T Leon** and **Lawrence F Kahn.** (2006). Analyses of a Two-Story Unreinforced Masonry Building. *Proceedings of ASCE* (0733-9445), Paper 132:5(653).
- 33. **Tomazevic, M. (1999),** *"Earthquake Resistant Design of Masonry Buildings",* Imperial college press, London.