
DEVELOPMENT OF TECHNIQUES AND
MODELS FOR

IMPROVING SOFTWARE QUALITY

By

ANKITA BANSAL
Roll No.: 2k11/Ph.D./Comp.Sc./04

U

D . R M
A H A P ,
D S E

Submitted in fulfillment of the requirements of the degree of
Doctor of Philosophy to the

D T U
(F D C E)

S D , M B R , D 110042
November, 2015

Copyright ©January, 2016

Delhi Technological University, Shahbad Daulatpur,

Main Bawana Road, Delhi 110042

All rights reserved

DECLARATION

I, Ankita Bansal, Ph.D. student (Roll No. 2k11/Ph.D./Comp.Sc./04), hereby declare

that the thesis entitled “Development of Techniques and Models for Improving

Software Quality” which is being submitted for the award of the degree of Doctor

of Philosophy in Computer Science Engineering, is a record of bonafide research

work carried out by me in the Department of Computer Science Engineering, Delhi

Technological University. I further declare that this work is based on original research

and has not been submitted to any university or institution for any degree or diploma.

Date: ________________

Place: New Delhi

Ankita Bansal

2k11/Ph.D./Comp.Sc./04

Department Of Computer Science Engineering

Delhi Technological University (DTU)

New Delhi -110042

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi) BAWANA ROAD, DELHI - 110042

Date: ___________________

This is to certify that the work embodied in the thesis titled ”DEVELOPMENT OF

TECHNIQUES AND MODELS FOR IMPROVING SOFTWARE QUALITY”

has been completed byAnkita Bansal under the guidance of Dr. Ruchika Malho-

tra towards fulfillment of the requirements for the degree of Doctor of Philosophy

of Delhi Technological University, Delhi. This work is based on original research

and has not been submitted in full or in part for any other diploma or degree of any

university.

Supervisor

DR. RUCHIKA MALHOTRA

Associate Head and Assistant Professor, Department of Software Engineering

Delhi Technological University, Delhi 110042

ACKNOWLEDGMENT
While submittingmy thesis, titled as ”Development of Techniques andModels for

Improving Software Quality” for the fulfillment of the requirements for the degree of

Doctor of Philosophy, I feel that this is the time to acknowledge the contribution of

my teachers, friends and relatives in completion of this mammoth task.

I consider myself fortunate and privileged to have Dr. Ruchika Malhotra as my

supervisor. I am deeply indebted to her for shaping my path to research by guiding

me with her deep knowledge and insightful discussions. I thank her for the valuable

guidance, scholarly inputs and consistent inspiration which I received throughout the

research work. I express my sincere gratitude and thanks to her, not only for the

guidance for research but also for the personal and emotional support she gave me

from time to time. Her moral support in times of need was crucial in carrying out this

research in an effective manner. Dr. Ruchika Malhotra has deep knowledge of the

subject and was available to me at every step when this research work was going on.

Her cooperation, positive attitude and understanding really deserve an everlasting

appreciation. I could not have wished for a better supervisor. I hope for and look

forward to her continued guidance in future.

I am deeply indebted to Prof. Yogesh Singh, Vice Chancellor of Delhi Technolog-

ical University and Director of Netaji Subhas Institute of Technology. He has been a

constant source of inspiration for me throughout my research and teaching career. I

am grateful to him for constantly encouraging and supporting me in this endeavour

of mine.

I thank Prof. O.P. Verma, DRC Chairman, Delhi Technological University for his

encouragement, help and cooperation throughout the work. I express my gratitude

and thanks to Prof. S.K. Dhurandher, Head of the Department of Information Tech-

nology in Netaji Subhas Institute of Technology, for his kind support and help during

the time of my thesis writing. I am sincerely thankful to Abha Jain, Research Scholar

(Delhi Technological University) for all her help and support in this research work.

I acknowledge with thanks the contribution of all my other teachers and friends for

their direct and indirect help and support in this work.

A special thanks to my family. This work could not have been possible without

the unrelenting support of my family, particularly my husband, Mr. Saurabh Bansal.

He has always been willing to extend his helping hand and encouraged me to carry

on the work in moments when at times, I got a little disheartened. He supported me

in every possible way to ease my research journey. I am really grateful to him for his

continued and unfailing love and support. My parents and parents in-law helped me

a lot by taking upon themselves the entire responsibility of the household work and

giving me enough time to concentrate on this research work. I pay my sincere regards

to them for their unconditional love and for inculcating confidence in me to pursue a

career in academics. The work would not have been possible without the smiles of

my son, Anay Bansal which used to cheer up my day and encourage me to overcome

all the difficulties.

Ankita Bansal

ABSTRACT

Prediction of quality attributes to improve software quality is gaining significant

importance in the research. A number of metrics measuring important aspects of an

object oriented program such as coupling, cohesion, inheritance and polymorphism

have been proposed in the literature. Using these metrics, the quality attributes such

as maintainability, fault proneness, change proneness, reliability etc. can be predicted

during the early phases of the software development life cycle. Various models estab-

lishing the relationship between software metrics and quality attributes can be con-

structed, which can be used by researchers and practitioners in improving the software

quality.

Faults and changes in the software are inevitable. This is due to large sized, com-

plex software and presence of inadequate resources (time, money and manpower) to

completely test the software. Additionally, there are ongoing changes in the soft-

ware due to multiple reasons such as change in user requirements, change in technol-

ogy, competitive pressure etc. Given this scenario, it is very important to predict the

changes and faults during the early phases of software development life cycle leading

to better quality and maintainable software at a low cost. Identification of change

and fault prone parts of the software, help managers to allocate resources more judi-

ciously, thereby leading to reduction of costs associated with software development

and maintenance. Testing and inspection activities can be disproportionately focused

on the change and fault prone parts of the design and code.

In literature, there are few prediction models proposed to predict change prone

parts of the software. Therefore, a structured review is very important to provide

commonalities and differences between the results of these studies. We have formu-

lated various research questions according to which we have compared and reviewed

a number of the software change proneness models for object oriented software. The

research questions formulated in the review helped in identifying gaps in the current

research and future guidelines have been proposed which can be used by software

practitioners in future research.

To gather insights into the quality and reliability of the open source software, we

have used a number of popular open source software for the purpose of empirical val-

idation. The literature shows that majority of the prediction models are trained using

the historical data of the same project. There are broadly two approaches for predic-

tive analysis, machine learning and statistical. Both these approaches are inherently

different, raising the question that which approach is better than the other. Besides

this, another question that keeps revolving in the minds of researchers is, “Among

multiple machine learning techniques available, which classifier should be used for

accurate prediction?” To investigate these questions, we have compared the perfor-

mance of 15 data analysis techniques (14 machine learning and one statistical) on

five official versions of the Android operating system. In other words, we have con-

structed various metric models using the machine learning and statistical techniques.

Literature shows that metric models are widely used for identification of change

and fault prone classes. However, training these models using machine learning and

statistical techniques is a time consuming task and thus, it is not feasible on a daily

basis to use these models. An alternative is to define thresholds of metrics which can

be used for predicting change and fault prone parts. Thresholds, also known as risk

indicators, define an upper bound on the metric values such that the classes having

metric value above thresholds are considered to be potentially problematic. Identi-

fying thresholds helps developers, designers and testers to pay focused and careful

attention on these risky (or problematic) classes. We have identified threshold val-

ues of various object - oriented metrics of different open source software to predict

change and fault proneness. A statistical approach based on logistic regression is

used to calculate the threshold values. Another approach to calculate the threshold

values is based on receiver operating characteristics curve. We have explored both

the approaches to calculate threshold values of the metrics of different software.

There are studies of inter - project validation for fault prediction; however, there

is limited research regarding cross-project validation for change prediction. In this

research, we have conducted inter - project validation for change prediction using 12

open source datasets obtained from three software. Testing the prediction models on

the same data fromwhich they are derived is some what intuitive, hence inter - project

validation can help in obtaining generalizable results.

Contents

List of Tables ix

List of Figures xii

List of Publications xiv

Abbreviations xvii

1 Introduction and Literature Survey 1

1.1 Introduction . 1

1.2 Software Quality Attributes . 3

1.3 Software Metrics . 5

1.4 Software Quality Prediction . 8

1.5 Literature Survey . 10

1.5.1 Object Oriented Metrics 10

1.5.2 Software Quality Prediction Models Using Statistical or Ma-

chine Learning Techniques 12

1.5.3 Software Quality Assessment Using Thresholds of Software

Metrics . 18

1.6 Significant Insights . 20

1.7 Goals of the Thesis . 22

1.8 Organization of the Thesis . 24

i

2 Research Methodology 27

2.1 Introduction . 27

2.2 Research Process . 28

2.3 Define Research Problem . 29

2.4 Literature survey . 29

2.5 Define Variables . 30

2.5.1 Independent Variables . 31

2.5.2 Dependent Variable . 33

2.6 Selection of Data Analysis Methods 34

2.6.1 Logistic Regression . 35

2.6.2 Decision Tree . 38

2.6.3 Bayesian Networks . 38

2.6.4 Ensemble Learners . 39

2.6.5 Artificial Neural Networks 39

2.6.6 Support Vector Machines 40

2.7 Empirical Data Collection . 42

2.7.1 Change Collection Process 43

2.7.2 Open Source Software Used 46

2.8 Data Analysis and Pre - processing 47

2.8.1 Descriptive Statistics . 48

2.8.2 Data Reduction . 49

2.9 Model Prediction . 50

2.9.1 Model Construction using Data Analysis Techniques 51

2.9.2 Threshold Computation 52

2.10 Validation Methods . 54

2.10.1 Internal Validation . 54

2.10.2 External Validation . 56

ii

2.11 Performance Measures Used . 57

2.12 Significance Tests . 61

2.12.1 Friedman Test . 61

2.12.2 Post - hoc Analysis . 62

3 Predicting Change Using Software Metrics: A Review 65

3.1 Introduction . 65

3.2 Research Methodology . 66

3.3 Review Process . 67

3.3.1 Formulation of Research Questions 68

3.3.2 Inclusion and Exclusion criteria 69

3.3.3 Selection of Relevant Studies 70

3.4 Review Documentation . 72

3.5 Review Analysis and Results . 77

3.5.1 RQ1: What types of metrics are most commonly used in the

prediction of change proneness? 77

3.5.2 RQ2: What types of datasets are most widely used for pre-

diction? . 85

3.5.3 RQ3: What type of machine learning techniques are used for

model prediction? . 86

3.5.4 RQ4: What are the significant predictors of change proneness? 87

3.5.5 RQ5: Have appropriate performance measures used to eval-

uate the performance of the models? 87

3.5.6 RQ6: Have appropriate statistical tests used to measure the

performance? . 88

3.5.7 RQ7: What are the risk indicators for various OO metrics? . 88

iii

3.5.8 RQ8: What validation techniques are used to validate the

models? . 89

3.6 Review Conclusion and Future Directions 90

4 Investigation on Feasibility of Machine Learning Techniques for Predict-

ing Software Change 92

4.1 Introduction . 92

4.2 Research Methodology . 95

4.2.1 Software Used . 95

4.2.2 Empirical Data Collection 96

4.2.3 Descriptive Statistics . 97

4.3 Result Analysis . 98

4.3.1 Univariate Logistic Regression Analysis 99

4.3.2 Validation Result Analysis 100

4.4 Discussion . 103

5 Models for Predicting Change Proneness for Popular Mobile Operating

System, Android 104

5.1 Introduction . 104

5.2 Research Background . 107

5.2.1 The Variables Used . 107

5.2.2 Empirical Data Collection 107

5.3 Data Analysis Methods . 108

5.3.1 Statistical Model . 108

5.3.2 Machine Learning Techniques 109

5.4 Research Methodology . 111

5.4.1 Performance Evaluation 111

5.4.2 Validation Methods . 112

iv

5.4.3 Correlation Analysis . 112

5.5 Result Analysis . 116

5.5.1 Model Evaluation Using 10 - Cross Validation 117

5.6 Inter - Release Model Prediction 126

5.7 Research Question Analysis . 129

5.8 Discussion . 131

6 Fault Prediction Considering Threshold Effects of Object Oriented Met-

rics 133

6.1 Introduction . 133

6.2 Research Background . 135

6.2.1 Dependent and Independent Variables 135

6.2.2 Empirical Data Collection 136

6.2.3 Descriptive Statistics . 138

6.3 Research Methodology . 141

6.3.1 Calculation of Threshold Values 141

6.4 Result Analysis . 143

6.4.1 Univariate Analysis . 143

6.4.2 Threshold Analysis . 145

6.5 Results Discussion . 147

6.5.1 KC1 Result Analysis . 148

6.5.2 Ivy Result Analysis . 149

6.5.3 Inter - Project Validation 151

6.6 Discussion . 155

7 Identifying ThresholdValues of Object OrientedMetrics for Change Pre-

diction 157

7.1 Introduction . 157

v

7.2 Research Background . 159

7.2.1 Dependent and Independent Variables 159

7.2.2 Empirical Data Collection 160

7.2.3 Descriptive Statistics . 162

7.3 Research Methodology . 167

7.3.1 Data Analysis Techniques Used 167

7.3.2 Calculation of Threshold Values 169

7.4 Analysis of Univariate Logistic Regression and ThresholdMethodology169

7.4.1 Univariate Analysis . 170

7.4.2 Threshold Analysis . 172

7.5 Validation Result Analysis . 173

7.5.1 Results of Validation of Freemind 176

7.5.2 Results of Validation of Xerces 178

7.5.3 External Validation . 179

7.6 Comparison with non-binary models using statistical tests 180

7.7 Discussion . 183

7.8 Comparison with Studies in Literature 184

7.8.1 Comparison of Univariate Results 185

7.8.2 Comparison of Model Validation Results 187

7.8.3 Comparison of Threshold Results 189

8 Identifying Threshold Values Using Receiver Operating Characteristics

Curve 192

8.1 Introduction . 192

8.2 Independent and Dependent Variables 194

8.3 Research Methodology . 194

8.3.1 Empirical Data Collection 194

vi

8.3.2 Descriptive Statistics . 194

8.4 ROC Analysis to Calculate Threshold Values 199

8.5 Results Analysis . 201

8.5.1 Analysis and Interpretation of Threshold Values 202

8.5.2 Analysis of Inter - Release Validation 204

8.6 Calculation of Thresholds Using Statistical Method 205

8.7 Discussion . 207

9 Cross Project Change Prediction Using Open Source Projects 209

9.1 Introduction . 209

9.2 Research Background . 211

9.2.1 Variables and Performance Measures Used 211

9.3 Empirical Data Collection . 212

9.4 Research Methodology . 213

9.4.1 Creation of Train/Test Combinations 214

9.4.2 Measuring Distributional Characteristics 215

9.4.3 Predicting Model for Each Possible Prediction 216

9.4.4 Verifing the Relationship Between Distributional Character-

istics of Datasets and Selection of Training Set 217

9.5 Result Analysis . 217

9.6 Discussion . 221

10 Conclusion 222

10.1 Summary of the Work . 222

10.2 Applications of the Work . 229

10.3 Future Directions . 230

Bibliography 232

vii

Supervisor’s Biography 254

Author’s Biography 256

viii

List of Tables

2.1 Independent Variables . 32

2.2 Software Used for Change Data 46

2.3 Software Used for Fault Data . 47

2.4 Confusion Matrix . 57

3.1 Brief Description . 73

3.2 Key Parameters Review . 79

3.3 Types of Metrics and Software Repositories Used 84

4.1 Descriptive statistics . 98

4.2 Univariate Analysis . 99

4.3 Validation Results . 100

5.1 Machine Learning Techniques Used 110

5.2 Correlation Analysis of Android 2.3 114

5.3 Correlation Analysis of Android 4.0 114

5.4 Correlation Analysis of Android 4.1 115

5.5 Correlation Analysis of Android 4.2 115

5.6 Correlation Analysis of Android 4.3 116

5.7 CFS and Univariate LR Results . 117

5.8 10 - Cross Results of AUC as Performance Measure 119

5.9 10 - Cross Results of G-mean as Performance Measure 119

ix

5.10 10 - Cross Results of Balance as Performance Measure 120

5.11 Ranks Obtained by Friedman Test 121

5.12 Results of Nemenyi Test when AUC is Used 124

5.13 Results of Nemenyi Test when G-mean is Used 125

5.14 Results of Nemenyi Test when Balance is Used 125

5.15 Validating Android 2.3 on 4.0 and 4.1 128

5.16 Validating Android 2.3 on 4.2 and 4.3 128

6.1 Descriptive Statistics of KC1 . 138

6.2 Descriptive Statistics of Ivy . 139

6.3 Descriptive Statistics of Ant . 139

6.4 Descriptive Statistics of Tomcat 139

6.5 Descriptive Statistics of JEdit . 140

6.6 Descriptive Statistics of Sakura . 140

6.7 Univariate Analysis of KC1 . 144

6.8 Univariate Analysis of Ivy . 144

6.9 Univariate Analysis of JEdit . 144

6.10 Thresholds at Different Risk Levels for KC1 146

6.11 Thresholds at Different Risk Levels for Ivy 146

6.12 Thresholds at Different Risk Levels for JEdit 147

6.13 Validation Results for KC1 . 149

6.14 Validation Results for Ivy . 150

6.15 Validation Results for Ant . 153

6.16 Validation Results for Tomcat . 153

6.17 Validation Results for Sakura . 154

7.1 Descriptive Statistics of Freemind 0.9.0 and Frinika 0.2.0 164

7.2 Descriptive Statistics of Various Releases of Freemind 165

x

7.3 Descriptive Statistics of Xerces 2.9.0 and Xalan 2.6.0 165

7.4 Descriptive Statistics of Various Releases of Xerces 166

7.5 Univariate Results . 171

7.6 Threshold Values of Freemind 0.9.0 172

7.7 Threshold Values of Xerces 2.9.0 173

7.8 Metrics selected by CFS . 174

7.9 Validation Results of Various Threshold levels on Freemind 177

7.10 Selection of Best Po for Freemind 177

7.11 Validation Results of Potential Thresholds on Freemind 178

7.12 Validation Results of Potential Thresholds on Xerces 179

7.13 External Validation . 180

7.14 Metrics Selected by CFS (of Various Non - Binary Models) 181

7.15 Univariate Results Comparison . 188

7.16 Comparison of Studies Exploring Threshold Methodology 191

8.1 Descriptive Statistics of Android 2.3 195

8.2 Descriptive Statistics of Android 4.0 195

8.3 Descriptive Statistics of Android 4.1 196

8.4 Descriptive Statistics of Android 4.2 197

8.5 Descriptive Statistics of Android 4.3 197

8.6 Threshold Values . 203

8.7 AUC of Random Forest Model for Each Metric 203

8.8 AUC of Random Forest Models 205

8.9 Univariate Results of Android 2.3 206

8.10 Thresholds at Various Po Values 207

9.1 Number of Successful Predictions 219

9.2 AUC of Successful Predictions . 219

xi

List of Figures

1.1 Quality Attributes [95] . 4

1.2 Quality Prediction Process . 8

1.3 Training Process . 9

2.1 Research Methodology . 28

2.2 Support Vector Machine . 41

2.3 Software Used for Empirical Data Collection 42

2.4 Change Collection Process . 43

2.5 Model Construction Using Data Analysis Techniques 52

2.6 Validation Techniques . 57

3.1 Framework of the Review . 67

3.2 Distribution of Studies by Types of Metrics Used 84

3.3 Distribution of Studies by Types of Software Repositories Used . . 86

4.1 Primary Steps of Methodology . 96

4.2 Outline of Data Collection Process 97

4.3 10 - Cross Validation . 100

4.4 ROC Curves of Various Machine Learning and Statistical Models . 102

5.1 Comparison between 10 - Cross and Inter - Release Validation . . . 129

6.1 Summary of Faulty Classes . 137

xii

6.2 Proposed Methodology . 142

6.3 ROCCurves for BinaryModels: (a) IVY:RF, (b) IVY:MLP, (c) ANT:

NB, (d) ANT: RF, (e) TOMCAT: NB, (f) TOMCAT: RF, (g) KC1:

SVM, (h) SAKURA: MLP . 150

7.1 Representation of Change in Various Software 161

7.2 Demonstration of Training and Testing Sets 162

7.3 Naive Bayes Network . 168

7.4 Basic Approach Followed . 170

7.5 Threshold Validation Methodology 175

7.6 Results of Wilcoxon Test on Freemind and Frinika 183

7.7 Results of Wilcoxon Test on Xerces and Xalan 183

8.1 Calculation of Threshold values 201

9.1 Basic Research Methodology . 214

xiii

List of Publications

Papers Accepted/Published in International Journals

1. Malhotra R., Bansal A.: “Fault Prediction Considering Threshold Effects of

Object Oriented Metrics”, Expert Systems, vol. 32, no. 2, pp. 203-219, 2015

(impact factor: 0.761).

2. Malhotra R., Bansal A.: “Predicting Software Change in an Open Source Soft-

ware usingMachine Learning Algorithms”, International Journal of Reliability

Quality and Safety Engineering, vol. 20, no. 6, pp. 1-14, 2014.

3. Malhotra R., Bansal A.: “QuantitativeAssessment of Risks Considering Thresh-

old Effects of Object Oriented Metrics using Open Source Software”, Software

Quality Professional, vol. 14, no. 4, pp. 33-46, 2012.

4. Malhotra R., Bansal A.: “Software Change Proneness Prediction: A Literature

Review”, International Journal of Computer Applications in Technology.

5. Malhotra R., Bansal A.: “Prediction of Change Prone Classes using Threshold

Methodology”, Advances in Computer Science and Information Technology,

vol. 2, no. 11, pp. 30-35, 2015.

6. Malhotra R., Bansal A.: “Identifying Threshold Values of an Open Source Soft-

ware using Receiver Operating Characteristics Curve”, Journal of Information

xiv

and Optimization, Taylor and Francis.

Papers Accepted/Published in International Conferences

7. Malhotra R., Bansal A.: “Improving Software Quality by Predicting Change

Proneness in an Open Source Software”, International Conference on Opti-

mization Modeling and Applications, New Delhi, India, 2012.

8. Malhotra R., Bansal A.: “Cross Project Change Prediction Using Open Source

Projects”, 3rd International Conference on Advances in Computing, Commu-

nications and Informatics, IEEE, New Delhi, India, 2014.

9. Malhotra R., Bansal A.: “Prediction of Change Prone Classes using Machine

Learning Methods and Statistical Methods”, International Conference, Soft-

ware and Emerging Technologies for Education, Culture, Entertainment, and

Commerce: NewDirections inMultimediaMobile Computing, Social Networks,

Human-Computer Interaction and Communicability, Venice, Italy, 2012.

10. Malhotra R., Bansal A.:“Predicting Change using Software Metrics : A Re-

view”, 4th International Conference on Reliability, Infocom Technologies and

Optimization, IEEE, New Delhi, India, 2015.

Papers Communicated in International Journals/Conferences

11. Malhotra R., Bansal A.: “Analysis of Various Data Analysis Techniques to

Identify Change Prone Parts of anOpen Source Software: AReplicated Study”,Journal

of System and Software, Elsevier, 2015.

12. Malhotra R., Bansal A.: “Identifying andValidating ThresholdValues of Object

Oriented Metrics for Change Prediction”, Journal of Information Processing,

2015.

xv

13. Malhotra R., Bansal A.: “Investigation of Ensemble Learners for Prediction

of Change Proneness in an Open Source Software”, Software Quality Profes-

sional, ASQ, 2015.

xvi

Abbreviations

AB Adaboost

ACC Average Cyclomatic Complexity

ADT Alternating Decision Tree

AHF Attribute Hiding Factor

AID Access of Imported Data

AIF Attribute Inheritance Factor

ALD Access of Local Data

ALOC Average Number of Lines of Code

ALOCO Average Number of Lines with Comments

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

AUC Area Under the ROC Curve

BDM Behavioral Dependency Measure

BLOC Number of blank lines

BN Bayesian Networks

CBO Coupling between Objects

CD Critical Distance

CF Coupling Factor

CFS Correlation-based Feature Selection

CHAID Chi-squared Automatic Interaction Detection

xvii

CK Chidamber and Kemerer

CMC Class Method Complexity

CMS Configuration Management System

CRT Classification and Regression Tree

CTA Coupling Through Abstract data type

CTM Coupling Through Message passing

CVS Concurrent Versioning System

DAC Data Abstraction Coupling

DCRS Defect Collection and Reporting System

DIT Depth of Inheritance Tree

DPA Dynamic Polymorphism in Ancestors

DPD Dynamic Polymorphism in Descendants

DT Decision Tree

DTNB Decision Table Naive Bayes

EL Ensemble Learners

ELOC Number of Executable Lines of Code

ICP Information flow-based Coupling

IH-ICP Information flow-based Inheritance Coupling

LALO Langage d’agents Logiciel Objet

LB LogitBoost

LCC Loose Class Cohesion

LCOM Lack of Cohesion in Methods

LMT Logistic Model Trees

LOC Lines Of Code

LR Logistic Regression

MHF Method Hiding Factor

MIF Method Inheritance Factor

xviii

ML Machine Learning

MLP Multi-layer Perceptrons

MNOB Maximum Number Of Branches

MOOD Metrics for Object-Oriented Design

MPC Message Passing Coupling

NAC Number of Ancestor Classes

NASA National Aeronautics and Space Administration

NB Naive Bayes

NBTree Naive Bayes Decision tree

NDC Number of Descendant Classes

NIC Number of Imported Classes

NIH-ICP Non-Inheritance information flow-based Coupling

NIM Number of Instance Methods

NIV Number of Instance Variables

NLDM Number of Local Default Visibility Methods

NLM Number of Local Methods

NLOC Number of uncommented Lines Of Code

NMIMP Number Of Methods Implemented in a class

NOA Number of Attributes

NOC Number of Children

NOLV Number Of Local Variables

NOM Number of Methods per Class

NumPara Number of Parameters of the methods implemented in a class

NOP Number Of Parameters

NPM Number of Public Methods

NPRM Number of Private Methods

NPROM Number of Protected Methods

xix

OO Object-Oriented

OS Operating System

OSS Open Source Software

OVO Overloading in stand-alone classes

PC Principal Component

PF Polymorphism Factor

PMR Performance Management Traffic Recording

RBL Rule Based Learning

RBF Radial Basis Function

RF Random Forest

RFC Response for a Class

ROC Receiver Operating Characteristic Curves

RQ Research Question

SDLC Software Development Life Cycle

SLOC Source Lines Of Code

SPA Static Polymorphism in Ancestors

SPD Static Polymorphism in Descendants

SVM Support Vector Machine

TCC Tight Class Cohesion

VFI Voting Feature Intervals

VP Voted Perceptron

WMC Weighted Methods per Class

XSLT EXtensible Stylesheet Language Transformations

xx

Chapter 1

Introduction and Literature Survey

1.1 Introduction

Producing high quality software is a major challenge for large and complex sized soft-

ware systems. Some important attributes of software quality include maintainability,

reliability, usability and adaptability. Estimating these attributes of a software system

is a promising approach towards software quality prediction and thus improving the

quality of the software. The reliability of complex and large sized software needs

to be ensured to avoid failures and faults, which may not only have huge financial

implications, but also risk to life and property. There are several software metrics

proposed in the literature [2, 3, 7, 25, 26, 35, 65, 88, 91] which measure the internal

characteristics of software such as size, complexity, coupling, cohesion etc. These

metrics can be used to predict the external attributes which determine quality of the

software. An important challenge is identifying which metrics are useful predictors

of software quality attributes. The use of metrics for effective model construction

1

Chapter 1. Introduction and Literature Survey

which can be used to estimate or predict quality is a well-known idea. These models

can be used by the organizations during the early stages of software development for

prediction of faulty or change prone classes leading to improvement in quality. It

allows the developers to pay careful and focused attention on such classes leading to

substantial saving of time and resources. There exists several prediction models and

more are emerging. However, these models have been constructed using different sets

of metrics and evaluated using different software. Thus, more such empirical studies

should be conducted to allow fair evaluation of all the studies. Besides this, another

technique or approach which can be used for quality improvement is identification of

thresholds for various metrics. There is lack of work on exploring the potential uses

of thresholds for improving software quality.

The work described in this thesis focuses on exploring various techniques and models

for improving software quality. In other words, we have constructed various predic-

tion models by establishing a relationship between Object Oriented (OO) metrics and

quality attributes such as change and fault proneness. Besides this, we have also ex-

plored various techniques and methodologies for identifying thresholds of various

metrics. For the purpose of empirical validation, we have used a number of software

systems obtained from the Open Source Software (OSS) repositories. Finally, for val-

idating or testing the models and methodologies used for evaluating software quality,

we have used a validation technique known as cross - project validation which has not

been used in literature to a much extent. Thus, we have explored a relatively newer

technique of validation.

The remainder of the chapter gives brief introduction of the field and explains the

basic concepts of the work carried out in this thesis.

2

1.2. Software Quality Attributes

1.2 Software Quality Attributes

Whenever we want to judge the effectiveness or capability of software, the quality of

software comes to our mind. The software organizations desire to produce a software

that is highly maintainable and is of good quality. The definition of the term ‘quality’

is questionable and understood differently by different organizations and people. Ac-

cording to ANSI Standard (ANSI/ASQC A3/1978) “Quality is the totality of features

and characteristics of a product or a service that bears on its ability to satisfy the given

needs”.

A variety of quality models have been proposed in the literature to describe and man-

age software quality. One of the explicit aims of various quality models is to make

quality measurable. Beginning with hierarchical models, according to Wallmuller

[144], one of the oldest and most frequently applied models is that of McCall et al.

[109]. McCall quality model attempts to bridge the gap between the users and de-

velopers by focusing on a number of software quality factors. McCall quality model

was followed by quality model presented by Boehm in the year 1978 [19]. Boehm’s

quality model improves upon the work of McCall and addresses the contemporary

shortcomings of models that automatically and quantitatively evaluate the quality of

software. Boehm’s quality model like McCall model represents a hierarchical struc-

ture of characteristics, each of which contributes to the total quality. The more recent

model similar to McCall and Boehm is the model developed by Dromey [42], which

is focusing on the relationship between the quality attributes and the sub attributes,

as well as attempting to connect software product properties with software quality

attributes. Besides these important and known models, many more diverse models

3

Chapter 1. Introduction and Literature Survey

have been given in literature. Classification of the diverse models include taxonomic

models like the ISO 9126, metric-based models like the maintainability index (MI)

[37] and stochastic models like reliability growth models (RGMs) [93]. The differ-

ence in the models is due to different purposes they serve: The ISO 9126 is mainly

used to define quality (definition model), metric-based approaches are used to assess

the quality of a given system (assessment model) and reliability growth models are

used to predict quality (prediction model).

Quality has many characteristics or attributes and some are also related to each

other. Some of the important quality attributes are listed in the figure 1.1.

Figure 1.1: Quality Attributes [95]

The brief description of six quality attributes are given below [95]:

• Functionality: The degree to which a software meets its specified purpose.

4

1.3. Software Metrics

• Usability: The extent of effort required to learn, operate and understand the

functions of the software.

• Testability: The effort required to test a software to ensure that it performs its

intended functions.

• Reliability: The extent to which a software performs its intended functions

without failure.

• Maintainability: The effort required to locate and fix an error during mainte-

nance phase.

• Adaptability: The extent to which a software is adaptable to new platforms and

technologies.

1.3 Software Metrics

From the earliest days of software engineering, software measurement is one of the

important aspects of good software engineering practices. With the help of various

measurement activities, we get clues of the weak and strong areas in the software de-

velopment process. Measurement helps one to have a closer and clearer look into the

specific characteristics of our processes and products. In other words, measurement

activities keeps one actively engaged in all the phases of the software development

process. Hence, due to various benefits of software measurement, it is clear that ev-

erything should be measurable. If it is not measurable, we should make an effort to

make it measurable [4]. Software metrics are widely used for measuring software

5

Chapter 1. Introduction and Literature Survey

processes and products. Software metrics can be defined as “The continuous appli-

cation of measurement based techniques to the software development process and its

products to supply meaningful and timely management information, together with

the use of those techniques to improve that process and its products” [61]. Various

quantitative and qualitative decisions in software projects are done with the help of

software metrics. Besides this, with the help of software metrics, we can predict vari-

ous development resources, track development progress, understand the requirements

and maintenance costs etc. [51]. The software metrics can be categorized in a number

of ways. For example, software metrics can be categorized as primitive - computed,

process - product and subjective - objective [51]. Primitive metrics are those that can

be directly observed, e.g. Lines Of Code (LOC), number of defects etc. Whereas,

computed metrics are those that cannot be directly observed and must be computed,

e.g. metric used to measure quality; i.e. defects/KLOC. Process metrics measure the

software development process, such as type of methodology used, experience level of

programming staff etc. Whereas, product metrics measure the software products pro-

duced at different stages of Software Development Life Cycle (SDLC). For example,

product metrics can be used to measure size of final program, complexity etc. Objec-

tive metrics result in identical values when measured by more than one observer. For

e.g. LOC is an objective metric as any observer would report identical value for it,

provided the definition of LOC being used by each observer is consistent. Whereas,

subjective metrics may produce different values for a given metric, since their value

is judgment dependent. For example, the classification of the software as “organic,”

“semi-detached,” or “embedded,” necessary in the COCOMO cost estimation model

is dependent on the observer’s judgment [18].

6

1.3. Software Metrics

Lots of software metrics have been proposed and used in literature. There are size

oriented metrics which are based on the “size” of the software produced. The first

and simplest measure of size has been the number of LOC. But LOCmeasure has few

disadvantages such as it is language and programmer dependent. Also, it is not clear

whether the comment lines, data declarations, blank lines etc. should be counted in

this metric or not. Another size measure used was proposed by Halstead, which is

named as ScienceMeasures [65]. Besides this, size can be measured in terms of func-

tion points as proposed by Albrecht [7]. Functions points measure the functionality

from users point of view. Besides this, there are various testing metrics, complexity

metrics, the metrics to measure cohesion and coupling etc. One of the early mea-

sures of cohesion and coupling was in the form of Information flow metrics [75].

The multiplication of two terms, fan-in and fan-out was used to define the informa-

tion flow metrics. Most widely used complexity measure was proposed by McCabe

[108]. Zuse [156] provided the study of 18 different categories of software complex-

ity metrics. These earlier metrics (Halstead, McCabe, LOCs) focused at traditional

procedural-oriented languages.

Nowadays, OO paradigm is gaining importance. The various OO concepts include

classes, object, attributes and methods. Due to number of properties of OO paradigm

such as inheritance, encapsulation, abstraction, data hiding etc., it is popularly being

used for software development. To measure various dimensions of OO paradigm, a

number of OO metrics [2, 25, 26, 35, 88, 91] have also been proposed in the litera-

ture in the last two decades. A number of the important OO metrics proposed in the

literature are briefly described in section 1.5.1.

7

Chapter 1. Introduction and Literature Survey

1.4 Software Quality Prediction

Software quality prediction involves the prediction of various software quality at-

tributes in the early phases of software development life cycle to improve the overall

quality of a software product. This can be carried out by constructing empirical mod-

els which can be used by researchers and practitioners to judge or estimate the quality

of a software product. These empirical models allow one to predict the external qual-

ity attributes as a function of various measurable internal attributes. These external

quality attributes are referred as target attributes (dependent variable) and the internal

attributes are known as predictor attributes (independent variable). The construction

of empirical models takes place in three consecutive phases: training, testing and

predicting the unknown data. The process of construction is shown in figure 1.2.

Figure 1.2: Quality Prediction Process

The first phase, i.e. the training or the learning phase uses the training data (for

which the values of the target attribute are known) for building a model. Different

classification techniques are applied on a part of the training data to build the model

8

1.4. Software Quality Prediction

by establishing a relationship between the predictor attribute values and the target

attribute values. These relationships are captured in the model in form of various

classification rules which can be used in the next two phases, i.e. for testing as well

for prediction. This process of training the model is also demonstrated in figure 1.3.

Figure 1.3: Training Process

The next phase is known as the testing phase. The constructed classification

model or the classification rules can be applied on the remaining part of the train-

ing data (which was not used for training) with the known target values to obtain the

value of the target attribute known as the predicted value. Such data is also known

as test or evaluation data. The predicted value which is obtained from the model is

compared with known value of the target attribute to measure the predictive capabil-

ity or accuracy of the model. If the accuracy of the model is considered acceptable,

then it can be used on the new data with unknown values of the target variable. This

step is known as the prediction of the unknown data or the future unseen data. Using

the classification rules, the value of target variable can be predicted.

9

Chapter 1. Introduction and Literature Survey

In this research, model construction is carried out using the following two approaches:

1. Developing various metric models with the help of different machine learning and

statistical methods.

2. Identifying thresholds of various metrics which can be used as quality benchmarks

to assess and compare products. Threshold provides an upper bound on the metric

values such that the classes having metric values above the threshold value are con-

sidered to be problematic, whereas the values lower are considered to be acceptable.

1.5 Literature Survey

In this section, we first provide the current state of research on OO metrics. We then

summarize the empirical studies related to the construction of quality prediction mod-

els usingMachine Learning (ML) and statistical techniques, followed by the empirical

studies which identify the thresholds for quality assessment.

1.5.1 Object Oriented Metrics

The first and most popular metric suite was proposed by Chidamber and Kemerer

(CK) in 1991 [35]. Another paper by Chidamber and Kemerer defined and validated

metrics suite for OO design [36]. The metric suite consists of six metrics namely

Coupling Between Object classes (CBO), Response For a Class (RFC), Weighted

Methods per Class (WMC), Depth of Inheritance Tree (DIT), Number Of Children

(NOC), and Lack of Cohesion inMethods (LCOM). Li and Henry collected the main-

tenance data in terms of number of lines changed per class to validate the metrics they

proposed- Message Passing Coupling (MPC), Data Abstraction Coupling (DAC),

10

1.5. Literature Survey

Number ofMethods (NOM), SIZE1, and SIZE2 [88]. Li proposed ametrics suite con-

sisting of sixmetrics - Number of Ancestor Classes (NAC), Number of LocalMethods

(NLM), Class Method Complexity (CMC), Number of Descendent Classes (NDC),

Coupling Through Abstract data type (CTA) and Coupling Through Message passing

(CTM) [87]. In 1996, Henderson-sellers [74] redefined the LCOM metric given by

[36]. Bieman and Kang [15] proposed two metrics to measure cohesion-Tight Class

Cohesion (TCC) and Loose Class Cohesion (LCC). Lee et al. proposed coupling

metrics which differentiated between inheritance-based and non inheritance-based

coupling- Non Inheritance information flow-based coupling (NIH-ICP), Information

flow-based inheritance coupling (IH-ICP) [85]. The sum of NIH-ICP and IH-ICP

metrics led to Information flow-based coupling (ICP) metric. Abreu proposed an-

other metrics suite consisting of six system level metrics known as MOOD (Metrics

for Object-Oriented Design)- Method Hiding Factor (MHF), Attribute Hiding Factor

(AHF), Method Inheritance Factor (MIF), Attribute Inheritance Factor (AIF), Poly-

morphism Factor (PF), and Coupling Factor (CF) [3]. Lorenz and Kidd proposed

a set of metrics grouped into four categories size, inheritance, internals, and exter-

nals [91]. Size oriented metrics focused on the number of attributes and operations

of an individual class, inheritance based metrics concentrated on the way in which

operations were reused through class hierarchy, metrics for class internals examined

cohesion, while external metrics examined coupling and reuse [91]. Briand et al. [27]

proposed a number of coupling metrics which cover different concepts of C++ lan-

guage: friendship, classes, specialization, and aggregation. An unified framework for

measuring cohesion and coupling was given by Briand et al. [27, 25]. Benlarbi and

Melo defined a suite of five polymorphism metrics in 1999 - Overloading in stand-

11

Chapter 1. Introduction and Literature Survey

alone classes (OVO), Static Polymorphism in Ancestors (SPA), Static Polymorphism

in Descendants (SPD), Dynamic Polymorphism in Ancestors (DPA), and Dynamic

Polymorphism in Descendants (DPD) [14]. These metrics measure both types of

polymorphism, i.e. run time polymorphism and compile time polymorphism.

1.5.2 SoftwareQuality PredictionModelsUsing Statistical orMa-

chine Learning Techniques

Empirical research involving the development of software quality prediction models

using various ML and statistical techniques has been conducted to a large extent.

In this research, one of the main contribution is the construction of such prediction

models for various OO software which can be used to assess quality of software in

earlier phases of the software life cycle. Thesemodels use various structural measures

for predicting external quality attributes. There are various structural measures or

metrics which are found to be significant predictors of quality attributes. Hence, such

metrics can be extensively used to construct models which can be used to improve

quality.

The empirical study by Lindvall studied the effect of size of a class on the prob-

ability of change in that class [89]. The results concluded that the changed classes

were generally large in size while unchanged classes were generally small. Koru and

Tian [81, 82] worked on Pareto’s law, 80:20 principle which states that large ma-

jority (around 80%) of problems are rooted in a small proportion (around 20%) of

the modules. They proposed a method of ranking to find top-change modules and

those having top measurement values. They also used a voting mechanism to iden-

12

1.5. Literature Survey

tify the modules with the largest size, highest coupling, highest cohesion and largest

inheritance. The authors concluded that when ranking or voting mechansim is used,

top change modules were not the top-measurement modules. Han et al. developed

design models for predicting change proneness [66]. They calculated Behavioral De-

pendency Measure (BDM) for predicting change proneness and the results concluded

that BDM is as an effective indicator for change proneness prediction. Along with

BDM, the effect of polymorphism and inheritance relationships has also been taken

into account by their another study to predict change proneness [67]. The results con-

cluded that BDM is a significant predictor when system contains high degree of in-

heritance and polymorphism. Zhou et al. investigated the confounding effect of class

size on the relationship between OO metrics and change proneness [153]. The class

size was measured using three size metrics- Source Lines Of Code (SLOC), Number

Of Methods Implemented in a class (NMIMP) and sum of the Number of Parameters

of the methods implemented in a class (NumPara). The analysis of the confounding

effect of size was based on linear regression equations. The authors concluded that

there is confounding effect of size on the relationship between the metrics and change

proneness and thus, should be removed to avoid misleading results. A recent study

by Lu et al. found significant relationship between OOmetrics and change proneness

[92]. The study considered a large number of OO metrics (62) covering four dimen-

sions (size, cohesion, coupling and inheritance) and used 102 Java systems to analyze

the change-proneness predictive ability of these OO metrics. To compute the aver-

age change proneness predictive ability of OO metrics over all the systems, random

effect meta-analysis models were used. The results concluded that the size metrics

have moderate ability to identify change and non - change prone classes, coupling

13

Chapter 1. Introduction and Literature Survey

and cohesion metrics have lower predictive ability than size metrics and inheritance

metrics have poor predictive ability. The study by Malhotra and Khanna [104] de-

termined the effectiveness of ML techniques for predicting change prone classes and

compared their performance with the statistical technique. The authors concluded

that the performance of ML techniques is comparable to the statistical technique. In

addition to metrics, design patterns also play a key role in identifying change and not

change prone classes. Some studies [16, 17, 119, 120] have also been done to find

effect of design patterns on change proneness. Bieman et al. examined five evolving

systems to analyze the relation between design patterns and change proneness [17].

In four of the five patterns, classes were found to be less change prone while in one

system pattern, classes were more change prone. Thus, the authors concluded that

there is significant relationship between design patterns, other design attributes (class

size, inheritance) and changes. The authors Posnett et al.also identified the influence

of patterns and metapatterns on change proneness [120]. They also studied the effect

of size and concluded that size is a stronger determinant of change proneness than

either design pattern or metapatterns.

In addition to the change prediction models, there are measures or metrics which

have been used in literature to predict fault prone classes and have been concluded

as the significant predictors of fault proneness. Basili et al. [10] worked on eight

medium - sized systems developed by the students and found that except LCOM all of

the remaining CK metrics [36] are associated with fault proneness. Tang et al. [136]

worked on three industrial projects developed in C++ and concluded that among CK

metrics, WMC and RFC are effective predictors of fault proneness. Cartwright &

Sheppard [30] worked on OO constructs such as inheritance and polymorphism and

14

1.5. Literature Survey

concluded that the classes using high inheritance havemore defect densities. Emam et

al. [48] analyzed and used inheritance metrics (NOC and DIT) and various coupling

metrics to predict fault prone classes. They concluded that DIT and export coupling

measures are strongly associated with fault-proneness. The same result was reported

by Glasberg et al. [59]. Confounding effect of size is taken into account by various

studies and they concluded that class size is associated with many contemporary OO

metrics [27, 30, 47, 63]. Thus, the results should be revalidated after considering

the effect caused by metrics. Briand et al. have empirically validated a set of 49

metrics to construct suitable fault proneness models [22, 24]. They used univariate

and multivariate analysis to find the individual and combined effect of metrics on

fault proneness. The authors in the study [22] worked on eight systems and found

all the metrics to be significant except NOC. Whereas, another study by Briand et

al. [24] used a commercial system and found WMC, RFC and CBO to be the strong

predictors. They also found DIT metric to be related to fault proneness but in an

inverse manner. Another study by Briand et al. [28] used two commercial systems

to find the relationship between polymorphism, CK and some OO metrics with fault

proneness. They constructed models for predicting fault prone classes using two re-

gression techniques, multivariate adaptive regression splines and Logistic Regression

(LR). The results showed that the model predicted using multivariate adaptive regres-

sion splines outperformed the LR model. Yu et al. [149] chose a set of eight internal

product metrics (measuring important design attributes of software such as size of

software, coupling, cohesion, inheritance and reuse) and examined the relationship

between these metrics and fault proneness. They conducted their study using a large

network service management system developed by three professional software engi-

15

Chapter 1. Introduction and Literature Survey

neers and found some of the metrics (CBOin, RFCin, and DIT) to be insignificant

while the other metrics to be significant predictors of fault proneness. Some authors

[53, 63, 79, 118] constructed various ML models to predict fault prone classes. Gy-

imothy et al. [63] used regression (linear and logistic) and ML techniques (neural

network and decision tree) to construct fault prediction models. Kanmani et al. [79]

introduced neural network based prediction models whereas Fenton et al. [53] and

Pai et al. [118] introduced bayesian belief networks to predict faulty classes. Few pa-

pers [130, 134, 152] discussed and taken into account the severity of faults to predict

faulty classes. Zhou and Leung [152] validated NASA (National Aeronautics and

Space Administration) software to predict fault proneness models with respect to two

categories of faults: high and low. Singh et al. [134] worked on the same software

to predict fault proneness models but have categorized faults with respect to all the

severity levels given in NASA software. This allows to distinguish between different

types of failures and thus, provides more meaningful, correct and detailed analysis of

fault data.

As discussed in this section, there are various studies which have validatedmetrics

to predict external quality attributes, fault proneness and change proneness. However,

most of these studies are based on intra- project validation, i.e. training the model us-

ing the data of the historical releases and applying them to predict fault prone classes

of the upcoming or future release of the same project. There are few studies which

have focused on cross-project predictions for fault proneness, i.e. training and test-

ing the model using different projects. However, some of the studies [114, 143, 155]

which carried out cross-project predictions concluded that cross-project prediction is

a big challenge and models are more accurate when they are trained using the data

16

1.5. Literature Survey

of a same or similar project. Watanabe et al. [145] and Whayudin et al. [143] com-

mented that data characteristics are important for cross-project defect prediction and

due to different characteristics of each project; cross-project defect prediction is a big

challenge. Watanabe et al. [145] trained a prediction model from a Java project and

applied it to a C++ project. When carrying out inter-project predictions, the authors

proposed a method known as ‘metrics compensation’ which should be used to com-

pensate the test data. They observed that both recall and precision increased after

using ’metrics compensation’ method for model adapting. Zimmermann et al. [155]

ran 622 cross - project defect predictions on 12 real world applications and found that

cross-project prediction is a serious challenge. The study found that only 21 predic-

tions worked successfully (all precision, recall, and accuracy are greater than 75%).

They also concluded that cross-project predictions are not symmetrical. This means

if project A can predict the defects of project B well, this doesn’t imply the reverse

is also true. The authors Turhan et al. [140, 141] also conducted cross-company

defect prediction on 10 projects from 8 different companies. They concluded that

cross-company predictions increase the probability of defect detection at the cost of

increasing false positive rate. He et al. [73] investigated cross-project predictions

on 34 public datasets obtained from 10 software. They used five ML techniques to

construct prediction models. Their study focused on the selection of suitable training

data for the projects without historical data. They proposed an approach based on

the distributional characteristics of the software to select suitable training data. They

concluded that the prediction results obtained by using the training data obtained us-

ing their proposed approach are comparable with those provided by training data from

the same project.

17

Chapter 1. Introduction and Literature Survey

1.5.3 Software Quality Assessment Using Thresholds of Software

Metrics

As can be seen from the previous section, there are number of empirical studies which

have established relationship between softwaremetrics and external quality attributes.

However, these studies have not exploited the usage of thresholds to predict the exter-

nal attributes. In this section, we discuss the empirical studies which have identified

and calculated the thresholds of various metrics. There is lack of quantitative thresh-

old models for predicting different quality attributes except fault proneness.

A threshold value of a metric can be defined as an extreme value above which a class

is considered to be risky and thus needs focused attention. Some researchers pro-

posed threshold values based on experience and intuition [37, 108, 116]. However,

the threshold values based on intuition cannot be universally accepted and gener-

alized. For example, McCabe’s complexity metric is given a threshold value of 10

[108]. Similarly, for the maintainability index metric, 65 and 85 are defined as thresh-

olds [37]. Rosenberg [125] suggested threshold values for CK metrics which can be

used to select classes for redesign. Henderson-Sellers [74] suggested that the classes

can be clustered into three categories- safe, flag, and alarm. These categories repre-

sent different levels of program complexity.Thresholds are also defined using mean

(µ) and standard deviation (σ). For example, in the study by Erni et al. [49], the

minimum and maximum values of threshold (Tmax and Tmin) as µ + σ and µ - σ re-

spectively. However, this methodology did not became popular because it can be only

usedwhen themetrics are normally distributedwhich is not the case. French [55] used

Chebyshev’s inequality theorem (not restricted to normal distribution) in addition to

18

1.5. Literature Survey

mean (µ) and standard deviation (σ) to derive threshold values. French defined the

threshold as T= µ + k * σ (k=number of standard deviations). Although French used

Chebyshev’s inequality theorem which is not only for normally distributed metrics,

however the methodology was confined to only two-tailed symmetric distributions.

Some of the authors have worked on levels of inheritance depth and how they

affect maintenance [29, 39, 69, 121]. Daly et al. [39] studied the effect of inheritance

depth on effort required to make a maintenance change. They compared the perfor-

mance of the program with 3 and 5 levels of depth. They concluded that program

with 3 levels of depth took less time than the program with no inheritance, whereas,

programs with 5 levels took more time. On the other hand, Cartwright [29] concluded

that making changes in a program with 3 levels of depth require more effort than the

program with no inheritance. In other studies, Harrison et al. [69] and Prechelt et al.

[121] also showed similar result as that of the Cartwright’s study.

Ulm [142] proposed a statistical technique based on LR for assessing thresholds

in epidemiological studies. This statistical technique was used by Benlarbi et al.[13]

and El Emam et al. [46] to calculate the threshold values of various metrics. The

authors have constructed two models: (1) using the thresholds and (2) without using

the thresholds. They concluded that there was no difference in the performance of the

two types of models. Another study in the epidemiological field conducted by Bender

[12] showed deficiencies in the model proposed by Ulm [142]. The model assumed

that the fault probability increases according to the logistic function if themetric value

is above the threshold and when the metric value is below the threshold, the proba-

bility of fault is constant. Thus, Bender [12] redefined the threshold effects as an

acceptable risk level. Shatnawi [129] used the technique proposed by Bender[12] to

19

Chapter 1. Introduction and Literature Survey

find the threshold values for CK metrics [36]. They identified a risk level for any

arbitrary threshold value. Their results concluded that CK metrics have threshold

effects at various risk levels. Besides this, Shatnawi and Li [131] also investigated

the use of Receiver Operative Characteristics (ROC) curve to identify threshold val-

ues. They tested the threshold values in two categorizations, the binary category

(Error and No-error) and the ordinal category. Threshold values were identified to

differentiate high-risk error-proneness classes in the ordinal categorization from the

No-error classes. Whereas, to differentiate between the two binary categories, the

authors could not identify the threshold values.

1.6 Significant Insights

The significant insights and gaps in literature are stated in this section. The gaps

identified are stated underneath on which we propose to work on:

1. Lack of Risk Indicators: Thresholds identify certain alarming values of the

metrics which are used to find classes that fall outside the acceptable risk level.

Thus, they are also known as risk indicators. There is lack of work on exploring

the potential usage of thresholds to predict fault prone classes. Few studies have

identified the threshold values of only the popularly used CK metrics [36] to

predict fault prone classes. For other OOmetrics, to the best of our knowledge,

there is no study related to our field which has proposed the threshold values.

Besides this, to predict to predict change prone classes, no risk indicators or

thresholds have been proposed. Thus, due to limited amount of studies, the

threshold values cannot be generalized and used across different organizations

20

1.6. Significant Insights

which can use them as benchmarks for their projects.

2. Lack of Validation Techniques: The studies in literature used inter - release

validation to validate the models, i.e. using the different releases of the same

software to train as well as validate. But inter-release validation is not always

possible as the historical data (previous release) may not be available, may not

exist or the change/fault data may not be available. There are few studies which

have done intra - project validation for fault prediction, but to the best of our

knowledge, no study has used intra - project validation for change prediction.

Thus, the use of intra - project validation should be explored and widely used.

Intra - project validation provides generalized results leading to well - formed

and acceptable theories.

3. Lack of Statistical Tests: Once the performance of the models are evaluated

using various measures, it is very important to statistically evaluate the results

to decide whether the differences between the performances of the models are

not random or by chance. In other words, it might be possible that without

the use of statistical tests, the good performance of a classifier is achieved by-

chance. Despite the importance of statistical tests, there is lack of statistical

and post hoc tests in the studies related to change and fault prediction.

The basic premise of our work is to address change and fault prediction using OO

metrics. Keeping in view the identified gaps, we have discussed two methodologies

to predict quality attributes: (1) construction of metric models using ML and statis-

tical techniques and (2) application of threshold methodology. To make our results

more generalizable and applicable to a number of domains, we perform cross - project

21

Chapter 1. Introduction and Literature Survey

predictions where the training and the validation data belong to two different projects

rather than the same project. Further, the models constructed are also statistically

evaluated using various statistical and post hoc tests.

1.7 Goals of the Thesis

A number of factors such as increasing size and complexity, inadequate resources,

evolving customer requirements and change in the external environment influence

the quality of software. Due to inadequate resources and increasing size of the soft-

ware, large volume of faults is introduced at every phase of SDLC. At the same time,

due to the faults in the maintenance phase, change in the customer’s requirements and

external environment such as technology, there are lots of changes that need to be in-

troduced in software after it is delivered to the customer. Hence, faults and changes

in a software are inevitable. Thus, among a number of external quality attributes,

we focus on mainly fault proneness and change proneness. In this research, we have

performed a comparative review of existing studies and conducted various replicated

studies to predict fault and change prone classes using OO metrics. This allowed

to draw generalized conclusions and present commonalities and differences across

studies. We have analyzed and assessed the performance of various ML techniques

using varied software, validation methods and multiple performance measures. Fur-

ther, we have analyzed the significance of the results using statistical tests. We have

also tested and verified the performance of the predicted models using the datasets

obtained from different OSS. Besides this, we have explored the usage of thresholds

of metrics for prediction of change and fault prone classes. Thresholds, also known

22

1.7. Goals of the Thesis

an risk indicators represent certain alarming values which are used to find classes that

fall outside the acceptable risk level. One of the major contributions of this work is

the identification of such risk indicators for various OO metrics used. Another major

contribution is the usage of inter - project (also known as cross - project) validation

for validating the predicted models. The use of inter - project validation also leads

to more generalized results which can be used across organizations. The summary of

the goals of the work is provided below:

1. To identify useful and efficient predictors of the quality attributes by establish-

ing an association between internal and external attributes.

More studies using feature reduction techniques should be conducted which

helps to select a subset of predictors which are significant in predicting the de-

pendent variable. These significant predictors can be used by researchers and

practitioners for construction of prediction models.

2. To identify risk indicators which can be used as quality benchmarks in or-

der to assess and compare products.

Risk indicators also known as thresholds, provide an upper bound on the met-

ric values such that the classes having metric values above the threshold value

are considered to be problematic, whereas the values lower are considered to

be acceptable.

3. To carry out inter-project validation in order to obtain generalized results.

4. To explore the use of widely known and popular OSS for change and fault

prediction.

23

Chapter 1. Introduction and Literature Survey

There are a number of advantages of OSS which motivated us to use them

for prediction such as they are cost effective, they are easy to customize and

upgrade and thus, they improve faster and also they are no copyright issues or

concerns.

5. To develop and compare various quality prediction models using learning

techniques.

1.8 Organization of the Thesis

The organization of the thesis is presented in this section. Chapter 1 focuses on the

basic concepts and provides a review of the empirical studies. Chapter 2 concentrates

on the research methodology followed in this work. Chapter 3 reviews the existing

studies and provide future guidelines. The subsequent chapters 4 and 5 focus on

constructing prediction models using various ML techniques. Chapters 6, 7 and 8

identifies the risk indicators of various metrics for predicting change and fault prone

parts. Chapter 9 conducts cross - project predictions and finally the work is concluded

in chapter 10. The brief description about each chapter is as follows:

Chapter 1. This chapter introduces the work in the thesis stating the basic termi-

nology and concepts. The literature review describing the past studies is also included

in this chapter.

Chapter 2. This chapter presents the research methodology followed in this the-

sis. The chapter defines the research problem and summarizes the independent and

the dependent variables used. The description of data collection procedure and the

software used in this thesis is presented. We also present the details of data analysis

24

1.8. Organization of the Thesis

techniques (ML and statistical) and the pre - processing steps. The validation tech-

niques, performance measures and statistical tests used in this work are summarized

in this chapter.

Chapter 3. In this chapter, we perform a systematic review of the existing liter-

ature for prediction of change prone portions of the software. We present Research

Questions (RQs) that address various issues related to the software, measures and

techniques used in the existing literature for change prediction models. Further, cur-

rent trends are extracted and future insights are drawn from these studies.

Chapter 4. This chapter compares and analyzes variousML techniques (Adaboost

(AB), LogitBoost (LB), RandomForest (RF), J48, BayesNet (BN), NaiveBayes (NB),

Bagging, Multilayer Perceptron (MLP)) and compares their performance with the

statistical (LR) technique for prediction of change prone classes using OO metrics.

The results of this work are validated using ‘Java TreeView’, an OSS. A subset of

metrics are also extracted in this work. The predictive capability of the predicted

models is analyzed using the ROC curve.

Chapter 5. In this chapter, we develop change prediction models using a widely

used and popular mobile operating system, Android. The main aim of this work is to

perform inter - release validation i.e. constructing the models on one release and val-

idating these models on the subsequent releases. For example, model is constructed

using Android 2.0 and validated on Android 2.1. The superiority of one technique

over the other technique is also computed in this work using statistical test. Futher,

we carry out post - hoc analysis to determine which technique is statistically signifi-

cant over the other technique.

Chapter 6. This chapter determines various risk indicators of OO metrics. These

25

Chapter 1. Introduction and Literature Survey

thresholds can be used as alarming values for reducing the occurrence of faulty classes.

In this work, we calculate the threshold values using a statistical approach based on

the LR methodology. The threshold values computed for the metrics of three soft-

ware (KC1, Ivy and JEdit) are validated on three other software (Ant, Tomcat and

Sakura) using ML techniques.

Chapter 7. In this chapter also, we determine the risk indicators in the form of

threshold values of various OOmetrics. We have used these indicators for identifying

the classes which are prone to change. We used the same LR methodology as is

used in chapter 6. The thresholds are computed using different releases of two OSS;

Freemind and Xerces. These threshold values are validated on different releases as

well as on different software (Frinika and Xalan).

Chapter 8. In this chapter, methodology based on ROC curve is used for identi-

fying the alarming values (thresholds) of various OO metrics. We compare the ROC

approach with the approach proposed in chapter 7 that uses LRmethodology for com-

puting the threshold values of OO metrics for predicting change prone classes. We

conclude that ROC approach is more effective than the LR methodology for predic-

tion of risky classes.

Chapter 9. In this chapter, an extensive validation of developed change predic-

tion models is carried out using different projects. The basic purpose is to identify

whether the distributional characteristics of the training set can be used for identify-

ing a different similar nature software on which the models predicted can be applied

for the purpose of predicting change prone classes.

Chapter 10. The final chapter includes the conclusions of the research work and

suggests a few directions for further research.

26

Chapter 2

Research Methodology

2.1 Introduction

In order to carry out either an empirical study or to perform a survey of existing

empirical studies, it is very important to follow a research methodology. A proper

research methodology helps to organize our research in a systematic and planned

manner. It allows to understand and define the problem, identify the goals of the

study and develop various RQs. In this chapter, an overview of the research process

and methodology followed in this thesis is presented. The chapter is organized as

follows: Section 2.2 presents the research process followed in performing empirical

studies in subsequent chapters. Section 2.3 formulates the research problem. The

literature survey conducted in order to provide an overview of the existing studies is

presented in section 2.4. In section 2.5, the independent and dependent variables are

defined. Section 2.6 describes various data analysis methods used in this research.

Section 2.7 presents the empirical data collection. Section 2.8 describes various tech-

27

Chapter 2. Research Methodology

niques used to pre-process and analyze the data. The procedure used for constructing

of prediction models is explained in section 2.9. Section 2.10 presents various valida-

tion methods. Section 2.11 focuses on various model evaluation measures. Finally,

various statistical tests used are explained in section 2.12.

2.2 Research Process

Research process defines steps necessary to effectively carry out a research. Figure

2.1 illustrates the research process followed in the chapters presented in this thesis.

Each of the steps in this research process is explained in the subsequent sections.

Figure 2.1: Research Methodology

28

2.3. Define Research Problem

2.3 Define Research Problem

The first and most essential step in a research is to formulate a research problem.

When we begin a research, various questions related to the concerned topic start crop-

ping in our minds. We try to search the literature in order to obtain the answers to

these questions. The questions that remain unanswered are formulated and defined in

the form of RQs. As we progress through the research, we try to search the answers

to these questions. The following RQs are addressed in this work:

1. What is the current state of research on predicting change and fault proneness

for improving quality of software?

2. What is the qualitative performance of different machine learning techniques

in modeling the change and the fault data?

3. What techniques and methodologies can be used for detecting risk indicators?

4. What is the performance of model prediction using open source and widely

used software?

5. What is the effective way of validating the prediction models once they are

trained?

2.4 Literature survey

There have been various OOmetrics [6, 15, 25, 26, 30, 36, 85, 88, 91] proposed in the

literature to assess different software quality attributes such as change proneness, fault

29

Chapter 2. Research Methodology

proneness, maintenance effort of the class, etc. There have been multiple studies to

evaluate the impact of OO metrics on the software quality [10, 22, 24, 30, 59, 66, 67,

81, 82, 89, 136, 153] using the statistical and ML techniques. Most of these studies

have constructed metric models to judge or predict the quality of the system. Besides

this, literature also shows that the quality of the system can also be improved by

identifying threshold values (risk indicators) of various metrics. Bender [12] defined

thresholds as “Breakpoints that are used to identify the acceptable risk in classes”.

Some of the researchers have also used threshold values of metrics for predicting

fault prone classes [29, 39, 46, 69, 121, 129].

2.5 Define Variables

In order to develop various software quality models, we need to identify and define

the variables. The variables are of two types, dependent and independent variables.

The variable that describes the quality attribute that is to be predicted or tested is

called the dependent variable (also known as target or predictor variable), whereas,

the independent variable (also known as explanatory variable) is a variable that can

be changed or varied to see its affect on the dependent variable. In other words,

whenever we change the value of the independent variable, the corresponding affect

on the dependent variable can be seen. The dependent variables used in this thesis are

change proneness and fault proneness. The independent variables used are various

OO metrics proposed in the literature.

30

2.5. Define Variables

2.5.1 Independent Variables

Since the OO paradigm is gaining popularity, various OO metrics have been used

as the independent variables in the literature. There are various dimensions used in

OO design such as coupling, cohesion, inheritance and size that can be measured.

Coupling shows the degree of interdependence between the classes. If two classes

depend highly on each other, we say they are tightly coupled and this is undesirable.

Cohesion on the other hand, measures the interdependence between the variables and

methods within a class. One of the most important goals of OO design is to have

high cohesion and loose coupling between the classes. Inheritance allows one class to

inherit the properties and features of another class. Thus, inheritancemetrics deal with

the information about ancestors and descendants of a class [5]. A single metric alone

is not sufficient to explain all characteristics of software under development. Several

metrics must be used together to have better assessment of the software. Among a

number ofmetrics proposed, CKmetrics [36] has beenwidely used in the literature. In

this study, we have used various OOmetrics including the popularly used CKmetrics

as the independent variables. The metrics we have used, along with their source and

dimension to which they belong are summarized in table 2.1. Following have been the

two main reasons behind our decision for selecting the metrics: (1) they measure the

important characteristics of the software like size, coupling, cohesion and inheritance

and can be easily measured with the help of an open source tool ‘Understand for Java’

(http://www.scitools.com/features/metrics.php); (2) they are widely accepted by the

software engineering community.

31

Chapter 2. Research Methodology

Table 2.1: Independent Variables

S.No Metrics Definition Source Dimension

1. Lack of Cohesion

amongst Methods

(LCOM)

For each data field in a class, the percent-

age of the methods in the class using that

data field; the percentages are averaged

and then subtracted from 100%.

[36] Cohesion

2. Coupling Between

Objects (CBO)

Number of classes whose attributes is

used by the given class plus those that

use the attributes of the given class.

[36] Coupling

3. Response For a Class

(RFC)

Number of methods in the class includ-

ing the methods that are called by class’s

methods.

[36] Coupling

4. Depth of Inheritance

Tree (DIT)

Maximum number of steps from the

class node to the root of the tree.

[36] Inheritance

5. Number of Children

(NOC)

Number of direct children of a class in a

hierarchy.

[36] Inheritance

6. Source Lines of Code

(SLOC)

Number of lines containing only the

source code.

http://www.scitools.

com/features/

metrics.php

Size

7. Number of Blank

Lines (BLOC)

Number of blank lines of code. http://www.scitools.

com/features/

metrics.php

Size

8. Number of Exe-

cutable Lines of Code

(ELOC)

Number of lines containing executable

source code.

http://www.scitools.

com/features/

metrics.php

Size

9. Average Number

of Lines of Code

(ALOC)

Average number of lines containing

source code for all nested functions or

methods, including inactive regions.

http://www.scitools.

com/features/

metrics.php

Size

10. Average Number of

Lines with Comments

(ALOCO)

Average number of lines containing

comment for all nested functions or

methods, including inactive regions.

http://www.scitools.

com/features/

metrics.php

Size

11. Average Cyclomatic

Complexity (ACC)

Average cyclomatic complexity for all

nested functions or methods.

http://www.scitools.

com/features/

metrics.php

Size

32

http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php

2.5. Define Variables

S.No Metrics Definition Source Dimension

12. Number of Instance

Methods (NIM)

Counts the number of instance methods

in a class.

[91] Size

13. Number of Instance

Variables (NIV)

Counts the number of instance variables. [91] Size

14. Number of Local

Methods (NLM)

Counts the number of local (not inher-

ited) methods.

http://www.scitools.

com/features/

metrics.php

Size

15. Number of Attributes

(NOA)

Counts the number of at-

tributes/variables defined in a class.

http://www.scitools.

com/features/

metrics.php

Size

16. Number of Methods

per Class (NOM)

Counts the number of methods defined

in a class.

http://www.scitools.

com/features/

metrics.php

Size

17. Number of Public

Methods (NPM)

Counts the number of local (not inher-

ited) public methods.

http://www.scitools.

com/features/

metrics.php

Size

18. Number of Private

Methods (NPRM)

Counts the number of local (not inher-

ited) private methods.

http://www.scitools.

com/features/

metrics.php

Size

19. Number of Protected

Methods (NPROM)

Counts the number of local protected

methods.

http://www.scitools.

com/features/

metrics.php

Size

20. Number of Local De-

fault Visibility Meth-

ods(NLDM)

Counts the number of local default visi-

bility methods.

http://www.scitools.

com/features/

metrics.php

Size

21. Weighted Methods

Per Class (WMC)

Count of sum of complexities of all

methods in a class.

[36] Size

2.5.2 Dependent Variable

In this work, we have used two binary dependent variables, i.e. change proneness and

fault proneness.

33

http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php

Chapter 2. Research Methodology

• Changes in software are inevitable due to various reasons such as change in

user requirements, up-gradation in technology etc. Therefore, forecasting the

classes that are change prone in the future or upcoming release of the software

would be highly beneficial. Thus, we have used dependent variable as change

proneness and investigated the relationship between change proneness and var-

ious OO metrics. Change proneness is defined as the probability of prediction

of change in the successive releases of the software. This prediction is based

on the changes in the current or present release. We have compared the classes

of the two releases and measured changes in terms of number of lines of code

added, deleted or modified in the class of first (previous) release with respect

to the class of the same name in the current release.

• Another dependent variable used in this study is fault proneness. Fault prone-

ness is defined as the probability of occurrence of fault in a class [5].We have

used various classification and regression methods which are based on event

probabilities to predict fault proneness. An event is a detection of fault in a

class during the SDLC.

2.6 Selection of Data Analysis Methods

In this work, we have predicted various models using statistical and ML techniques.

We have used a popular statistical method, i.e. LR to predict various quality models.

In addition to statistical method, we have also used various ML techniques which can

be categorized under the following types: Decision Trees (DT), Bayesian Networks

(BN), Ensemble Learners (EL), Artificial Neural Networks (ANN) and Support Vec-

34

2.6. Selection of Data Analysis Methods

tor Machines (SVM). In this section, we would briefly explain each of these ML and

statistical methods.

2.6.1 Logistic Regression

LR is one of the commonly used statistical modeling method. LR is used to predict

the dependent variable from a set of independent variables (a detailed description is

given by [5, 10, 76]. There are two types of LR [76]: (a) Univariate LR; (b)Multivari-

ate LR. We have used both univariate and multivariate LR in this work to produce the

relevant results. Univariate LR finds the association between each individual inde-

pendent variable (OOmetrics) and the dependent variable (change proneness and fault

proneness). Multivariate LR is used to construct the prediction models for predicting

change and fault prone classes. The combination of all the OO metrics is considered

for prediction of change and fault prone classes. In LR, there are two stepwise selec-

tion methods to obtain an optimal subset of independent variables, forward selection

and backward elimination [76]. Forward selection examines the variables that are

selected one at a time for entry at each step. The backward elimination method in-

cludes all the independent variables in the model and the variables are deleted one at

a time from the model until a stopping criteria is fulfilled. We have used the forward

stepwise selection method in this work.

The simple logistic model is based on a linear relationship between the natural loga-

rithm (ln) of the odds of an event and a numerical independent variable. We derive

the univariate LR formula as follows [76]:

odds = P
1−P

...(1)

35

Chapter 2. Research Methodology

where, P = probability of the occurrence of an event

Therefore, in this work, P is the probability of a class being change or fault prone.

According to the definition of a simple logistic model:

ln (odds) = α + βx …(2)

where, x is the independent variable, i.e. an OO metric; α and β are the Y-intercept

and the slope, respectively.

From (1) and (2), we get

P = eg(x)

1+eg(x)

Where, g(x) = α + βx; α is also known as constant and β as estimated coefficient

This univariate formula can be extended to general multivariate formula as:

P = eα+β1x1+β2x2+...+βnxn

1+eα+β1x1+β2x2+...+βnxn

Where, xi, (1≤ i ≤ n) are the independent variables (OO metrics)

The following statistics are reported for each significant metric:

• Maximum likelihood estimation (MLE) and coefficients (βi): MLE is a statis-

tical method for estimating the coefficients of a model. The likelihood func-

tion measures the probability of observing the set of dependent variable values.

MLE involves finding the coefficients that make the log of the likelihood func-

tion as large as possible. The larger the value of the coefficients, the larger the

impact of the independent variables on the dependent variable [5, 76].

• Odds ratio: The odds ratio is calculated using βi and is given by the formula, R=

eβi where β is coefficient. It is defined as the probability of the event divided

by the probability of the nonevent [5]. In this study, the event corresponds to

probability of a class being change prone or fault prone, whereas the nonevent

36

2.6. Selection of Data Analysis Methods

is the probability of a class not being change prone or fault prone. An ‘odds

ratio’ with a value of two means that the dependent variable is multiplied by

two when the independent variable increases by one unit [5, 76].

• Statistical significance: Statistical significance measures the significance level

of the coefficient. The larger the statistical significance, the lower the estimated

impact of the independent variables on the dependent variable. The parameter

used to measure the statistical significance is two-tailed p-value whose value is

determined using the Wald test (W). The value of Wald test for an independent

variable is the ratio of its coefficient to its standard error. For example, let

the coefficient of an independent variable be 0.111 and its standard error be

0.024.Then, W = 0.111 / 0.024 = 4.61, and the two tailed p-value (parameter

to measure significance) is P(|z| > 4.61), where z denotes a random variable

following the standard normal distribution. (For details, refer [76]).

Multicollinearity is a statistical phenomenon in which the independent variables

are highly correlated with each other and hence, contribute as disturbance in the

datasets. It is an undesirable situation as it makes some of the independent vari-

ables statistically insignificant while they should be otherwise significant. Thus,

we performed a test of multicollinearity to determine if the independent variables

are correlated amongst each other. Principal Component (PC) method is applied

on the independent variables to find the maximum eigenvalue (e_max) and mini-

mum eigenvalue (e_min). Then we calculate the conditional number given as =√
((e_max)⁄(e_min)). If the value of the conditional number is less than 30, we say

that there does not exist multicollinearity between the variables [11].

37

Chapter 2. Research Methodology

2.6.2 Decision Tree

DT can be used for building classification as well as regression models. The resul-

tant models are in the form of a tree structure consisting of the internal nodes and

the terminal nodes. The internal nodes also known as decision nodes represent the

independent variables. The branches from the internal nodes represent the possible

values that these independent variables can have. The terminal nodes represent the

values of the dependent variable. The topmost decision node, known as the root node

corresponds to the best attribute that discriminates the dependent variables very well.

In thsi work, we have used J48 and CRT.

2.6.3 Bayesian Networks

BN are used when one wants to represent the probabilistic relationship between a

set of variables [115]. Graphically, it is represented as directed acyclic graph whose

nodes correspond to the variables and edges show the influence of one variable on the

other. A directed edge from variable Vi to Vj shows that Vi is parent of Vj . Bayesian

learners build the models using Bayes rule given as follows:

Prob(B/A) = Prob(A/B)∗Prob(B)
Prob(A)

• Where, P(B|A) is the posterior probability of dependent variable given the in-

dependent variable.

• P(B) is the prior probability of dependent variable.

• P(A|B) is the probability of independent variable given the dependent variable.

• P(A) is the prior probability of independent variable.

38

2.6. Selection of Data Analysis Methods

Thus, bayesian learners are used for classification by finding the posterior probabil-

ity of the dependent variable given the values of the other variables. The simplest

bayesian learner is NB which we have used in this work. The detailed explanation of

NB is given in chapter 7.

2.6.4 Ensemble Learners

Ensemble learning is the process of combining multiple classifiers to solve a com-

putational problem. Among number of classifiers available, it is difficult to make a

choice of the appropriate classifier for our problem. Combining multiple classifiers

helps to reduce the chances of making a poor or wrong selection. It may or may not

improve the performance over a single classifier, but it certainly reduces the risk of

poor selection. Besides this, ensemble learning can be used in both the cases; when

we have large volume of data or when the data is too little. When the data available

is too large for a single classifier to be trained, we can partition the data into subsets

and allow different classifiers to be trained on each subset. Then, we can combine

the results using some specified rules. On the other hand, when the data is too small,

we can use bootstrapping mechanism, wherein we draw the data with replacement

and apply a classifier to each sample. There are various EL that are used in this work

such as RF, bagging, LB and AB.

2.6.5 Artificial Neural Networks

ANN comprises a network of simple interconnected units called neurons or process-

ing units. ANN consists of three layers: the input layer, hidden layer and output layer

39

Chapter 2. Research Methodology

[71]. The first layer has input neurons which send data via connections called weights

to the second layer of neurons and then again via more weights to the third layer of

output neurons. Thus, the input neurons are connected to every neuron of the hidden

layer but are not directly connected to the output neurons. Error back - propagation

algorithm is used for training ANN. Error back-propagation learning consists of two

passes: a forward pass and a backward pass. In the forward pass, an input is pre-

sented to the neural network and its effect is propagated through the network layer by

layer. During the forward pass the weights of the network are all fixed. An error is

composed from the difference between the desired response and the system output.

During the backward pass, the weights are all updated and adjusted according to the

error computed. This error information is fed back to the system which adjusts the

system parameters in a systematic fashion (the learning rule). The process is repeated

until the performance is acceptable [71]. MLP is an example of an ANN which we

have used in this work.

2.6.6 Support Vector Machines

SVM is a learning technique that is used for classifying unseen data correctly. For

doing this, SVM builds an optimal hyperplane which separates the data in such a way

that the cases with one category are on one side of the hyperplane, whereas the cases

with the other category are on the other side of the plane into different categories

[132].

The data may or may not be linearly separable. By “linearly separable” we mean

that the cases can be completely separated (i.e., the cases with one category are on

40

2.6. Selection of Data Analysis Methods

Figure 2.2: Support Vector Machine

the one side of the hyperplane and the cases with the other category are on the other

side). For example, figure 2.2 shows a data where examples belong to two different

categories - triangles and squares. Since these points are represented on a 2- dimen-

sional plane, a 1-dimensional line can separate them. To separate these points into

2 different categories, there are an infinite number of lines possible. Two possible

candidate lines are shown in figure 2.2. However, only one of the lines gives a maxi-

mum separation/ margin and that line is selected. “Margin” is defined as the distance

between the dashed lines (as shown in figure 2.2), which is drawn parallel to the sep-

arating lines. These dashed lines give the distance between the separating line and

closest vectors to the line. These vectors are called support vectors. SVM can also be

extended to the non-linear boundaries by using the kernel trick. The kernel function

transforms the data into a higher dimensional space to make the separation easy [44].

The commonly used kernel function are linear, polynomial, Radial Basis Function

(RBF) and sigmoid. Since, RBF is the most recommended kernel function [132], we

have used RBF in this study to predict change prone classes. RBF handles non lin-

ear relationships between the dependent an the independent variable by mapping non

41

Chapter 2. Research Methodology

linear data into a higher dimension space.

2.7 Empirical Data Collection

The data collected to be used for empirical validation is either from university sys-

tems, commercial systems or fromOSS. OSS are developed with a different approach

and methodology where users are treated as co-developers. Thus, it becomes easy to

customize or upgrade OSS. Besides this, they are available free of cost and there are

no copyright issues. Due to these numerous advantages, we have explored the use of

various OSS in this study.

Figure 2.3: Software Used for Empirical Data Collection

Figure 2.3 shows different software we have used. All the fault data used in this

study has been obtained from PROMISE repository. Whereas, for the change data, we

have used two popular OSS repositories (CVS and GIT) for obtaining the datasets.

42

2.7. Empirical Data Collection

CVS (Concurrent Versioning System) and Git are version control systems used for

storing code and associated data. In this section, we explain in detail the steps fol-

lowed to collect the change data for CVS and Git based OSS. We also list various

software used in this study along with their important characteristics.

2.7.1 Change Collection Process

We followed the steps given below in order to collect OO metrics and changes be-

tween different releases of the software [103, 153]. The diagrammatic representation

of the process followed for change collection has been depicted in figure 2.4.

Figure 2.4: Change Collection Process

1. Compute Metrics: With the help of the tool, ‘Understand for Java’ (http://

www.scitools.com/), we collected various OO metrics for the first release

of the software, among the two releases under consideration. The tool gives

43

http://www.scitools.com/
http://www.scitools.com/

Chapter 2. Research Methodology

metrics for all the Java files, constructors, packages, classes and various other

constructs. As we are concerned only with classes, we keep only the metrics

for all the classes and discard all the other metrics of other constructs such as

files. Besides this, the tool also generates metrics for various anonymous or

unknown classes that cannot be accessed. Such classes are also removed from

the analysis.

2. Pre-process releases: After downloading the source code of both the releases,

we extracted the full names (i.e. package name +class name) of all the classes

of both the releases. We observed that some classes in different Java files have

same names, although their implementationsmay be different. For such classes,

the computations of metrics (step 1) are biased and not correct. Hence, such

classes are removed and not considered.

3. Extraction of Common Classes: The main aim behind this work is the predic-

tion of changes in the classes of later release based on the changes in the classes

of previous release. In other words, it is clear that we will be able to predict

changes only in those classes of later release that also appeared in previous

release. Therefore, we considered only the common classes between the two

releases under consideration. This is done by comparing the full names (i.e.

package name+ class name) of all the classes of the previous release with the

classes of the later release.

4. Comparing classes with the help of a Tool: We compared the source code of

each class of the previous release with its corresponding class (class with the

same name) in the later release and collected change as the number of source

44

2.7. Empirical Data Collection

lines of code (SLOC) added, deleted and modified in each Java class of the

previous release with respect to the class of same name in the later release.

For doing this, a tool (Configuration Management System (CMS)) [96] with

Graphical User Interface (GUI) is used. This tool has been developed in Java

programming language and executes efficiently on all releases of Windows op-

erating system.

5. Computation of Change Statistics: Based on the number of source lines of code

added, deleted and modified, ‘TOTAL CHANGE’ for a class is calculated as

follows:

• Each added or deleted line is counted as one SLOC change.

• Each modified line is counted as two SLOC change i.e. one deletion fol-

lowed by one addition.

Then we defined a binary variable ‘CHANGE’, which is assigned a value

1 if ‘TOTAL CHANGE’ >1 or 0 otherwise.

6. Collection of Data Points: A data point or an instance refers to a class along

with all its metrics values and the value of binary variable ‘CHANGE’. Thus,

metric values for the classes common between the two releases obtained from

step 1 are combined with the values of binary variable ’CHANGE’ obtained

from step 5 to generate data points.

45

Chapter 2. Research Methodology

2.7.2 Open Source Software Used

The use of a large number of popular and widely used OSS has become possible

because of the establishment and the wide prevalence of OSS development. The

software used in the study for change and fault data alongwith some of their important

characteristics are listed in tables 2.2 and 2.3 respectively. For each of the software,

we have stated the total number of classes and the number of classes which are found

to be changed or are faulty in the later release with respect to the previous release.

Table 2.2: Software Used for Change Data

Software Release Total

classes

Classes

changed

Type/Function

Android

2.3 5018 1973

Mobile Operating System

4 5710 1816

4.1 8518 1609

4.2 8455 1557

4.3 9218 1554

Freemind

0.9.0 656 29

Mind mapper & hierarchical editor0.9.1 608 118

1.0.0 668 555

Xerces

2.9.0 568 120

Create & maintain XML parsers2.9.1 572 294

2.10.0 614 74

Frinika 0.2.0 248 126 A complete music workstation

Xalan 2.6.0 84 554 EXtensible Stylesheet Language Transfor-

mations (XSLT) processor

Abdera

1 679 624 Implementation of the Atom Syndication

and Atom Publishing Protocol. They are the

standards for creating, editing and

publishing various web sources

1.1 677 8

1.1.1 686 634

1.1.2 685 635

46

2.8. Data Analysis and Pre - processing

Software Release Total

classes

Classes

changed

Type/Function

POI

3 1515 1276

Used for creating and manipulating various

file formats

3.6 2088 1988

3.7 2472 2212

3.9 2786 2706

Rave

0.19 607 32 Provides an extensible platform for using,

integrating and hosting various OpenSocial

and W3C Widget related features,

technologies and services

0.20.1 642 628

0.21.1 676 648

0.22 685 225

JavaTreeView 1.0.3 97 40 Cross-Platform Gene Expression Visualiza-

tion Tool

Table 2.3: Software Used for Fault Data

Software Release Total

classes

Faulty

classes

Type/Function

Ivy 2 352 40 Powerful dependency manager that manages

dependencies of any kind

Ant 1.7 745 166 Java library and command-line tool for au-

tomating software processes

Tomcat 6 858 77 Provides pure Java HTTP web server envi-

ronment for Java code to run in

JEdit 4.3 492 10 Text editor for programmers

Sakura 2.0.2.0 80 47 Japanese text editor for programmers

KC1 - 145 58 Proprietary software of NASA (NASA Met-

rics Data Program)

2.8 Data Analysis and Pre - processing

After the data is collected, the next step is to analyze and pre - process the data.

For analyzing the data, we have calculated various descriptive statistics and for pre -

47

Chapter 2. Research Methodology

processing the data, feature reduction techniques are used.

2.8.1 Descriptive Statistics

Various descriptive statistics are used for describing and analyzing the research data.

Descriptive statistics concern development of certain measures to summarize data.

In other words, they allow to have a thorough knowledge of the data and draw im-

portant conclusions from it. The important statistics measures used in this study for

describing the central tendency of the values are mean and median. Median is the

numeric value that separates the higher half of the data from the lower half, whereas

mean represents the average value. It is a better representation of the data when the

data contains the outliers. For example, let weights of 10 students in a class be be-

tween 51 and 61 except for the one student whose weight is 210. In this case, the

mean will be 72 and the median will be 58. Hence, the median better reflects the

weight of the students than the mean. To describe the dispersion in the data, different

quartiles (25% and 75%) and standard deviation are calculated. Skewness and kurto-

sis are used to measure the shape of the distribution. Skewness measures the degree

of asymmetry, whereas kurtosis measures peakedness or flatness of the distribution.

The distribution of a variable can be considered normal if its skewness and kurtosis

statistics fall between -1 and +1. Besides these statistics, the most common statistics

such as minimum and maximum are also calculated.

48

2.8. Data Analysis and Pre - processing

2.8.2 Data Reduction

The presence of a large number of features in an empirical data may reduce the pre-

diction efficiency of various ML and statistical models. Thus, it is very important

to reduce the dimensionality of the data which will reduce the size of the hypothe-

sis space and will allow the models to operate more efficiently. Besides improved

computational efficiency, data reduction also leads to lower cost, increased problem

understanding, and improved accuracy. In this study, we have obtained a subset of

features (independent variables) by eliminating the attributes that have little or no pre-

dictive information. In other words, we have used only those features which are sig-

nificant in predicting the dependent variable. For this, two popularly used techniques

are used, i.e. Correlation - based Feature Selection (CFS) and univariate analysis.

Each of these techniques is explained briefly in this section.

Univariate Analysis

The univariate analysis is done to find the individual effect of each independent vari-

able on the dependent variable. It eliminates the variables which are not significantly

related to the dependent variables. The method to be used for univariate analysis de-

pends on the type of dependent variables being used. The dependent variables used in

this study are change proneness and fault proneness. We have used regression analy-

sis to preselect the features which are significant predictors of the dependent variable.

We say that the independent variables which are significant at 0.05 significance level

can be considered as significant in predicting the dependent variable and can be used

for subsequent model prediction.

49

Chapter 2. Research Methodology

Correlation - based Feature Selection

CFS is used to select the best attributes from the set of independent variables. The

best combinations of independent variables are searched through all the possible com-

binations of independent variables. CFS evaluates the best subset of variables by

considering the individual predictive ability of each feature along with the degree of

redundancy between them. In other words, it helps to find a subset of independent

variables that are highly correlated with the dependent variable but are not related

with each other [111]. This leads to a selection of good feature set in which the num-

ber of independent variables is reduced (termed as ‘data dimensionality reduction’).

M.A. Hall proved that “classification accuracy using reduced feature set is equal or

better than accuracy using complete feature set’’ [64].

2.9 Model Prediction

The basic premise of software quality prediction is that a class currently under devel-

opment is change (or fault) prone if a class possessing the similar product or process

metrics in some older project developed in the same environment (i.e. of similar na-

ture) was change (or fault) prone. Thus, to predict change (or fault) prone classes in a

project, the data (dependent and independent variables) of the previously developed

release of the same project or the data of some other project of similar nature are used.

There are various advantages of identifying change (or fault) prone classes:

• During project progress, managers can pay focused attention and resources on

the classes found at risk. This will allow the managers to more evenly distribute

50

2.9. Model Prediction

the workload among the developers and testers.

• Designers can redesign these classes, if required. For example, if designers

find that the modification in any class affects other classes to a large extent,

this concludes that the coupling between the classes is high and thus, should be

reduced.

• Knowing the classes at risk, the testers can prioritize their testing resources and

activities (walkthrough, inspection) on such classes.

All these factors lead to substantial saving of resources and reduction of costs as-

sociated with the development and maintenance phase. We consider two mechanisms

to predict change (or fault) prone classes using OO metrics:

1. Construction of models using data analysis techniques: Developing various

metric models with the help of different ML and statistical methods.

2. Threshold computation: Identifying the risk indicators of various OO metrics.

We will discuss each of these methods in detail in this section.

2.9.1 Model Construction using Data Analysis Techniques

We have used supervised learning to construct various classification models. In other

words, the outcome or target or dependent variable is known for training the model.

Thus, the training dataset has the values of both the independent and dependent vari-

ables with the help of which the classifier learns or trains the model. After the model

is trained or constructed, it is tested using the validation set which can be a subpart of

51

Chapter 2. Research Methodology

the same release or some other similar dataset. Finally, the constructed model can be

used to make predictions of the dependent variable for a new dataset. In other words,

the constructed model can be used to predict change (or fault) prone classes of the

future release of the same software or similar other software. This process of model

construction is shown in figure 2.5.

Figure 2.5: Model Construction Using Data Analysis Techniques

2.9.2 Threshold Computation

Another method to identify change (or fault) prone classes is by using the thresholds

of metrics. Metrics measure internal characteristics or attributes of software such as

size, coupling, cohesion etc. Once metric values are determined, there should be a

52

2.9. Model Prediction

technique or methodology to assess if the metric values are good or bad. For this

purpose, we have identified threshold values for metrics. Bender [12] defined thresh-

olds as “Breakpoints that are used to identify the acceptable risk in classes”. They

provide an upper bound on the metric values such that the classes having metric val-

ues above the threshold values are considered to be problematic, whereas the values

lower are considered to be acceptable. A class is said to be problematic, when at least

one threshold for a metric is violated. Thresholds can be calculated at the initial phase

of SDLC. Following are the advantages of using thresholds for identification of risky

classes:

• Thresholds identify certain alarming values of the metrics which are used to

find classes that fall outside the acceptable risk level.

• Management personnel’s can use them as quality benchmarks to gain insight

about the quality of the software, allowing them to assess, control and compare

the quality.

• Threshold values allow the designers to have a quick overlook on the metric

values and alter them accordingly. In other words, the thresholds identify de-

sign anomalies and source code flaws.

• Threshold of each metric serve a different purpose. For example, if the value of

coupling metric of a class is more than its threshold, this implies that the class is

excessively coupled to other classes. Thus, potential candidates for redesigning

the classes can be selected based on threshold values.

53

Chapter 2. Research Methodology

We have identified the thresholds for various OO metrics using two approaches: (1)

Statistical approach based on LR and (2) Using the ROC curve. These are explained

in detail in chapters 6 and 8 respectively.

2.10 Validation Methods

Once the model is trained, it is very essential to validate the model which allows to

assess the performance of the predicted model. The trained or the predicted model

can be validated on either the same software from which it is derived or a different,

similar - natured software. When a same software is used for both training as well as

testing the model, the procedure (method) may be referred to as internal validation.

Whereas, when two different software or releases are used for training and testing the

model, procedure (method) may be referred to as external validation. In this section,

we have discussed both the types of validation.

2.10.1 Internal Validation

In internal validation, a single release or two different releases of the same software

for both training and testing the model. When the same release is used for both train-

ing and testing, then we may obtain highly optimistic results. Thus, the entire data set

(release) is not used when training a model. A subsample of data is used for training

the model and this subsample is called as the training data. The data that was removed

is used to validate the model (by acting as “blind” data) and is known as the validation

data, or test data. The data set can be split into the training and validation data in the

following three ways:

54

2.10. Validation Methods

1. Holdout cross-validation: Holdout cross - validation is the simplest kind of

cross-validation. Dataset is divided into two subparts such that some of the ob-

servations form the validation data and the remaining observations are retained

as the training data. Generally, one third of the dataset is used as the validation

data. This method is used when the dataset is large, i.e. the number of samples

is large [71]. However, its evaluation can have a high variance since it heavily

depends on which data points form the training data and which form the val-

idation data. Thus, the evaluation is significantly different depending on how

the division is made.

2. K-cross validation: In K-cross validation, the dataset is partitioned into K sub-

samples. Of the K subsamples, one subsample is used as the validation data

for testing the model and the remaining K – 1 subsamples are used for training

the data. This process is repeated K times such that each of the K subsamples

is used exactly once as the validation data. The K results from the folds then

can be combined to produce a single estimation. The advantage of K-cross val-

idation is that the evaluation does not depend on how the data is partitioned.

Every observation is in the testing set exactly once and is in the training set

K-1 times. The variance of the resulting estimate is reduced as K is increased.

The disadvantage of this method is that the training algorithm has to rerun from

scratch K times, which means it takes K times as much computation to make

an evaluation.

3. Leave-one-out cross validation: Leave-one-out cross validation method uses

a single observation from the dataset as the validation data and the remaining

55

Chapter 2. Research Methodology

observations as the training data. This process is repeated such that each ob-

servation in the dataset is used once as the validation data. This is the same as

K-fold cross-validation where K is equal to one. When the number of observa-

tions is very limited, one may use this form of cross validation [71].

In this work, the size of the dataset is greater than 80 data points, hence leave-

one-out method has not been used.

2.10.2 External Validation

In external validation, we may use different releases of the same software of two

different, similar natured software for training and testing the model. Thus, there

are two types of external validation techniques: inter - project and inter - release

validation.

Inter - Release Validation

In inter - release validation, we use two different releases of the same software for

both training and testing the model. For example, a model trained using a release ’r’

of a software is validated on the upcoming releases ’r+1’, ’r+2’ etc. This concept is

depicted in figure 2.6.

Inter - Project Validation

In inter- project validation, the models are trained using the historical data of some

other software. For example, to predict changes in a software B, we train the models

using the data of software A, and then test them on the software B. We can observe

56

2.11. Performance Measures Used

Figure 2.6: Validation Techniques

that training and testing are performed on the different software, instead of using the

same software. This method of validation leads to more generalized results. This

concept is diagrammatically explained in figure 2.6.

2.11 Performance Measures Used
The performance of binary prediction models is typically evaluated using confusion
matrix shown in table 2.4.

Table 2.4: Confusion Matrix

Observed
Predicted

Positive Negative

Positive TP FN

Negative FP TN

57

Chapter 2. Research Methodology

The terms in the table 2.4 are defined as follows:

• TP (True Positive): It is the count of the correctly predicted positive cases

• FP (False Positive): It is the count of the incorrectly predicted positive cases

• TN (True Negative): It is the count of the correctly predicted negative cases

• FN (False Negative): It is the count of the incorrectly predicted negative cases

In this study, a positive case refer to a class being change prone and a negative case

refer to a class being non - change prone. We define various performance measures

used for assessing binary classifiers with the help of TP, FP, FN and TN.

1. Sensitivity: Sensitivity is also known as recall, True Positive Rate (TPR) and

Probability of Detection (pd). It is defined as the ratio of the number of classes

correctly predicted to be change prone to the number of actual change prone

classes.

Mathematically, Sensitivity = TP/(TP + FN)

2. Specificity: Specificity is defined as the ratio of the number of classes correctly

predicted to be non - change prone to the number of actual non - change prone

classes.

Mathematically, Specificity = TN/ (TN + FP)

It can also be defined in terms of False Negative Ratio (FNR) as:

Specificity = 1-FNR,

Where FNR (also known as probability of false alarm, pf) is defined as the ratio

of the number of classes incorrectly predicted to be change prone to the number

of actual non- change prone classes. Mathematically, FNR= FP/ (FP+TN)

58

2.11. Performance Measures Used

3. Precision: Precision is defined as the ratio of the number of classes correctly

predicted to be change prone to the number of classes predicted to be change-

prone.

Mathematically, Precision = TP/ (TP+FP)

4. Accuracy: Accuracy is also known as correctness. It is defined as the ratio of

the number of classes correctly predicted to the total number of classes.

Mathematically, Accuracy = (TP+TN)/ (TP+FN+FP+TN)

5. Balance: Balance combines the probability of detection (pd) and the probability

of false alarm (pf). The point (pf=0 and pd=1) is the most suitable point on

the ROC curve. Thus, balance is defined as the Euclidean distance from the

point <pf=0 and pd=1> to a pair of <pf,pd>. For the purpose of convenience

following 2 steps are taken [110]:

(1) We know that the maximum possible distance across the ROC square is √2.

Thus, balance is normalized by this maximum distance.

(2) After normalization, the terms obtained in step (1) is subtracted from 1.

Mathematically, Balance = 1−
√

(0−pf)2+(1−pd)2√
2

6. G-mean: G-mean is the geometric mean of the accuracy of positives (a+) and

the accuracy of negatives (a-). This evaluation technique was suggested by Ku-

bat and Matwin [83].

Mathematically, G-mean =
√
(a+) ∗ (a−)

where, a+ (accuracy of positives): denotes the ratio of number of classes cor-

rectly predicted to be change prone to the number of classes predicted to be

change prone. Mathematically, a+ = TP/(TP+FP)

59

Chapter 2. Research Methodology

a- (accuracy of negatives): denotes the ratio of number of classes correctly pre-

dicted to be non - change prone to the number of classes predicted to be non -

change prone. Mathematically, a- = TN/(TN+FN)

7. Receiver Operating Characteristics Curves (ROC): The ROC curve, which is

defined as a plot of sensitivity on the y-coordinate versus its 1-specificity on

the x- coordinate is a commonly used way to visualize the performance of a

binary classifier [44]. According to the definition of sensitivity and specificity,

we understand that high values of sensitivity and specificity are desirable. At

the same time, we also need to ensure sensitivity is approximately equal to

specificity. Thus, the ROC curve helps to find an optimal cut-off point that

maximizes both sensitivity and specificity [44]. This allows to maintain a bal-

ance between the number of classes correctly predicted to be change prone and

the number of classes correctly predicted to be non - change prone. The Area

Under the curve (AUC) derived from ROC analysis is used to measure the per-

formance of a model. The area measures discrimination, i.e. the ability of the

models to correctly classify a class as change prone or non - change prone.

AUC lies between 0 and 1 and higher the value of AUC, better is the predictive

capability of the model [52].

An ideal model should have high values for all performance measures. Their

values are distributed between 0 and 1, with 1 being a perfect score and 0 being the

worst.

60

2.12. Significance Tests

2.12 Significance Tests

In this work, we use statistical tests to find the statistical significance of the ML tech-

niques.

2.12.1 Friedman Test

Friedman test is a nonparametric test that is used to rank a set of k treatments over

multiple data instances or subjects [57]. The Friedman test is based on the following

hypothesis:

Null Hypothesis (Ho): There is no statistical difference between the performance of

the compared techniques.

Alternative Hypothesis: (H1): There exists statistical difference between the perfor-

mance of the compared techniques.

Following steps are used to compute the Friedman test statistic (χ2):

1. Determine ranks: Organize the data values of all the treatments for a specific

dataset in descending (high to low) order. Allocate ranks to all the values. Rank

1 is assigned to the best performing treatment. In case of two or more obser-

vations of equal values, assign the average of the ranks that would have been

assigned to the observations.

2. Compute total ranks: Compute the total of ranks allocated to a specific treat-

ment on all the datasets. The rank total for k treatments is denoted by R1, R2,

… Rk.

3. Compute χ2-statistic : The χ2-statistic is computed by the following formula:

61

Chapter 2. Research Methodology

χ2 = 12
nk(k+1)

∑
R2 − 3n(k + 1)

Where, R = sum of ranks (Sum) for every technique, n = number of data sets, k =

number of compared techniques

If the value of χ2 is in the critical region with specific level of significance, then the

null hypothesis is rejected and it is concluded that there is difference between the

performance of the two techniques, otherwise null hypothesis is accepted.

2.12.2 Post - hoc Analysis

There are two statistical tests used in this test for conducting post - hoc analysis. These

tests are explained in this section.

Wilcoxon Signed - Rank Test

Wilcoxon signed - rank test is a non - parametric test that performs pairwise compar-

isons of the difference in performance of the techniques [148]. It may or may not be

used as a post - hoc test. The Wilcoxon signed - ranks test is based on the following

hypothesis:

Null Hypothesis (Ho): There is no statistical difference between the performance of

the two techniques.

Alternative Hypothesis (H1): There exists statistical difference between the perfor-

mance of the two techniques.

It is defined as [41]:

R+ =
∑

mi>0 rank(mi)

R− =
∑

mi<0 rank(mi)

62

2.12. Significance Tests

Where, mi is the difference between performance measure of first technique from

the second technique when applied on n data sets. The differences are ranked based

on their absolute values. Here, R+ is the sum of ranks for the given data sets where

second technique outperforms the first technique and R− is the sum of ranks for the

given datasets where first ML technique outperforms the second technique.

Following are the steps used for calculating the rank:

1. Exclude the pairs where the absolute difference is 0. Let nr be the reduced

number of pairs.

2. Assign rank to the remaining nr pairs based on the absolute difference. The

smallest absolute difference is assigned a rank 1.

3. If there is a tie in the absolute difference, then ties receive a rank equal to the

average of the ranks they span.

Finally value of z is calculated as:

Z= Q− 1
4
nr(nr+1)√

1
24

nr(nr+1)(2nr+1)

where, Q = min(R+, R−)

Similar to the Friedman test, if the Wilcoxon value (Z) is in the critical region with

specific level of significance, then the null hypothesis is rejected and it is concluded

that there is difference between the performance of the two techniques, otherwise null

hypothesis is accepted.

Nemenyi Test

Nemenyi test is used as a post - hoc to examine the statistical difference between

the pairs of different techniques. It can be used after the application of Friedman

63

Chapter 2. Research Methodology

test, if the null hypothesis of the corresponding test is rejected. It compares all the

techniques with each other and investigate whether the performance of two techniques

differ significantly [41]. It is based on the Critical Distance (CD) which is computed

as:

CD= qa
√

k(k+1)
6n

Where, n=number of datasets, k=number of algorithms, qa= critical values (stu-

dentized range statistic divided by
√
2)

The computed CD value is compared with the difference between average ranks al-

located to two techniques. If the difference is equal to or greater than the CD value,

the two techniques differ significantly at the chosen significance level (i.e. 0.05).

64

Chapter 3

Predicting Change Using Software

Metrics: A Review

3.1 Introduction

Maintaining the quality of the software is very important. We know that the changes

in software are inevitable due to diverse reasons such as change in user requirements,

competitive pressure, increasing customer demands etc. Due to the changes, mainte-

nance cost keeps on increasing. With the help of the OO metrics and the change data

collected from a similar project or previous release of the same project, prediction

models can be developed. Early prediction of change prone classes allows the devel-

opers to pay focused attention on such classes by judiciously allocating the resources,

allows the designer to re-design the classes and allows the tester to focus his testing

resources and testing activities (such as inspection, walk through) on such classes.

Therefore, software change prediction leads to improved quality.

65

Chapter 3. Predicting Change Using Software Metrics: A Review

It is necessary to systematically summarize and analyze the empirical evidence

obtained on change prediction studies from the existing literature. Thus, the primary

goal and contribution of this chapter is to support the research on change prediction

through an extensive review of the relevant studies. In other words, this review syn-

thesizes existing work in the area of software change prediction which will allow

researchers and practitioners to have a fair evaluation of all the studies. They will be

able to examine the previous studies from different viewpoints: metrics, data analysis

techniques, datasets, and experimental results perspectives. We obtained significant

conclusions than is possible from individual studies, or as a prelude to further research

activities [80]. The RQs formulated in the review allowed us to identify gaps in the

current technology. We have provided future guidelines to software practitioners and

researchers to overcome the gaps. Following this section, we have explained in detail

the methodology used in conducting this review.

The results of this chapter are published in [97, 101].

3.2 Research Methodology

A systematic review consists of a number of discrete steps. We carried the review

by following the procedure as given by Kitchenham [80]. The various steps taken

to conduct this review are listed below and are also represented diagrammatically in

figure 3.1.

Each of the following steps are explained in detail in the subsequent sections.

• Step 1: Identifying the need of the review

66

3.3. Review Process

• Step 2: Identifying the review process

• Step 3: Reporting and documenting the review

• Step 4: Reporting review results

• Step 5: Concluding the review

Figure 3.1: Framework of the Review

The step to identify the correct process to carry out the review is explained in

section 3.3. The next step involves reporting or documenting the review as explained

in section 3.4. Following this, we have represented the results of the review in section

3.5. Finally, the review is concluded and future directions are provided in section 3.6.

3.3 Review Process

It is important to follow an appropriate and correct procedure to carry out a review.

Depending on the type and nature of research, the review process may differ. For

67

Chapter 3. Predicting Change Using Software Metrics: A Review

this research, the review process which has been followed consists of three steps: (1)

Formulating RQs, (2) Deciding inclusion/exclusion criteria and (3) Selecting relevant

studies. Each of these steps is discussed in this section.

3.3.1 Formulation of Research Questions

Formulation of RQs is very important to carry out a research. It is critical to have

clarity about questions which need to be answered so that a focused effort can be

undertaken. The RQs allow the researchers, practitioners and the readers to know

what the review is intended to answer. These questions are primarily of interest to

researchers. In this review study, we have addressed the following issues:

• RQ1: What types of metrics are most commonly used in the change prediction?

• RQ2: What types of datasets are most widely used for change prediction?

• RQ3: What type of machine learning techniques are used for change predic-

tion?

• RQ4: What are the significant predictors of change proneness?

• RQ5: Have appropriate performance measures been used to evaluate the per-

formance of the models?

• RQ6: Have appropriate statistical tests been used to measure the performance?

• RQ7: What are the risk indicators for various OO metrics?

• RQ8: What validation techniques are used to validate the models?

68

3.3. Review Process

3.3.2 Inclusion and Exclusion criteria

Deciding the appropriate inclusion and exclusion criteria is very important to assess

each potential study. The selection or rejection of a study in the review depends on

the inclusion and exclusion criteria respectively. The formulation of the inclusion and

exclusion criteria should be based on the RQs. In this review, following inclusion and

exclusion criteria is used:

Inclusion Criteria

• Empirical studies establishing relationship between change proneness and met-

rics.

• Empirical studies where change prediction is associated with change impact

analysis or change propagation.

• Empirical studies using any type of software metrics (product metrics, process

metrics etc.) to predict change proneness.

• Empirical studies using ML statistical techniques for software change predic-

tion.

Exclusion Criteria

• Empirical studies based on dependent variable other than change proneness or

change prediction.

• Empirical studies which have considered ‘change’ as continuous dependent

variable.

69

Chapter 3. Predicting Change Using Software Metrics: A Review

• Empirical studies where independent variables are not metrics (for example,

studies where independent variables are design patterns, code smells etc. are

not considered).

• Empirical studies which have usedML or statistical techniques in context other

than software change prediction.

• Review or survey studies for change prediction.

3.3.3 Selection of Relevant Studies

We included all the relevant studies that are filtered according to the defined inclusion

criteria. Further, for searching all the appropriate studies, we defined a search strategy.

We obtained a subset of studies that are selected using the formed search strategy.

Each of the studies in this subset is thoroughly read to obtain the final set of studies to

be used in this review. The detailed explanation of the steps taken to obtain the final

set of studies is given below:

1. Step 1 : Search strategy to get ‘Initial list’ of studies

A comprehensive search is conducted to identify all the studies whose title or

abstract contains some of the relevant keywords such as change prediction,

change proneness, change impact, change propagation, software change etc.

After searching the studies based on these individual keywords, new keywords

are also formed by combining alternative and synonyms by Boolean expression

‘OR’ and main words by ‘AND’. For example, Change AND (Prediction OR

proneness) AND (Machine learning OR statistical OR data analysis). At this

70

3.3. Review Process

step, the initial set of studies is obtained. For each of the studies in the initial set,

the abstracts are scanned and read to judge the relevance of the studies. After

reading the abstracts, we found that some of the studies should not be included

in the review according to our inclusion criteria. For the initial search, we have

visited various research related digital portals such as IEEE Explore, Springer,

Science direct, Wiley and ACM digital library. We searched the studies in var-

ious journals and conference proceedings of repute [135].

2. Step 2: Selection of ‘Final Set’ of studies

Once the potentially relevant primary studies have been obtained, they are as-

sessed for their actual relevance. The final set of studies to be included in the

review is obtained after the full texts have been retrieved and read. In other

words, full copies of these studies are obtained and again reviewed by two se-

nior assistant professors (having doctorate degree). The introduction and con-

clusion sections of the studies selected in the initial stage are read thoroughly.

It is useful to maintain a list of excluded studies identifying the reason for ex-

clusion. At the end of this step, we found 21 relevant studies related to our

area of change prediction. Among these 21 relevant studies, we identified the

following primary studies closest to our area of research:

• Romano and Pinzer [124] evaluated the use of OO metrics to predict the

relationship between these metrics and change prone classes.

• He et al. [73] investigated the importance of cross project predictions for

predicting fault proneness.

• Shatnawi [129] identified threshold values of OO metrics to predict fault

71

Chapter 3. Predicting Change Using Software Metrics: A Review

prone classes of software.

3.4 Review Documentation

Documenting and reporting the review in an efficient manner is very important. There

are various approaches or techniques which can be used for representing the results

of the review in the most efficient manner. The most appropriate approach which can

be selected for qualitative and quantitative synthesis depends on the type of RQ being

addressed /citemalhotra15. Following are the tools which are used in this review for

summarizing and representing the important information and results [95]:

1. Tabulation: It is the most common and popular approach for representing qual-

itative and quantitative data. The important details about each study in the

review can be summarized in the tabular form. For example, the main concept

behind each study, the outcome or the results of the study, values of various

performance measures , the design of the study etc. can be presented in the ta-

bles. The information represented in the tabular form is easy to be interpreted

and analyzed. In this review, we have gained important insights and repre-

sented them in tables 3.1, 3.2 and 3.3. Table 3.1 focuses on the main objective

along with the results or main findings of each study in the review. In table

3.2, the studies are summarized with respect to various parameters such as the

metrics used, data analysis techniques (ML or statistical) used, the performance

measures used and software used. This will allow to have an overview of the

metrics which are commonly used in research, the various data analysis tech-

niques used to construct the models, the performance measures used to evaluate

72

3.4. Review Documentation

the performance of the models and the software used for empirical validation.

Table 3.3 lists the type of metrics and software repositories.

2. Visual diagrams: There are numerous diagrams which can be used to graphi-

cally represent important information and ideas such as bar charts, pie charts,

line graphs, box plots etc. To represent some mathematical data or information,

visual diagrams are preferable over the textual format as they allow to better

understand, retain and analyze the results. In this review, we have used pie

charts to mathematically represent the answers to some of the RQs.

3. Textual descriptions: The answers to various RQs can be addressed in the tex-

tual form as well. While giving textual descriptions, the main findings and the

outcomes should be emphasized without going into much details. In this re-

view, we have provided answers to various RQs in the textual format which

are supplemented by either the visual diagrams or the tables. The textual de-

scriptions provide a quick overview which briefly describe answers to each

question.

Table 3.1: Brief Description

S.No. Study Objectives Results

1. [89] To understand the relationship between size

and change-prone classes.

Large classes are more change-prone than

small classes.

2. [90] To analyse the stable constructs which re-

main unchanged, and the constructs which

change often.

The class and inheritance structure, software

entities’ names and interfaces to methods are

stable and remain unchanged.

4. [23] To investigate the use of coupling measure-

ment to identify the classes likely to contain

ripple changes when another class is being

changed.

A coupling based model can indicate class

pairs with higher ripple effect probability.

73

Chapter 3. Predicting Change Using Software Metrics: A Review

S.No. Study Objectives Results

5. [32] To study the effect/impact on the system

when a change to a system is made.

A relation between WMC, a design metric,

and the mean change impact of a class is es-

tablished. The higher the WMC value was,

the higher was the mean change impact.

6. [8] To investigate whether dynamic coupling

measures are significant indicators of change

proneness and are complementary to existing

static measures. Also to show that they cap-

ture different properties than simple size ef-

fects.

Some dynamic coupling measures are sig-

nificant indicators of change proneness and

they complement existing couplingmeasures

based on static analysis.

7. [138] To evaluate the likelihood that each class will

change in future.

There is a correlation between the probabili-

ties extracted from the model and the actual

changes in a system.The accuracy of the pro-

posed model is better than the model which

is based on past data.

8. [1] To analyse and predict changes impacts in

OOsystems.

The fourML techniques used verified the hy-

pothesis.

9. [127,

128]

To assess the probability that each class will

change in a future generation.

The proposed probabilistic approach is sim-

ple and accurate in the comparison with ex-

isting methods in the literature.

10. [66] To calculate BDM to predict change-

proneness in UML 2.0 models.

BDM is an useful indicator and provides

improved predictive model compared to the

model considering only CK metrics [36].

11. [153] To investigate the confounding effect of class

size on the relationship between OO and

change proneness.

Confounding effect of class size exists and

should be taken into account to avoid false

results.

74

3.4. Review Documentation

S.No. Study Objectives Results

12. [67] To develop BDM to measure the behavioural

aspects of the software.

BDM is a useful indicator and improves ac-

curacy of change prone class prediction over

that of metrics (CK [36], Lorenz and Kidd

[91], MOOD [3]) when the system contains

high degree of inheritance relationships and

polymorphism. But when inheritance rela-

tionships and polymorphism are less in the

system, BDM made no difference in the pre-

diction of change prone classes.

13. [50] To determine change prone classes and the

parts which should be tested first.

Proper selection of OO metrics leads to effi-

cient estimating of change prone classes.

14. [92] To find significant relationship between OO

metrics and change proneness. The study

considered 62 metrics and 102 Java systems.

The predictive capability of size, cou-

pling/cohesion and inheritance metrics is

moderate, low and poor respectively.

15. [124] To examine the predictive ability of metrics

(CK [36], metrics to measure the complex-

ity and the usage of interfaces; and two met-

rics (IUC and a clustering metric) to mea-

sure cohesion) to classify Java interfaces into

change prone and not change prone.

The IUC metric exhibits the strongest cor-

relation with the number of source code

changes and thus, improves the performance

of prediction models.

16. [58] To explore whether a source file will be af-

fected by a certain type of SCC

Neural Network models can predict cate-

gories of SCC types. With the help of mod-

els, a list of change-prone files is generated

ordered according to their change proneness

17. [45] To determine if evolution-based metrics

can classify change and non-change prone

classes.

Evolution metrics along with the product

metrics predict change prone classes more

accurately.

18. [103] To predict change prone classes using ML

techniques and compare their performance

with statistical method.

ML models and statistical model gave com-

parable performance.

19. [105] To use ANFIS to calculate the change prone-

ness and compare with other techniques like

bagging, LR and DT.

ANFIS gives the best results of all the tech-

niques investigated.

75

Chapter 3. Predicting Change Using Software Metrics: A Review

S.No. Study Objectives Results

20. [104] To validate CKmetric suite [36] for develop-

ing change prediction model using GEP.

Change prediction can be efficiently done us-

ing GEP algorithm.

21. [107] To explore the capabilities of Genetic Pro-

gramming (symbolic regression)for for pre-

dicting defect and change proneness of

classes.

Symbolic Regression is able to predict

changes and defects with high precision and

recall.

ANFIS: Adaptive Neuro-Fuzzy Inference System, GEP: Gene Expression Programming, IUC: Usage Cohesion, SCC:

Source Code Changes, UML: Unified Modeling Language

3.5 Review Analysis and Results

In this section, we discuss the results of the review by providing answers to various

RQs formulated in section 3.3.2. Each study shortlisted to be included in this review is

summarized in the tabular from in table 3.1. Table 3.1 briefly explains the objectives

and the main results of each study. Thus, the overview of each study can be obtained

from table 3.1. To further analyze each study, we have discussed each RQ future

guidelines which can be used by researchers and practitioners in their research.

3.5.1 RQ1: What types of metrics are most commonly used in the

prediction of change proneness?

In the area of change prediction, we observed that only product metrics are used.

Since, process metrics are not used at all, we focus on only the product metrics.

Among a number of metrics in literature such as CK metric suite [36], Lorenz and

Kidd [91], MOOD [3], Li and Henry [88], QMOOD [9], etc., CK metric suite is most

76

3.5. Review Analysis and Results

popular. CK metrics are object oriented metrics which measure important character-

istics at the class level. Various other class level metrics are also used in literature.

Types of product metrics used in the studies have been listed in table 3.2. The per-

centage distribution of the studies by the types of product metrics used is shown in

figure 3.2. As can be seen in figure 3.2, majority of the studies (>80%) have used

class level metrics. Among other types of product metrics, the usage of method and

file level metrics is minimal. The component level metrics are not used at all. The

remaining 20% is approximately equally shared among the studies which have used

method level metrics and studies which have used more than one type of metrics. Ta-

ble 3.3 lists all the metrics used in the study under the column ‘Metrics Used’. Some

of the studies have used large number of metrics to get more generalized results. For

e.g. the study by Arisholm et al.[8] has used 38 class level metrics, while the study by

Lu et al.[92] has used 62 class level metrics to measure different concepts of object

oriented paradigm. Thus, in such cases, it was not possible to list all the metrics.

77

Chapter 3. Predicting Change Using Software Metrics: A Review
Ta
bl
e
3.
2:
K
ey

Pa
ra
m
et
er
sR

ev
ie
w

S.
N
o.

St
ud
y

Jo
ur
na
l

Ye
ar

M
et
ri
cs
U
se
d

D
at
a

A
na
ly
sis

Te
ch
ni
qu
es
U
se
d

Pe
rf
or
m
an
ce

M
ea
su
re
sU

se
d

So
ftw

ar
e
U
se
d

1
[8
9]

So
ftw

ar
e

-
Pr
ac
tic
e

an
d
Ex
pe
rie
nc
e

19
98

N
LO

C
Bo

xp
lo
ts

M
ed
ia
n
te
st

PM
R

sy
ste
m
,
im
pl
em

en
te
d
in

C+
+,

2
re
-

le
as
es
R4

an
d
R6

ar
e
co
ns
id
er
ed
.

2
[9
0]

Pr
oc
ee
di
ng
so
ft
he

6t
h

In
te
rn
at
io
na
lS
of
tw
ar
e

M
et
ric
sS

ym
po
siu

m

19
99

St
ud
ie
d
th
e
m
et
ho
ds
,
at
-

tri
bu
te
sa
nd

in
he
rit
an
ce
re
-

la
tio
ns
hi
ps

in
a
cl
as
s

Bo
xp
lo
ts

M
ed
ia
n
te
st

PM
R

sy
ste
m
,
im
pl
em

en
te
d
in

C+
+,

2
re
-

le
as
es
R3

an
d
R4

ar
e
co
ns
id
er
ed
.

3
[2
3]

IE
EE

In
te
rn
at
io
na
l

Co
nf
er
en
ce

on
So
ft-

w
ar
e
M
ai
nt
en
an
ce

19
99

N
o.
of
co
up
lin
g
m
et
ric
s

LR
H
it
(%

)
LA

LO
sy
ste
m
(a
n
op
en

m
ul
ti-
ag
en
ts
ys
te
m

de
ve
lo
pm

en
te
nv
iro
nm

en
t),

co
m
pr
ise
so

f9
0

cl
as
se
s.

4
[3
2]

Sc
ie
nc
e
of

co
m
pu
te
r

Pr
og
ra
m
in
g

20
02

CK
[3
6]

M
ea
n,

sta
nd
ar
d

de
vi
at
io
n,

Co
rre
-

la
tio
n
co
ef
fic
ie
nt

A
N
O
VA

A
sy
ste
m

fo
r
de
ci
sio

n
m
ak
in
g
in

te
le
co
m
-

m
un
ic
at
io
ns
,w
rit
te
n
in
C+

+,
co
m
pr
ise
s1
04
4

cl
as
se
s.

5
[8
]

IE
EE

Tr
an
sa
ct
io
ns

on

So
ftw

ar
e
En
gi
ne
er
in
g

20
04

Va
rio
us

dy
na
m
ic
co
up
lin
g

m
ea
su
re
s
(1
1)
,s
ta
tic

co
u-

pl
in
g

m
ea
su
re
s
an
d

siz
e

m
ea
su
re
s(
27
).

M
ul
tiv
ar
ia
te

re
gr
es
sio

n

G
oo
dn
es
s-
of
-fi
t

of
th
e
m
od
el

Ve
lo
ci
ty
:
O
SS
,p

ar
to

f
th
e
A
pa
ch
e
Ja
ka
rta

Pr
oj
ec
t,
4
su
b
re
le
as
es
(w
ith
in
on
e
m
aj
or
re
-

le
as
e)
ar
e
an
al
yz
ed
).

78

3.5. Review Analysis and Results

S.
N
o.

St
ud
y

Jo
ur
na
l

Ye
ar

M
et
ri
cs
U
se
d

D
at
a

A
na
ly
sis

Te
ch
ni
qu
es
U
se
d

Pe
rf
or
m
an
ce

M
ea
su
re
sU

se
d

So
ftw

ar
e
U
se
d

6
[1
38
]

IE
EE

Tr
an
sa
ct
io
ns

on

So
ftw

ar
e
En
gi
ne
er
in
g

20
05

CB
O
,N

O
M

,C
K
[3
6]

LR
A
cc
ur
ac
y,

Fa
lse

po
sit
iv
e

ra
tio
,

Fa
lse

ne
ga
tiv
e

ra
tio
,
Se
ns
iti
vi
ty
,

G
oo
dn
es
s-
of
-fi
t

(1
)J
Fl
ex
:o
pe
n
so
ur
ce
,l
ex
ic
al
an
al
ys
er
ge
n-

er
at
or

fo
rJ
av
a,
la
te
st
re
le
as
e
co
ns
ist
s
of

58

cl
as
se
s,1

3
su
bs
eq
ue
nt
re
le
as
es

ar
e
an
al
ys
ed
,

(2
)J
M
ol
:
us
ed

fo
rd

isp
la
yi
ng

3D
im
ag
es

of

ch
em

ic
al
str
uc
tu
re
s,
la
te
st
re
le
as
ec
on
sis
ts
of

16
9
cl
as
se
s,
9
su
bs
eq
ue
nt

re
le
as
es

ar
e
an
a-

ly
ze
d.

7
[1
]

Pr
oc
ee
di
ng
s

of
th
e

32
nd

EU
RO

M
I-

CR
O

Co
nf
er
en
ce

on

So
ftw

ar
e

En
gi
ne
er
-

in
g

an
d

A
dv
an
ce
d

A
pp
lic
at
io
ns

20
06

N
o.
of
co
up
lin
g
m
et
ric
s

J4
8,

Jr
ip
,
PA

RT
,

an
d,
N
BT

re
e.

A
cc
ur
ac
y

BO
A
P
(p
ro
gr
am

an
al
ys
is
to
ol
bo
x
sy
ste
m
),

w
rit
te
n
in
Ja
va

an
d
co
nt
ai
ns

39
4
cl
as
se
s.

8
[1
27
]

11
th

Eu
ro
pe
an

Co
n-

fe
re
nc
e
on

So
ftw

ar
e

m
ai
nt
en
an
ce

an
d

Re
en
gi
ne
er
in
g

20
07

A
ID

,A
LD

,L
O
C,
M
N
O
B,

M
PC

,N
IC
,N

O
LV
,N

O
P

O
w
n

pr
op
os
ed

pr
ob
ab
ili
sti
c

ap
pr
oa
ch

A
cc
ur
ac
y,

Fa
lse

po
sit
iv
e

ra
tio
,

Fa
lse

ne
ga
tiv
e

ra
tio
,S
en
sit
iv
ity

JF
le
x:

op
en

so
ur
ce
,l
ex
ic
al
an
al
ys
er

ge
ne
r-

at
or

fo
r
Ja
va
,
la
te
st
re
le
as
e
co
ns
ist
s
of

58

cl
as
se
s,1

4
su
bs
eq
ue
nt
re
le
as
es
ar
e
an
al
ys
ed
.

9
[6
6]

A
nn
ua
lI
EE

E
In
te
rn
a-

tio
na
lC

om
pu
te
rS

of
t-

w
ar
ea
nd

A
pp
lic
at
io
ns

Co
nf
er
en
ce

20
08

BD
M
,C

K
[3
6]

St
ep
w
ise

m
ul
tip
le

re
gr
es
sio

n

G
oo
dn
es
s–

of
-fi
t

JF
re
ec
ha
rt:

op
en

so
ur
ce
,J
av
a
cl
as
s
lib
ra
ry

fo
rg
en
er
at
in
g
va
rio
us

ty
pe
so

fc
ha
rts
.

79

Chapter 3. Predicting Change Using Software Metrics: A Review
S.
N
o.

St
ud
y

Jo
ur
na
l

Ye
ar

M
et
ri
cs
U
se
d

D
at
a

A
na
ly
sis

Te
ch
ni
qu
es
U
se
d

Pe
rf
or
m
an
ce

M
ea
su
re
sU

se
d

So
ftw

ar
e
U
se
d

10
[1
28
]

Jo
ur
na
lo
fS

of
tw
ar
e

20
08

A
ID

,A
LD

,L
O
C,
M
N
O
B,

M
PC

,N
IC
,N

O
LV
,N

O
P

O
w
n

pr
op
os
ed

pr
ob
ab
ili
sti
c

ap
pr
oa
ch

A
cc
ur
ac
y,

Fa
lse

po
sit
iv
e

ra
tio
,

Fa
lse

ne
ga
tiv
e

ra
tio
,S
en
sit
iv
ity

JF
le
x
:
op
en

so
ur
ce
,
le
xi
ca
l
an
al
yz
er

ge
n-

er
at
or

fo
rJ
av
a,
la
te
st
re
le
as
e
co
ns
ist
s
of

58

cl
as
se
s.

11
[1
53
]

IE
EE

Tr
an
sa
ct
io
ns

on

So
ftw

ar
e
En
gi
ne
er
in
g

20
09

SL
O
C,

N
M
IM

P,
N
um

Pa
ra

(s
iz
em

et
ric
s)
;1
8
co
he
sio

n

m
et
ric
s,
20

co
up
lin
g
m
et
-

ric
s,
17

in
he
rit
an
ce
m
et
ric
s

(O
O
m
et
ric
s)

Li
ne
ar

re
gr
es
sio

n

eq
ua
tio
ns

-
2
re
le
as
es

of
Ec
lip
se
(o
pe
n
so
ur
ce

de
ve
lo
p-

m
en
tp
la
tfo
rm
),
w
rit
te
n
in
Ja
va
.
Ec
lip
se
2.
0

co
ns
ist
s
of

67
51

Ja
va

fil
es

an
d
Ec
lip
se

2.
1

co
ns
ist
so

f7
90
9
Ja
va

fil
es
.

12
[6
7]

Jo
ur
na
l

of
Sy
ste
m
s

an
d
So
ftw

ar
e

20
10

CK
[3
6]
,L

or
en
z
an
d
K
id
d

[9
1]
,M

O
O
D
[3
],
BD

M

St
ep
w
ise

m
ul
tip
le

re
gr
es
sio

n

G
oo
dn
es
so

ff
it

JF
le
x
:o
pe
n
so
ur
ce
,l
ex
ic
al
an
al
yz
er
ge
ne
ra
-

to
rf
or
Ja
va
,9

re
le
as
es
ar
e
co
ns
id
er
ed
.

13
[5
0]

4t
h
In
te
rn
at
io
na
lC

on
-

fe
re
nc
e
on

So
ftw

ar
e

Te
sti
ng
,

Ve
rif
ic
a-

tio
n

an
d

Va
lid
at
io
n

W
or
ks
ho
ps

20
11

CK
[3
6]
,Q

M
O
O
D
[9
]

Pr
ed
ic
te
d
ch
an
ge

pr
on
e

cl
as
se
s

us
in
g

‘c
om

-

bi
ne
d

ra
nk

lis
t’

m
ec
ha
ni
sm

H
it

ra
tio

(s
am

e

as
se
ns
iti
vi
ty
),

Co
st

ra
tio

(ra
tio

be
tw
ee
n

co
st

of

ch
an
ge

pr
on
e

cl
as
se
s
an
d
to
ta
l

ch
an
ge

co
st)

3
O
SS
:(
1)
JF
re
eC
ha
rt
(p
ow

er
fu
lo
pe
n
so
ur
ce

ch
ar
tin
g
lib
ra
ry
),
(2
)Y
A
RI

(to
ol

to
de
bu
g,

sp
y,

sp
id
er
,

in
sp
ec
t
an
d

na
vi
ga
te
),

(3
)

U
CD

et
ec
to
r(
U
nn
ec
es
sa
ry
Co

de
D
et
ec
to
r,
an

Ec
lip
se
pl
ug
-in

to
id
en
tif
y
de
ad

Ja
va

co
de
).

14
[9
2]

Em
pi
ric
al

So
ftw

ar
e

En
gi
ne
er
in
g

20
11

62
O
O

m
et
ric
s:

7
siz
e
,

18
co
he
sio

n
,2
0
co
up
lin
g

,a
nd

17
in
he
rit
an
ce

Ra
nd
om

ef
fe
ct

m
et
a-
an
al
ys
is

te
ch
ni
qu
es

A
U
C

(c
al
cu
la
te
d

us
in
g

W
ilc
ox
on

te
st)

10
2
op
en

so
ur
ce
Ja
va

so
ftw

ar
es
ys
te
m
s,
2
re
-

le
as
es
ar
e
ta
ke
n
fo
re
ac
h
so
ftw

ar
e.

80

3.5. Review Analysis and Results

S.
N
o.

St
ud
y

Jo
ur
na
l

Ye
ar

M
et
ri
cs
U
se
d

D
at
a

A
na
ly
sis

Te
ch
ni
qu
es
U
se
d

Pe
rf
or
m
an
ce

M
ea
su
re
sU

se
d

So
ftw

ar
e
U
se
d

15
[1
24
]

Te
ch
ni
ca
lr
ep
or
tI
SS
N

18
72
-5
39
2.

20
11

CK
[3
6]
,
se
t
of

m
et
ric
s

to
m
ea
su
re
th
e
co
m
pl
ex
ity

an
d
th
eu

sa
ge

of
in
te
rfa
ce
s,

2
m
et
ric
s
to

m
ea
su
re

ex
-

te
rn
al
co
he
sio

n
:
in
te
rfa
ce

us
ag
e
co
he
sio

n,
cl
us
te
rin
g

m
et
ric

Co
rre
la
tio
n
an
al
-

ys
is,

M
L

te
ch
-

ni
qu
es

(S
V
M
,

N
B,

A
N
N
)

A
U
C,

Pr
ec
isi
on
,

Re
ca
ll

10
op
en

so
ur
ce

sy
ste
m
s:

8
pl
ug
in
s
fro

m

Ec
lip
se
,h
ib
er
na
te
2
an
d
hi
be
rn
at
e3

sy
ste
m
s.

16
[5
8]

Co
nf
er
en
ce
on

M
in
in
g

So
ftw

ar
e
Re
po
sit
or
ie
s

20
12

CK
[3
6]
,
8
ne
tw
or
k
ce
n-

tra
lit
y

m
ea
su
re
s

(e
.g
.

nO
ut
D
eg
re
e,

nI
nD

eg
re
e,

nP
ow

er
et
c.
)

BN
,A

N
N

A
U
C,

Pr
ec
isi
on
,

Re
ca
ll

19
pl
ug
in
pr
oj
ec
ts
of
th
eE

cl
ip
se
pl
at
fo
rm

an
d

th
e
A
zu
re
us

pr
oj
ec
t.

17
[4
5]

Jo
ur
na
l
of

So
ftw

ar
e:

Ev
ol
ut
io
n
an
d
Pr
oc
es
s

20
13

D
er
iv
ed

ev
ol
ut
io
na
ry

ba
se
d
m
et
ric
s,
CK

[3
6]

LR
Co

rre
ct

cl
as
-

sif
ic
at
io
n

ra
te

(a
cc
ur
ac
y)

2
O
SS
:V

SS
PL

U
G
IN
1
an
d
Pe
er
Si
m

de
ve
l-

op
ed

us
in
g
Ja
va

la
ng
ua
ge
.

18
[1
03
]

In
te
rn
at
io
na
l
Jo
ur
na
l

of
M
ac
hi
ne

Le
ar
ni
ng

&
Cy

be
rn
et
ic
s

20
13

CK
[3
6]
,
va
rio
us

ot
he
r

cl
as
sl
ev
el
m
et
ric
s

LR
,b
ag
gi
ng
,R

F,

M
LP

Se
ns
iti
vi
ty
,

Sp
ec
ifi
ci
ty
,A

U
C

2
re
le
as
es

of
3
O
SS

de
ve
lo
pe
d
in

Ja
va
:

(1
)F
rin
ik
a(
co
m
pl
et
e
m
us
ic
w
or
ks
ta
tio
n
so
ft-

w
ar
e
fo
rv
ar
io
us

O
pe
ra
tin
g
Sy
ste
m
(O
S)
,(
2)

Fr
ee
M
in
d(
m
in
d
m
ap
pe
ra
nd

hi
er
ar
ch
ic
al
ed
-

ito
r),

(3
)O
rD
ru
m
bo
x(

Ja
va

so
ftw

ar
e
dr
um

m
ac
hi
ne

an
d
an

au
di
o
se
qu
en
ce
r).

81

Chapter 3. Predicting Change Using Software Metrics: A Review
S.
N
o.

St
ud
y

Jo
ur
na
l

Ye
ar

M
et
ri
cs
U
se
d

D
at
a

A
na
ly
sis

Te
ch
ni
qu
es
U
se
d

Pe
rf
or
m
an
ce

M
ea
su
re
sU

se
d

So
ftw

ar
e
U
se
d

19
[1
05
]

In
te
rn
at
io
na
l
Co

nf
er
-

en
ce

on
A
dv
an
ce
s
in

Co
m
pu
tin
g,

Co
m
m
u-

ni
ca
tio
ns

an
d

In
fo
r-

m
at
ic
s

20
13

CK
[3
6]
,L
O
C

A
N
FI
S,
LR

,B
ag
-

gi
ng
,R

F

Se
ns
iti
vi
ty
,

Sp
ec
ifi
ci
ty
,A

U
C

2
O
SS

w
rit
te
n
in
Ja
va

la
ng
ua
ge
:F

rin
ik
a
an
d

Ch
ec
kS
ty
le

20
[1
04
]

Pr
oc
ee
di
ng
so
ft
he

5t
h

In
te
rn
at
io
na
l

W
or
k-

sh
op

on
Em

er
gi
ng

Tr
en
ds

in
So
ftw

ar
e

M
et
ric
s,
8-
14

20
14

CK
[3
6]

G
EP

Se
ns
iti
vi
ty
,

Sp
ec
ifi
ci
ty
,

A
c-

cu
ra
cy
,P
re
ci
sio

n,

F-
m
ea
su
re
,A

U
C

2
O
SS
:
Si
m
ut
ra
ns

an
d
G
le
stB

ot
h
im
pl
e-

m
en
te
d
in
C+

+.
Si
m
ut
ra
ns
is
at
ra
ns
po
rt
sim

-

ul
at
io
ng

am
e,
G
le
st
is
a3
D
str
at
eg
yg

am
ea
nd

al
so
an

en
gi
ne

to
m
ak
eo

th
er
str
at
eg
y
ga
m
es
.

21
[1
07
]

16
th

In
te
rn
at
io
na
l

Sy
m
po
siu

m
on

Sy
m
-

bo
lic

an
d

N
um

er
ic

A
lg
or
ith
m
s
fo
rS

ci
en
-

tif
ic
Co

m
pu
tin
g

20
14

N
O
M
,
D
IT
,
RF

C,
N
O
C,

CB
O
,T
CC

,L
O
C

Sy
m
bo
lic

re
gr
es
-

sio
n:

an
ap
pl
i-

ca
tio
n
of

G
en
et
ic

pr
og
ra
m
m
in
g

Re
ca
ll,
Pr
ec
isi
on

4
ev
ol
vi
ng

O
SS

de
ve
lo
pe
d
in

Ja
va
:

A
r-

go
U
M
L,
Fi
nd
Bu

gs
,F
O
P,
Fr
ee
Co

l

A
ID
:A

cc
es
s
of

Im
po
rte
d
D
at
a,
A
LD

:A
cc
es
s
of

Lo
ca
lD

at
a,
A
N
FI
S:

A
da
pt
iv
e
N
eu
ro
-F
uz
zy

In
fe
re
nc
e
Sy
ste
m
,L

A
LO

:L
an
ga
ge

d’
ag
en
ts
Lo
gi
ci
el
O
bj
et
,M

N
O
B:

M
ax
im
um

N
um

be
rO

fB
ra
nc
he
s,
N
BT

re
e:
N
ai
ve
Ba
ye
sD

ec
isi
on

Tr
ee
,N

IC
:N

um
be
ro
fI
m
po
rte
d
Cl
as
se
s,
N
LO

C:
N
um

be
ro
fu
nc
om

m
en
te
d
Li
ne
sO

fC
od
e,
N
O
LV

:N
um

be
rO

fL
oc
al
Va
ria
bl
es
,

N
O
P:
N
um

be
rO

fP
ar
am

et
er
s,
PM

R:
Pe
rfo

rm
an
ce

M
an
ag
em

en
tT
ra
ffi
c
Re
co
rd
in
g

82

3.5. Review Analysis and Results

Figure 3.2: Distribution of Studies by Types of Metrics Used

Table 3.3: Types of Metrics and Software Repositories Used

Study Types of Metrics Types of Software Repositories

[89] Class level Commercial

[90] Class level Commercial

[23] Class level Open source

[32] Class level Unknown

[8] Class level Open Source

[138] Class level Open Source

[1] Class level Unknown

[127] Method level Open Source

[66] Class level Open Source

[128] Method level Open Source

[153] Class level Open Source

[67] Class level Open Source

[50] Class level Open Source

[92] Class level Open Source

[124] Class level and Method

level

Open Source

[58] Class level and File level Open Source

[45] Class level Open Source

[103] Class level Open Source

[105] Class level Open Source

[104] Class level Open Source

83

Chapter 3. Predicting Change Using Software Metrics: A Review

Study Types of Metrics Types of Software Repositories

[107] Class level Open Source

3.5.2 RQ2: What types of datasets are most widely used for pre-

diction?

Datasets can be collected from various sources such as open source software, com-

mercial/ proprietary software or academic/ university software. Open source datasets

are mostly used by the researchers. Open source or public datasets should be widely

used as software engineering can only be built using public datasets. Very few studies

have used their own dataset i.e. commercial dataset. We have shown the distribution

of studies according to the type of datasets used in figure 3.3. Studies have been

divided according to the following classification:

• Public datasets: studies which have used only public or open source datasets.

• Private Datasets: studies which have used only private or proprietary or com-

mercial datasets.

• Others: studies which have used both public and private datasets. This category

also comprises of some studies which have not given any information about the

type of dataset used.

• It can be seen from figure 3.3 that authors have predominantly used open source

/ public databases for their research.

84

3.5. Review Analysis and Results

Figure 3.3: Distribution of Studies by Types of Software Repositories Used

3.5.3 RQ3: What type of machine learning techniques are used

for model prediction?

As discussed, the methods used for predicting change prone classes can be broadly

classified under two categories: ML and statistical. Table 3.3 lists all the methods

used by the studies for change prediction under the column Data Analysis Techniques

Used’. Some of the studies have neither used any ML technique, nor any statistical

technique for the purpose of prediction. They have just done the analysis based on

certain descriptive statistics such as mean, standard deviation etc. or have used the

traditional graphical method such as boxplot. In other words, such studies have con-

cluded their results based on only the descriptive statistics or boxplots. Thus, these

methods are also listed in the table. Although nowadays, new ML techniques have

replaced the traditional statistical methods, but it can be seen from table 3.3, that only

few studies [1, 58, 103, 107, 124, 153] have used ML techniques for change predic-

tion. Majority of the studies have used statistical methods and few have used both,

statistical and ML techniques. Some of the studies have proposed their own ML or

85

Chapter 3. Predicting Change Using Software Metrics: A Review

statistical models.

3.5.4 RQ4: What are the significant predictors of change prone-

ness?

There is large number of independent variables used in literature for predicting change

proneness. However, amongst a large set of independent variables used in a study,

some of the variables are redundant and do not measure any useful information. Thus,

such variables should be removed from the analysis before constructing the prediction

models. As discussed in chapter 2, M.A. Hall [64] proved that ‘‘classification accu-

racy using reduced feature set is equal or better than accuracy using complete feature

set.’’ Thus, using various feature reduction techniques such as CFS and univariate LR;

we should identify significant features or predictors. However, the literature shows

that only two studies of change prediction [103, 153] have used feature reduction

techniques. Thus, the literature does not allow us to conclude which variables are

significant predictors of change proneness.

3.5.5 RQ5: Have appropriate performancemeasures used to eval-

uate the performance of the models?

There are number of OOmetrics used for assessing the performance of different mod-

els. The performance of models greatly depends on how it is measured [8]. Re-

searchers recommend the use of AUC as it is independent of the prior probabilities

and the choice of arbitrarily cut-off value [68]. However, most of the studies have

used traditional measures such as accuracy, sensitivity, specificity, and precision.

86

3.5. Review Analysis and Results

The main drawback of these measures is that they are calculated using some random

cut-off value. The new measures such as balance, g-mean is unknown in the field of

change prediction. Some studies have shown that g-mean is the best accuracy estima-

tor of a prediction model [94]. Besides this, most of the studies have used the datasets

where the number of change and non-change prone classes is not approximately the

same (known as imbalanced data). To handle with imbalanced data some of the mea-

sures which are suggested as suitable parameters are precision, recall [62, 151], AUC

[86, 110] and g- mean [72]. However, the researchers have not used appropriate per-

formance measures to take into account imbalanced data.

3.5.6 RQ6: Have appropriate statistical tests used to measure the

performance?

Once the performance of the models are evaluated using various measures, it is very

important to use statistical tests to decide whether the differences between the per-

formances of the models are real or random. There is lack of use of statistical tests

followed by post hoc tests to predict change proneness. Chaumun et al. [32] used

ANOVA to test the equality of change impact in three samples of a single dataset.

The researchers generally adopt different statistical and common-sense techniques to

decide whether the difference between the algorithms is actual or by-chance.

3.5.7 RQ7: What are the risk indicators for various OOmetrics?

Once the metric values are calculated, there should be a technique to know if these

values are good or bad. One of the techniques used is the identification of thresh-

87

Chapter 3. Predicting Change Using Software Metrics: A Review

olds of metrics. Thresholds define an upper bound on the metric values such that

the classes having metric values above the threshold values are risky. Thus, thresh-

olds are also known as risk indicators. Knowing the potential classes at risk allow

the managers in efficiently allocating the resources, allow designers to have a quick

overlook on the metric value and redesign the classes if required and allow testers to

prioritize their testing resources. Despite the potential advantages of using thresholds

to predict quality attributes, there is lack of work on exploring the potential usage of

thresholds to predict change prone classes. The threshold methodology has been ex-

plored in the field of fault prediction and there are few studies which used thresholds

to predict fault prone classes [129, 131].

3.5.8 RQ8: What validation techniques are used to validate the

models?

Once the models are constructed, it is very necessary to validate them to know the

performance of the models. One of the popularly used technique is intra-project val-

idation where the models are trained using the historical data (previous release) of

some software and then it is validated on some future release of the same software.

However, intra-project validation is not always possible because the historical data

may not be available or does not exist. Thus, inter-project validation should be used

where different projects are used for training and testing the model. Inter project val-

idation also leads to more generalized results. The researchers have used inter project

validation for predicting fault prone classes, but there is no study which has explored

the use of inter-project validation for predicting change prone classes.

88

3.6. Review Conclusion and Future Directions

3.6 Review Conclusion and Future Directions

To assess the progress in the area of change prediction and to propose future guide-

lines, we have conducted a systematic review and studied the papers published in

conference proceedings and journals of repute. We have provided an overview of the

relevant studies in terms of some of the key parameters such as the metrics used, the

data analysis methods used and the datasets used by each study. Besides this, im-

portant RQs are formulated and discussed which allowed to identify some gaps and

gain significant insights from the existing studies. Further, some future guidelines

or directions have been drawn which can be used by researchers and practitioners in

their research. We discuss below the future guidelines with respect to each RQ:

• Metrics: The usage of method level metrics should be increased as the metrics

at method level focus on more specific parts (i.e. methods). In other words,

predicted modules are methods instead of classes. Therefore, more specific

parts of source code (methods) which are change - prone can be identified.

thus, their usage should be increased as they provide an insight at the low level

of granularity.

• Software Repositories: Usage of commercial software repositories should also

be increased as they are generally associated with real life applications.

• Data Analysis Techniques: Despite the importance and usage of ML in various

areas such as finance, medical diagnosis, etc., there are very few studies ana-

lyzing the use of ML techniques. More studies need to be conducted in order to

analyze the performance of ML techniques for prediction of quality attributes.

89

Chapter 3. Predicting Change Using Software Metrics: A Review

• Significant Predictors: More studies which use various data reduction tech-

niques should be conducted to identify the variables which are significant pre-

dictors of change and fault proneness.

• Performance Measures: Studies using the appropriate performance measures

such as AUC, G-mean and balance should be conducted so that performance is

measured efficiently and imbalanced data is handled.

• Statistical Tests: The use of statistical tests should be increased to ensure that

the performance of the models is not random.

• Risk Indicators: There are few studies that have established quality benchmarks

of metrics known as thresholds for identification of fault prone classes. But

there is lack of work exploring threshold methodology for change prediction.

More studies should be done to identify threshold values of metrics for change

prediction.

• Validation Techniques: To validate the results, cross project validation is be-

ing used by few fault proneness studies. But there is lack of work which has

conducted cross project validation for change prediction. Studies using cross

project validation to predict change proneness should be done.

90

Chapter 4

Investigation on Feasibility of

Machine Learning Techniques for

Predicting Software Change

4.1 Introduction

In this chapter, we explore the relationship between various OO metrics and change

proneness to identify the metrics that are highly significant in predicting change prone

classes. The selection of significant OO metrics has been done using univariate LR

that is used to find the relationship between individual metric and change proneness.

We have developed various models which can be used for predicting change prone

classes. The models are validated with the help of various ML (AB, LB, RF, J48, BN,

NB, bagging and MLP) and statistical (LR) techniques. The study has compared and

analyzed the performance of LR technique with various ML techniques using per-

91

Chapter 4. Investigation on Feasibility of Machine Learning Techniques for
Predicting Software Change

formance measures such as sensitivity, specificity, precision and AUC. The results

proved thatML techniques have comparable and competitive performancewhen com-

pared with the statistical technique. For the purpose of empirical validation, an OSS,

JTreeView written in Java is used.

The primary objective of this study is to focus and analyze the following broad

perspectives:

a. Exploration of relationship between OO metrics and change proneness attribute of

an OO software.

b. Evaluation of capability of ML techniques for prediction of change prone classes.

c. Comparison of predictive capability of ML techniques with the traditional statisti-

cal method, LR for detecting change prone classes.

d. Ascertaining the best ML technique for developing change prediction models.

The first perspective is motivated by the advantages of developing change predic-

tionmodels. Identification of change prone classes would help in better resource plan-

ning as these classes should be allocated more resources so that defects and changes

should not pass through to later stages of software development. Since change prone

classes have higher probability of existence of defects, correction of these defects

and identification of its sources is important. According to Pareto principle, 80%

of changes in a software are concentrated in only 20% of its modules/classes [103].

More rigorous testing and verification activities should be performed on these few

change prone classes in order to eliminate defects and improve customer satisfaction

by delivering good quality products [124]. OO metrics, which categorize various

structural aspects of a software like its size, cohesion, coupling etc. have been found

to be good indicators of change prone nature of a class [45, 50, 53, 58, 92, 124]. This

92

4.1. Introduction

study validates the relationship between OO metrics to find out the best possible set

of OO metrics which are efficient indicators of change using univariate LR.

The second perspective addresses the capability of ML techniques for prediction

of change prone classes. Only few studies in past have used software metrics to

ascertain the effectiveness of ML techniques for predicting change prone classes [58,

124]. Though, a number of studies have evaluated the effectiveness ofML techniques

for developing defect prediction models [5, 60, 63, 79, 130, 134, 152], but the use of

ML techniques to predict change prone classes is relatively new. Thus, the study aims

to explore the ability of ML techniques for predicting change prone classes.

The third perspective attempts to compare the capability of ML techniques with

the statistical technique, LR. Different techniques tend to give different results when

data sets are varied. Moreover, few studies in literature [58, 124] have established

the effectiveness of ML techniques for prediction of change prone classes but their

comparison with the statistical method is not provided. Thus, it is important to com-

pare the capability of ML techniques with the statistical methods so that researchers

and practitioners can choose efficient techniques for change prediction tasks.

The last aim is to evaluate the best ML technique for change prediction tasks

amongst the explored ML techniques in the study. The ranking is done on the basis of

their predictive capability which is evaluated using sensitivity, specificity, precision

and AUC performance metrics. The best ML technique can be used by different

researchers and practitioners to identify change prone classes of a similar software.

This chapter is organized as follows: The research methodology is presented in

section 4.2 which focuses on the software used and shows the descriptive statistics of

all the independent variables. Section 4.3 shows the univariate and validation results.

93

Chapter 4. Investigation on Feasibility of Machine Learning Techniques for
Predicting Software Change

The results of this chapter are published in [99].

4.2 Research Methodology

The basic methodology followed in this chapter is briefly explained: The first step

involves the data collection process to retrieve the change data and the metrics of

JTreeView. After the data is collected, univariate analysis is conducted. The sig-

nificant metrics obtained after univariate analysis are used for model construction.

In this study, multiple models are constructed using ML and statistical techniques.

Finally, the performance of the models is evaluated using various performance mea-

sures. These steps are also depicted diagrammatically in figure 4.1. In this section,

a brief description of software used for empirical validation is given followed by the

empirical data collection process. We have also presented descriptive statistics of all

the metrics used.

4.2.1 Software Used

We have used an OSS ‘Java TreeView’ (JTreeView) written in Java. It is a Cross-

Platform Gene Expression Visualization Tool which is used for an interactive display

of Clustered Gene Expression Data. In other words, JTreeView renders gene expres-

sion data into several interactive views. The source code of this OSS is available

at http://sourceforge.net. Two releases are analyzed and change is calculated in the

classes that are present in both the releases. We have considered the latest release i.e.

1.1.6 and one of the intermediate release i.e. 1.0.3. The release 1.1.6 contains 236

Java files and 710 classes whereas version 1.0.3 contains 173 files and 610 classes.

94

4.2. Research Methodology

The latest release was last updated on 2011/06/13 and the release 1.0.3 was last up-

dated on 2003/10/28.

Figure 4.1: Primary Steps of Methodology

4.2.2 Empirical Data Collection

The change data of JTreeView is extracted from CVS software repository. CVS is a

source control repository which keeps track of each and every change incurred as well

as all the metadata regarding each change. The change collection process is explained

in detail in chapter 2. In this section, we briefly summarize the entire process. The

first step involves the extraction of themetrics collected usingmetric - collection open

source tool known as ’Understand for Java’.

The next step is the collection of change data which is done using the CMS tool

[96]. For the two releases under consideration, the change is calculated for classes

that appeared in both the releases. Change is collected in terms of number of lines

95

Chapter 4. Investigation on Feasibility of Machine Learning Techniques for
Predicting Software Change

Figure 4.2: Outline of Data Collection Process

added, deleted and modified in the classes of recent release with respect to the classes

of the previous release. Finally, the report containing the software metrics and the

change data is generated. This process is also explained diagrammatically in figure

4.2.

4.2.3 Descriptive Statistics

Various descriptive statistics are provided in table 4.1 which includes the minimum

(Min.), maximum (Max.), mean (Mean) and standard deviation (SD) of all the met-

rics. The following important observations are obtained:

The size of a class is measured in terms of SLOC. It can be observed from the table

that the range is between 0 to 100, concluding that JTreeView is a medium sized soft-

ware. The mean values of NOC are 0.31 and the maximum value is 7, showing that

the classes have very few children and use of inheritance is very less in the system.

96

4.3. Result Analysis

Similar results are shown by other studies [30, 103, 134]. The LCOM measure has

high maximum value (i.e. 100), showing that there is high cohesion in the system.

Similar results have been shown by [103, 123].

Table 4.1: Descriptive statistics

S.No. Metric Min. Max. Mean SD

1 NIB 1 6 1.33 0.7

2 CBO 0 23 2.34 4.27

3 NOC 0 7 0.31 1.05

4 NIM 0 62 7.44 10.17

5 NIV 0 31 3.45 4.97

6 NPRM 0 8 0.73 1.58

7 NPM 0 51 6.23 8.43

8 NPROM 0 9 0.42 1.46

9 RFC 0 88 11.25 17.23

10 DIT 1 4 1.65 0.65

11 LCOM 0 100 41.06 36.18

12 SLOC 2 853 91.65 130.91

13 BLOC 0 102 15.68 21.99

14 ELOC 0 511 48.69 75.13

15 ALOC 0 39 9.32 6.77

16 ALOCO 0 15 0.62 2.05

17 ACC 0 6 1.63 1.07

4.3 Result Analysis

In this section, the univariate and the validation results are presented.

97

Chapter 4. Investigation on Feasibility of Machine Learning Techniques for
Predicting Software Change

4.3.1 Univariate Logistic Regression Analysis

Table 4.2 presents the results of univariate LR. The table provides the coefficient (β),

standard error (SE), statistical significance (Sig.) and odds ratio (Exp(β)) statistic

for each measure. The parameter ‘Sig.’ indicates whether each metric is significantly

associated with change proneness at the significance level of 0.05. The metrics which

are significant predictors of change proneness are shown in bold in table 4.2. Thus,

only such metrics are used for model construction and the remaining are ignored. The

coefficient ‘β’ shows the strength of the independent variable. The higher the value,

the higher is the impact of the independent variable. The sign of the coefficient tells

whether the impact is positive or negative.

Table 4.2: Univariate Analysis

S.No. Metric Sig. β SE Exp(β)

1 NIB 0.126 0.603 0.394 1.828

2 CBO 0.003 0.431 0.147 1.539

3 NOC 0.075 0.896 0.503 2.451

4 NIM 0.002 0.148 0.048 1.159

5 NIV 0.02 0.146 0.063 1.157

6 NPRM 0.05 0.346 0.178 1.413

7 NPM 0.002 0.177 0.057 1.193

8 NPROM 0.142 1.305 0.889 3.687

9 RFC 0.003 0.135 0.046 1.145

10 DIT 0.082 0.59 0.082 1.803

11 LCOM 0.001 0.02 0.006 1.02

12 SLOC 0.009 0.009 0.003 1.009

13 BLOC 0.025 0.033 0.015 1.034

14 ELOC 0.011 0.015 0.006 1.015

15 ALOC 0.309 0.033 0.032 1.033

16 ALOCO 0.452 -0.08 0.106 0.923

17 ACC 0.8 -0.048 0.191 0.953

98

4.3. Result Analysis

4.3.2 Validation Result Analysis

Table 4.3 shows the results of validation obtained on JTreeview software. Various

ML and statistical models are constructed and their performance is evaluated using

various parameters. To evaluate the performance of a model, it should be applied on

a software which is different from the one one which it is trained. Thus, to divide

the software into training and testing sets, K - cross validation is used with the value

of K as 10 [44]. The diagrammatic representation of 10-cross validation is shown in

figure 4.3. Table 4.3 shows the values of sensitivity, specificity, precision, and AUC

for all the predicted models.

Figure 4.3: 10 - Cross Validation

Table 4.3: Validation Results

S.No. Techniques Sensitivity Specificity Precision AUC

1 AB 0.566 0.591 0.577 0.644

2 LB 0.698 0.659 0.68 0.717

99

Chapter 4. Investigation on Feasibility of Machine Learning Techniques for
Predicting Software Change

S.No. Techniques Sensitivity Specificity Precision AUC

3 RF 0.698 0.682 0.691 0.77

4 J48 0.698 0.659 0.68 0.687

5 BN 0.679 0.614 0.65 0.675

6 NB 0.66 0.75 0.701 0.719

7 Bagging 0.717 0.705 0.712 0.752

8 MLP 0.679 0.682 0.68 0.769

9 LR 0.679 0.682 0.68 0.768

Comparison among Various Machine Learning Models

Table 4.3 shows that among various ML models, RF has shown the best results in

terms of AUC (0.770). The models predicted using bagging, LB, MLP and NB have

also shown comparable AUC as that of RF with the values as 0.752, 0.720, 0.769,

0.719 respectively. When comparing the sensitivity and specificity values, highest

values are shown by bagging which is 71.7% for sensitivity and 70.5% for speci-

ficity. The models predicted using J48 and LB have shown exactly the same value of

sensitivity (69.8%) and specificity (65.9%) but at different cut-off points. This means,

we can say that accuracy or precision of these two models is same (68.0%). When

comparing the two boosting techniques i.e. AB and LB, there is significant difference

in performance in terms of all the 3 measures – sensitivity, specificity and AUC. In

fact, AB has shown the lowest values for sensitivity (56.6%), specificity (59.1%) and

AUC (0.644). Thus, overall we concluded that among all theML techniques, bagging

has shown the best results with quite high values of sensitivity (71.7%), specificity

(70.5%), precision (71.2%) andAUC (0.750). Although, RF has shown highest AUC,

but its sensitivity and specificity values are quite low when compared with those of

bagging. The ROC curves for all the models are shown in figure 4.4.

100

4.3. Result Analysis

Figure 4.4: ROC Curves of Various Machine Learning and Statistical Models

Comparison between Machine Learning and Statistical Models

Although trend is shifting from the traditional statistical techniques to the modernML

techniques, but we observed that the statistical method (LR) has shown comparable

results with the ML models. When compared with bagging, LR has shown better

AUC (0.769), but sensitivity and specificity values are higher for bagging. In fact,

101

Chapter 4. Investigation on Feasibility of Machine Learning Techniques for
Predicting Software Change

the AUC for LR is higher than all the ML models except MLP and RF. Also, its

sensitivity and specificity values are comparable with those of ML models. Hence,

we concluded that LR has shown comparable performance with ML models.

4.4 Discussion

The broad focus of this study is to bring improvement in the quality of the software by

predicting some parts of the software that are more prone to changes than others. We

have used OO metrics for this purpose and have analyzed the relationship between

metrics and change proneness. We have found significant relationship between most

of the metrics and change proneness. Besides this, we have also developed mod-

els for improving software quality using various ML and statistical techniques. The

performance of the ML models is compared with the performance of the model de-

veloped using the statistical technique. We observed that the statistical method has

shown comparable and competitive performance with ML models. Among various

ML techniques used, bagging has shown the best results with quite high values of

sensitivity, specificity and AUC. Overall, we conclude that various quality models

predicted can be used by researchers and practitioners in their studies to make further

important conclusions.

102

Chapter 5

Models for Predicting Change

Proneness for Popular Mobile

Operating System, Android

5.1 Introduction

In literature, there are a number of ML techniques which have been used for con-

structing various prediction models. But, it has been observed that their performance

varies across different software and thus, the conclusion regarding the superiority of

one technique over the other cannot be made. Hence, it becomes necessary to con-

duct replicated studies in order to draw generalized conclusions which will allow us

to establish well - formed theories. Besides this, several previous studies in software

change prediction have used only a small number of ML techniques which does not

provide an opportunity to fairly evaluate all the techniques. There are few studies of

103

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

fault prediction [86] which have considered large number of techniques (22), but to

the best of our knowledge, there is no change prediction study that has considered

as many ML techniques. Thus, more studies need to be conducted which use a sig-

nificant number of techniques such that a fair evaluation is possible. Further, there

are different performance measures used across studies which may cause misleading

results (particularly when the performance measures are based on the number of mis-

classified change or non - change prone classes). Also, as reported by Menzies et al.

[110] andMyrtveit et al. [113], the studies conclude the results without testing for sta-

tistical significance. Finally, the past studies have validated the models on the same

software from which they are derived. Thus, this chapter deals with four concerns:

(i) no study to the best of our knowledge has used large number of data analysis tech-

niques which allows for fair evaluation; (ii) studies in literature have not statistically

compared the performance of techniques; (iii) incorrect use of performance measures

across studies; (iv) validation of models from the same software from which they are

trained. To address these concerns, we have used 15 data analysis techniques (14

ML techniques and a statistical technique) for predicting change prone classes and

compared their performance. The comparison is based on AUC, g-mean and balance

as they are most suitable for an unbalanced data. This extensive comparison allowed

us to fairly evaluate most of the ML techniques and judge the performance of one

technique over the other. Further, the performance of the models is also statistically

validated using statistical tests. Finally, the models derived from a release ‘r’ are val-

idated on the same release (using 10 - cross validation) and also on the releases ‘r+1’,

‘r+2’ (using inter - release validation). This application to a large extent increases the

practical utility and relevance of change prediction models.

104

5.1. Introduction

The following RQs are addressed in this work:

• RQ1: Among multiple ML techniques available, which technique can be used

for predicting change prone classes of Android or similar dataset?

• RQ2: How does the performance ofML techniques compare with the statistical

technique?

• RQ3: Which pairs of techniques (ML and statistical) are significantly different

from each other for change prediction?

• RQ4: How do you compare the results of inter - release validation with 10 -

cross validation?

• RQ5: Are the performance results consistent with different evaluation mea-

sures, viz. AUC, g-mean and balance?

The results are validated on five releases of an open source, widely used operating

system in mobile phone and tablet computers, ‘Android’. The results concluded that

the ML techniques are effective in predicting change prone classes and thus, should

be widely used by researchers and practitioners to reduce maintenance effort leading

to efficient and better development of software.

This chapter is organized as follows. Section 5.2 focuses on the variables and the

software used in this study. Various data analysis methods are discussed in section

5.3. Section 5.4 describes the performance measures used to evaluate the perfor-

mance. The results of correlation analysis are also explained in this section. The

results obtained using 10 - cross validation are summarized in section 5.5. Section

105

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

5.6 focuses on inter - release model prediction. Section 5.7 discusses various RQs

stated in section 5.1. Finally, the results of this work are summarized in section 5.8.

5.2 Research Background

In this section, we give an overview of the variables (independent and dependent) and

software used in this work.

5.2.1 The Variables Used

The work in this chapter is focusing on the use of various data analysis techniques for

constructing models. The models are constructed with the help of various OOmetrics

including CK metrics [36] (the definition of each metric is given in chapter 2). The

models are used for predicting change prone classes. Thus, the independent variables

are various metrics and the binary dependent variable is change proneness.

5.2.2 Empirical Data Collection

We have used successive releases of an open source, Linux based operating sys-

tem, Android. Android is a widely used operating system for mobile devices and

developed by Google under the Apache license. Android has seen number of up-

dates (either to fix bugs or to add new features) to its base operating system since

its original release in September 2008. The first Android release was Android 0.9,

followed by 1.0, then 1.1, 1.5 and so on. We analyzed the popularly and widely

used releases of Android OS that are 2.3 (Gingerbread), 4.0 (Ice-cream Sandwich),

106

5.3. Data Analysis Methods

4.1 (Jellybean), 4.2 (Jellybean), 4.3 (Jellybean) and 4.4 (KitKat). We selected these

releases as these are the stable releases used by the customers for a long period of

time. We did not consider the releases before 2.3 because they did not stay in the

market for long. Following Android 2.3 is the release 3.0 (code name Honeycomb)

which we did not consider as it was used in tablets as an operating system and not

used in non-tablet devices. Moreover, according to the general user’s review, it was

buggy and thus, rolled out quickly (http://www.quora.com/Why-is-Android-3-0-not

available-on-smartphones) from the market. We calculated change between succes-

sive releases of Android. For example, change is calculated for the common classes

between releases 2.3 to 4.0. Similarly, between the releases 4.0 to 4.1, 4.1 to 4.2,

4.2 to 4.3 and 4.3 to 4.4, the change is calculated. The change collection process is

explained in detail in chapter 2. The source codes of all these releases are available at

http://source.android.com/source/initializing.html. The details of each

release which includes the total number of classes and the number of classes changed

is given in chapter 2.

5.3 Data Analysis Methods

In this section, we discuss various ML techniques and statistical method used in this

chapter.

5.3.1 Statistical Model

Logistic regression (LR) is one of the commonly used statistical modeling methods

which is used in this work for model construction. We have also used univariate LR

107

http://source.android.com/source/initializing.html

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

to find the metrics which are significant in predicting the dependent variable. The

details about LR can be found in chapter 2.

5.3.2 Machine Learning Techniques

Table 5.1 presents the summary of 14 ML techniques used in this study. The use of

large number of ML techniques allows their fair evaluation to judge the superiority of

one technique over the other. We categorized the ML techniques under the following

domains:

• Bayesian Learners (BL)

• Decision Trees (DT)

• Ensemble Learners (EL)

• Neural Networks (NN)

• Rule Based Learning (RBL)

• Support Vector Machines (SVM)

• Miscellaneous

We selected ML techniques in such a way that atleast one technique falls under

each of the category. Besides this, the literature shows that there are various ML

techniques which (such as Voted Perceptron (VP), Radial Basis Function (RBF), Al-

ternating Decision Trees (ADT) etc.) have never been used for prediction of change

prone classes. In this work, we choose some of these techniques so as to explore their

usage in the field of change proneness prediction.

108

5.3. Data Analysis Methods

Table 5.1: Machine Learning Techniques Used

S.No. Technique Used Description Category/Domain

1. NaiveBayes (NB) Naive Bayes is widely used inductive learning algorithm for

ML and data mining. It is a simple probabilistic classifier that

uses Bayes’ theorem.

BL

2. BayesNet (BN) BN is also based on conditional probabilities and uses K2 as

search algorithm [38].

BL

3. J48 It is used for generating decision trees using C4.5 algorithm

[122].

DT

4. Alternating Decision

Tree (ADT)

ADT is a combination of decision tree with effectiveness of

boosting. The layers of the tree alternate between prediction

nodes and decision nodes. The root node is a prediction node

followed by decision nodes (decision tree stumps) in the next

layer. The next layer then again consists of prediction nodes,

and so on.

DT

5. Bagging Bagging is a voting method whereby different samples (train-

ing sets) are generated from a given sample by bootstrap.

EL

6. Logitboost (LB) LB is one of the popular releases of boosting. It uses a regres-

sionmethod as the base learner and it performs additive logistic

regression [56].

EL

7. Adaboost (AB) AB combines a number of weak hypotheses to get better clas-

sification performance. For this, equal weights are assigned to

all the training examples and then the weights of the incorrectly

classified examples are increased on each round so that a weak

learner is forced to focus on the hard examples in the training

set [56].

EL

8. Random Forest (RF) Random forest is used for growing a number of classification

trees, leading to a forest. To classify any new object, we input

that object in each of the tree in the forest. Each tree gives a

classification, and we say the tree ”votes” for that class [21].

EL

9. Logistic Model Trees

(LMT)

LMT is a classification tree with logistic regression function at

the leaves [84]

EL

10. Multilayer Perceptron

(MLP)

MLP simulates biological neurons and model complex rela-

tionships between the input and the output with a set of hidden

layers. It uses back propagation to learn instances.

NN

109

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

S.No. Technique Used Description Category/Domain

11. Radial Basis Function

(RBF)

It is a neural network that uses normalizedGaussian radial basis

function as activation function.

NN

12. Decision Table Naive

Bayes (DTNB)

DTNB is a hybrid of DT and NB which combines the advan-

tages of both.

RBL

13. Voted Perceptron

(VP)

VP creates a hyperplane to distinguish between different types

of input. It can be extended to non linear boundaries using ker-

nel function. Polynomial kernel function is used for VP.

SVM

14. Voting Feature Inter-

vals (VFI)

VFI classifies using voting feature intervals which are con-

structed around each class for each attribute [40].

Misc.

5.4 Research Methodology

In this section, we describe the performance measures used for evaluating the models.

The results of correlation analysis are also reported in this section.

5.4.1 Performance Evaluation

We need some parameters to measure the performance of the proposed models. In

this chapter, we used three evaluation measures namely AUC, g-mean and balance.

In all the five releases of Android which we have used, the number of change pone

classes is very few as compared to non - change prone classes. Since the data used

is imbalanced, we selected these measures. In addition to handling imbalanced data,

AUC also deals with nosiy data, is independent of prior probabilites and is insensitive

to the changes in the class distributions. Due to these reasons, it is widely used and

recommended measure in various studies [31, 86, 110]. Besides this, some of the pre-

vious work has also shown that g-mean is the best accuracy estimator of a prediction

110

5.4. Research Methodology

model [94]. The description of each of these parameters is provided in chapter 2.

5.4.2 Validation Methods

There is a serious problem of overfitting, if themodel is tested using the same software

from which it is trained. In other words, the technique might perform well on the

available data but poorly on future unseen test data. To overcome this problem of

overfitting, we have used two validation techniques, K - cross validation and inter -

release validation. For conducting inter - release validation, the models built using the

OO metrics obtained from release ‘r’ of Android software is used to predict change

prone classes of future releases, ‘r+1’. In other words, release ‘r’ is used as training

set to construct the model and then the developedmodel is validated/tested on releases

‘r+1’, ‘r+2’, ‘r+3’ etc.

5.4.3 Correlation Analysis

We have conducted correlation analysis to study the variation among independent

variables and the amount of correlation between them. Independent variables which

are correlated with each other represent redundant information. Thus, it is very im-

portant to identify such correlated variables. The correlation coefficient in the corre-

lation analysis determines the extent of correlation between different variables. The

value of correlation coefficient ranges from -1 to +1. If there is a positive correlation

between the two variables (metrics), it implies that the value of those two metrics in-

crease together. Whereas, negative correlation implies that as one value increases, the

other decreases. Since, the dependent variable in this study is categorical, we cannot

111

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

check for the normality of the data. Hence, we calculated correlation using a non -

parametric correlation test known as Spearman’s correlation. For each release, tables

5.2, 5.3, 5.4, 5.5 and 5.6 show the Spearman’s Rho coefficient of correlation between

all the metrics. The studies in literature consider the correlations larger than 0.8 as

high, in between 0.5 and 0.8 as moderate, and below 0.5 as low (Shatnawi and Wei

2008; Succi et al. 2005). In the tables, we have shown the correlation coefficients

greater than 0.8 in bold. By definition of correlation, it is clear that correlation of a

variable with itself will be totally perfect. In other words, the correlation coefficient

value will be 1 (as shown by diagonal elements in the tables).

The table 5.2 (for release 2.3) shows that there are high correlations among the

metrics NIM, NLM, NPM andWMC. Also, there is high correlation among LOC and

WMC. Some of the metrics are moderately correlated with one another. For example,

CBO shows moderate correlation with NIM, NIV, NLM, NPRM and WMC. For the

release 4.0 (table 5.3), we can observe that NIM shows high correlation with NLM,

WMC and NPM. Also, NLM shows high correlation with NPM and WMC. There is

also a high correlation between LOC andWMC. Similarly, for the other releases, 4.1,

4.2 and 4.3 (tables 5.4, 5.5 and 5.6), there are few metrics that show high correlations

among one another. These high correlations are undesirable and may cause collinear-

ity as the metrics are not totally independent and represent redundant information.

Thus, we have further calculated the condition number for the metrics. PC method is

applied on the independent variables to find the maximum eigenvalue (e_max) and

minimum eigenvalue (e_min). Then we calculated the conditional number given as

λ =
√
e_max/e_min. If the value of conditional number is less than 30, we say that

there does not exist multicollinearity between the variables [11]. Table 5.7 shows the

112

5.4. Research Methodology

condition number for all the metrics of each release. We can observe that the con-

dition number is well below 30 for every release. This implies we can use all the

metrics together in conjunction with one another. In other words, multicollinearity is

tolerable.

Table 5.2: Correlation Analysis of Android 2.3

CBO NOC NOM NOA NIM NIV NLM RFC NPRM NPROM NPM LOC DIT WMC

NOC 0.11

NOM 0.1 0.01

NOA 0.29 0.02 0.51

NIM 0.71 0.15 0.05 0.35

NIV 0.69 0.07 0.02 0.25 0.73

NLM 0.69 0.15 0.35 0.47 0.96 0.69

RFC 0.29 0.04 0 0.07 0.32 0.28 0.3

NPRM 0.64 0.02 0.19 0.3 0.71 0.65 0.73 0.26

NPROM 0.42 0.21 0.02 0.21 0.56 0.38 0.53 0.33 0.31

NPM 0.55 0.16 0.38 0.48 0.86 0.54 0.92 0.23 0.46 0.41

LOC 0.77 0.07 0.18 0.43 0.78 0.74 0.78 0.24 0.7 0.39 0.64

DIT 0.08 0 -0.13 -0.1 0.01 0 -0.03 0.55 0 0.12 -0.06 -0.03

WMC 0.79 0.1 0.16 0.38 0.85 0.73 0.85 0.27 0.73 0.49 0.7 0.91 -0.02

LCOM 0.35 0.08 0.18 0.31 0.32 0.32 0.35 0.06 0.25 0.15 0.33 0.32 -0.12 0.3

Table 5.3: Correlation Analysis of Android 4.0

CBO NOC NOM NOA NIM NIV NLM RFC NPRM NPROM NPM LOC DIT WMC

NOC 0.12

NOM 0.11 0.01

NOA 0.3 0.04 0.42

NIM 0.71 0.2 0.09 0.35

NIV 0.7 0.09 0.04 0.23 0.68

NLM 0.7 0.19 0.34 0.44 0.97 0.65

RFC 0.3 0.03 0 0.1 0.3 0.22 0.28

NPRM 0.65 0.03 0.24 0.29 0.68 0.59 0.71 0.24

113

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

CBO NOC NOM NOA NIM NIV NLM RFC NPRM NPROM NPM LOC DIT WMC

NPROM 0.42 0.26 0.03 0.22 0.58 0.34 0.56 0.29 0.31

NPM 0.56 0.2 0.36 0.44 0.88 0.5 0.92 0.23 0.45 0.45

LOC 0.78 0.09 0.19 0.45 0.76 0.67 0.76 0.27 0.67 0.4 0.64

DIT 0.11 0 -0.12 -0.07 0.03 -0.01 0 0.51 0.02 0.12 -0.03 0.03

WMC 0.36 0.06 0.18 0.29 0.32 0.32 0.35 0.09 0.27 0.14 0.33 0.35 -0.1

LCOM 0.79 0.14 0.19 0.36 0.84 0.71 0.84 0.23 0.7 0.51 0.7 0.88 0 0.29

Table 5.4: Correlation Analysis of Android 4.1

CBO NOC NOM NOA NIM NIV NLM RFC NPRM NPROM NPM LOC DIT WMC

NOC 0.13

NOM 0.14 0.02

NOA 0.37 0.09 0.43

NIM 0.74 0.24 0.13 0.45

NIV 0.75 0.09 0.08 0.3 0.69

NLM 0.73 0.23 0.35 0.52 0.98 0.67

RFC 0.26 0.04 0 0.09 0.25 0.17 0.24

NPRM 0.7 0.04 0.28 0.34 0.68 0.64 0.71 0.17

NPROM 0.4 0.29 0.04 0.3 0.6 0.28 0.57 0.27 0.23

NPM 0.59 0.25 0.35 0.52 0.91 0.52 0.94 0.22 0.49 0.52

LOC 0.81 0.12 0.21 0.5 0.79 0.72 0.79 0.23 0.7 0.4 0.67

DIT 0.07 -0.01 -0.12 -0.08 0 -0.03 -0.03 0.51 -0.02 0.11 -0.04 0.01

WMC 0.36 0.07 0.19 0.29 0.32 0.32 0.34 0.07 0.29 0.14 0.32 0.34 -0.11

LCOM 0.8 0.17 0.19 0.44 0.86 0.74 0.86 0.19 0.7 0.5 0.74 0.89 -0.02 0.28

Table 5.5: Correlation Analysis of Android 4.2

CBO NOC NOM NOA NIM NIV NLM RFC NPRM NPROM NPM LOC DIT WMC

NOC 0.12

NOM 0.14 0.02

NOA 0.32 0.06 0.44

NIM 0.72 0.22 0.12 0.38

NIV 0.72 0.09 0.07 0.25 0.67

NLM 0.71 0.21 0.37 0.47 0.97 0.65

114

5.5. Result Analysis

CBO NOC NOM NOA NIM NIV NLM RFC NPRM NPROM NPM LOC DIT WMC

RFC 0.27 0.03 0 0.07 0.26 0.17 0.24

NPRM 0.68 0.04 0.3 0.31 0.67 0.62 0.7 0.17

NPROM 0.39 0.26 0.04 0.22 0.56 0.3 0.54 0.3 0.24

NPM 0.57 0.22 0.37 0.48 0.9 0.49 0.93 0.21 0.47 0.47

LOC 0.78 0.11 0.22 0.47 0.76 0.68 0.77 0.22 0.68 0.39 0.65

DIT 0.09 -0.01 -0.11 -0.08 0.01 -0.03 -0.02 0.52 -0.01 0.13 -0.03 0.02

WMC 0.36 0.06 0.19 0.3 0.32 0.32 0.35 0.09 0.28 0.15 0.33 0.35 -0.09

LCOM 0.8 0.17 0.21 0.4 0.86 0.71 0.86 0.19 0.7 0.51 0.73 0.87 -0.02 0.29

Table 5.6: Correlation Analysis of Android 4.3

CBO NOC NOM NOA NIM NIV NLM RFC NPRM NPROM NPM LOC DIT WMC

NOC 0.12

NOM 0.11 0.02

NOA 0.28 0.06 0.48

NIM 0.69 0.23 0.1 0.35

NIV 0.69 0.1 0.03 0.21 0.62

NLM 0.68 0.22 0.37 0.46 0.96 0.59

RFC 0.27 0.03 0 0.08 0.26 0.18 0.24

NPRM 0.65 0.05 0.28 0.28 0.6 0.53 0.64 0.18

NPROM 0.39 0.27 0.03 0.21 0.57 0.29 0.54 0.29 0.24

NPM 0.54 0.23 0.38 0.48 0.89 0.46 0.94 0.2 0.44 0.46

LOC 0.77 0.11 0.2 0.43 0.75 0.66 0.75 0.23 0.68 0.39 0.63

DIT 0.09 -0.01 -0.1 -0.07 0.01 -0.02 -0.02 0.52 0 0.13 -0.03 0.02

WMC 0.38 0.06 0.19 0.28 0.34 0.35 0.37 0.09 0.32 0.15 0.33 0.36 -0.08

LCOM 0.77 0.18 0.19 0.37 0.85 0.67 0.85 0.19 0.69 0.51 0.72 0.86 -0.01 0.3

5.5 Result Analysis

This section shows the results of various data analysis (ML and statistical) techniques

used for predicting change proneness using OO metrics. Before constructing various

115

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

MLmodels, we obtained a subset of good features (independent variables that are cor-

related with the dependent variable, but not related with each other) using CFS [111].

M.A. Hall proved that ‘‘classification accuracy using reduced feature set is equal or

better than accuracy using complete feature set.’’ [64]. The advantages of using CFS

are efficient and more accurate model prediction and reduction in dimensionality.

The independent variables obtained after applying CFS are used in the construction

of ML models. Whereas, the statistical model is constructed using the subset of met-

rics obtained by univariate LR. The metrics of each release obtained after applying

CFS and univariate LR are listed in table 5.7. In this section, we report the results

obtained of 10 - cross and inter - release validation.

Table 5.7: CFS and Univariate LR Results

Android Release Metrics Selected after CFS Metrics Selected after Univariate LR

Android 2.3 CBO, NOA, NIV, NLM, RFC, LOC, DIT,

WMC, LCOM

CBO, NOC, NOM, NOA, NIM, NIV, NLM, NPRM,

NPROM, NPM, LOC, DIT, WMC, LCOM

Android 4.0 CBO, NOA, NIV, RFC, LCOM, WMC CBO, NOM, NOA, NIM, NIV, NLM, RFC, NPRM,

NPROM, NPM, LOC, DIT, WMC, LCOM

Android 4.1 CBO, NOC, NOA, NIV, RFC, LOC CBO, NOC, NOA, NIM, NIV, NLM, NPRM, NPM,

LOC, DIT, WMC, LCOM

Android 4.2 CBO, NOA, NIV, NLM, RFC, NPROM,

LOC, DIT, WMC

CBO, NOM, NOA, NIM, NIV, NLM, NPRM,

NPROM, NPM, LOC, DIT, WMC, LCOM

Android 4.3 CBO, NOA, NIV, NLM, WMC CBO, NOM, NOA, NIM, NIV, NLM, NPRM,

NPROM, NPM, LOC, DIT, WMC, LCOM

5.5.1 Model Evaluation Using 10 - Cross Validation

The accuracy of the models predicted would be highly optimistic if testing is done

on the same software from which training model is derived. Thus, we have used 10 -

116

5.5. Result Analysis

cross validation to ensure that the training and testing sets belong to different parts of

a given release. Tables 5.8, 5.9 and 5.10 report the results of 10 - cross validation of

15 data analysis techniques on five releases of Android. Table 5.8 shows the AUC,

table 5.9 shows the g-mean and table 5.10 shows the balance. For each release, the

highest AUC, g-mean and balance are shown in bold. We observe that for all the

releases, bagging and RF have shown the best performance as compared to other

techniques. For example, AUC of bagging is highest for all the releases. It is equal

to or more than 0.75 for all the releases except Android 4.3. Besides this, bagging

has also shown highest g-mean and balance for majority (4 out of 5) of the releases.

RF follows bagging in all the evaluation measures viz. AUC, g-mean and balance. In

fact, we can observe that the performance of bagging and RF is quite similar in most

of the cases. For example, RF has shown the same g-mean (i.e. highest value) as

bagging for 3 out of 5 releases. Also, it has given AUC equal to or more than 0.75 for

all the releases except Android 4.3. Besides bagging and RF, other techniques such

as ADT and BN have AUC greater than 0.7 corresponding to most of the releases

of the Android. Amongst remaining techniques, majority of them have AUC more

than 0.65 for most of the releases. ADT and BN have also shown high values of

g-mean and balance. For all the performance measures, VFI and VP have shown

the worst performance with the lowest values of AUC, g-mean and balance. When

comparing the performance of statistical model with ML models, we observe that

the performance of LR is comparable to the performance of ML models. LR model

has shown comparable values of AUC, g-mean and balance for all the releases. We

summarize the results as follows: bagging has outperformed all the other techniques,

followed by RF, ADT and BN in the given order. Their performance is consistent

117

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

across all the releases and for all the three performance measures. Such a consistent

result across all the releases and for all the performance measures provide us with a

very strong reason to use bagging to predict change prone classes of any future release

of Android. Thus, we would suggest practitioners and researchers to use bagging to

identify change prone classes of Android or any other similar software.

Table 5.8: 10 - Cross Results of AUC as Performance Measure

Technique 2.3 4 4.1 4.2 4.3 Average

NB 0.70 0.64 0.62 0.68 0.68 0.664

BN 0.72 0.70 0.70 0.69 0.69 0.700

J48 0.72 0.68 0.70 0.69 0.64 0.686

ADT 0.72 0.70 0.71 0.70 0.69 0.704

Bag 0.77 0.75 0.77 0.76 0.73 0.756

LB 0.72 0.70 0.69 0.69 0.68 0.696

AB 0.70 0.67 0.69 0.69 0.67 0.684

RF 0.76 0.75 0.76 0.75 0.72 0.748

LMT 0.74 0.69 0.73 0.68 0.68 0.704

MLP 0.72 0.68 0.68 0.69 0.67 0.688

RBF 0.70 0.65 0.61 0.65 0.67 0.656

DTNB 0.73 0.69 0.71 0.68 0.68 0.698

VP 0.61 0.55 0.52 0.53 0.53 0.548

VFI 0.64 0.62 0.65 0.62 0.62 0.630

LR 0.71 0.66 0.66 0.69 0.69 0.682

Table 5.9: 10 - Cross Results of G-mean as Performance Measure

Technique 2.3 4 4.1 4.2 4.3 Average

NB 63.9 51.8 46.8 48.7 47.7 51.78

BN 65.5 56.1 51.5 50.7 49.8 54.72

J48 67.2 56.2 52.0 51.8 47.5 54.94

ADT 64.9 56.0 53.1 51.4 51.4 55.36

Bag 69.1 61.0 57.2 56.3 52.9 59.30

LB 65.4 56.5 51.7 51.2 50.0 54.96

118

5.5. Result Analysis

Technique 2.3 4 4.1 4.2 4.3 Average

AB 64.0 53.8 50.4 50.9 48.2 53.46

RF 68.8 61.0 57.1 55.6 52.4 58.98

LMT 66.5 55.9 56.3 49.2 48.1 55.20

MLP 65.0 55.4 50.5 50.3 48.3 53.90

RBF 63.8 53.1 48.2 48.2 50.3 52.72

DTNB 66.0 55.2 52.7 50.4 49.0 54.66

VP 59.4 53.8 48.5 54.5 50.0 53.24

VFI 60.5 50.3 48.3 45.4 45.7 50.04

LR 63.6 53.9 50.0 50.8 48.8 53.42

Table 5.10: 10 - Cross Results of Balance as Performance Measure

Technique 2.3 4 4.1 4.2 4.3 Average

NB 0.65 0.60 0.59 0.62 0.63 0.618

BN 0.67 0.65 0.64 0.64 0.65 0.650

J48 0.68 0.65 0.65 0.65 0.61 0.648

ADT 0.66 0.65 0.66 0.65 0.66 0.656

Bag 0.71 0.70 0.70 0.70 0.69 0.700

LB 0.67 0.65 0.65 0.65 0.65 0.654

AB 0.65 0.62 0.63 0.65 0.63 0.636

RF 0.70 0.69 0.71 0.7 0.68 0.696

LMT 0.68 0.64 0.70 0.63 0.63 0.656

MLP 0.66 0.64 0.63 0.64 0.63 0.640

RBF 0.65 0.61 0.58 0.61 0.63 0.616

DTNB 0.67 0.64 0.66 0.63 0.64 0.648

VP 0.61 0.41 0.31 0.33 0.33 0.398

VFI 0.65 0.61 0.58 0.61 0.63 0.616

LR 0.62 0.58 0.61 0.58 0.59 0.596

Statistical Tests

From the above discussion, we concluded that there is difference in the performance

of various techniques and bagging outperformed all the other techniques. We have

119

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

also statistically evaluated the results using Friedman test. This will confirm that the

performance difference is not random and will evaluate the superiority of one tech-

nique over the other techniques. Friedman test is applied on the results of all the three

evaluation measures. The Friedman test resulted in a p-value of 0.000 for all the eval-

uation measures. The p-value of 0.000 proved that the results are significant at the

0.05 level of significance over 14 degrees of freedom. Since, the p-value is less than

the significance level (0.05), the null hypothesis is rejected and alternate hypothesis

is accepted. Thus, we say that there is statistical difference in the performance of par-

ticipant techniques. The rank obtained by each technique when using AUC, g-mean

and balance is shown in table 5.11. The rank demonstrates the performance of all

the techniques (lowest numerical rank value shows the highest performance). From

table 5.11, we observe that the top rank (shown in bold) is obtained by bagging, fol-

lowed by RF and ADT for all the evaluation measures. In other words, bagging, RF

and ADT have shown consistent performance. We concluded that the performance

difference is not random as bagging and RF have also statistically shown superior

performance over the other techniques. Thus, bagging and RF can be used for pre-

dicting change prone classes. The techniques such as RBF, VFI,VP have shown the

worst performance.

Table 5.11: Ranks Obtained by Friedman Test

Technique Ranks when AUC used Ranks when g-mean used Ranks when balance used

NB 11.3 13.2 11.9

BN 5.6 7 6.2

J48 8.3 6.2 6.4

ADT 4.5 5.6 5

Bag 1.1 1.4 1.4

120

5.5. Result Analysis

Technique Ranks when AUC used Ranks when g-mean used Ranks when balance used

LB 7.6 5.8 5.2

AB 9.6 9.9 9.3

RF 1.9 2 1.7

LMT 6.2 7.6 6.9

MLP 8.6 9.2 8.9

RBF 12.4 11.6 12.1

DTNB 6.7 7.4 7.1

VP 15 8.5 15

VFI 13.6 14.4 13.6

LR 8.5 10.2 9.3

Since the null hypothesis is rejected, we also performed a post - hoc analysis to

examine the statistical difference between the pairs of different techniques using Ne-

menyi test (explained in chapter 2). In Nemenyi test, we construct null and alternate

hypothesis for each pair. The total possible pairs with 15 techniques are 15C2 which

equals 105. Thus, there are 105 sets of null and alternate hypotheses. Since it is

not possible to state all the hypotheses, we state some of the hypotheses where the

comparison is with bagging:

• Ho1: The performance of bagging and ADT techniques do not differ signifi-

cantly.

• Ha1: The performance of bagging and ADT techniques differ significantly.

• Ho2: The performance of bagging andRF techniques do not differ significantly.

• Ha2: The performance of bagging and RF techniques differ significantly.

• Ho3: The performance of bagging and NB techniques do not differ signifi-

cantly.

121

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

• Ha3: The performance of bagging and NB techniques differ significantly.

The results of pair-wise comparisons of the techniques when the evaluation mea-

sure is AUC, g-mean and balance are shown in tables 5.12, 5.13 and 5.14 respec-

tively. Each cell shows the difference in the ranks of two corresponding techniques.

We compared the value of this rank difference with the CD to accept or reject the null

hypothesis. The CD is calculated as follows:

In this study, k = 15 and n =5. The value of qa for 15 techniques at ‘a’ = 0.05 is 4.796/
√
2=3.392.

Thus, CD= qa
√

k(k+1)
6n

= 3.392
√

15(15+1)
6.5

= 9.594

From the tables, we observe that for some of the pairs, the rank differences (shown

in bold) are more than the CD. For such pairs, we rejected the null hypothesis and con-

cluded that the performance of the corresponding two techniques differ significantly.

For other pairs, where rank difference is less than the CD, we accepted the null hy-

pothesis and concluded that there is no statistical difference in the performance of the

two techniques. We observe that bagging has always shown significantly different

performance from some of the ML techniques when either of the evaluation mea-

sure is used. For example, when g-mean is used, it has shown significantly different

performance from NB and RBF. Whereas, when AUC and balance are used, it has

shown significantly different performance from four ML techniques (NB, RBF, VFI

and VP). Besides bagging, few other ML techniques have also shown significantly

different performance from other techniques. Thus, although the result of Friedman

test says that there is significant difference in the performance of participant tech-

niques, but the pairwise comparison in Nemenyi test says that there are only few

122

5.5. Result Analysis

techniques that have shown significant difference in their performance as compared

to other techniques. From the result of Nemenyi test as well, we again concluded that

bagging should be used by researchers and practitioners for predicting change prone

classes. Overall, we concluded that out of 15 ML techniques used in this study, bag-

ging should be used to predict change prone classes in any future release of Android

or any other similar project because of the following 3 reasons:

1. Bagging has outperformed all the other techniques in terms of all the three eval-

uation measures, i.e. AUC, g-mean and balance.

2. In all the releases as well, i.e. Android 2.3, 4.0, 4.1, 4.2 and 4.3, bagging has

shown the best performance as compare to other techniques. In other words,

bagging has shown consistent performance across all the releases.

3. The result of Nemenyi test shows that bagging is the only method that has

shown significantly different performance from most of the other ML tech-

niques.

Table 5.12: Results of Nemenyi Test when AUC is Used

Technique BN J48 ADT Bag LB AB RF LMT MLP RBF DTNB VP VFI LR

NB 5.7 3 6.8 10.2 3.7 1.7 9.4 5.1 2.7 1.1 4.6 3.7 2.3 2.8

BN 0 2.7 1.1 4.5 2 4 3.7 0.6 3 6.8 1.1 9.4 8 2.9

J48 0 3.8 7.2 0.7 1.3 6.4 2.1 0.3 4.1 1.6 6.7 5.3 0.2

ADT 0 3.4 3.1 5.1 2.6 1.7 4.1 7.9 2.2 10.5 9.1 4

Bag 0 6.5 8.5 0.8 5.1 7.5 11.3 5.6 13.9 12.5 7.4

LB 0 2 5.7 1.4 1 4.8 0.9 7.4 6 0.9

AB 0 7.7 3.4 1 2.8 2.9 5.4 4 1.1

RF 0 4.3 6.7 10.5 4.8 13.1 11.7 6.6

LMT 0 2.4 6.2 0.5 8.8 7.4 2.3

123

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

Technique BN J48 ADT Bag LB AB RF LMT MLP RBF DTNB VP VFI LR

MLP 0 3.8 1.9 6.4 5 0.1

RBF 0 5.7 2.6 1.2 3.9

DTNB 0 8.3 6.9 1.8

VP 0 1.4 6.5

VFI 0 5.1

Table 5.13: Results of Nemenyi Test when G-mean is Used

Technique BN J48 ADT Bag LB AB RF LMT MLP RBF DTNB VP VFI LR

NB 6.2 7 7.6 11.8 7.4 3.3 11.2 5.6 4 1.6 5.8 4.7 1.2 3

BN 0 0.8 1.4 5.6 1.2 2.9 5 0.6 2.2 4.6 0.4 1.5 7.4 3.2

J48 0 0.6 4.8 0.4 3.7 4.2 1.4 3 5.4 1.2 2.3 8.2 4

ADT 0 4.2 0.2 4.3 3.6 2 3.6 6 1.8 2.9 8.8 4.6

Bag 0 4.4 8.5 0.6 6.2 7.8 10.2 6 7.1 13 8.8

LB 0 4.1 3.8 1.8 3.4 5.8 1.6 2.7 8.6 4.4

AB 0 7.9 2.3 0.7 1.7 2.5 1.4 4.5 0.3

RF 0 5.6 7.2 9.6 5.4 6.5 12.4 8.2

LMT 0 1.6 4 0.2 0.9 6.8 2.6

MLP 0 2.4 1.8 0.7 5.2 1

RBF 0 4.2 3.1 2.8 1.4

DTNB 0 1.1 7 2.8

VP 0 5.9 1.7

VFI 0 4.2

Table 5.14: Results of Nemenyi Test when Balance is Used

Technique BN J48 ADT Bag LB AB RF LMT MLP RBF DTNB VP VFI LR

NB 5.7 5.5 6.9 10.5 6.7 2.6 10.2 5 3 0.2 4.8 3.1 1.7 2.6

BN 0 0.2 1.2 4.8 1 3.1 4.5 0.7 2.7 5.9 0.9 8.8 7.4 3.1

J48 0 1.4 5 1.2 2.9 4.7 0.5 2.5 5.7 0.7 8.6 7.2 2.9

ADT 0 3.6 0.2 4.3 3.3 1.9 3.9 7.1 2.1 10 8.6 4.3

Bag 0 3.8 7.9 0.3 5.5 7.5 10.7 5.7 13.6 12.2 7.9

LB 0 4.1 3.5 1.7 3.7 6.9 1.9 9.8 8.4 4.1

AB 0 7.6 2.4 0.4 2.8 2.2 5.7 4.3 0

124

5.6. Inter - Release Model Prediction

Technique BN J48 ADT Bag LB AB RF LMT MLP RBF DTNB VP VFI LR

RF 0 5.2 7.2 10.4 5.4 13.3 11.9 7.6

LMT 0 2 5.2 0.2 8.1 6.7 2.4

MLP 0 3.2 1.8 6.1 4.7 0.4

RBF 0 5 2.9 1.5 2.8

DTNB 0 7.9 6.5 2.2

VP 0 1.4 5.7

VFI 0 4.3

5.6 Inter - Release Model Prediction

We also evaluated the accuracy of the models on successive releases of Android.

For this, we used the prediction models of Android 2.3 to predict the change prone

classes in the future releases, i.e. Android 4.0, 4.1, 4.2 and 4.3. Table 5.15 shows

the result when prediction models of Android 2.3 are applied to Android 4.0 and 4.1,

whereas table 5.16 shows the result when Android 2.3 prediction models are applied

to Android 4.2 and 4.3. We observe that bagging has shown the highest AUC, g-

mean and balance when we are validating Android 4.1 using Android 2.3. Similar

results are obtained when Android 4.2 and 4.3 are validated with Android 2.3. When

we are validating Android 4.0, we observe that bagging has shown the highest value

of AUC and balance but not the g-mean. The highest g-mean is given by NB and

bagging shows the second highest value. Overall, the results of all the inter - release

validation also show that bagging has outperformed the other techniques. This result

is consistent with the result of 10 - cross validation. We summarize three common

trends observed in the results:

1. First, for all the inter release validations, bagging gives the highest perfor-

125

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

mance. This consistent result across all the inter - release validations can be

used by researchers for conducting inter - release model prediction.

2. Second, the prediction results are consistent as the system is evolving. In other

words, the performance of predicting change prone classes in Android 4.0, 4.1,

4.2 and 4.3 using Android 2.3 is similar in terms of AUC, g-mean and balance.

This suggests that the researchers can expect a similar performance when pre-

dicting change prone classes of any future release using the metric prediction

models of Android 2.3.

3. Third, the results of inter - release validation of Android 2.3 on Android 4.0,

4.1, 4.2 and 4.3 are comparative and competitive to the results of validation of

the releases itself (i.e. using 10 - cross validation). In most of the cases, the

results of inter - release validation are even better than 10 - cross validation.

This has also been shown diagrammatically in figure 5.1. Figure 5.1 shows

the bar chart depicting the average AUC, g-mean and balance of each release

for both 10 - cross validation and inter - release validation. We observe that

the average balance of all the releases is higher for inter - release validation

as compared to 10 - cross validation. Similarly, the average AUC and g-mean

of releases 4.3 and 4.0 respectively is higher for inter - release validation as

compared to 10 - cross validation. This concludes that inter - release validation

is useful and effective in accurate prediction of change prone classes.

126

5.6. Inter - Release Model Prediction

Table 5.15: Validating Android 2.3 on 4.0 and 4.1

Android 2.3 on Android 4.0 Android 2.3 on Android 4.1

Technique AUC g-mean balance AUC g-mean balance

NB 0.71 63.6 0.65 0.66 48.41 0.61

BN 0.67 54.0 0.62 0.73 66.44 0.68

J48 0.65 55.7 0.64 0.63 50.57 0.63

ADT 0.69 54.2 0.63 0.68 51.86 0.64

Bag 0.72 58.9 0.68 0.71 52.32 0.66

LB 0.68 54.4 0.63 0.69 51.35 0.64

AB 0.67 53.5 0.62 0.67 50.24 0.63

RF 0.72 58.1 0.67 0.71 52.66 0.66

LMT 0.68 56.2 0.65 0.68 52.08 0.65

MLP 0.70 57.7 0.66 0.69 51.84 0.65

RBF 0.66 53.2 0.61 0.66 48.70 0.61

DTNB 0.68 54.8 0.63 0.69 51.05 0.64

VP 0.59 50.5 0.58 0.60 46.72 0.59

VFI 0.62 50.9 0.59 0.62 50.50 0.61

LR 0.68 55.1 0.63 0.66 48.69 0.61

Table 5.16: Validating Android 2.3 on 4.2 and 4.3

Android 2.3 on Android 4.2 Android 2.3 on Android 4.3

Technique AUC g-mean balance AUC g-mean balance

NB 0.68 49.44 0.63 0.69 49.11 0.64

BN 0.68 50.50 0.64 0.69 50.90 0.64

J48 0.64 49.92 0.63 0.64 49.18 0.64

ADT 0.68 50.75 0.63 0.69 49.39 0.64

Bag 0.71 52.26 0.66 0.72 51.95 0.67

LB 0.69 50.44 0.63 0.70 49.53 0.64

AB 0.68 51.04 0.63 0.69 49.48 0.64

RF 0.70 51.30 0.65 0.72 51.51 0.67

LMT 0.65 49.13 0.63 0.67 49.68 0.64

MLP 0.70 51.77 0.66 0.71 50.81 0.66

RBF 0.68 49.71 0.63 0.69 48.02 0.63

127

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

Android 2.3 on Android 4.2 Android 2.3 on Android 4.3

Technique AUC g-mean balance AUC g-mean balance

DTNB 0.69 50.43 0.64 0.69 49.03 0.64

VP 0.61 46.98 0.60 0.62 48.60 0.61

VFI 0.62 46.40 0.59 0.62 45.52 0.60

LR 0.68 50.25 0.64 0.69 49.10 0.64

Figure 5.1: Comparison between 10 - Cross and Inter - Release Validation

5.7 Research Question Analysis

In this section, we discuss various RQs stated by us in section 5.1. We have provided

answers to each one of these RQs in various sections of this chapter. Here, we try to

summarize them.

• RQ1. Among multiple ML techniques available, which technique can be used

for predicting change prone classes of Android or similar dataset?

128

5.7. Research Question Analysis

Among multiple ML techniques available, the results of 10 - cross validation

indicated that the performance of bagging is best in terms of AUC, g-mean

and balance. This has also been statistically evaluated using Friedman test.

Bagging has shown the highest rank when either of the evaluation parameter

is used. Among the remaining techniques, RF follows bagging by showing the

second best performance. Thus, bagging and RF can be used for predicting

change prone classes of any future release of Android or of any similar dataset.

• RQ2. How does the performance ofML techniques compare with the statistical

technique?

The statistical technique (LR) used in this study has shown comparable and

competitive results with ML techniques for both 10 - cross and inter - release

validation.

• RQ3. Which pairs of techniques (ML and statistical) are significantly different

from each other for change prediction.

Among a total of 105 pairs possible for each of the evaluation measure, only

few pairs have shown significantly different performance. The number of pairs

which have shown significantly different performance when AUC, g-mean and

balance is used are 8, 5 and 10 respectively (shown in bold in tables 5.12, 5.13,

5.14). The results show that bagging has always shown significantly different

performance than some of the ML techniques in terms of all the evaluation

measures.

• RQ4. How do you compare the results of inter - release validation with 10 -

cross validation?

129

Chapter 5. Models for Predicting Change Proneness for Popular Mobile Operating
System, Android

The results of inter - release validation are comparable (and even better in some

cases) to the results when the models are validated using the same dataset (i.e.

using 10 - cross validation). Thus, researchers can carry out inter - release vali-

dation to predict change prone classes. In other words, they can use a previously

available release to predict the change prone classes in any future release.

• RQ5. Are the performance results consistent with different evaluation mea-

sures, viz. AUC, g-mean and balance?

Yes, the results are consistent when different evaluation measures are used. For

all the evaluation measures, bagging has shown the best performance followed

by RF.

5.8 Discussion

We have investigated the performance of 15 different data analysis techniques for

correct and accurate prediction of change prone classes in the earlier phases of SDLC.

For this purpose, we have used various OO metrics and investigated the use of these

metrics in the prediction of change proneness in five releases of Android, 2.3, 4.0,

4.1, 4.2 and 4.3. The performance of different techniques is evaluated using AUC,

g-mean and balance. We have also performed inter - release validation by using the

prediction models of Android 2.3 to predict the change-prone classes in the future

releases, i.e. Android 4.0, 4.1, 4.2 and 4.3. We found the consistent results across all

the inter release validations. The important findings of the work are:

1. Among multiple ML techniques used, bagging has outperformed all the other

130

5.8. Discussion

techniques. The results of the Friedman test also shows the same result, i.e.

superiority of bagging for change prediction.

2. The performance of statistical technique is comparable to the performance of

ML techniques. Thus, researchers can also use the statistical technique for pre-

diction of change proneness.

3. The statistical Nemenyi test shows very few pairs to be statistically different

in terms of their performance. The number of pairs showing significantly dif-

ferent performance is 8, 5 and 10 when AUC, g-mean and balance are used

respectively.

4. The results of inter - release validation are comparable to the 10 - cross vali-

dation. This confirms the generalizability of the models developed for change

prediction in this study.

131

Chapter 6

Fault Prediction Considering

Threshold Effects of Object Oriented

Metrics

6.1 Introduction

The design of software can be assessed in the industry by identifying the out of range

values of various OO metrics. The software design measurements can be used by the

software industry in multiple ways: (1) Software designers can use them to obtain

quality benchmarks to assess and compare various software products [4]; (2) Man-

agers can use the metrics in controlling and auditing the quality of the software during

the SDLC [129, 153]; (3) Software developers can use the metrics to identify prob-

lematic areas and use source code refactoring to improve the internal quality of the

software [16, 54, 133]; (4) Software testers can use the metrics in effectively plan-

132

6.1. Introduction

ning and allocation of testing and maintenance resources [4, 81, 128]. The focus of

this chapter is to study the effect of thresholds of OO metrics on fault proneness. In

other words, we have calculated the thresholds of OOmetrics to predict fault prone of

various OSS. For prediction of fault prone classes, many researchers have suggested

various metrics models [22, 24, 28, 53, 63, 79, 92, 118, 152]. The use of these metric

models in the early phases of SDLC allow effective allocation of maintenance re-

sources and thus, leads to reduction of the maintenance cost. However, building and

running metric based models on a daily basis is a time consuming task and thus, it is

impractical [131]. A more effective way is to define some meaningful thresholds for

all the OO metrics. A threshold of a metric is that value of the metric above which a

class is considered to be risky and hence require careful attention and scrutiny. Chi-

damber et al. [34] said that one of the important uses of OO metrics is to identify

extreme values (threshold values) of these metrics. The classes above these extreme

values will have higher complexity and require management attention. The devel-

opers may use thresholds for various purposes: (1) to identify refactoring candidates

such as bad code smells [129], (2) to predict the existence of bugs in the software

[131] and (3) to identify design anomalies. Besides these, there are a number of ad-

vantages of using thresholds as stated in chapter 2.

To calculate the threshold values, we have assessed the use of a methodology pro-

posed by Bender [12] based on LR. We calculated the thresholds at different risk

levels and validated the models using various ML techniques (BN, NB, RF, SVM,

MLP). We constructed binary models using the threshold values of OO metrics and

compared thier accuracy with the corresponding non - binary models. The empirical

validation is carried out on proprietary NASA software, KC1 (Metrics data repos-

133

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

itory: http://www.mdp.ivv.nasa.gov 2000), implemented in C++ programming lan-

guage and two open source Promise software, Apache IVY and JEdit. To demon-

strate the effectiveness of the proposed methodology, inter - project validation has

also been done on three OSS, Apache Ant and Apache Tomcat and Sakura.

This chapter is organized as follows: Section 6.2 explains the background of the re-

search, i.e. the dependent and independent variables used along with description of

the datasets. Section 6.3 explains the basic methodology followed in this study. The

concept and usage of ‘threshold values’ is also explained in this section. Next, section

6.4 summarizes the univariate and threshold analysis. The results of validation are

discussed in section 6.5, along with the results of inter - project validation. Finally,

the results of the work are summarized in section 6.6.

The results of this chapter are published in [100].

6.2 Research Background

In this section, we present the independent and the dependent variables used in this

chapter. The details of the software along with their descriptive statistics is also pro-

vided.

6.2.1 Dependent and Independent Variables

In this study, the popular CK metrics [36] are used as independent variables. In ad-

dition to CK metrics, LOC metric is also included as it is the most common metric to

measure size of the software. The binary dependent variable in this chapter is fault

proneness.

134

6.2. Research Background

6.2.2 Empirical Data Collection

We have used various software from Promise data repository, namely KC1, Ivy, Tom-

cat, Ant, and JEdit. Besides these software, Sakura editor is also used. KC1 is a

proprietary software obtained from the NASA Metrics Data Program (NASA 2004,

PROMISE), whereas Ivy, Tomcat, Ant, JEdit and Sakura are OSS. To show the ef-

fectiveness of the proposed methodology, generalization and comparison of results

is very important which is conducted using the OSS. KC1 is implemented in C++

programming language and consists of 145 classes, 2107 methods and 40K lines of

code. It consists of both the class level and the method level static metrics. We have

used KC1 for class level metrics. The system consists of seven class level metrics

including six CK metrics. The information present in the error reports is used to col-

lect the fault data from KC1. From the error report, we found that the total number

of faults are 669, which also included the faults that had “not a fault” keyword. But,

we considered only those faults that are either produced from the source code or the

design and removed all the faults that had “not a fault’’ keyword used as the reason

of closure of the error report. This reduced the total number of faults to 642. These

faults are spread across 59 classes out of a total of 145 classes. Thus, KC1 consists

of 59 faulty classes.

Apache Ant is a Java library and command-line tool for automating software pro-

cesses. The main usage of Ant is building of Java applications. Ant can also be

used effectively to build non Java applications, for instance C or C++ applications

(ant.apache.org). Apache Ivy is a powerful dependencymanager that manages depen-

dencies of any kind. It is integrated with Apache Ant and thus follows same design

135

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

principles as Apache Ant (ant.apache.org/ivy). Apache Tomcat is a software imple-

mentation of Java Servlet and the JavaServer Pages (JSP) specifications from Sun

Microsystems. It provides a “pure Java” HTTP web server environment to run a Java

code (tomcat.apache.org). JEdit and Sakura, both are text editors for programmers.

Sakura is available under the GNU General Public License 2.0 and implemented in

Java programming language, whereas Sakura is available under Shareware license

and is implemented in C++. All these datasets (except Sakura) are from Promise data

repository collected by Jureczko and Madeyski [77], and Jureczko and Spinellis [78]

using CKJM tool. The data for Sakura is collected using metric tool family, Under-

stand for C and Understand for Java [145]. The summary of the details of OSS, which

include the version of the software used, the number of instances (data points) and

the number of faulty instances in the software is provided in chapter 2. Figure 6.1

indicates the percentage of classes which are found to be actually faulty in each of

the five OSS.

Figure 6.1: Summary of Faulty Classes

136

6.2. Research Background

6.2.3 Descriptive Statistics

We calculated various statistics including minimum (Min.), maximum (Max.), mean

(Mean), median (Median), standard deviation (SD) and the percentiles (25%ile and

75%ile) for the metrics of all the six software. Table 6.1 shows the descriptive statis-

tics for KC1.

Table 6.1: Descriptive Statistics of KC1

Metric Min. Max. Mean Median SD 25th %ile 75th %ile

WMC 0 100 17.42 12 17.45 8 235.5

DIT 0 6 1 1 1.26 0 1.5

NOC 0 5 0.21 0 0.7 0 0

CBO 0 24 8.32 8 6.38 3 14

RFC 0 222 34.38 28 36.2 10 44.5

LCOM 0 100 68.72 84 36.89 56.5 96

LOC 0 2313 211.25 108 345.55 8 235.5

We can make the following important observations regarding some of the metrics

[134]:

• LOC: The size of a class is measured in terms of LOC. We can see that the

minimum value for LOC is 0 while the maximum is 2313, which is a not a very

large value.

• NOC and DIT: The value of NOC is 0 in 75% of the classes. This shows that

the number of immediate children in 75% of the classes is 0, which concludes

low inheritance in the system. This is also shown by DIT, the maximum value

of DIT is 6. Also, 75% of the classes do not have even 2 levels of inheritance.

• LCOM: Cohesion in the system is not much high as shown by LCOM with the

137

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

maximum value as 100 (which is quite less).

Tables 6.2, 6.3, 6.4, 6.5 and 6.6 show the descriptive statistics of Ivy, Ant, Tomcat,

JEdit and Sakura respectively.

Table 6.2: Descriptive Statistics of Ivy

Metric Min. Max. Mean Median SD 25th %ile 75th %ile

WMC 1 157 11.28 6 15.15 3 13

DIT 1 6 1.79 1 1.25 1 2

NOC 0 17 0.37 0 1.32 0 0

CBO 1 150 13.23 8 16.57 5 16

RFC 1 312 34.04 19 44.68 6 40

LCOM 0 11794 131.58 6 712.19 0 45.75

LOC 1 2894 249.34 85.5 428.26 20 267

Table 6.3: Descriptive Statistics of Ant

Metric Min. Max. Mean Median SD 25th %ile 75th %ile

WMC 0 120 11.07 7 11.98 4 14

DIT 1 7 2.52 2 1.4 1 4

NOC 0 102 0.73 0 4.8 0 0

CBO 0 499 11.05 6 26.34 4 11

RFC 0 288 34.36 23 36.03 11 43

LCOM 0 6692 89.15 6 349.94 0 53

LOC 0 4541 280.07 143 411.87 52 325

Table 6.4: Descriptive Statistics of Tomcat

Metric Min. Max. Mean Median SD 25th %ile 75th %ile

WMC 0 252 12.96 7 18.62 3 14

DIT 1 6 1.69 1 1.05 1 2

NOC 0 31 0.36 0 1.97 0 0

CBO 0 109 7.57 4 11.1 2 9

RFC 0 511 33.47 17 44.98 7 40

138

6.2. Research Background

Metric Min. Max. Mean Median SD 25th %ile 75th %ile

LCOM 0 29258 176.28 4 1159.19 0 42

LOC 0 7956 350.44 112 644.84 25 373.5

Table 6.5: Descriptive Statistics of JEdit

Metric Min. Max. Mean Median SD 25th %ile 75th %ile

WMC 0 351 12.35 7 24.51 3 13

DIT 1 8 2.37 1.5 1.93 1 3

NOC 0 38 0.45 0 2.43 0 0

CBO 0 346 14.32 8.5 25 4 15

RFC 0 540 39.85 24.5 56.34 9 52.75

LCOM 0 41713 259.91 6 2184.69 1 36

LOC 1 12535 411.31 176 946.96 41.25 451

Table 6.6: Descriptive Statistics of Sakura

Metric Min. Max. Mean Median SD 25th %ile 75th %ile

WMC 2 275 17.19 9 32.78 6 14.75

DIT 0 2 0.43 0 0.59 0 1

NOC 0 14 0.38 0 1.69 0 0

CBO 0 64 5.33 2 9.4 1 6

RFC 2 275 25.35 15 33.21 8.25 35

LCOM 0 94 56.13 60 25.56 42 75

LOC 13 15227 681.5 162.5 1873.67 66.75 351.25

Following important observations can be made from these tables:

• LOC: The size of the class measured in terms of lines of code ranges from 1

to 2894 (Ivy), 0 to 4541 (Ant) and 0 to 7956 (Tomcat). This shows that while

Tomcat and Ant are medium sized software, Ivy is smaller software. But both

JEdit and Sakura are large sized software with the LOC ranging from 1 to 12535

for JEdit and 1 to 15227 for Sakura.

139

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

• NOC and DIT: The mean values of NOC for all the software are quite low. The

mean values of NOC for Ivy, Ant, Tomcat, JEdit and Sakura are 0.37, 0.73,

0.36, 0.45 and 0.38 respectively. These low values indicate that there are very

few children and inheritance is not much used in the systems. Similar results

are shown by KC1.

• LCOM: In contrast to the degree of cohesion in KC1, the maximum value of

LCOM is 11794 in Ivy, 6692 in Ant and 29258 in Tomcat. This indicates that

there is high cohesion in the systems.

6.3 Research Methodology

The basic approach followed in this work is shown in figure 6.2. Each of these steps

has been explained in detail in the subsequent sections. To begin with, we conducted

univariate analysis to determine the metrics that are significant in predicting fault

proneness. Once the significant metrics are determined, threshold values are calcu-

lated for these metrics. Validation of these threshold values are conducted using var-

ious ML techniques. Finally, the validation is carried on the same project for which

thresholds are calculated as well as on the other projects.

6.3.1 Calculation of Threshold Values

This section explains themethodology used to compute the threshold values. We have

used the Bender method [12] known as Value of an Acceptable Risk Level (VARL) to

compute the threshold values where the acceptable risk level is given by a probability

140

6.3. Research Methodology

Figure 6.2: Proposed Methodology

Po (e.g. Po = 0.05 or 0.01). For the classes with metrics values below VARL, the

risk of fault occurrence is lower than the probability, Po. In other words, Bender [12]

has suggested that the value of Po can be any probability which can be considered as

the acceptable risk level. We have calculated the results of VARL at six levels of risk

(between Po= 0.01 and Po= 0.15) and selected the most appropriate risk level.

The detailed description of VARL is given in [12]. The formula for VARL is given

as follows:

VARL = 1
β
[ln[Po

1−Po
]− α]

Where, α = constant; β = estimated coefficient; Po = acceptable risk level

In this formula, α and β are obtained using univariate LR. The example below shows

the calculation of the threshold value of CBO metric of Ivy software. Referring table

6.8 (univariate analysis for Ivy) to obtain the values of α and β, we get α = -2.598 and

β = 0.033.

141

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

VARL = 1
β
[ln[Po

1−Po
]− α]

= 1
0.033

[ln[Po
1−Po

]− (−2.598)] (the values of Po are taken between 0.01 to 0.15)

= 1
0.033

[ln[0.07
1−0.07

]− (−2.598)] (taking Po=0.07)

= 0.34

Thus, we say VARL for CBO metric at risk level of 0.07 is 0.34

6.4 Result Analysis

In this section, the results obtained of univariate and threshold analysis are explained.

Also, the results of validating the threshold values are presented in this section.

6.4.1 Univariate Analysis

Threshold values are calculated for the metrics of KC1, Ivy and JEdit. Therefore,

we conducted univariate analysis for these software to find the effect of individual

metrics on fault proneness. Tables 6.7, 6.8 and 6.9 show the coefficient (β), constant

(α), and statistical significance (Sig.) for each metric of KC1, Ivy and JEdit. The

‘Sig.’ parameter tells about the association between each metric and fault proneness.

If the ‘Sig.’ value is below or at the significance threshold of 0.05, then the metric is

said to be significant in predicting fault proneness. We can observe that for both the

software (KC1 and Ivy), LCOM, NOC, and DIT are not significant and hence are not

used for further analysis.For JEdit, NOC and DIT are found to be insignificant. The

significant metrics are shown in bold in the tables.

142

6.4. Result Analysis

Table 6.7: Univariate Analysis of KC1

Metric Sig. β α

WMC 0.021 0.028 -0.886

DIT 0.5 0.09 -0.497

NOC 0.213 -0.401 -0.332

CBO 0 0.207 -2.238

RFC 0.037 0.011 -0.785

LCOM 0.796 0.001 -0.488

LOC 0 0.005 -1.353

Table 6.8: Univariate Analysis of Ivy

Metric Sig. β α

WMC 0 0.05 -2.786

DIT 0.818 -0.032 -1.997

NOC 0.46 -0.149 -2.011

CBO 0 0.033 -2.598

RFC 0 0.023 -3.131

LCOM 0.108 0 -2.126

LOC 0 0.002 -2.874

Table 6.9: Univariate Analysis of JEdit

Metric Sig. β α

WMC 0.001 0.041 -4.486

DIT 0.696 0.061 -4.007

NOC 0.598 -0.376 -3.788

CBO 0.012 0.023 -4.259

RFC 0 0.016 -4.698

LCOM 0.003 0.001 -4.066

LOC 0.021 0.001 -4.137

143

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

6.4.2 Threshold Analysis

Wehave calculated the threshold values for themetrics that are found to be significant.

The threshold values are calculated at different Po values (between 0.01 and 0.15).

As we have discussed, Po is defined as the acceptable risk level, i.e. risk level that can

be acceptable to classify a class as non - faulty. Thus, low values of Po are desirable.

The lowest value of Po using which we get the threshold values within the observation

range (i.e. positive values) of all the metrics is considered to be the best value of Po.

The threshold values at different values of Po for all the significant metrics are shown

in tables 6.10, 6.11 and 6.12 for KC1, Ivy and JEdit. We observe that the threshold

values of all the metrics change significantly as the value of Po changes. This shows,

Po plays a significant role in calculating threshold values.

Analysis for KC1

Table 6.10 shows the results of threshold analysis for KC1. The results show that at

all levels of risks except at Po = 0.15, the VARL values of metrics are out of range

(i.e. negative values) for some of the metrics. For example, the threshold values at

Po = 0.05, 0.08 and 0.1 are outside the observation range of RFC and WMC met-

rics, whereas threshold values at Po = 0.01 lay outside the range of RFC, WMC and

LOC metrics. Thus, the thresholds at these levels of risks cannot be considered and

hence are ignored. The only risk level which gives the threshold values within the

observation range of all the metrics is 0.l5. Hence, Po = 0.15 is said to be the most

appropriate risk level for KC1. In other words, for the classes with metric values

below VARL, the risk of fault occurrence is lower than the probability of 15%. The

144

6.4. Result Analysis

threshold values of CBO, RFC, WMC and LOC at Po = 0.15 are 7.17, 2.88, 4.74 and

119.93 respectively.

Table 6.10: Thresholds at Different Risk Levels for KC1

Metric VARL at

0.01

VARL at

0.05

VARL at

0.06

VARL at

0.08

VARL at

0.1

VARL at

0.15

WMC -39.63 -14.03 -11.03 -6.24 -2.44 4.74

CBO 1.17 4.63 5.04 5.69 6.2 7.17

RFC -110.06 -44.89 -37.27 -25.06 -15.39 2.88

LOC -128.53 14.85 31.6 58.46 79.75 119.93

Analysis for Ivy

Table 6.11 shows the threshold values for the metrics of Ivy at different risk levels.

The results show that the threshold values at Po ≥ 0.07 are within the observation

range of all the metrics. Since Po is the acceptable risk level, we consider the lowest

value i.e. 0.07 as the appropriate risk level. The threshold values at 0.07 risk level

are 3.99 for WMC, 0.34 for CBO, 23.67 for RFC and 143.66 for LOC. These values

are validated on the same software as well as on two different OSS, Ant and Tomcat.

Table 6.11: Thresholds at Different Risk Levels for Ivy

Metric VARL at

0.01

VARL at

0.05

VARL at

0.06

VARL at

0.07

VARL at

0.08

VARL at

0.1

VARL at

0.15

WMC -36.18 -3.17 0.69 3.99 6.87 11.78 21.03

CBO -60.52 -10.5 -4.65 0.34 4.72 12.14 26.16

RFC -63.66 8.11 16.5 23.67 29.94 40.6 60.71

LOC -860.56 -35.22 61.23 143.66 215.83 338.39 569.7

145

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

Analysis for JEdit

The values of threshold for all the significant metrics of JEdit at different risk levels

are shown in table 6.12. We observe that among all the risk levels between 0.01

and 0.15, the risk level 0.02 gives the threshold values within the range, i.e. positive

values. This means, the classes whosemetrics values are below their threshold values,

the risk of fault occurrence is lower than 2 %. The threshold values at 0.02 risk level

are 14.49, 15.96, 50.39, 174.18 and 245.18 for themetricsWMC, CBO, RFC, LCOM,

and LOC respectively.

Table 6.12: Thresholds at Different Risk Levels for JEdit

Metric VARL at

0.01

VARL at

0.015

VARL at

0.02

VARL at

0.05

VARL at

0.06

VARL at

0.08

VARL at

0.1

VARL at

0.15

WMC -2.66 7.35 14.49 37.6 42.3 49.84 55.82 67.11

CBO -14.61 3.24 15.96 57.15 65.54 78.98 89.64 109.76

RFC 6.43 32.09 50.39 109.6 121.65 140.98 156.3 185.21

LCOM -529.12 -118.6 174.18 1121.56 1314.47 1623.65 1868.78 2331.4

LOC -458.12 -47.59 245.18 1192.56 1385.47 1694.65 1939.78 2402.4

6.5 Results Discussion

We calculated the accuracy of the models before and after converting the data into

binary. The metrics of software are converted to binary using the threshold values

of the metrics of the same software or some other similar software. If the value of a

metric is more than its threshold value, then themetric value is changed to 1 indicating

high risk and changed to 0 otherwise, indicating low risk. For example, the threshold

values are calculated for one proprietary software (KC1) and twoOSS (Ivy and JEdit).

146

6.5. Results Discussion

The threshold values of KC1 and Ivy are validated on the same software (i.e. KC1 and

Ivy respectively) and other similar software. The threshold values of Ivy are validated

on two different OSS, Ant and Tomcat. Similarly, the threshold values of JEdit are

validated on Sakura. In other words, we have conducted inter - project validation on

three software (Ant, Tomcat and Sakura). This allows to prove the effectiveness of

proposed methodology and give generalized results. Inter - project validation using

the proprietary software, KC1 is very difficult because of the two reasons: (1) we do

not have access to different proprietary data and (2) the results of proprietary software

cannot be compared with that of OSS as their building methodology and environment

are very different. The results of validation are shown in tables 6.13, 6.14, 6.15, 6.16

and 6.17. The results would be optimistic if we use the same software for training as

well as testing. Thus, we have used 10 - cross validation to obtain the results. The

performance of the binary and the non - binary models is evaluated using measures

such as sensitivity, specificity, AUC and g-mean.

6.5.1 KC1 Result Analysis

Table 6.13 shows the results of validation of binary as well as non - binary models.

The table shows that the binary models predicted using BN, NB and SVM give high

g-mean values as compared to their equivalent non - binary models. Besides this,

the binary model of SVM has also shown higher value of AUC (0.739) than its non -

binary model (0.693). The performance of other binary models is comparable to their

equivalent non - binary models. The ROC curve for the binary model predicted using

SVM is shown in figure 6.3. Thus, we conclude that thresholds are quite effective

147

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

and can be used by researchers and practitioners for alarming the classes that are at

high-risk. In addition, SVM can be used for validating the threshold values when

obtained for the metrics of some other proprietary software of similar nature.

Table 6.13: Validation Results for KC1

ML Technique Validated

Model

Sensitivity Specificity AUC G-mean Cut-off point

NB
Non-Binary 0.69 0.667 0.769 66.52 0.134

Binary 0.724 0.69 0.713 69.66 0.479

BN
Non-Binary 0.707 0.621 0.736 64.9 0.694

Binary 0.741 0.678 0.702 69.49 0.401

RF
Non-Binary 0.741 0.724 0.815 71.99 0.45

Binary 0.69 0.678 0.716 67.13 0.591

SVM
Non-Binary 0.63 0.782 0.693 69.59 0.5

Binary 0.81 0.667 0.739 72.08 0.5

MLP
Non-Binary 0.69 0.69 0.803 67.77 0.441

Binary 0.655 0.667 0.723 64.94 0.592

6.5.2 Ivy Result Analysis

Table 6.14 shows the results of validation when the thresholds of the metrics of Ivy

are validated using the same software. The table shows the performance of the binary

and the non - binary models of Ivy. Among the models predicted using non - binary

models, NB and BN have outperformed with the highest (same) values for sensitivity

(0.75), specificity (0.744) and g-mean (51.17). Besides this, their values of AUC

are also quite high (0.799 for NB and 0.791 for BN). In addition to NB and BN,

MLP has also shown high values of sensitivity (0.725), specificity (0.721) and AUC

(0.794). Among the binary models, we can see that RF and MLP have outperformed

148

6.5. Results Discussion

Figure 6.3: ROC Curves for Binary Models: (a) IVY: RF, (b) IVY: MLP, (c)
ANT: NB, (d) ANT: RF, (e) TOMCAT: NB, (f) TOMCAT: RF, (g) KC1: SVM, (h)
SAKURA: MLP

their corresponding non - binary models with higher values for specificity, AUC and

g-mean, whereas same values for sensitivity. The values of specificity, AUC and g-

mean for the binary model of RF are 0.724, 0.776 and 49.03 respectively whereas for

the binary model of MLP, the values are 0.728, 0.773 and 49.23 respectively. Their

ROC curves are shown in figure 6.3. Other binary models have shown comparative

results when compared with their corresponding non - binary models. Hence, we

concluded that our proposed methodology of using the threshold values stands strong

for Ivy software as well, in addition to KC1.

Table 6.14: Validation Results for Ivy

ML Technique Validated

Model

Sensitivity Specificity AUC G-mean Cut-off point

NB
Non-Binary 0.75 0.744 0.799 51.17 0.005

Binary 0.725 0.724 0.764 49.03 0.485

149

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

ML Technique Validated

Model

Sensitivity Specificity AUC G-mean Cut-off point

BN
Non-Binary 0.75 0.744 0.791 51.17 0.056

Binary 0.725 0.724 0.763 49.03 0.505

RF
Non-Binary 0.725 0.683 0.735 46.46 0.05

Binary 0.725 0.724 0.776 49.03 0.044

SVM
Non-Binary - - 0.5 - -

Binary - - 0.5 - -

MLP
Non-Binary 0.725 0.721 0.794 48.81 0.086

Binary 0.725 0.728 0.773 49.23 0.236

6.5.3 Inter - Project Validation

Tables 6.15, 6.16 and 6.17 show the results of inter - project validation. We conducted

inter - project validation (threshold values of metrics obtained from one software

is applied on the other software) on the projects of similar nature or having similar

characteristics. This helps to prove the effectiveness and strength of the proposed

methodology. Therefore, to conduct inter - project validation, we divided the five

OSS (Ivy, Ant, Tomcat, JEdit and Sakura) to two different categories as discussed

below. We selected these software as they are large enough to perform inter - project

validation and also their source code is available in the open source repositories.

Category 1: The three software, namely Ivy, Ant and Tomcat are categorized to-

gether as they have certain features that are common amongst them. Thus, we have

validated the threshold values of metrics of Ivy on Ant and Tomcat. In other words,

Ant and Tomcat are converted into binary using threshold values of metrics of Ivy.

Following are the features common amongst the three software:

All these are OSS, obtained from Promise data repository. They are released under

150

6.5. Results Discussion

the Apache Software License. They are written in Java programming language, i.e.

they have been developed in the same environment.

Tables 6.15 and 6.16 show the results of inter - project validation on Ant and Tomcat.

Among the non - binary models of Ant, we observe that the best results are shown by

MLP and BN with the highest values of sensitivity (0.753), specificity (0.753) and

g-mean (65.26). The AUC for MLP is highest (0.812) followed by the AUC of BN

(0.803). The binary models of NB and BN predicted have shown exactly the same

performance. Among all the binary models, RF has shown the highest specificity

(0.729), which is also higher than the specificity of its corresponding non - binary

model. Similarly, specificity of binary NB model (0.708) is also higher than its non

- binary model. Thus, overall the binary models of NB and RF have outperformed

their corresponding non - binary models. Other binary models have shown compa-

rable performance with their non - binary models. Their ROC curves are shown in

figure 6.3.

Among non - binary models of Tomcat, all the models have shown good results (ex-

cept SVM), the best being of BN andMLP. The model predicted using BN has shown

the highest sensitivity (0.753) along with the high values of AUC (0.777) and g-mean

(44.63). The model predicted using MLP has shown highest specificity (0.74), AUC

(0.801) and g-mean (46.02). Among the binary models, NB and RF have shown bet-

ter performance than their non - binary models. The binary model of NB has shown

the higher values of specificity (0.738) and g-mean (44.36), whereas the binary model

of RF has shown the higher values of sensitivity (0.792), g-mean (45.5) and the same

value of specificity (0.711). The ROC curves of NB and RF are shown in figure 6.3.

Overall, we conclude that the binary models predicted using RF, followed by NB (for

151

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

all the three software; Ivy, Ant and Tomcat) have outperformed their non - binary

models. Thus, validating the threshold values of Ivy on Ant, Tomcat and obtaining

significantly good results give us stronger confirmation and proof of the effectiveness

of the proposed methodology.

Table 6.15: Validation Results for Ant

ML Technique Validated

Model

Sensitivity Specificity AUC G-mean Cut-off point

NB
Non-Binary 0.759 0.699 0.788 61.82 0.012

Binary 0.717 0.708 0.742 60.65 0.629

BN
Non-Binary 0.753 0.753 0.803 65.26 0.113

Binary 0.717 0.708 0.745 60.65 0.631

RF
Non-Binary 0.719 0.758 0.786 64.38 0.25

Binary 0.729 0.699 0.745 60.75 0.407

SVM
Non-Binary - - 0.636 - -

Binary - - 0.717 - -

MLP
Non-Binary 0.753 0.753 0.812 65.26 0.194

Binary 0.645 0.729 0.743 59.61 0.385

Table 6.16: Validation Results for Tomcat

ML Technique Validated

Model

Sensitivity Specificity AUC G-mean Cut-off point

NB
Non-Binary 0.779 0.659 0.772 42.2 0.003

Binary 0.688 0.738 0.74 44.36 0.408

BN
Non-Binary 0.753 0.713 0.777 44.63 0.019

Binary 0.714 0.708 0.718 43.19 0.309

RF
Non-Binary 0.714 0.711 0.736 43.42 0.05

Binary 0.792 0.711 0.705 45.5 0.2

SVM
Non-Binary - - 0.5 - -

Binary - - 0.5 - -

MLP
Non-Binary 0.74 0.74 0.801 46.02 0.065

Binary 0.792 0.704 0.752 45.07 0.126

152

6.5. Results Discussion

Category 2: The two software, namely JEdit and Sakura are categorized together

as they have certain common characteristics. Thus, thresholds obtained using JEdit

software have been validated on Sakura. Following are the features common amongst

JEdit and Sakura:

The target domain of these software is same, i.e. they are text editors for program-

mers. The LOC for both these software is also similar (15227 for Sakura editor and

12535 for JEdit). Table 6.17 shows the results of inter - project validation on Sakura

using the threshold values of JEdit. We observe that the performance of the non -

binary models is well appreciating as some of the values of sensitivity and specificity

are quite low. After validating the binary models, we obtained comparable results as

are the results of non - binary models. Some of the models have also shown better

sensitivity and specificity. Due to a number of advantages of using thresholds over

the metric models (as discussed in chapter 2) for prediction of risky classes, we con-

clude that the threshold methodology should be used even if the validation results

obtained using the threshold methodology are comparable to the validation results of

metric models.

Table 6.17: Validation Results for Sakura

ML Technique Validated

Model

Sensitivity Specificity AUC G-mean Cut-off point

NB
Non-Binary 0.574 0.576 0.617 56.67 0.008

Binary 0.617 0.606 0.62 60.24 0.331

BN
Non-Binary 0.617 0.364 0.459 48.17 0.554

Binary 0.255 0.636 0.446 43.3 0.589

RF
Non-Binary 0.574 0.606 0.615 58.09 0.65

Binary 0.574 0.545 0.581 55.2 0.485

SVM
Non-Binary 0.83 0.303 0.566 59.08 0.5

Binary 0.617 0.515 0.566 55.94 0.5

153

Chapter 6. Fault Prediction Considering Threshold Effects of Object Oriented
Metrics

ML Technique Validated

Model

Sensitivity Specificity AUC G-mean Cut-off point

MLP
Non-Binary 0.553 0.576 0.459 54.48 0.554

Binary 0.617 0.545 0.586 57.4 0.482

6.6 Discussion

In this chapter, we have identified the thresholds of OO metrics for early detection

of fault prone classes. We have used a methodology based on LR to calculate the

threshold values for the metrics of a proprietary NASA dataset, KC1 and two open

source PROMISE software, Ivy and JEdit. The thresholds are calculated at different

risk levels between 0.01 to 0.15 and the performance results are compared to iden-

tify the most appropriate risk level. Using the threshold values obtained at the most

appropriate risk level, binary models are constructed and validated using various ML

techniques (BN, NB, RF, SVM and MLP). Besides this, inter - project validation

is also carried out using three OSS, Apache Ant, Apache Tomcat and Sakura. The

results of this work are summarized as follows:

1. Univariate LR is conducted to find the metrics significant in predicting fault

prone classes. As threshold values are calculated for the metrics of KC1, Ivy

and JEdit, univariate LR is applied on these software. We found CBO, RFC,

WMC and LOC to be the significant predictors of fault proneness for both the

software, KC1 and Ivy. In addition to these metrics, LCOM is also found to be

significant for JEdit. These metrics can be used by researchers in their studies

to bring out effective results.

154

6.6. Discussion

2. For KC1, the best or the most appropriate risk level that gave threshold values

of all the metrics within the observation range (i.e. positive values) is 0.15.

This means for classes with metric values lower than corresponding threshold

values, the probability of fault occurrence is lower than 15%. The threshold

values of OO metrics at risk level 0.15 are 7.17 for CBO metric, 2.88 for RFC

metric , 4.74 for WMC metric and 119.93 for LOC metric.

For Ivy, the threshold values at the risk level 0.07 and above, are within the

observation range of all the metrics. But we selected the lowest value, i.e. 0.07

as the appropriate risk level. This is because at risk level of 0.07, the risk of

fault occurrence is lower than the probability of 7%. As the value of risk level

increases, risk of fault occurrence also increases.

For JEdit, we observed that the lowest risk level for which all the threshold

values are within the range is 0.02. The threshold values at 0.02 risk level

are 14.49, 15.96, 50.39, 174.18 and 245.18 for the metrics WMC, CBO, RFC,

LCOM, and LOC respectively.

3. Inter - project validation done by validating the threshold values of Ivy on Ant

and Tomcat, whereas threshold values of JEdit on Sakura concluded that the

threshold methodology can be used on the software of similar characteristics.

155

Chapter 7

Identifying Threshold Values of

Object Oriented Metrics for Change

Prediction

7.1 Introduction

There are numerous advantages of using the threshold methodology to predict the

risky classes as discussed in chapter 2. Chapter 2 also discusses the advantages

of thresholds over the metric models to predict the classes that are more prone to

changes and faults. Despite the advantages of thresholds, the researchers have ob-

tained the threshold values of OOmetrics on quality attributes such as fault proneness

[29, 39, 69, 121, 129, 131], but no study till date has obtained the thresholds for OO

metrics to predict change proneness. Studies need be conducted to identify the poten-

tial usage of threshold values for predicting change proneness. Hence, in this chapter,

156

7.1. Introduction

the thresholds of OO metrics of two OSS, Freemind and Xerces are identified which

will be used for predicting the classes that are prone to changes. The methodology

used in this chapter is same as used in chapter 6 to calculate the threshold values of

OO metrics for change prediction. We have also identified the change prone classes

using the metric based models constructed with various ML techniques so that a com-

parison can be drawn between the two methodologies. This chapter is divided into

three main parts:

1. Assessment of the accuracy of the threshold methodology: We have validated

the models based on thresholds using various ML techniques such as AB, LB,

MLP, NB, RF and CRT. We have also validated the traditional metric based

models using the same ML techniques and compared the results. This compar-

ison allows to assess the effectiveness of the proposed threshold methodology.

2. Validation of the threshold values on different releases of the same software:

The thresholds obtained from Freemind 0.9.0 and Xerces 2.9.0 are validated

on the different releases of Freemind and Xerces software so that we can assess

the applicability of the threshold values on various releases of the software.

3. Validation of threshold values on different software: The thresholds obtained

from Freemind 0.9.0 and Xerces 2.9.0 are also validated on the similar nature

software, Frinika 0.2.0 and Xalan 2.6.0 respectively so that we can externally

validate the applicability of the identified threshold values. This allows to ob-

tain generalized and well-formed results.

The results indicate that there exist thresholds for OO metrics and these thresholds

can be applied by software engineers on similar nature software systems to find the

157

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

change prone design and code areas that may require corrective action.

This chapter is organized as follows: Section 7.2 explains the research background,

emphasizing on the variables used, empirical data collection along with the descrip-

tive statistics. Following this, we present the research methodology in section 7.3.

Section 7.4 explains the univariate and the threshold results. The results of validation

are explained in section 7.5. The comparison between binary and non - binary mod-

els is conducted in section 7.6. The results of this chapter are summarized in section

7.7. Finally, the the results of studies in literature are compared with the results of

the studies in this work in section 7.8.

The results of this chapter are published in [102].

7.2 Research Background

In this section, we have summarized the independent and dependent variables used

in this chapter. We have also explained the software used along with their descriptive

statistics. The statistical technique used and themethodology followed for calculating

the threshold values have also been explained.

7.2.1 Dependent and Independent Variables

We have used a suite of OO metrics including the popularly used CK metrics [36] as

the independent variables. For these metrics, threshold values are calculated. Using

these threshold values, the classes which are more prone to changes are identified.

Thus, the dependent variable used in this study is change proneness.

158

7.2. Research Background

7.2.2 Empirical Data Collection

This work analyses four OSS: Freemind, Frinika, Xerces and Xalan, developed us-

ing Java programming language. We investigated various releases of each software:

4 releases each of Freemind and Xerces, 2 release of Frinika and Xalan, making a

total of 12 releases. We briefly describe description each software: a) Freemind is a

mind mapper and hierarchical editor. It serves various purposes such as it keeps the

track of the projects, acts as workplace for Internet research and can be used for essay

writing and brainstorming; b) Frinika is a complete music workstation which pro-

vides the end user with a complete platform for creating music with their computers;

c) Apache Xerces is intended for creating and maintaining XML parsers and other

related software components; d) Xalan is an XSLT processor which is intended at

transformation of XML documents into HTML format, text document, or other XML

file types. We studied the widely used releases of the aforementioned software. The

summary of characteristics of each software (including the total number of classes

and the number of classes changed) is provided in chapter 2. The diagrammatic rep-

resentation of the distribution of change in each software is shown in figure 7.1. We

calculated change between the successive releases of each software. The process of

change collection is explained in detail in chapter 2.

Use of Datasets

We carried out three analyses using the datasets as explained below (see figure 7.2):

1. We computed the threshold values of OOmetrics on Freemind 0.9.0 and Xerces

2.9.0.

159

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

Figure 7.1: Representation of Change in Various Software

2. We validated the threshold values of the OO metrics on successive releases of

Freemind (0.9.1, 1.0.0) and Xerces (2.9.1, 2.10.0). It is observed in literature

that training the model from its current release (data) and validating its imme-

diate next release gives better accuracy [130, 154]. However, in this study, we

used the initial release to predict the change prone classes in the future releases.

For example, we calculated the threshold values for the metrics of initial release

of Freemind 0.9.0 and Xerces 2.9.0 and performed the validation on the subse-

quent or future releases of the respective software (i.e. Freemind 0.9.1, 1.0.0

and Xerces 2.9.1, 2.10.0). We did not train the predecessor release to validate

its next release because we did not obtain the positive values of thresholds for

Freemind 0.9.1, 1.0.0 and Xerces 2.9.1 and 2.10.0.

3. We validated the threshold values of the OO metrics of Freemind 0.9.0 and

Xerces 2.9.0 on similar nature software, Frinika 0.2.0 and Xalan 2.6.0 respec-

160

7.2. Research Background

tively. The external validation of Freemind is done on Frinika as they possess

some common characteristics such as both are open source, free, written in

Java and licensed under GNU GPL. Similarly there are common characteris-

tics between Xerces and Xalan such as both are open source, written in Java

and licensed to the Apache Software Foundation. Also their basic functionality

is similar, revolving around XML documents.

Figure 7.2: Demonstration of Training and Testing Sets

7.2.3 Descriptive Statistics

Tables 7.1, 7.2, 7.3 and 7.4 show the descriptive statistics (minimum (Min.), max-

imum (Max.), mean (Mean), median (Median) and standard deviation (SD)) which

provide significant insights and allow to infer important conclusions about all the soft-

ware used. Tables 7.1 and 7.3 show the descriptive statistics of all the four software

used; Freemind, Frinika, Xerces and Xalan. Whereas, tables 7.2 and 7.4 show the de-

scriptive statistics of various releases of Freemind and Xerces. Following important

161

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

observations can be drawn from the tables:

• The size of the software is measured in terms of LOC. The number of source

code lines for different releases of Freemind ranges from 3- 1513 (Freemind

0.9.0), 3 - 1525 (Freemind 0.9.1) and 3-1499 (Freemind 1.0.0). We can ob-

serve that maximum value of LOC for all the releases of Freemind is approx-

imately the same. For Xerces, the range of LOC is 0-7714 (Xerces 2.9.0), 0-

7814 (Xerces 2.9.1) and 0-9080 (Xerces 2.10.0). This shows that Xerces is a

medium sized software.

• The median of DIT for all the releases of Freemind and Frinika is more than 0,

i.e. 2. This indicates that at least more than half of the classes have a parent

class. Also, we observe that mean of DIT for Freemind 0.9.0, 0.9.1 and 1.0.0 is

2.39, 2.4 and 2.4 respectively, whereas, for Frinika, it is 3.32. This shows that

among the classes that have DIT more than 0, many of the classes have DIT

more than 2 (for Freemind) or 3 (for Frinika). Thus, inheritance is widely used

in these software. Similar results were shown by other studies [63, 153]. Zhou

et al. [153] examined Eclipse 2.0 and concluded that out of a total of 5,225

classes, 3,340 have a parent class. Similarly, Gyimothy et al. [63] examined

3,192 classes in Mozilla 1.6 and found that more than half of the classes were

subclasses.On the other hand, the median is 0 for all the releases of Xerces

and Xalan. Besides this, the mean is 0.6 for all releases of Xerces and 0.79

for Xalan. These values of median and mean indicate that at least half of the

classes are not using inheritance. On the remaining half of the classes, we

cannot conclude anything. Overall, we can say that Freemind and Frinika have

162

7.2. Research Background

used inheritance to a much larger extent as compared to Xerces and Xalan.

• The value of CBO which measures the interaction between the classes is high

for all the software used except Frinika (for example, it is 213 for all the releases

of Freemind, between 85 to 95 for all the releases of Xerces and 169 for Xalan.

This indicates that there is high interaction between classes.

• The LCOM metric has shown high values for all the releases of Xerces (upto

7297) and Xalan (upto 6045). Whereas, for all the releases of Freemind and

Frinika, the value of LCOM is upto 100. This shows that the classes in Xerces

and Xalan are more cohesive as compared to the classes in other two software.

Table 7.1: Descriptive Statistics of Freemind 0.9.0 and Frinika 0.2.0

Freemind 0.9.0 Frinika 0.2.0

Mean Median SD Min. Max. Mean Median SD Min. Max.

CBO 11.82 8 14.7 0 213 7.62 2 61.8 0 32

NOC 0.35 0 1.5 0 18 0.53 0 16.3 0 12

NOM 0.5 0 4.3 0 63 0.97 0 17.6 0 20

NOA 0.99 0 2.9 0 37 2.54 1 25.5 0 28

NIM 7.7 4 12.9 0 129 13.84 3 110 0 79

NIV 2.51 1 6 0 105 9.25 2 75.1 0 135

NLM 8.2 4 13.6 0 129 14.81 3 117.5 0 79

RFC 115.3 31 229.3 12 918 23.94 5 189 0 120

NLDM 0.33 0 1.2 0 21 0.79 0 17 0 9

NPRM 1.04 0 2.3 0 16 0.75 0 16.9 0 15

NPROM 0.53 0 1.9 0 23 0.36 0 16 0 10

NPM 6.29 3 11.6 0 116 12.9 3 102.8 0 73

LOC 87.71 38 156.2 3 1513 167.15 40 1319.5 3 1538

DIT 2.39 2 1.6 1 7 3.32 2 30.4 1 4

LCOM 36.55 33 36.4 0 100 93.64 50 735.3 0 100

WMC 15.47 7 28.8 0 250 28.25 6 222.9 0 163

163

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

Table 7.2: Descriptive Statistics of Various Releases of Freemind

Freemind 0.9.1 Freemind 1.0.0

Mean Median SD Min. Max. Mean Median SD Min. Max.

CBO 11.9 8 14.9 0 213 11.9 8 14.8 0 212

NOC 0.4 0 1.5 0 18 0.4 0 1.6 0 18

NOM 0.5 0 4.6 0 64 0.6 0 5.4 0 80

NOA 1 0 2.9 0 37 1.1 0 3.2 0 46

NIM 7.5 4 12 0 129 7.6 4 12.8 0 130

NIV 2.5 1 6.1 0 105 2.5 1 6.1 0 105

NLM 8 4 12.8 0 129 8.1 4 13.8 0 130

RFC 118.9 33 232.7 12 918 110.2 32.5 222.2 12 918

NLDM 0.3 0 1.3 0 21 0.3 0 1.2 0 20

NPRM 1 0 2.3 0 17 1 0 2.2 0 17

NPROM 0.6 0 1.9 0 23 0.6 0 1.9 0 23

NPM 6 3 10.6 0 116 6.3 3 11.9 0 117

LOC 87 37.5 156.4 3 1525 88 38.5 160.6 3 1499

DIT 2.4 2 1.6 1 7 2.4 2 1.5 1 7

LCOM 37.2 33 36.4 0 100 36.3 33 36.5 0 100

WMC 15.4 7 28.4 0 250 15.3 7 29 0 254

Table 7.3: Descriptive Statistics of Xerces 2.9.0 and Xalan 2.6.0

Xerces 2.9.0 Xalan 2.6.0

Mean Median SD Min. Max. Mean Median SD Min. Max.

CBO 10.4 5 13 0 88 9.53 6 15.2 0 169

NOC 0.5 0 3 0 52 0.51 0 2.2 0 29

NOM 0.9 0 3.5 0 49 0.99 0 3.9 0 67

NOA 3.6 1 11.8 0 161 11.44 0 42.4 0 334

NIM 11.8 7 14.4 0 123 9.56 4 16 0 131

NIV 3.9 1 8.5 0 78 2.59 1 4.7 0 41

NLM 12.7 8 15 0 125 10.56 5 16.2 0 132

RFC 29.2 15 39.2 0 296 25.98 16.5 33.6 0 345

NLDM 1.1 0 3.8 0 40 0.84 0 2.9 0 35

NPRM 1 0 3.1 0 29 0.64 0 1.7 0 19

164

7.2. Research Background

Xerces 2.9.0 Xalan 2.6.0

Mean Median SD Min. Max. Mean Median SD Min. Max.

NPROM 1.3 0 3.6 0 43 0.56 0 2.9 0 41

NPM 9.3 5 10.9 0 77 9 4 14.4 0 120

LOC 413.3 93.5 878.5 0 7774 437.38 128 786 0 4330

DIT 0.6 0 0.7 0 5 0.79 0 1 0 5

LCOM 139.6 13 509.5 0 7297 126.78 6.5 543.3 0 6045

WMC 12.9 8 15.4 0 126 11.36 6 16.1 0 122

Table 7.4: Descriptive Statistics of Various Releases of Xerces

Xerces 2.9.1 Xerces 2.10.0

Mean Median Std. Dev. Min. Max. Mean Median Std. Dev. Min. Max.

CBO 10.2 5 12.9 0 88 10 5 13.2 0 93

NOC 0.5 0 2.9 0 52 0.5 0 2.9 0 52

NOM 1 0 3.6 0 49 0.8 0 3.4 0 49

NOA 3.6 1 11.7 0 161 3.3 1 11.6 0 161

NIM 11.7 7 14.5 0 123 11.1 6 15.4 0 127

NIV 3.9 1 8.4 0 77 4.2 1 8.8 0 83

NLM 12.7 8 15 0 125 12.8 8 15.6 0 129

RFC 29.1 15 39 0 301 28.8 15 41.9 0 432

NLDM 1.1 0 3.8 0 40 1.1 0 3.7 0 40

NPRM 1 0 3.1 0 29 1.1 0 4.2 0 78

NPROM 1.3 0 3.6 0 44 1.3 0 3.6 0 46

NPM 9.2 5 10.9 0 77 9.5 6 11.1 0 77

LOC 415.4 96.5 889.4 0 7814 402.9 90 888.4 0 9080

DIT 0.6 0 0.7 0 5 0.6 0 0.7 0 5

LCOM 138.3 12.5 509.8 0 7297 147.3 11 576.3 0 7781

WMC 12.8 8 15.4 0 126 13.1 8 16 0 130

165

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

7.3 Research Methodology

In this section, we focus on the data analysis techniques used for validating themodels

and the methodology used for calculating the thresholds of metrics.

7.3.1 Data Analysis Techniques Used

In this study, we have used one statistical and six ML techniques to validate various

models. The statistical technique used in LR (the detailed explanation of LR is given

in chapter 2. We have used univariate LR to find the metrics that are significantly

associated with change proneness. Besides this, univariate LR is also used to find the

threshold values of variousOOmetrics. TheML techniques used are briefly described

in this section. Default setting of WEKA tool (http://www.cs.waikato.ac.nz/

ml/weka/) is used for this purpose.

• LB and AB: Boosting is a technique of converting a weak learning classifier to

a strong learning classifier [56]. In other words, we combine a number of weak

hypotheses to get a better classification performance. For this, equal weights

are assigned to all the training examples and then the weights of the incorrectly

classified examples are increased on each round so that a weak learner is forced

to focus on the hard examples in the training set. This is the main concept

behind one of the algorithms of boosting, AB. One of the variants of AB is LB.

The cost functional of LR is applied on AB algorithm to obtain LB algorithm

[123].

• NB: It is a widely used inductive learning technique for ML and data mining

166

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

7.3. Research Methodology

[150]. It is also called as a probabilistic classifier as it uses Bayes theorem for

the purpose of classification. Bayes theorem finds the probability of an event

occurring given the probability of another event that has already occurred. NB

is the simplest BN where the classification variable is the parent node [43]. All

the other variables act as child node of this parent node. Thus, unlike BNwhich

can have many parent and child nodes, NB network has only one parent node

and several child nodes as demonstrated in figure 7.3. No other connections are

permissible in a NB network. We can observe from the figure that all the child

Figure 7.3: Naive Bayes Network

nodes are independent from each other. Thus, NB is based on the assumption

of independence between the independent variables. Due to this assumption,

it has two important advantages [33]: (1) it is easy to be constructed since the

structure is known apriori and (2) it leads to efficient classification process.

• RF: It is a combination of a number of decision trees or classification trees. We

can mention the number of decision trees we want in the forest. Each tree in the

forest gives its own decision, known as the vote for that tree and the majority

wins [21]. There are various advantages of using random forest such as high

167

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

accuracy, works on large datasets, very little processing is required etc.

• MLP: It is a feedforward ANN trained with the error back propagation algo-

rithm. It is an advancement to the perceptron neural network model with one

or two hidden layers. There are two passes in the error back propagation al-

gorithm: a forward pass and a backward pass. During the forward pass, the

weights of the network are all fixed. During the backward pass, the weights

are all updated and adjusted according to the error computed. The process is

repeated until the performance is acceptable [123].

7.3.2 Calculation of Threshold Values

The Bender method known as VARL [12] which is based on LR is used for the com-

putation of threshold values. This same methodology is also used in chapter 6. Thus,

the concept, explanation and the description of VARL is provided in section 6.3.1.

7.4 Analysis of Univariate Logistic Regression andThresh-

old Methodology

In this section, we briefly discuss the results of univariate LR and threshold method-

ology. Univariate analysis of OO metrics is the initial step carried out to obtain a set

of significant metrics for which the thresholds are calculated. Then, using the thresh-

olds, we have converted the data into binary and applied CFS on the binary data to

obtain the best subset of metrics. For validating the threshold values, we constructed

various ML models for the binary datasets. We evaluated and compared the results

168

7.4. Analysis of Univariate Logistic Regression and Threshold Methodology

of validation for the binary models with the results of the non - binary models. Non

- binary models are obtained when we predict the change prone classes using the tra-

ditional metric based model building process. This basic approach followed in this

study is also explained diagrammatically in figure 7.4.

Figure 7.4: Basic Approach Followed

7.4.1 Univariate Analysis

We conducted univariate analysis to identify the metrics which are significant in pre-

dicting change proneness. For the significant metrics, the threshold values are calcu-

169

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

lated. Since, the threshold values are calculated for the metrics of Freemind 0.9.0 and

Xerces 2.9.0, univariate analysis is conducted on these software (table 7.5). For each

metric, the values of coefficient (β), constant (α), and statistical significance (Sig.)

are given. In this chapter, we are determining the significant predictors of change

proneness at the 95% confidence level (i.e. Sig. value < 0.05 for the metric to be sig-

nificant). The same confidence level is taken by number of other studies in literature

[63, 130, 129]. Table 7.5 shows the significant metrics of both Freemind and Xerces

in bold.

Table 7.5: Univariate Results

Freemind 0.9.0 Xerces 2.9.0

Metrics α β Sig. α β Sig.

CBO -3.570 0.033 0.000 -1.879 0.047 0.000

NOC -3.048 -0.095 0.620 -1.323 0.010 0.754

NOM -3.159 0.061 0.002 -1.350 0.032 0.203

NOA -3.305 0.135 0.001 -1.363 0.012 0.124

NIM -3.352 0.026 0.001 -1.769 0.031 0.000

NIV -3.141 0.022 0.213 -1.983 0.046 0.000

NLM -3.457 0.031 0.000 -1.879 0.030 0.000

RFC -3.374 0.002 0.003 -2.054 0.022 0.000

NLDM -3.260 0.316 0.003 -1.885 0.068 0.005

NPRM -3.463 0.214 0.000 -1.792 0.143 0.000

NPROM -3.282 0.214 0.000 -1.91 0.102 0.000

NPM -3.332 0.029 0.001 -1.742 0.022 0.008

LOC -3.475 0.003 0.000 -1.770 0.001 0.000

DIT -3.674 0.225 0.056 -1.739 0.515 0.000

LCOM -3.925 0.018 0.001 -1.758 0.003 0.001

WMC -3.486 0.016 0.000 -1.846 0.036 0.000

170

7.4. Analysis of Univariate Logistic Regression and Threshold Methodology

7.4.2 Threshold Analysis

For the significant metrics of Freemind 0.9.0 and Xerces 2.9.0, the threshold values

are calculated at different risk levels (Po values), i.e. 0.01, 0.05, 0.08 and 0.1 (ta-

bles 7.6 and 7.7 respectively). We can see from tables 7.6 and 7.7 that VARL varies

largely as the value of Po changes. For a small increase in the value of Po, VARL

increases to a large extent. This shows that Po plays a significant role in calculating

threshold values. Table 7.6 shows that the threshold values at Po = 0.01 lay outside

the observation range of all metrics (negative values); therefore, we cannot use the

thresholds at this level. Similarly, for Xerces, the threshold values at 0.01, 0.05 and

0.08 are outside the observation range. Thus, the potential threshold values for Free-

mind are at Po = 0.05, 0.08 and 0.1. For Xerces, the threshold values at Po = 0.1 are

considered.

Table 7.6: Threshold Values of Freemind 0.9.0

Metrics VARL at 0.01 VARL at 0.05 VARL at 0.08 VARL at 0.1

CBO -31.064 18.956 34.171 41.599

NOM -23.543 3.517 11.748 15.767

NOA -9.556 2.671 6.39 8.206

NIM -47.812 15.675 34.987 44.414

NLM -36.714 16.534 32.731 40.638

RFC -610.56 214.781 465.826 588.388

NLDM -4.225 0.999 2.588 3.363

NPRM -5.29 2.423 4.769 5.915

NPROM -6.136 1.577 3.924 5.069

NPM -43.556 13.364 30.678 39.13

LOC -373.373 176.854 344.218 425.925

LCOM -37.229 54.476 82.37 95.988

WMC -69.32 33.848 65.228 80.548

171

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

Table 7.7: Threshold Values of Xerces 2.9.0

Metrics VARL at 0.01 VARL at 0.05 VARL at 0.08 VARL at 0.1

CBO -57.79 -22.669 -11.986 3.072

NOM -91.165 -37.917 -21.721 1.11

NOA -56.785 -20.901 -9.986 5.4

NIM -90.637 -35.615 -18.878 4.713

NLM -115.505 -40.474 -17.652 14.518

RFC -39.855 -15.58 -8.196 2.212

NLDM -19.602 -8.059 -4.548 0.401

NPRM -26.325 -10.142 -5.219 1.72

NPROM -129.687 -54.656 -31.834 0.336

NPM -2825.12 -1174.44 -672.347 35.399

LOC -5.546 -2.341 -1.366 0.009

LCOM -945.707 -395.48 -228.116 7.8

WMC -76.364 -30.512 -16.565 3.094

7.5 Validation Result Analysis

To assess the effectiveness of threshold values, we constructed the models using var-

ious ML techniques and evaluated their performance using various measures such as

AUC, sensitivity (Sens.), specificity (Spec.) and g-mean (GM). In other words, we

converted the data into binary using the threshold values at different Po values and

then constructed ML models for this binary data. If the values of a particular metric

are above its corresponding threshold values, then the metric values are changed to 1

(referring that it can be more change prone), else 0. For example, if threshold of CBO

= 3.072 (table 7.7), then the values above 3.072 are converted to 1 and the values less

than 3.072 are converted to 0. After converting the data to binary, CFS is applied to

obtain the best subset of metrics. As discussed in section 7.4.2, the potential thresh-

172

7.5. Validation Result Analysis

old values for Freemind are obtained at Po = 0.05, 0.08 and 0.1. Thus, three sets of

binary data are obtained at each Po value and CFS is applied on each binary set. For

Xerces 2.9.0, CFS is applied on only a single binary data obtained at Po=0.1. Table

7.8 lists the metrics selected by CFS for all the binary datasets of Freemind 0.9.0 and

Xerces 2.9.0.

Table 7.8: Metrics selected by CFS

Software Metrics selected

Freemind 0.9.0

At 0.05 CBO, NLM, NPROM, WMC

At 0.08 CBO, NOA, NLM, NLDM, NPRM, NPROM, WMC

At 0.1 NOM, NOA, NLDM, NPRM, NPROM, WMC

Xerces 2.9.0

At 0.1 NIV, NPROM, CBO, RFC, NPM

Inter-release validation

Freemind 0.9.1 CBO, NPM

Freemind 1.0.0 NLDM, NPROM, NPM, LCOM, WMC

Xerces 2.9.1 CBO, RFC, LOC

Xerces 2.10.0 NLDM, WMC, CBO, RFC, NPM, LOC

External Validation

Frinika 0.2.0 CBO, NLDM, LOC, LCOM

Xalan 2.6.0 NPRM, NPROM, RFC, NPM, LOC

For Freemind, to identify the most appropriate Po value, we validate the threshold

values at each of these Po values on Freemind 0.9.0. In other words, we constructed

variousMLmodels to predict the change prone classes of the same release as onwhich

the thresholds are determined (table 7.9). The Po at which the ML models show the

best performance is selected as the most appropriate Po value (table 7.10). Then, the

threshold values at that Po value are validated on different releases of Freemind (table

7.11).

173

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

Similarly for Xerces, the only potential threshold values are obtained at Po = 0.1

(discussed in section 7.4.2). Thus, we used the thresholds at 0.1 to predict the change

prone classes of the same release (Xerces 2.9.0) and different releases of Xerces (table

7.12).

In this section, we discuss the results of validation of both Freemind and Xerces. The

validation methodology is also shown diagrammatically in figure 7.5.

Figure 7.5: Threshold Validation Methodology

174

7.5. Validation Result Analysis

7.5.1 Results of Validation of Freemind

Table 7.9 shows the results of validation at different Po values (0.05, 0.08 and 0.1).

To select the most suitable Po value, we compared the AUC, sensitivity, specificity

and g-mean values across the three Po values for all the ML techniques. Table 7.9

shows that CRT has given consistent result for all the Po values. Thus, we have

compared the performance of the other five ML techniques at different Po values.

Table 7.10 demonstrates the results of comparison. In table 7.10, a value 1 in each

(Po - performancemeasure) cell represents that for a given technique, the result is best

at that Po value for the performance measure, vis-a-vis the result at other Po values for

the same performance measure. For example, AB, LB and MLP have shown higher

values of AUC at 0.05 as compared to 0.08 or 0.1, therefore the value of cell for

performance measure AUC at Po = 0.05 in table 7.10 is 3. Similarly, the values of

sensitivity for all the ML techniques are higher at 0.05 than at 0.08 or 0.1, therefore

the value of cell for sensitivity at 0.05 is 5. Overall, the best results are obtained

at Po = 0.05 for 3 out of 4 performance measures (AUC, sensitivity and g-mean).

The other Po values have the best results for 1 performance measure each. Thus, we

concluded that the threshold values at 0.05 are most suitable for predicting change

prone classes. We used these threshold values to predict the change prone classes of

different releases of Freemind as well change prone classes of a different software.

At 0.05, MLP has shown the best results with the highest values of AUC, sensitivity

and g-mean.

175

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

Table 7.9: Validation Results of Various Threshold levels on Freemind

Technique
Freemind 0.9 (Po=0.05) Freemind 0.9 (Po=0.08) Freemind 0.9 (Po=0.10)

AUC Sens.

%

Spec.

%

GM

%

AUC Sens.

%

Spec.

%

GM

%

AUC Sens.

%

Spec.

%

GM

%

AB 0.68 72.4 79.7 75.9 0.655 62.1 79.9 69.9 0.669 58.6 81.7 68.2

LB 0.67 72.4 79.4 75.8 0.619 55.2 86.8 67.5 0.624 55.2 91.1 68.7

MLP 0.716 72.4 79.9 76 0.672 72.4 61.4 66.5 0.645 69 54.5 60.9

NB 0.686 72.4 78.6 75.4 0.716 69 85.8 76.5 0.695 65.5 81.3 72.6

RF 0.632 65.5 83.4 73.4 0.636 58.6 89.6 70.9 0.651 55.2 91.2 68.8

CRT 0.68 69 80.9 74.4 0.68 69 80.9 74.4 0.68 69 80.9 74.4

Table 7.10: Selection of Best Po for Freemind

Po / Performance

Measure

AUC Sens. Spec. GM

0.05 3 5 1 3

0.08 2 1 1 3

0.1 1 0 4 0

Inter - Release Validation of Freemind

Table 7.11 shows the results of validating the threshold values of metrics of Free-

mind 0.9.0 on the different releases, Freemind 0.9.1 and 1.0.0. Since, the thresh-

old values at 0.05 are found to be most suitable, the metrics of Freemind 0.9.1 and

1.0.0 are converted to binary using these threshold values. CFS is again applied on

the binary datasets (of different releases) and the metrics selected to predict change

proneness are listed in table 7.8. For Freemind 0.9.1, CRT has shown the highest

AUC, specificity and g-mean. MLP follows CRT by giving the highest value for

sensitivity, whereas second highest values for all the other measures. Similarly, for

Freemind1.0.0, CRT outperformed other models with the highest values of all the

176

7.5. Validation Result Analysis

measures. MLP has shown the second best performance. Thus, we concluded that

for validating the threshold values when applied on different releases of Freemind

or similar software, CRT and MLP may be used. Researchers and practitioners may

apply the thresholds obtained from a particular release on the successive releases to

alarm the classes that fall outside the acceptable risk level.

Table 7.11: Validation Results of Potential Thresholds on Freemind

Software Freemind 0.9.1 Freemind 1.0.0

Technique AUC Sens.

%

Spec.

%

GM

%

AUC Sens.

%

Spec.

%

GM

%

AB 0.661 60.2 64.7 62.3 0.643 70.1 54 61

LB 0.659 60.2 64.9 62.4 0.658 62.9 69 65.8

MLP 0.716 65.3 65.7 76 0.685 63 70.9 66.2

NB 0.665 62.7 65.3 64 0.662 62.9 69 65.8

RF 0.678 61 65.1 63.3 0.67 59.3 70.8 64.5

CRT 0.69 63.6 80 70.8 0.718 63.94 80.79 72.4

7.5.2 Results of Validation of Xerces

For Xerces, only the potential threshold values are found at Po = 0.1. Thus, we val-

idated these threshold values on the same release, i.e. Xerces 2.9.0 and the other

releases, i.e. Xerces 2.9.1 and 2.10.0. In other words, we converted the metrics of

Xerces 2.9.1 and 2.10.0 to binary using the threshold values and CFS is applied to

the binary datasets (table 6.8). Then different ML models are constructed to validate

the threshold values (table 7.12). For Xerces 2.9.0, MLP and CRT outperformed the

other models. MLP has shown the highest AUC and specificity, whereas CRT has

shown the highest sensitivity and g-mean. For Xerces 2.9.1, MLP outperformed the

other models with the highest value of AUC, sensitivity and g-mean. Its specificity

177

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

value is also the second highest (76.6%). For Xerces 2.10.0, MLP has again outper-

formed with the highest values of AUC, specificity and g-mean. Other model have

shown comparable performance for all the binary datasets. We concluded that MLP

and CRT can be used by researchers to validate the threshold values. When validat-

ing different releases, we obtained comparable or even better results of performance

measures. For example, Xerces 2.10.0 has shown higher AUC and sensitivity for all

the ML techniques than the values obtained for Xerces 2.9.0. Xerces 2.9.1 has shown

higher specificity values of all the classifiers as compared to the specificity values

of Xerces 2.9.0. The better values of performance measures on different releases in-

dicate that the thresholds can be effectively used on different releases of the same

software.

Table 7.12: Validation Results of Potential Thresholds on Xerces

Technique Xerces 2.9.0 Xerces 2.9.1 Xerces 2.10.0

AUC Sens.

%

Spec.

%

GM

%

AUC Sens.

%

Spec.

%

GM

%

AUC Sens.

%

Spec.

%

GM

%

AB 0.758 77.5 62.9 69.5 0.713 61.6 77.3 68.6 0.818 91.9 66.1 76.9

LB 0.756 79.2 62.1 69.6 0.707 61.6 77.3 68.6 0.824 91.9 67.2 77.6

MLP 0.758 70.8 67.4 69.1 0.719 63.3 76.6 69.3 0.836 87.8 70.9 78.5

NB 0.754 79.2 61.4 69.2 0.712 61.2 77.7 68.5 0.825 91.9 67.6 77.9

RF 0.751 75.8 66.7 71 0.71 70.7 66.9 68.8 0.823 91.9 67.4 77.8

CRT 0.749 79.2 62.94 70.13 0.707 61.6 77.3 68.6 0.776 91.9 66.7 77.3

7.5.3 External Validation

For evaluating the prediction accuracy of the thresholds, they are also validated on

different software, Frinika and Xalan. The threshold values of the metrics of Free-

mind 0.9.0 are evaluated on Frinika 0.2.0 and the threshold values of the metrics of

178

7.6. Comparison with non-binary models using statistical tests

Xerces 2.9.0 are evaluated on Xalan 0.6.0. This is termed as external validation. The

results of the CFS on their binary datasets are given in table 7.8. Table 7.13 presents

the results for external validation. We observed that the results of validating Frinika

are almost similar for all the techniques. LB, MLP, NB and RF have shown exactly

the same results for sensitivity (66.7%), specificity (63.1%) and g-mean (64.8). Over-

all, we can say that we obtained competitive and consistent results for Frinika. On

validating the threshold values of Xerces on Xalan, MLP has shown highest AUC,

sensitivity and g-mean. Other techniques including AB, NB and RF have shown good

and comparable performance. Thus, MLP can be used for validating the thresholds

on different software.

Table 7.13: External Validation

Software Frinika 0.2.0 Xalan 2.6.0

Technique AUC Sens.

%

Spec.

%

GM

%

AUC Sens.

%

Spec.

%

GM

%

AB 0.637 64.3 63.1 63.7 0.701 60.1 74.2 66.4

LB 0.621 66.7 63.1 64.8 0.705 59.9 75.8 66.9

MLP 0.638 66.7 63.1 64.8 0.707 72.2 63.1 67.3

NB 0.628 66.7 63.1 64.8 0.697 61.9 72.3 66.7

RF 0.607 66.7 63.1 64.8 0.697 60.3 74.6 66.7

CRT 0.612 66.7 63.1 64.8 0.669 63.7 65.8 64.7

7.6 Comparison with non-binary models using statis-

tical tests

Since the proposed methodology of identifying change prone classes using the thresh-

olds of metrics is a relatively newer technique than the traditional metric model build-

179

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

ing, thus, it is very essential to judge the effectiveness and accuracy of the thresholds.

For this, we constructed the ML models for predicting change proneness for non-

binary data as well. The models are constructed using the metrics selected by CFS

(table 7.14). The construction of non-binary models means the construction of tradi-

tional metric based models without any inclusion of the threshold values. Whereas,

in section 7.5, we discussed the performance of various binary models (binary data is

obtained by applying the threshold values of metrics). Hence, the intent is to evaluate

whether the performance of binary models is comparable to non - binary models. The

performance of non - binary models is evaluated using AUC. We compared the AUC

of both binary as well as non-binary models.

Table 7.14: Metrics Selected by CFS (of Various Non - Binary Models)

Software Metrics selected

Freemind 0.9.0 RFC, NPRM, NPROM, NLDM, WMC

Xerces 2.9.0 NIV, NPRM, CBO, RFC, NPM, LOC

Frinika 0.2.0 NOA, NPRM, LCOM

Xalan 2.6.0 NPROM, RFC, LCOM, LOC, NOM, NOA

We checked if there is a significant difference in the performance of both the

types of models using a statistical test known as Wilcoxon Signed Rank test. The

detailed description of Wilcoxon Signed Rank test is given in chapter 2. If the binary

models give comparable results with the non - binary models, we conclude that the

threshold methodology is effective. The intent here is not to demonstrate that binary

models outperform the non - binary models, but instead, we are only comparing the

performance of both the types ofmodels. If comparable performance is achieved, then

researchers may use the thresholds of metrics for predicting change proneness as there

180

7.6. Comparison with non-binary models using statistical tests

are various advantages of using thresholds over traditional metric model building.

The results of comparison between the binary and non - binary models are shown

in figures 7.6 and 7.7. The significance value for each of the comparison is shown in

brackets. Figure 7.6 shows that the significance level obtained when the binary mod-

els of Freemind 0.9.0 and 1.0.0 are compared with their non - binary models is more

than 0.05. Thus, null hypothesis is accepted, i.e. there is no significant difference in

the performance of binary and non - binary models of Freemind 0.9.0 and 1.0.0. But,

the significance level obtained when the binary models of Freemind 0.9.1 and Frinika

0.2.0 are compared with their non - binary models is less than 0.05, concluding that

there is significant difference in the performance of binary and non - binary models.

Now, based on the sum of the ranks (given byWilcoxon Signed Rank test), the results

show that the binary models of Freemind 0.9.1 are significantly better than the com-

pared non - binary models whereas, the reverse is true in case of Frinika 0.2.0. Figure

7.7 shows that the significance level obtained when the binary models of all Xerces

and Xalan datasets are compared with their non - binary models is more than 0.05.

This concludes that there is no significant difference in the performance of binary as

well as non - binary models.

Overall, based on the results of comparison in figures 7.6 and 7.7, we concluded

that there is no significant difference between the performance of binary and non-

binary models.This shows the threshold methodology can be effectively utilized to

identify change prone classes in the upcoming releases of the same software or other

similar software.

↑ binary models significantly better than the compared non binary models,↑ bi-

nary models better than the compared non binary models, ↓ binary models signifi-

181

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

cantly worse than the compared non binary models, ↓ binary models worse than the

compared non binary models, = implies same (equal)performance

Figure 7.6: Results of Wilcoxon Test on Freemind and Frinika

Figure 7.7: Results of Wilcoxon Test on Xerces and Xalan

7.7 Discussion

In this chapter, we have studied and calculated the threshold values for various OO

metrics. The classes whose OOmetrics exceed the threshold values (alarming values)

can be selected for focussed attention to improve the quality. A statistical methodol-

ogy based on LR is used to calculate the threshold values of various OO metrics of

two OSS, Freemind 0.9.0 and Xerces 2.9.0. The threshold values are validated using

different ML techniques such as AB, LB, MLP, NB, RF and CRT. The important

observations from this chapter can be summarized as:

1. The results of univariate LR showed that there is a significant relationship be-

tween the metrics and change proneness. Majority of the metrics are found to

be significant in predicting change proneness.

182

7.8. Comparison with Studies in Literature

2. There are effective threshold values for the OO metrics and there is significant

effect of Po values on the threshold values. Threshold values change as we

change the value of risk level (Po). Thus, risk level plays an important role in

the calculation of threshold values and should be taken into consideration. For

Freemind, Po= 0.05 is found to be the most appropriate, whereas for Xerces ,

Po= 0.1 is found to be appropriate.

3. The effectiveness of the proposed threshold methodology is judged on various

releases of Freemind (Freemind 0.9.1, 1.0.0) and Xerces (2.9.1, 2.10.0). In

addition to this, external validation on two different software, Frinika 0.2.0 and

Xalan 2.6.0 is also carried out. Among a number of ML techniques used, MLP

and CRT can be used for validating different releases of Freemind and Xerces

as well as different software.

4. The performance of binary models is compared with the performance of non

- binary models (models without thresholds) using a statistical test known as

Wilcoxon signed rank test. The results of the test showed that there is no sig-

nificant difference in the performance of binary and non - binary models. This

shows that the threshold methodology can be effectively utilized on upcoming

or the future releases of software.

7.8 Comparison with Studies in Literature

In this section, we compare the results of this work with the results of the previous

studies. We have compared the results with respect to the following perspectives:

183

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

1. Univariate results: The comparison of the univariate analysis allows to identify

the metrics which are significant in predicting change proneness.

2. Model Validation Results: The comparison of the model validation results al-

lows to identify the techniques which outperform the other techniques and thus,

can be used for the purpose ofmodel construction for classifying the classes into

change and non - change prone categories.

3. Threshold Results: This comparison allows to explore the threshold methodol-

ogy used in other related studies.

7.8.1 Comparison of Univariate Results

Although there are a number of empirical studies that have constructed or proposed

various models for predicting change prone classes, but very few studies have related

OO metrics with change proneness. In other words, the univariate analysis which

identifies the metrics which are significant predictors of change proneness is not con-

ducted by many studies. Thus, the literature does not allow to conclude the signif-

icant predictors of change proneness. To the best of our knowledge, only the study

by Zhou et al. [153] has related OO metrics with change proneness using univariate

analysis. In this section, we compare the univariate results of this study [153] with

the univariate results obtained in this work. The comparison will provide important

insights about the relationship between independent and dependent variables. Table

7.15 shows the univariate results of the metrics of various software used in this work

along with the univariate results of the study by Zhou et al. [153]. For the purpose

of comparison, we can observe from the table that the univariate results of only the

184

7.8. Comparison with Studies in Literature

popularly used CK metrics [36] and LOC are presented. Other OO metrics are not

used in every study of this work and also are not used by Zhou et al.[153]. Thus,

inclusion of such metrics will not allow lead to fair comparison. Table 8.11 shows

that for all the software, CBO, WMC and LOC are positively significant to change

proneness. This implies that as the value of each of these metric increases, the extent

of change proneness also increases. Similarly, RFC is also found to be significantly

associated with change proneness in all the software except for all of the releases of

Android. LCOM has also shown the similar result, i.e. it is found to be a signifi-

cant predictor of change proneness in most of the software except for KC1 and Ivy.

Similar results are also observed by the study in literature [153] , CBO, LCOM and

RFC are found to be significant predictors of change proneness (WMC and LOC are

not used in this study). The metric, NOC is mostly found to be insignificant in this

work except for few releases of Android, whereas it is found to be significant in the

study in literature [153]. We can observe from the table that the inverse relationship

with change proneness is only shown by DIT. In other words, DIT is the only metric

which is significant to change proneness but in an inverse manner. This implies that

as the value of DIT increases, the extent of change proneness decreases. Overall, we

can make the following two conclusions from this comparison:

1. All the metrics are either positively related to change proneness or are not re-

lated at all (insignificant), except for DIT which showed negative impact on

change proneness.

2. CBO,WMC, LOC, RFC and LCOM are significant predictors of change prone-

ness. These metrics can be used by researchers and practitioners while con-

185

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

structing various models for predicting change prone classes.

7.8.2 Comparison of Model Validation Results

There are very few studies in literature which have constructed prediction models

using various ML techniques. We found that there are only two studies [58, 124]

which have constructed ML models for predicting the classes which are more prone

to changes. Thus, we compare the performance of the models in these studies with

the performance of the ML models constructed in this work. For the purpose of eval-

uation, we have compared the performance using the performance measure, AUC as

this measure is used by all the studies under the comparison. Besides this, AUC has

a number of advantages over other performance measures such as it handles imbal-

anced and noisy data etc. which makes it an accurate performance measure. In this

work, we found that the models predicted using RF, bagging and MLP (ANN) out-

performed the other models predicted using different ML techniques. The primary

reason for RF and bagging to outperform is the fact that they reduce the variance as-

sociated with the prediction. This is due to the reason that they are ensemble learners

which combine multiple classifiers to improve the accuracy and the final outcome is

the majority vote of the prediction results of all the classifiers. As the variance re-

duces, the over - fitting decreases which inturn leads the prediction error to decrease.

Thus, overall it leads to improvement in the performance.

186

7.8. Comparison with Studies in Literature

Ta
bl
e
7.
15
:U

ni
va
ria
te
Re
su
lts

Co
m
pa
ris
on

M
et
ric
s/

So
ft-

w
ar
e

Re
su
lts

of
th
is
w
or
k

Li
te
ra
tu
re
re
su
lts
:

Zh
ou

et
al
.[
15
3]

JT
re
eV
ie
w

A
nd
ro
id
2.
3

A
nd
ro
id
4.
0

A
nd
ro
id
4.
1

A
nd
ro
id
4.
2

A
nd
ro
id
4.
3

K
C1

Iv
y

JE
di
t

Fr
ee
m
in
d

X
er
ce
s

Ec
lip
se

CB
O

+
+

+
+

+
+

+
+

+
+

+
+

N
O
C

0
+

0
+

0
0

0
0

0
0

0
+

W
M
C

*
+

+
+

+
+

+
+

+
+

+
*

D
IT

0
-

-
-

-
-

0
0

0
0

+
+

LC
O
M

+
+

+
+

+
+

0
0

+
+

+
+

RF
C

+
0

0
0

0
0

+
+

+
+

+
+

LO
C

+
+

+
+

+
+

+
+

+
+

+
*

‘+
’s
ho
w
st
ha
tt
he

m
et
ric

is
sig

ni
fic
an
tt
o
ch
an
ge

pr
on
en
es
s

‘-’
sh
ow

st
ha
tt
he

m
et
ric

is
sig

ni
fic
an
tt
o
ch
an
ge

pr
on
en
es
sb

ut
in
an

in
ve
rs
e
m
an
ne
r

’*
’s
ho
w
st
ha
tt
he

m
et
ric

is
no
tu
se
d
in
th
e
stu

dy

‘0
’s
ho
w
st
ha
tt
he

m
et
ric

is
in
sig

ni
fic
an
t

187

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

Besides this, we noticed that the type of relationship between the independent and

the dependent variables used in this study is unknown. In other words, it is highly

non - linear and complex. For such type of data, RF and ANN are recommended as

they are widely used to perform non - linear and statistical modeling [139]. In simple

words, they have the implicit ability to detect non - linear relationships between the

dependent and the independent variables. Thus, we found that RF, bagging and MLP

have performed well on the datasets used in this study. In contrast, the studies in

literature have shown the superior performance of the Bayesian models over the other

ML models. Bayesian models which also include NB model have shown moderate

performance on the datasets used in this work. Thus, we conclude that the researchers

may use the prediction models constructed using RF, bagging and MLP (ANN) for

classifying the classes into change and non - prone categories. These models can

further be used to predict or classify the change prone of some other similar nature

software as well.

7.8.3 Comparison of Threshold Results

To the best of the knowledge, we found that there is no study in literature which

has explored the use of thresholds for predicting change prone classes. However,

there is one study by Shatnawi [129] which has used thresholds to predict fault prone

classes. Thus, we compare this study with one of our studies [100] where we have

used thresholds to predict fault prone classes. Below, we discuss the main highlights

of both the studies. They are also summarized in table 7.16.

1. Discussion of study by Shatnawi [129]:

188

7.8. Comparison with Studies in Literature

• Calculated the threshold values of CK metrics [36] of Eclipse software

using the statistical methodology proposed by Bender [12].

• Calculated the thresholds at different risk levels (Po): 0.05, 0.06, 0.065,

0.075, 0.10.

• Found acceptable threshold values at risk level 0.06 and above. Assessed

the effectiveness of these thresholds to identify the fault-prone classes

using the CART decision trees.

2. Discussion of our study [100]:

• Calculated the threshold values of CK [36] and LOCmetrics of three soft-

ware (KC1, Ivy, JEdit) using the same statistical methodology as is used

in [129].

• Calculated the thresholds at different risk levels (Po): 0.01, 0.015, 0.02,

0.05, 0.06, 0.08, 0.10, 0.015.

• Found acceptable threshold values at different risk levels depending on

the software. For KC1, acceptable risk level obtained is 0.15, for Ivy, it

is 0.07 and for JEdit, it is 0.02.

• Assessed the effectiveness of these thresholds to identify the fault-prone

classes using various ML techniques: NB, BN, RF, SVM and MLP.

We have not compared the threshold values of metrics obtained in both the studies as

the thresholds are highly dependent on software used (threshold values depend on the

values of constant and coefficient of each metric which vary according to software).

189

Chapter 7. Identifying Threshold Values of Object Oriented Metrics for Change
Prediction

In both the studies under comparison, different software are used and thus, the com-

parison of thresholds is not appreciated. In other words, we can only compare the

threshold values of metrics of similar nature software.

Table 7.16: Comparison of Studies Exploring Threshold Methodology

Characteristics Shatnawi [129] Our Work[100]

Software Eclipse KC1, Ivy, JEdit

Metrics Used CBO, RFC, WMC, DIT, NOC CBO, RFC, WMC, DIT, NOC, LCOM, LOC

Significant Metrics

CBO, RFC, WMC KC1: CBO, RFC, WMC,LOC

Ivy: CBO, RFC, WMC,LOC

JEdit: CBO, RFC, WMC, LOC, LCOM

Po values 0.05, 0.06, 0.065, 0.075, 0.1 0.01, 0.05, 0.06, 0.08, 0.1, 0.15

Threshold Methodology Value of Acceptable Risk Level

(VARL)

Value of Acceptable Risk Level (VARL)

190

Chapter 8

Identifying Threshold Values Using

Receiver Operating Characteristics

Curve

8.1 Introduction

The risk indicators or threshold values of various OO metrics can be identified which

may be used for prediction of change and fault prone classes. There are two ap-

proaches identified for the threshold computation. One of the approaches is based

on a statistical LR technique, whereas, the other approach makes the usage of ROC

curves for the computation of the threshold values. The statistical LR approach has

been discussed and used in chapters 6 and 7.

In this chapter, we have used the methodology based on ROC curves to compute the

threshold values of various OO metrics. This technique has only been used by Shat-

191

Chapter 8. Identifying Threshold Values Using Receiver Operating Characteristics
Curve

nawi et al. [131] to identify the threshold values of OO metrics. Besides the work by

Shatnawi et al. [131], this technique is not used in the field of Software Engineering

and is only used in the field of Medical Science to make decisions. Besides this, to

assess the effectiveness of both the approaches, we have also calculated the thresh-

olds using the statistical approach and compared the results. We found that the ROC

methodology is more effective than the methodology based on LR and can be used

by researchers to calculate the threshold values.

The threshold values are calculated for the metrics of an open source, Linux based

operating system, Android. The change data is collected from five official releases of

Android (2.3, 4.0, 4.1, 4.2 and 4.3). The thresholds are calculated for the metrics of

various releases and validated on their immediate successor releases. In other words,

inter - release validation is carried out, i.e. the threshold models obtained from the

data of a particular release are used to predict the change prone classes of the imme-

diate successor release.

This chapter is organized as follows. Section 8.2 focuses on the independent and de-

pendent variables used in this chapter. Section 8.3 describes in detail the empirical

data collection method, along with the descriptive statistics of all the independent

variables. Section 8.4 describes the methodology to calculate the threshold values.

The results of the study are summarized in section 8.5, which also includes the results

of inter - release validation. In section 8.6, the thresholds are found using the statisti-

cal approach and a comparison is drawn between the two methodologies. Finally, in

section 8.7, we summarize the results of this chapter.

192

8.2. Independent and Dependent Variables

8.2 Independent and Dependent Variables

The threshold values are calculated for a suite of metrics consisting of 15 OO metrics

including six CK metrics [36]. Thus, these are the independent variables in this work

and the dependent variable is change proneness. Thus, using the threshold values of

metrics, the change prone classes are predicted.

8.3 Research Methodology

In this section, we have explained the data used for empirical validation along with

the descriptive statistics of various independent variables used.

8.3.1 Empirical Data Collection

In this study, we have used six widely used releases of an open source; Linux based

operating system, Android. The releases used in this work are the same as were used

in chapter 5, i.e. Android 2.3 (Gingerbread), 4.0 (Ice cream Sandwich), 4.1 (Jelly-

Bean), 4.2 (JellyBean), 4.3 (JellyBean) and 4.4 (KitKat). The criteria for selection of

these releases are explained in chapter 5. The details of each release which include

the total number of classes and the number of classes changed are given in chapter 2.

8.3.2 Descriptive Statistics

We calculated different statistics which include mean (Mean), median (Median), stan-

dard deviation (SD), skewness (Skew.), kurtosis (Kurtosis), minimum (Min.), maxi-

mum (Max.), and percentiles (25%ile and 75%ile) of all the metrics used (tables 8.1,

193

Chapter 8. Identifying Threshold Values Using Receiver Operating Characteristics
Curve

8.2, 8.3, 8.4 and 8.5). From the tables, we observed some important characteristics

of different parameters such as size, inheritance, coupling, cohesion etc. as discussed

below:

Table 8.1: Descriptive Statistics of Android 2.3

Metrics Mean Median SD Skew. Kurtosis Min. Max. 25th

%ile

75th

%ile

CBO 6.5 4 9.9 4.89 38.36 0 150 1 8

NOC 0.96 0 7.8 17 325.36 0 178 0 0

NOM 1.54 0 7.23 13.59 261.4 0 188 0 1

NOA 4.63 0 16.13 9.04 112.38 0 302 0 3

NIM 10.1 4 23.02 8.29 94.97 0 339 2 10

NIV 3.62 1 8.89 7.94 87.06 0 130 0 4

NLM 11.63 5 24.5 7.62 81.86 0 347 2 11

RFC 59.42 13 127.34 3.13 9.91 0 850 4 35

NPRM 1.81 0 7.15 12.68 224.53 0 148 0 1

NPROM 0.65 0 2.83 13.9 277.29 0 71 0 0

NPM 8.35 4 16.98 6.57 61.12 0 252 2 8

LOC 169.16 48 414.83 8.35 111.23 1 9753 17 147

DIT 2.1 2 1.45 1.4 1.09 1 7 1 3

WMC 26.41 8 72.69 10.47 173.3 0 1983 3 24

LCOM 45.85 50 38.38 -0.04 -1.6 0 100 0 83

Table 8.2: Descriptive Statistics of Android 4.0

Metrics Mean Median SD Skew. Kurtosis Min. Max. 25th

%ile

75th

%ile

CBO 6.91 4 10.48 5 42.61 0 167 1 8

NOC 0.98 0 9.01 20.76 513.67 0 289 0 0

NOM 1.4 0 6.58 13.83 278.6 0 190 0 1

NOA 4.73 0 17.46 9.65 120.12 0 302 0 3

NIM 10.44 4 23.56 9.8 151.74 0 498 2 10

NIV 3.91 1 9.26 7.61 82.88 0 149 0 4

NLM 11.84 5 25 9.05 131.9 0 509 2 12

194

8.3. Research Methodology

Metrics Mean Median SD Skew. Kurtosis Min. Max. 25th

%ile

75th

%ile

RFC 74.83 13 176.67 3.38 11.45 0 1182 4 38

NPRM 1.84 0 6.74 13.12 292.64 0 193 0 1

NPROM 0.65 0 3.01 17.23 434.61 0 94 0 0

NPM 8.46 4 17.25 7.8 103.13 0 358 1 8

LOC 185.38 47 484.77 8.2 107.52 1 11894 16 148

DIT 2.06 2 1.39 1.44 1.33 1 8 1 3

WMC 47.05 50 38.5 -0.08 -1.59 0 100 0 84

LCOM 27.2 8 77.41 12.57 246.48 0 2413 3 24

Table 8.3: Descriptive Statistics of Android 4.1

Metrics Mean Median SD Skew. Kurtosis Min. Max. 25th

%ile

75th

%ile

CBO 7.31 4 11.8 5.36 44.1 0 178 2 8

NOC 1.04 0 9.75 21 525.88 0 321 0 0

NOM 1.36 0 6.23 14.19 304.11 0 190 0 1

NOA 4.88 0 17.82 9.49 117.16 0 302 0 3

NIM 10.89 4 26.12 10.71 177.8 0 581 2 10

NIV 4.23 1 10.56 8.14 93.36 0 168 0 4

NLM 12.25 5 27.64 10 157.1 0 592 2 12

RFC 82.86 14 192.87 3.27 10.54 0 1208 5 40

NPRM 2 0 7.12 10.4 172.51 0 160 0 1

NPROM 0.7 0 3.21 16.62 386.26 0 89 0 0

NPM 8.6 4 18.94 9.77 160.05 0 422 1 8

LOC 197.7 49 539.07 8.19 99.47 1 12358 18 150

DIT 2.07 2 1.39 1.41 1.28 1 8 1 3

WMC 47.26 53 38.1 -0.11 -1.58 0 100 0 83

LCOM 29.23 8 91.82 12.52 217.08 0 2517 3 24

195

Chapter 8. Identifying Threshold Values Using Receiver Operating Characteristics
Curve

Table 8.4: Descriptive Statistics of Android 4.2

Metrics Mean Median SD Skew. Kurtosis Min. Max. 25th

%ile

75th

%ile

CBO 7.11 4 11.1 5.36 47.42 0 179 2 8

NOC 1.02 0 10.09 22.31 588.82 0 342 0 0

NOM 1.39 0 6.48 13.89 288.81 0 195 0 1

NOA 4.75 0 17.29 9.42 116.57 0 302 0 3

NIM 10.53 4 24.14 10.34 175.88 0 590 2 10

NIV 4.01 1 9.68 8.06 95.55 0 170 0 4

NLM 11.92 5 25.75 9.63 154.53 0 603 2 11

RFC 87.49 14 206.31 3.16 9.44 0 1224 4 40

NPRM 1.89 0 6.82 11.49 213.08 0 170 0 1

NPROM 0.64 0 2.86 17.12 437 0 91 0 0

NPM 8.48 4 17.87 8.88 138.98 0 424 1 8

LOC 187.84 47 497.04 8.11 103.23 1 11857 17 146

DIT 2.05 2 1.37 1.46 1.43 1 8 1 2

WMC 46.76 51 38.29 -0.08 -1.59 0 100 0 83

LCOM 27.41 8 79.65 12.91 251.75 0 2340 3 24

Table 8.5: Descriptive Statistics of Android 4.3

Metrics Mean Median SD Skew. Kurtosis Min. Max. 25th

%ile

75th

%ile

CBO 7.12 4 10.66 4.88 40.96 0 189 2 8

NOC 1 0 10.1 23.19 637.13 0 353 0 0

NOM 1.37 0 6.75 14.33 293.54 0 195 0 1

NOA 4.4 0 17.07 10.27 137.03 0 305 0 2

NIM 10.29 4 22.37 10.41 197.55 0 601 2 10

NIV 3.98 1 8.83 7.2 79.72 0 185 0 4

NLM 11.66 5 23.97 9.43 165.3 0 615 2 11

RFC 85.62 14 203.85 3.24 10.14 0 1256 4 40

NPRM 1.8 0 5.67 7.4 80.09 0 107 0 1

NPROM 0.64 0 2.83 17.19 441.93 0 92 0 0

NPM 8.34 4 17.44 9.17 153.71 0 437 1 8

196

8.3. Research Methodology

Metrics Mean Median SD Skew. Kurtosis Min. Max. 25th

%ile

75th

%ile

LOC 180.53 46 474.75 8.31 113.64 1 12135 17 137

DIT 2.06 2 1.37 1.41 1.3 1 7 1 3

WMC 46.05 50 38.32 -0.06 -1.61 0 100 0 82

LCOM 26.66 8 76.01 13.64 290.76 0 2384 3 23

• Size: The size of each class measured in terms of LOC ranges from 1 to 9753

(Android 2.3), 1 to 11894 (Android 4.0), 1 to 12358 (Android4.1), 1 to 11857

(Android 4.2) and 1 to 12135 (Android 4.3). This shows that Android is a large

- sized software.

• Inheritance: We can notice that the median of DIT for all the releases is greater

than 0, showing that more than half of the classes have a parent class. Also, we

observe that mean of DIT for all the releases is more than 2. This shows that

among the classes that have DIT more than 0, many of the classes have DIT

more than 2. On the contrary, it is observed that the median of NOC for all

the releases is 0, showing that at least half of the classes do not have any child.

This is also indicated by the percentile statistic, which shows that at least 75%

of the classes have no children. Thus, seeing the statistics of DIT and NOC, it

is difficult to comment on the extent of inheritance in the system.

• Cohesion: The LCOMmeasure (for all the releases), which counts the number

of classes with no attribute usage in common, has high values (upto 100). Thus,

the software supports high cohesion. Similar results were observed by other

studies as well [5, 134].

• Coupling: The maximum values of coupling are 150, 167, 178, 179 and 189

197

Chapter 8. Identifying Threshold Values Using Receiver Operating Characteristics
Curve

for the releases 2.3, 4.0, 4.1, 4.2 and 4.3 respectively. This shows that there is

high interaction between classes.

• Variations across classes: We can observe that for the metrics RFC, LOC and

LCOM, there is significant difference between the lower 25th percentile, the

median, and the 75th percentile, thus showing strong variations across classes.

But for the majority of the metrics, the difference in the values for 25th per-

centile, the median, and the 75th percentile are not much. Thus, overall we can

say that there are not many variations across classes.

8.4 ROC Analysis to Calculate Threshold Values

ROC curve is used for estimating and evaluating the performance of the predicted

models. The ROC curve is defined as a plot of sensitivity on the y-coordinate versus

its 1-specificity on the x- coordinate [44, 134].

In this study, we have used ROC curve to identify the threshold values of OOmetrics.

To plot the ROC curve, we need to define two variables: one binary (i.e., 0 or 1) and

another continuous. Usually, the binary variable is the actual dependent variable (for

e.g. change proneness) and the continuous variable is the predicted result of a test.

When the results of a test fall into one of the two obvious categories, such as change

prone or non - change prone, then the result is a binary variable (1 if the class is change

prone, 0 if the class is non - change prone) and we have only one pair of sensitivity

and specificity. But, in many situations, making a decision in binary is not possible

and thus, we give the decision or result in probability (i.e. probability of correct

prediction). Thus, the result is a continuous variable. In this scenario, we choose

198

8.4. ROC Analysis to Calculate Threshold Values

different cut - off points that make each predicted value (probability) as 0 or 1. In other

words, we use different cut - off points to change the continuous variable into binary.

If the predicted probability is more than the cut - off, then we make the probability as

1, otherwise 0. In other words, we say if the predicted probability is more than the cut

- off, then the class is change prone, otherwise non - change prone. This procedure is

carried for various cut - off points and values of sensitivity & specificity is noted at

each cut - off point. Thus, using the (sensitivity, specificity) pairs, we construct the

ROC curve. In other words, ROC curves display the relationship between sensitivity

(true - positive rate) and 1-specificity (false - positive rate) across all possible cut -

off values. We find an optimal cut - off point which is defined as the cut - off point

where sensitivity equals specificity.

In this study, the binary variable is the dependent variable (change proneness) and

the continuous variable is the metric used in the study. For each metric, we choose

as many as different cut - off points and calculate the values of sensitivity and 1-

specificity at each point. In other words, at each cut-off point, we have a pair of

sensitivity and 1- specificity values. The ROC curve is constructed using these pairs

by taking sensitivity on the y-coordinate and its 1-specificity on the x- coordinate. The

optimal cut-off point (where sensitivity equals specificity) obtained from ROC curve

is considered as the threshold value for themetric. The similar procedure is carried for

all the metrics to obtain their threshold values. This same procedure for identifying

the threshold values of metrics is also explained diagrammatically in figure 8.1.

199

Chapter 8. Identifying Threshold Values Using Receiver Operating Characteristics
Curve

Figure 8.1: Calculation of Threshold values

8.5 Results Analysis

In this section, we discuss the results which focus on the threshold analysis and the

inter - release validation. The threshold values obtained using the methodology based

on ROC are reported and discussed. This is followed by the results obtained when the

thresholds for a particular release are validated on the immediate successor release.

200

8.5. Results Analysis

8.5.1 Analysis and Interpretation of Threshold Values

We calculated the threshold values for the metrics of Android 2.3, 4.0, 4.1 and 4.2 us-

ing the methodology described in section 8.4. The threshold values are listed in table

8.6 for all the releases of Android. We cannot use these threshold values in practi-

cal, real life projects unless they are validated or their classification performance has

been checked. We have measured the classification performance of using the thresh-

old value to put the classes into change or non - change prone categories. For this, we

first obtained the binary dataset corresponding to each release using the threshold val-

ues of the metrics of that release. For example, using the threshold values of Android

2.3, we obtained binary dataset of Android 2.3. Each metric is converted to binary by

changing the its value to 1, if it is more than its threshold and 0, otherwise. To vali-

date the threshold values, we constructed a model for each individual binary metric

using a ML technique, RF. We measured the performance of each model using AUC

which measures the classification performance of the threshold values to put classes

into change and non - change categories. The AUC of random forest models for all

the binary metrics of each release is listed in table 8.7. The AUC below or equal to

0.5 means no good classification [68]. In other words, the model having AUC less

than or equal to 0.5 has no practical utility. We consider only those thresholds as the

practical threshold values whose AUC is atleast more than or equal to 0.55. If AUC is

less than 0.55, we conclude that the threshold values obtained for those metrics are not

practical. From table 8.7, we can observe that for Android 2.3, only three RF models

(corresponding to NOC, NOM and RFC) have given AUC less than 0.55. For An-

droid 4.1, five models have shown AUC less than 0.55. Similarly, for both Android

201

Chapter 8. Identifying Threshold Values Using Receiver Operating Characteristics
Curve

4.0 and 4.2, four RF models have given AUC less than 0.55. Thus, the threshold val-

ues of the metrics corresponding to these models cannot be utilized to validate other

projects. On the other hand, the threshold values of all the other metrics (having AUC

of RF more than 0.55) have practical significance and can be used to validate other

projects. In this chapter, these metrics are termed as ‘acceptable metrics’ and only

they are used to validate different releases of the software.

Table 8.6: Threshold Values

Metric Android 2.3 Android 4.0 Android 4.1 Android 4.2

CBO 3.5 4.5 4.5 4.5

NOC 0.5 0.5 0.5 0.5

NOM 0.5 0.5 0.5 0.5

NOA 0.5 0.5 0.5 0.5

NIM 4.5 4.5 4.5 4.5

NIV 1.5 1.5 1.5 1.5

NLM 5.5 5.5 5.5 5.5

RFC 13.5 14.5 17.5 15.5

NPRM 0.5 0.5 0.5 0.5

NPROM 0.5 0.5 0.5 0.5

NPM 3.5 3.5 5.5 3.5

LOC 52.5 56.5 65.5 60.5

DIT 1.5 1.5 1.5 1.5

LCOM 53.5 58.5 58.5 60.5

WMC 9.5 10.5 10.5 10.5

Table 8.7: AUC of Random Forest Model for Each Metric

Metric Android 2.3 Android 4.0 Android 4.1 Android 4.2

CBO 0.6 0.603 0.598 0.601

NOC 0.512 0.506 0.532 0.51

NOM 0.542 0.508 0.555 0.568

NOA 0.577 0.557 0.588 0.563

202

8.5. Results Analysis

Metric Android 2.3 Android 4.0 Android 4.1 Android 4.2

NIM 0.564 0.564 0.518 0.568

NIV 0.57 0.579 0.552 0.568

NLM 0.578 0.57 0.563 0.554

RFC 0.543 0.554 0.566 0.566

NPRM 0.577 0.565 0.566 0.55

NPROM 0.563 0.496 0.501 0.482

NPM 0.606 0.556 0.515 0.527

LOC 0.615 0.579 0.605 0.584

DIT 0.592 0.508 0.504 0.516

LCOM 0.56 0.572 0.56 0.578

WMC 0.57 0.599 0.591 0.6

8.5.2 Analysis of Inter - Release Validation

We predicted the change prone classes in a particular release of the software by us-

ing the threshold values of the metrics of its immediate predecessor release. In other

words, we evaluated the accuracy of the thresholds by validating them on the imme-

diate successor release. For example, for predicting change prone classes for Android

4.1, we used the threshold values of its immediate predecessor, i.e. Android 4.0. We

did not use the threshold values of a particular release to predict the change prone

classes of all the subsequent releases. This is done as it is observed in literature that

rather than using the metric prediction models constructed from the data in the first

release and using them to predict change prone classes in the subsequent releases, the

accuracy is higher if the prediction models are constructed / trained from the data of

immediate predecessor release. Thus, we used the threshold values of: i) Android

2.3 to predict change prone classes in Android 4.0, ii) Android 4.0 to predict change

prone classes in Android 4.1 and, iii) Android 4.1 to predict change prone classes

203

Chapter 8. Identifying Threshold Values Using Receiver Operating Characteristics
Curve

in Android 4.2. In other words, using the threshold values of Android 2.3, 4.0 and

4.1, we converted the metrics of Android 4.0, 4.1 and 4.2 respectively into binary.

In addition to validating the immediate successor release, we also validated the same

release as well. For example, we used the threshold values of Android 2.3 to predict

the change prone classes of Android 2.3 itself. We constructed RF model for each

binary dataset and evaluated the performance using AUC. The results are shown in

table 8.8. From table 8.8, we can observe the AUC obtained after validating the same

release and the immediate successor release is comparable. This shows that since,

the threshold values of the predecessor release can always be obtained, they can be

utilized to predict change prone classes in the immediate next release.

Table 8.8: AUC of Random Forest Models

Use Threshold values of Use Thresholds values on AUC

Android 2.3
Android 2.3 0.701

Android 4.0 0.684

Android 4.0
Android 4.0 0.672

Android 4.1 0.702

Android 4.1
Android 4.1 0.705

Android 4.2 0.692

Android 4.2 Android 4.2 0.682

8.6 Calculation of ThresholdsUsing StatisticalMethod

In this section, we have provided a comparison with the thresholds calculated using

the statistical method proposed by Bender [12] known as VARL. The detailed de-

scription of this methodology is given in chapter 6. In this chapter, we have found

the threshold values of Android 2.3, 4.0, 4.1 and 4.2 using the statistical method and

204

8.6. Calculation of Thresholds Using Statistical Method

compare the values with those obtained using the ROC methodology. We briefly ex-

plain the steps followed to calculate the threshold values for the metrics of Android

2.3. Similar steps can be taken to calculate the threshold values for the metrics of

Android 4.0, 4.1 and 4.2.

Step 1: The first step involves the calculation of α (constant) and β (estimated coeffi-

cient) for each individual metric. For this, we applied univariate LR on Android 2.3.

Table 8.9 shows the univariate results of Android 2.3.

Table 8.9: Univariate Results of Android 2.3

Independent Variable β α

CBO 0.066 -0.852

NOC 0.013 -0.446

NOM 0.018 -0.462

NOA 0.015 -0.503

NIM 0.021 -0.63

NIV 0.056 -0.624

NLM 0.02 -0.65

RFC 0 -0.453

NPRM 0.061 -0.535

NPROM 0.073 -0.48

NPM 0.02 -0.601

LOC 0.001 -0.608

DIT -0.209 -0.007

WMC 0.008 -0.628

LCOM 0.011 -0.943

Step 2: After obtaining the values of α and β, we applied the VARL formula for

calculating the threshold values. As discussed in chapter 6, Po is the acceptable risk

level which takes the values 0.05, 0.01 etc. In this chapter, we have calculated the

threshold values at different Po values, 0.01, 0.05, 0.08 and 0.1. The threshold values

205

Chapter 8. Identifying Threshold Values Using Receiver Operating Characteristics
Curve

of all the metrics are shown in table 8.10.

Table 8.10: Thresholds at Various Po Values

Metrics VARL at 0.01 VARL at 0.05 VARL at 0.08 VARL at 0.1

CBO -56.71 -31.7 -24.1 -20.38

NOC -319.16 -192.19 -153.57 -134.71

NOM -229.62 -137.91 -110.02 -96.4

NOA -272.81 -162.76 -129.29 -112.95

NIM -188.82 -110.21 -86.3 -74.63

NIV -70.91 -41.44 -32.47 -28.09

NLM -197.26 -114.72 -89.62 -77.36

RFC - - - - - - - -

NPRM -66.56 -39.5 -31.27 -27.25

NPROM -56.37 -33.76 -26.88 -23.52

NPM -199.71 -117.17 -92.07 -79.81

LOC -3987.12 -2336.44 -1834.35 -1589.22

DIT 21.95 14.05 11.65 10.48

LCOM -332.01 -181.95 -136.3 -114.02

WMC -496.54 -290.2 -227.44 -196.8

We can observe from table 8.10 that the threshold values lay outside the obser-

vation range (negative) of most of the metrics at all the risk levels. Thus, we cannot

identify thresholds at any level. We obtained similar results for Android 4.0, 4.1 and

4.2. For all the releases of Android, the negative threshold values for all the metrics

is obtained. Thus, they cannot be considered and put to any practical use.

8.7 Discussion

We calculated the threshold values of various OO metrics using the methodology

based on ROC curves. These threshold values are calculated for the metrics of a

206

8.7. Discussion

mobile operating system, Android. Threshold values are also calculated using the

methodology based on LR as explained in chapter 6. This allowed to compare and as-

sess the effectiveness of both the methodologies. We observed that the ROC method-

ology is effective in producing the threshold values within the range (positive values)

of most of the metrics. These threshold values are validated on the same release (as

on which the thresholds are obtained) and on the immediate successor release. The

validation results obtained are comparable which concludes that the thresholds ob-

tained using ROC methodology can be used to predict change prone classes of some

other (successor) release of the same or similar software.

On the other hand, when we used the LR methodology to obtain the threshold values,

we obtained negative threshold values of all the metrics. Thus, we found that sta-

tistical approach of calculating thresholds can produce out of range threshold values

(negative) for some software , whereas, within the range (positive) threshold values

for some others. In contrast, the ROC methodology used to calculate the threshold

values can never produce the threshold values that are outside the observation range.

In other words, the threshold values are always positive and fall within the minimum

and maximum values of a particular metric. Thus, we conclude that ROC methodol-

ogy is a more effective approach and should be used by researchers and practitioners

in their study to calculate the threshold values of various metrics.

207

Chapter 9

Cross Project Change Prediction

Using Open Source Projects

9.1 Introduction

There are several empirical studies in literature [8, 28, 53, 63, 66, 67, 79, 118, 124,

134, 152, 153] which have developed models for predicting change and fault prone

classes. But these studies have constructed the model by training it using the histor-

ical data of the same project. The predicted model is used to further identify change

and fault prone classes in the upcoming or future releases of the same or similar na-

ture projects. However, prediction of the models using the training data from the

same project is not always feasible as it might be possible that the adequate train-

ing data is not available or is not well collected [78, 141, 145, 155]. The possibility

of non-availability of training data has led to the idea of performing cross - project

predictions. There have been few studies [78, 114, 140, 141, 155] that have carried

208

9.1. Introduction

out cross - project prediction for predicting fault prone classes. But to the best of the

knowledge, the work of cross project predictions for change proneness has not been

done yet. Cross - project change prediction is defined as predicting the changes by

training the models using the historical data of some other projects [145, 155]. In

other words, to predict changes in a project B, we train the models using the data of

the other project A, and then test them on the project B. We can observe that training

and testing are performed on the different projects instead of using the same project.

In this work, under cross - project predictions, we have considered two categories:

inter - release predictions and inter - project predictions. Inter - release predictions

refer to the predictions carried on two different releases of the same project. Whereas,

inter - project predictions refer to the predictions carried on two different projects. In

this work, we tried to investigate the following two issues or RQs:

• RQ1: How does the accuracy of the model differ when we train the model

using the different releases of the same project (i.e. performing inter - release

validation) or when we use different project (i.e. performing inter - project)?

• RQ2: Are the characteristics of datasets valuable for selecting the suitable train-

ing data for cross - project change prediction?

Aiming at the above questions, we conducted an experiment on 12 public datasets ob-

tained from three projects. All the three projects are Apache projects (Apache POI,

Apache Rave and Apache Abdera) and we considered four latest releases for each

project, thus making a total of 12 datasets. We considered all the possible combina-

tions (A, B) to perform cross - project predictions for change proneness. We employed

a ML technique, LB to construct the prediction models (to measure the performance

209

Chapter 9. Cross Project Change Prediction Using Open Source Projects

of each cross - project predication). To determine the effectiveness of distributional

characteristics in selecting the training data, we constructed a CRT and generated var-

ious classification rules. //The different sections of this chapter are: Following this

section, we focus on the research background which focus on the variables and var-

ious performance measures used. In the next section, we explain the datasets along

with the data collection process. Section 9.4 describes the basic four steps used in

this chapter to conduct cross - project predictions.We discuss the results in section

9.5. Finally, this work is concluded in section 9.6.

The results of this chapter are published in [98].

9.2 Research Background

In this section, we state the independent and dependent variables used in this study

along with the various performance measures that are used to evaluate the perfor-

mance of the models.

9.2.1 Variables and Performance Measures Used

We have used the famous CK metrics [36] proposed as the independent variables.

In addition to the metrics proposed by CK, size metric, SLOC is also used. The

dependent variable is change proneness.

We have constructed a number of predictionmodels (for each possible train/test (A, B)

combination) using a ML technique, LB. We evaluated each of these models using

two performance measures, precision and AUC. Based on certain values of these

performance measures, we have categorized each prediction as ‘successful/valid’ or

210

9.3. Empirical Data Collection

‘not valid’.

9.3 Empirical Data Collection

We have used four releases each of three open source Apache projects, Abdera, POI

and Rave. Each release is considered as a different dataset, thus making a total of

12 datasets. Apache Abdera (http://abdera.apache.org/) is an implementation of the

Atom Syndication Format and Atom Publishing Protocol which are used for creating,

editing, and publishing various web sources. Apache POI (http://poi.apache.org/)

is used for making and modifying different file formats based upon OOXML and

Microsoft’s OLE 2. We can read/ write Word, Excel and PowerPoint files using

Java. It is used in text extraction applications such web spiders etc. Apache Rave

(http://rave.apache.org/) provides an extensible platform for using, integrating and

hosting various OpenSocial and W3C Widget related features, technologies and ser-

vices. Rave is popularly used as engine for Internet and Intranet portals. The releases

which we have considered in this work are as follows (1) Abdera 1.0, Abdera 1.1,

Abdera 1.1.1 and Abdera 1.1.2, (2) POI 3.0, POI 3.6, POI 3.7 and POI 3.9, (3) Rave

0.19, Rave 0.20.1, Rave 0.21.1 and Rave.22. The details of each of these releases

which include the total number of classes and the number of classes changed in each

release are given in chapter 2.

We briefly describe the change collection process as follows:

For collection of the data, we used a tool named Defect Collection and Reporting

System (DCRS) [106], developed in Java by the students of Delhi Technological Uni-

versity, Delhi, India. The tool is used to generate the change reports for OSS hosted

211

Chapter 9. Cross Project Change Prediction Using Open Source Projects

at Git repository. The brief functioning of the tool is explained below: //Two con-

secutive releases of software are taken and their source code is analyzed. Using Git

commands, the source code is processed and change - logs are retrieved. A Change

Log contains all the information concerned with the modifications that have been in-

curred from time to time in the source code. The modification in the source code

could be due to various reasons such as defect-fixing, function/feature enhancements

etc. Each modification is stored as an individual change record in the change log.

An individual change record at the Git repository consists of: a) Change timestamp,

b) Unique change identifier, c) Description of the change including the reason why

the change has occurred, d) Source code files that are modified, along with the LOC

changes for each modified file. Finally, these change records are mapped to source

code classes. Only Java source code files are considered and other files such as xml

and other resources are ignored. The change- report generated consists of the follow-

ing fields:

• Name of the Java source file (Class name).

• A binary variable to indicate whether a class has been modified, i.e. ‘yes’ else

‘no’.

9.4 Research Methodology

In this section, we explain the basic four steps involved in this work. The first step

is the creation of train/test combination or generation of datapoints. This is followed

by measuring distributional characteristics for each train/test combination. The third

212

9.4. Research Methodology

step is the construction or prediction ofMLmodel to determine the accuracy of cross -

project predictions. Finally, a CRT is created to judge the suitability of characteristics

of data sets for selecting the training data for cross - project change prediction. All

the steps are explained diagrammatically in figure 9.1.

Figure 9.1: Basic Research Methodology

9.4.1 Creation of Train/Test Combinations

We have used three Apache projects (Apache POI, Apache rave, Apache Abdera),

with four releases of each. A project with four releases is considered as four separate

datasets and therefore, three projects will comprise of 12 datasets. To perform cross

- project validation, one dataset among the 12 datasets is taken as the training set

and some other dataset is taken as the testing set. We have considered the possible

213

Chapter 9. Cross Project Change Prediction Using Open Source Projects

combinations of training and testing sets (A, B) if: 1) A and B belong to different

projects or 2) A and B belong to same project, then B should be the later release than

A [155]. In other words, we want the testing set to be the later release than the training

release as it is illogical to perform testing on the former release and training on the

later release. For example, we used Abdera 1.1.1 to predict the change prone classes

of the later release, Abdera 1.1.2 and not the former release, Abdera 1.1. Therefore,

the number of possible combinations with A,B,C…..N projects, having number of

releases as a,b,c….n respectively is:

TP2 −
∑N

i=A
Vi∗(Vi−1)

2

Where, T= number of datasets = a+b+c….+n; Vi = number of releases of ith

project.

For example, the number of releases for A project is a. Thus, based on the above

formula, the total possible combinations in this work are 114.

9.4.2 Measuring Distributional Characteristics

For the 12 different datasets, various descriptive statistics are calculated which mea-

sure the distributional characteristics of each independent variable (number of inde-

pendent variables are 7). We have measured 11 distributional characteristics (indica-

tors) for each variable. As discussed, we have 114 possible train-test combinations.

Thus, for each datapoint, a combination of 144 attributes is created as follows:

1. The distributional characteristics of each variable of training set are combined

to get 77 (7 independent variables *11indicators) attributes.

2. The distributional characteristics of each variable of testing set are combined

214

9.4. Research Methodology

to get 77 (7 independent variables *11indicators) attributes.

3. 77 attributes of training set and 77 attributes of testing set are further combined

to yield a total of 144 attributes.

The various indicators that we used to measure the distributional characteristics

are mode, median, mean (to describe the central tendency of attributes), standard

deviation, variance, skewness, kurtosis, minimum, maximum, sum, first quartile and

third quartile.

9.4.3 Predicting Model for Each Possible Prediction

Wehave used LB to build themodel for each valid train - test pair (A, B).We predicted

the model using the dataset A and tested it on the dataset B. Thus, in this study, we

have 114 model predictions. For each prediction, we say whether the prediction is

valid or not valid based on the values of performance measures, precision and AUC.

If AUC is greater than 0.65 and precision is greater than 50%, we have considered the

prediction as valid or successful. This we call as the ‘result’ of each prediction, which

is discrete or binary in nature. In this study, for each prediction, we have defined a

datapoint having three parts: 1) the first part consists of distributional characteristics

of training set, 2) the second part consists of distributional characteristics of the testing

set, 3) the third part consists of the result of each prediction (i.e. valid or not valid).

Thus, we have 114 datapoints, each having 145 attributes (77 number of attributes

comprising of distributional characteristics of training set, 77 number of attributes

comprising of distributional characteristics of testing set and 1 attribute comprising

of the result of the prediction).

215

Chapter 9. Cross Project Change Prediction Using Open Source Projects

9.4.4 Verifing the Relationship Between Distributional Charac-

teristics of Datasets and Selection of Training Set

One of the objectives is to determinewhether the distributional characteristics of train-

ing and testing set have an impact on the cross - project predictions. The studies by

Zimmermann et al. [155] and Watanabe et al. [145] show that the distributional char-

acteristics are essential for identifying successful cross - project defect prediction. In

this work, we constructed a CRT on the dataset generated above (consisting of 114

datapoints). The independent variables are the distributional characteristics of train-

ing and testing set (77+77=144 attributes) and the binary dependent variable is the

result of each prediction (valid/not valid). The validation technique used is 10 - cross

validation. If CRT predicts the valid predictions with high accuracy, then we conclude

that the cross - project predictions have an impact on the distributional characteristics

of the training and testing sets.

9.5 Result Analysis

In this section, we discuss the RQs stated in section 9.1.

RQ1: How does the accuracy of the model differs when we train the model using

the different releases of the same project (i.e. performing inter - release valida-

tion) orwhenwe use different project (i.e. performing inter - project validation)?

For each of the possible train/test combination (A, B), we constructed LBmodel using

dataset A and tested it on dataset B. We measured the performance in terms of preci-

216

9.5. Result Analysis

sion and AUC. We are interested in knowing the number of successful cross - project

predictions (precision > 50% and AUC > 0.65). We observed that out of a total of 114

predictions, 41 satisfy our criteria and thus are referred as successful predictions (i.e.

the success rate is 36%). This is quite high when we compare it with the success rate

obtained by [155]. Zimmermann et al. [155] ran 622 cross - project predictions and

found only 3.4% actually worked. Within the successful predictions, we compared

the number of successful inter - project and inter - release predictions. Inter - release

predictions are the predictions where the training and testing sets belong to the same

project, but different releases. Whereas, in inter - project predictions, training and

testing sets belong to different projects. It would seem that the different release of

same project will predict each other well, as they are developed under same environ-

ment, have similar characteristics etc. However, there is a difference of opinion in

this issue by previous studies. Some of the previous studies [117, 137, 146, 147] have

shown that different versions from the same project have predicted each other well.

However, the latest study by He et al. [73] gave unexpected result, i.e. decreased

prediction accuracy for the same (ranging from 0.32% to 4.67%). In table 9.1, the

number of successful inter - project and inter - release predictions are analyzed. If

two datasets A and B belong to the same project, then the total possible train - test

combinations (A,B : B should be later version than A) are 18 (6 combinations for

each Abdera, POI and Rave). In other words, the total number of inter - release com-

binations is 8. Out of 18 combinations, we observed that the number of successful

predictions is 12, i.e. approximately 67% success rate. On the other hand, if two

datasets A and B belong to the different projects, then the total number of train - test

combinations (A,B) is 96 (114-18). Thus, the number of inter-project combinations

217

Chapter 9. Cross Project Change Prediction Using Open Source Projects

is 96. Out of 96, the number of successful predictions is 29, i.e. approximately 30%

success rate. This is significantly lower than the success rate of inter - release predic-

tions. Thus, in this work, we concluded that the inter - release predictions give higher

accuracy than the inter - project predictions.

Table 9.2 shows the range of AUC for successful predictions. For Abdera as

testing project, we observed that when the same project, i.e. Abdera is used as train-

ing project (different release of the same project), the range of AUC is 0.67 to 0.78.

Whereas, when different projects (Poi and Rave) are used as training sets, we ob-

served that the range of AUC is approximately the same as when the training set is

Abdera. This shows that the accuracy of the inter - project and inter - release pre-

dictions is approximately the same. Same observation is concluded when the testing

project is Poi and Rave.

Table 9.1: Number of Successful Predictions

TRAIN/TEST Abdera POI Rave Total

Abdera 5 5 5 15

POI 10 4 0 14

Rave 9 0 3 12

Total 24 9 8 41

Table 9.2: AUC of Successful Predictions

Testing Project Training

Project

Min. AUC Max. AUC

Abdera

Abdera 0.67 0.78

Poi 0.67 0.71

Rave 0.67 0.71

Poi

Abdera 0.66 0.72

Poi 0.67 0.69

Rave - -

218

9.5. Result Analysis

Testing Project Training

Project

Min. AUC Max. AUC

Rave

Abdera 0.65 0.72

Poi - -

Rave 0.66 0.68

RQ2: Are characteristics of data sets valuable for selecting the suitable training

data for cross - project change prediction?

We generated a total of 114 possible predictions and the number of successful predic-

tions is 41. To determine whether the characteristics of the datasets help in selecting

the suitable training set, we applied decision tree (CRT) on the dataset of 114 data-

points having 145 attributes (144 attributes consisting of distributional characteristics

of training and testing sets + 1 attribute for the result of prediction). CRT trained from

the train/test instances consisted of 15 nodes, out of which 8 are leaf nodes. The leaf

nodes contain the value of the result of prediction (dependent variable). We observed

three nodes resulted in the value ‘yes’ from which we generated the classification

rules. These classification rules can be used to select a suitable training set for a

given test set. We also performed 10 - cross validation on this dataset and obtained

precision as 85.6% and the AUC as 0.98. Taking into consideration the success rate

for inter - project predictions (67%) and the success rate for inter - release predictions

(30%), we can say that the performance of CRT is very high. Thus, we concluded that

the distributional characteristics of the datasets play an important role in selecting the

suitable training set for a given test set.

219

Chapter 9. Cross Project Change Prediction Using Open Source Projects

9.6 Discussion

Cross - project prediction is gaining wide importance for the projects with insufficient

or no data to build the prediction models. In this chapter, we have used four releases

each of three open source projects, Apache Abdera, POI and Rave to conduct cross -

project predictions. We obtained a total 12 datasets (4*3) and made 114 total possible

train - test combinations (A, B), where A is the training dataset and B is the testing

dataset. For each (A,B) combination, we constructed a LB model and found that the

number of successful predictions (precision > 0.5 and AUC > 0.65) is 41. Thus, we

obtained a total success rate of 36%.

Among the successful predictions, we found that the success rate of inter - release

predictions is 67% and the success rate of inter - project predictions is 30%. From

this, we concluded that the inter - release predictions are more accurate than the in-

ter - project predictions. We constructed a CRT decision tree to judge the suitability

of characteristics of the datasets in selecting the training set for a given test set. We

obtained high values of precision (85.6%) and the AUC (0.98). This shows that se-

lection of training set depends on the distributional characteristics of the datasets. For

a given test set, we can select an appropriate training set using the classification rules

(that produced a ‘yes’) of CRT.

220

Chapter 10

Conclusion

10.1 Summary of the Work

Assessing various quality attributes during the early phases of SDLC is a promising

step towards the improvement of software quality. Several quantitative models con-

structed using statistical methods such as simple linear discriminant analysis or LR

to more complex ML techniques have been proposed in literature which can be used

to predict various quality attributes. However, there is no well - accepted theory and

sufficient empirical studies to conclude the most suitable technique to predict soft-

ware quality attributes. In addition to constructing quantitative models to measure

the quality, the threshold values (also known as risk indicators) of metrics can also be

identified, assessed and validated on various OSS to predict change and fault prone

classes of the software. The evaluation of the models and the thresholds can be done

using various performance measures and statistical tests.

We have presented and explained in detail the research methodology followed in

221

Chapter 10. Conclusion

this thesis. The initial steps that are performed to conduct an empirical study such

as identifying and describing the dependent variables (change and fault proneness),

independent variables (OO metrics) and empirical data collection process have been

explained in detail. Then, the metric selection procedure and the correlation analysis

method are also explained. The methods used for the quality model prediction (con-

structing of models and identifying thresholds) followed by the techniques available

for validating the models (inter - project and intra - project) are discussed. Finally,

we summarized various performance measures and statistical tests used to evaluate

the performance of the prediction models.

To have a fair evaluation of all the studies relevant to the area of change prediction,

a systematic review has been conducted. We have systematically summarized the em-

pirical evidence obtained from the existing literature and provided a brief description

of each study in terms of the independent variables, the data analysis techniques, the

performance measures and the software used. We obtained the answers to various

research questions which primarily focus on the following issues: 1) use of risk in-

dicators for predicting quality attributes; 2) use of correct performance measures and

statistical tests for evaluating the performance of various models; 3)type of software

repositories, metrics and learning techniques; 4) type of validation technique for val-

idating the models and 5) significant metrics for predicting change proneness. The

results of the review showed that there is lack of work on identifying the threshold of

metrics and the use of inter - project validation. Also, the metrics significant in pre-

dicting change proneness could not be identified as the studies in literature have not

used feature reduction techniques. From this systematic review, we identified direc-

tions and guidelines for this work such as : (1) more studies should be performed with

222

Chapter 10. Conclusion

large OSS and different ML techniques should be used to construct the models which

should be evaluated using different performance measures and statistical tests, (2)

the usage of thresholds for change prediction should be explored and used, (3) inter

- project validation should be used to validate the models. We used and incorporated

the identified future directions for quality assessment.

The OSS phenomenon significantly impacts both the public and private sector of

software organizations [70].The existence of freely available software leads to faster

adoption of technology, less cost and more innovation [20]. OSS is also characterized

by better security, no vendor or copyright issues and higher quality. Also, OSS is

developed with a different approach and methodology. Users are generally treated

as co-developers and development is accomplished through collaborative effort of

programmers. These advantages of OSS led to a significant adoption of open source

products in various domains [112, 126]. In this research, we have explored various

widely used and popular OSS for prediction of quality models. For example, the

fault data is obtained using four OSS namely Ivy, Tomcat, Ant, JEdit and Sakura

obtained from Promise repository and one proprietary, NASA proprietary software,

KC1. Besides this, multiple popular OSS are used for change data, i.e. Android,

Abdera OS, Poi, Rave, JavaTreeView, Freemind, Frinika, Xerces and Xalan.

The usage of ML techniques is becoming increasingly popular across a range of

domains such as finance, medicine, engineering, geology, and physics. ML tech-

niques are used for making predictions based on some past observations and are

widely used in various classification problems Besides this, they can also be used for

predictive analysis and constructing various models for predicting quality attributes.

However, literature shows that ML techniques are not much used for constructing

223

Chapter 10. Conclusion

models to predict change proneness. The quality models are mostly built using the

traditional statistical method, LR. Moreover, the present literature does not allow to

identify a suitable ML technique which can used for model construction. Hence,

more studies need to be conducted exploring the use of ML techniques for model

construction.

Keeping in view the above issues, we have compared the performance of 15 data

analysis techniques (14 ML and one statistical) on five official releases of Android

operating system. This extensive comparison provides an opportunity to fairly eval-

uate all the techniques and enables to judge the performance of one technique over

the other. The results are validated using 10 - cross and inter - release validation (the

models derived from a release ’r’ are validated on releases ’r+1’, ’r+2’ etc.). The

results concluded that bagging and RF have outperformed all the other techniques

and can be used to predict change prone classes in the future or upcoming releases of

Android or similar software.

In one of the other study also, we have explored the usage of various ML tech-

niques for construction of prediction models. For empirical validation, two releases

of an OSS, ‘JTreeView’ are used. Among multiple ML techniques used, bagging and

RF have outperformed all the other techniques and can be used by researchers for

predicting change prone classes of similar software.

Software metrics are used to measure various internal characteristics of software

such as size, complexity, coupling, cohesion etc. Once the values of software metrics

are determined, there should be a technique or methodology to assess if the metric

values are good or bad. For this, we have identified thresholds of metrics. Identify-

ing the thresholds of metrics allow managers to concentrate on classes where metric

224

Chapter 10. Conclusion

values exceed the threshold values as these classes may have higher complexity and

require management attention. We have also identified the advantages of thresholds

over metric models for predicting change and fault prone classes as stated below:

1. Thresholds allow to identify which software metric to alter. The predicted

change prone classes can be redesigned by altering only the metrics whose val-

ues exceed their respective thresholds.

2. They give an exact estimate of the amount of change each metric should un-

dergo.

3. Threshold models lead to saving of resources since training the metric models

is time consuming task, and thus it is not efficient on a daily basis to use metric

models.

Although many empirical studies on OO metrics have been conducted, very few

have identified threshold values of these metrics and thus, suggested guidelines on

their interpretation and application. In lieu of this, we have conducted a study where

we computed the thresholds of various OO metrics for predicting the classes that are

prone to changes. In addition to identifying the thresholds of OO metrics, the tradi-

tional metric models are also constructed so that a comparison can be drawn between

the two methodologies. Thus, the purpose of this study is to evaluate and assess the

proposed threshold based methodology and compare its results with the traditional

model based methodology. Thresholds are calculated for the metrics of Freemind

0.9.0 and Xerces 2.9.0 using a statistical methodology based on LR. The effective-

ness of the proposed thresholdmethodology is judged on various releases of Freemind

225

Chapter 10. Conclusion

(Freemind 0.9.1, 1.0.0) and Xerces (2.9.1, 2.10.0). In addition to this, external vali-

dation on two different projects, Frinika 0.2.0 and Xalan 2.6.0 has also been carried

out. Among a number of ML techniques used to validate the models, MLP and CRT

have outperformed the other models. The performance of binary models is compared

with the performance of non - binary models (models without thresholds) using a

statistical test known as Wilcoxon signed rank test. The results obtained from using

the statistical test showed that there is no significant difference in the performance of

binary and non - binary models. This shows that the threshold methodology can be

effectively utilized on upcoming or the future releases of software.

We have also considered the effect of thresholds of OO metrics on fault prone-

ness and built predictive models based on the threshold values of the metrics used. We

have used the same statistical methodology to calculate the threshold values of CK

metrics [36]. The empirical validation is carried out on three software: KC1 obtained

from NASA and two OSS, IVY and JEdit. To demonstrate the effectiveness of the

proposed methodology, inter - project validation has also been done on three OSS,

Apache Ant, Apache Tomcat and Sakura. We have validated the threshold values of

Ivy on Apache software (Ant, Tomcat) and the threshold values of JEdit on Sakura

software. To validate the threshold values, various ML models (BN, NB, RF, SVM

and MLP) are constructed. In order to analyze the performance, the results are com-

pared with traditional metric models. Results of validation on an OSS, Ivy concluded

that the models predicted using RF and MLP should be used and the results of vali-

dation on proprietary software, KC1 concluded SVM to be the best ML model. The

models predicted using other ML techniques have shown comparative results. Inter -

project validation is also carried out using three other OSS, Ant, Tomcat and Sakura.

226

Chapter 10. Conclusion

The results of the inter - project validation concluded that the proposed threshold

methodology can be used on the projects of similar characteristics or similar nature.

Thus, overall from the results of all the studies, we concluded that ANN (MLP),

bagging and RF have outperformed all the other ML models and can be used by the

researchers and practitioners to predict change and fault prone classes of the same or

the similar natured project.

We have discussed that the thresholds can be computed using a statistical approach

based on LR. An alternative method to calculate the thresholds of OO metrics is use

of the ROC curves. We have carried out a study in which the threshold values of

metrics of Android are calculated using the ROC curves. Five official releases of

Android are considered and the threshold values are calculated for each of these ver-

sions. To validate the threshold values, RF model is constructed. In addition to this,

inter - release validation is also carried and we observed that the AUC obtained after

validating the same release and the immediate successor release is comparable. This

shows that since, the threshold values of the predecessor release can always be ob-

tained, thus, they can be utilized to predict change prone classes in the immediate next

release. In this study, we also calculated the thresholds using the statistical approach

and compared the results of the two techniques. We observed that the thresholds of

most of the OOmetrics calculated using statistical approach are out of the observation

range (i.e. negative values). Whereas, this situation can never arise if we calculate

the threshold values using the methodology based on ROC. Thus, we concluded that

researchers and practitioners should calculate the thresholds of various OO metrics

using the said methodology based on ROC and use them to predict the change prone

classes of the software.

227

Chapter 10. Conclusion

Generally, the change prediction models are learned using the historical data of

the same project and then used to predict change prone classes in the upcoming re-

leases of same or other similar project. However, the unavailability of historical data

is the possible scenario that may exist. In such a scenario, training of models has

to be done using the data from some other project. We have conducted such inter

- project predictions (training and testing the models using different projects) using

four releases each of three open source Apache projects, Abdera, POI and Rave. We

conducted both inter - project (different projects) and inter - release (different ver-

sions of same projects) predictions. We found that the success rate of inter - release

(different releases of the same project) is 67% and the success rate of inter - project

predictions (different projects) is 30%. From this, we concluded that inter - release

predictions are more accurate than the inter - project predictions. We constructed a

CRT based decision tree to judge the suitability of characteristics of the datasets in

selecting the training set for a given test set. We concluded that selection of training

set depends on the distributional characteristics of the datasets.

10.2 Applications of the Work

An extensive empirical validation and assessment of OOmetrics is conducted to con-

struct various prediction models which are evaluated using different performance

measures and statistical tests. We conclude that the work in this thesis would allow

researchers and software industry:

• To obtain a subset of metrics which are significant in identifying and assessing

various quality attributes.

228

Chapter 10. Conclusion

• To identify change and fault prone classes of software during early phases of

SDLC.

• To take preventive focused actions which will lead to reduction in maintenance

costs and improve quality.

• To identify and assess various risk indicators or thresholds of various OO met-

rics.

• To use thresholds as quality benchmarks to assess and compare different soft-

ware products.

• To efficiently select a suitable training set for a given testing set based on the

distributional characteristics of the training set.

• To understand the usage of various performance measures and statistical tests

which will lead to efficient evaluation of the models.

• To evaluate and improve the quality of the resulting OO software processes and

products.

10.3 Future Directions

Although we have used many datasets and various ML techniques in this thesis, in

future studies we further plan to replicate the work carried out in this thesis on diffrent

application domain datasets so that more generalized results can be produced. Repli-

cation is important in order to examine the set of same hypothesis in different contexts

229

Chapter 10. Conclusion

orwith the aim to improve the experiment and validate the findings of previous experi-

ments. Data collected through replications can be used to refute or accept well-formed

theories and increase the evidence onwhich software practitioners and researchers can

base their decisions. We also plan to explore the threshold methodology on a number

of similar application domain software so that generalized thresholds of metrics can

be reported. We also plan to perform cost benefit analysis of the models predicted for

change proneness. One of the other dimension may be the use of evolutionary search

based techniques to predict change and fault prone classes.

230

Bibliography

[1] A , M., L , H., S , H. Analyzing change impact in object-

oriented systems. In 32nd EUROMICRO Conference on Software Engineering

and Advanced Applications (2006), pp. 310-319, Sweden.

[2] A , F. B., M , W. Evaluating the impact of object-oriented design

on software quality. In Proceedings of the 3rd International Software Metrics

Symposium (1996), pp. 90-99, Berlin.

[3] A , F. B. E., C , R. Candidate metrics for object-oriented

software within a taxonomy framework. Journal of Systems and Software 26

(1994), pp. 87-96.

[4] A , K. K., S , Y. Software Engineering: Programs, Doc-

umentation, Operating Procedures, 3rd edition ed. New Age International,

(2008).

[5] A , K. K., S , Y., K , A., M , R. Empirical analy-

sis for investigating the effect of object-oriented metrics on fault proneness: A

replicated study. Software Process: Improvement and Practice 16, 1 (2006),

pp. 39-62.

231

Bibliography

[6] A , K. K., S , Y., K , A., M , R. Empirical study

of object-oriented metrics. Journal of Object Technology 5, 8 (2006), pp. 149-

173.

[7] A , A., G , J. Software function source lines of code and de-

velopment effort prediction: a software science validation. IEEE Transactions

on Software Engineering SE-9, 6 (1983), pp. 639-648.

[8] A , E., B , L. C., F , A. Dynamic coupling measurement

for object-oriented software. IEEE Transactions on Software Engineering 30,

8 (2004), pp. 491-506.

[9] B , J., D , C. G. A hierarchical model for object-oriented design

quality as-sessment. IEEE Transactions on Software Engineering 28, 1 (2002),

pp. 4-17.

[10] B , V., B , L. C., M ,W. A validation of object-oriented design

metrics as quality indicators. IEEE Transactions on Software Engineering 22,

10 (1996), pp. 751-761.

[11] B , D., K , E., W , R. Regression Diagnostics: Identifying

Influential Data and Sources of Collinearity. John Wiley and Sons; USA,

(1980).

[12] B , R. Quantitative risk assessment in epidemiological studies investi-

gating threshold effects. Biometrical Journal 41, 3 (1999), pp. 305-319.

232

Bibliography

[13] B , S., E , K. E., G , N., R , S. Thresholds for object-

oriented measures. In Proceedings 11th International Symposium on Software

Reliability Engineering (2000), pp. 24-38.

[14] B , S., M ,W. Polymorphismmeasures for early risk prediction.

In Proceedings of the 21st International Conference on Software Engineering

(1999), pp. 335-344, Los Angeles, USA.

[15] B , J., K , B. Cohesion and reuse in an object-oriented system. In

Proceedings of the ACM Symposium on Software Reusability (1995), pp. 259-

262, Seattle, United States.

[16] B , J. M., A , A. A., Y , H. J. Understanding change-

proneness in oo software through visualization. In Proceedings of the 11th

IEEE International Workshop on Program Comprehension (2003), pp. 44-53,

Portland, USA.

[17] B , J. M., S , G., W , H., M , P. W., A , R. T.

Design patterns and change proneness: an examination of five evolving sys-

tems. In Proceedings of the 9th International Software Metrics Symposium

(2003), pp. 40-49.

[18] B , B. Software Engineering Economics. Englewood Cliffs, NJ. Prentice

Hall, (1981).

[19] B , B., B , J., K , H., L , M., M L , G., M ,

M. Characteristics of Software Quality. North Holland Publishing, Amster-

dam, (1978).

233

Bibliography

[20] B , A., R , C. Comparingmotivations of individual program-

mers and firms to take part in the open source movement. From community to

businessKnowledge, Technology, and Policy 18, 4 (2006), pp. 40-64.

[21] B , L. Random forests. Machine Learning 45, 1 (2001), pp. 5-32.

[22] B , L., D , W., W , J. Exploring the relationships between de-

sign measures and software quality. Journal of Systems and Software 51, 3

(2000), pp. 245-273.

[23] B , L., W , J., L , H. Using coupling measurement for im-

pact analysis in object-oriented systems. In IEEE International Conference on

Software Maintenance (1999), pp. 475-482, Oxford, UK.

[24] B , L., W , J., L , H. Replicated case studies for investigating

quality factors in object-oriented designs. Empirical Software Engineering.

International Journal 6, 1 (2001), pp. 11-58.

[25] B , L. C., D , W., W , J. A unified framework for cohesion

measurement in object-oriented systems. Empirical Software Engineering 3,

1 (1998), pp. 65-117.

[26] B , L. C., D , W., W , J. A unified framework for coupling

measurement in object-oriented systems. IEEE Transactions on Software En-

gineering 25, 1 (1999), pp. 91-121.

234

Bibliography

[27] B , L. C., D , P., M , W. An investigation into coupling

measures for C++. In Proceedings of the International Conference on Software

Engineering (1997), pp. 412-421, Boston, USA.

[28] B , L. C., M , W., W , J. Assessing the applicability of fault-

proneness models across object-oriented software projects. IEEE Transactions

on Software Engineering 28, 7 (2002), pp. 706-720.

[29] C , M. An empirical view of inheritance. Information and Software

Technology 40, 14 (1998), pp. 795-799.

[30] C , M., S , M. An empirical investigation of an object-

oriented software system. IEEE Transactions on Software Engineering 26, 8

(1999), pp. 786-796.

[31] C , A. B. D., P , A., V , S. R. A symbolic fault-

predictionmodel based onmultiobjective particle swarm optimization. Journal

of Systems and Software 83, 5 (2010), pp. 868-882.

[32] C , M. A., K , H., K , R. K., L , F. A change im-

pact model for changeability assessment in object-oriented software systems.

Science of Computer Programming 45, 23 (2002), pp. 155-174.

[33] C , J., G , R. Comparing bayesian network classifiers. In Pro-

ceedings of the 15th conference onUncertainty in artificial intelligence (1999),

pp. 101-108, Stockholm, Sweden.

235

Bibliography

[34] C , S., D , D., K , C. Managerial use of metrics for

object-oriented software: an exploratory analysis. IEEE Transactions on Soft-

ware Engineering 24, 8 (1998), pp. 629-639.

[35] C , S., K , C. Towards a metrics suite for object-oriented

design. In Proceedings of the Conference on Object-Oriented Programming

Systems (1991), pp. 197-211, Arizona, USA.

[36] C , S., K , C. A metric suite for object oriented design.

IEEE Transactions on Software Engineering 20, 6 (1994), pp. 476-493.

[37] C , D., L , B., O , P. The application of software main-

tainability models in industrial software systems. Journal of Systems and Soft-

ware 29, 1 (1995), pp. 3-16.

[38] C , G., H , E. A bayesian method for the induction of

probabilistic networks from data. Machine Learning 9, 4 (1992), pp. 309-347.

[39] D , J., B , A., M , J., R , M., W , M. Evaluating

inheritance depth on the maintainability of object-oriented software. Empirical

Software Engineering 1, 2 (1996), pp. 109-132.

[40] D , G., G , A. Classification by voting feature intervals. In

Proceedings of the 9th European Conference on Machine Learning (1997),

pp. 85-92, Prague, Czech Republic.

[41] D , J. Statistical comparisons of classifiers over multiple data sets. Jour-

nal of Machine Learning Research 7 (2006), pp. 1-30.

236

Bibliography

[42] D , R. G. A model for software product quality. IEEE Transactions on

Software Engineering 21, 2 (1995), pp. 146-162.

[43] D , R., H , P. Pattern Classification and Scene Analysis. JohnWiley

Sons, (1973).

[44] E E , K., B , S., G , N., R , S. A validation of object-

oriented metrics. Technical report, NRC/ERB 1063, 1992.

[45] E , M. O., A -K , M. A suite of metrics for quantifying histori-

cal changes to predict future change-prone classes in object-oriented software.

Journal of Software: Evolution and Process 25, 5 (2013), pp. 407-437.

[46] E , K. E., B , S., G , N., M , W., L , H., R , S. N.

The optimal class size for object-oriented software. IEEE Transactions on

Software Engineering 28, 5 (2002), pp. 494-509.

[47] E , K. E., B , S., G , N., R , S. The confounding effect

of class size on the validity of object-oriented metrics. IEEE Transactions on

Software Engineering 27, 7 (2001), pp. 630-650.

[48] E , K. E., M , W., M , J. The prediction of faulty classes

using object-oriented design metrics. Journal of Systems and Software 56, 1

(2001), pp. 63-75.

[49] E , K., L , C. Applying design-metrics to object-oriented

frameworks. In Proceedings of the 3rd International Software Metrics Sympo-

sium (1996), pp. 64-74, Berlin, Germany.

237

Bibliography

[50] E , S., B , F. An empirical study on object-oriented metrics and

software evolution in order to reduce testing costs by predicting change-prone

classes. In 4th International Conference on Software Testing, Verification and

Validation Workshops (2011), pp. 566-571, Berlin,Germany.

[51] F , S., Q , S., A , N. Software measurements and metrics:

role in effective software testing. International Journal of Engineering Science

and Technology 3, 1 (2011), pp. 971-680.

[52] F , T. An introduction to ROC analysis. Pattern Recognition Letters

27, 8 (2006), pp. 861-874.

[53] F , N., O , N. Quantitative analysis of faults and failures in a

complex software system. IEEE Transactions on Software Engineering 26, 8

(2000), pp. 797-814.

[54] F , M. Refactoring – Improving the Design of Existing Code, 1st edi-

tion ed. Addison-Wesley, (1999).

[55] F , V. A. Establishing software metric thresholds. In 9th International

Workshop on Software Measurement (1999), pp. Montreal, Canada.

[56] F , Y., S , R. A short introduction to boosting. Journal of

Japanese Society for Artificial Intelligence 14, 5 (1999), pp. 771-780.

[57] F , M. A comparison of alternative tests of significance for the problem

of m rankings. The Annals of Mathematical Statistics 11, 1 (1940), pp. 86-92.

238

Bibliography

[58] G , E., P , M., H.C.G . Can we predict types of code

changes? an empirical analysis. In Proceedings of the 4th Working Conference

on Mining Software Repositories (2012), pp. 217-226, Zurich, Switzerland.

[59] G , D., E , K. E., M , W., M , N. Validating object-

oriented design metrics on a commercial java application. TR ERB-1080,NRC

(2000).

[60] G , I. Empirical validation of object-oriented metrics for predicting fault

proneness models. The Journal of Systems and Software 81, 2 (2008), pp. 186-

195.

[61] G , P. Practical Implementation of Software Metrics. McGraw Hill,

(1993).

[62] G , D., B , D., D , N., S , Y., C , B. Further

thoughts on precision. In 15th Annual Conference on Evaluation Assessment

in Software Engineering (2011), pp. 129-133, Durham, UK.

[63] G , T., F , R., S , I. Empirical validation of object-

oriented metrics on open source software for fault prediction. IEEE Trans-

actions on Software Engineering 31, 10 (2005), pp. 897-910.

[64] H , M. Correlation-based feature selection for discrete and numeric class

machine learning. In Proceeding of the 17th international conference on ma-

chine learning (2000), pp. 359-366, Stanford, California.

239

Bibliography

[65] H , M. H. Elements of Software Science. Elsevier North Holland, New

York, (1997).

[66] H , A. R., J , S. U., B , D. H., H , J. E. Behavioral dependency

measurement for change proneness prediction in uml 2.0 design models. In

Proceedings of the 32nd IEEE International Conference on Computer Software

and Applications (2008), pp. 76-83, Turku, Finland.

[67] H , A. R., J , S. U., B , D. H., H , J. E. Measuring behavioral

dependency for improving change-proneness prediction in uml-based design

models. The Journal of Systems and Software 83, 2 (2010), pp. 222-234.

[68] H , J., M N , B. The meaning and use of the area under a re-

ceiver operating characteristic ROC curve. IEEE Transactions on Software

Engineering 143, 1 (1982), pp. 29-36.

[69] H , R., C , S., N , R. Experimental assessment of the

effect of inheritance on the maintainability of object-oriented systems. Journal

of Systems and Software 52, 2-3 (2000), pp. 173-179.

[70] H , O., A , C., C , R. Adoption of open source software in

software-intensive organizations - a systematic literature review. Information

and Software Technology 52, 11 (2010), pp. 1133-1154.

[71] H , S. Neural Networks: A Comprehensive Foundation. Pearson Educa-

tion, Delhi, (2004).

240

Bibliography

[72] H , H., G , E. Learning from imbalanced data. IEEE Transactions

on Knowledge and Data Engineering 21, 9 (2008), pp. 1263-1284.

[73] H , Z., S , F., Y , Y., L , M., W , Q. An investigation on the

feasibility of cross-project defect prediction. Automated Software Engneering

19, 2 (2012), pp. 167-199.

[74] H -S , B. Object-Oriented Metrics: Measure of Complexity.

Prentice Hall, (1996).

[75] H , S., K , D. Software structure metrics based on information

flow. IEEE Transactions on Software Engineering SE-7, 5 (1981), pp. 510-518.

[76] H , D., L , S. Wiley; New York.

[77] J , M., M , D. Towards identifying software project

clusters with regard to defect prediction. In Proceedings of the 6th Inter-

national Conference on Predictive Models in Software Engineering (2010),

pp. Timisoara, Romania.

[78] J , M., S , D. Using object-oriented design metrics to

predict software defects. In Proceedings of 5th international Conference on

Dependability of Computer Systems, Monographs of System Dependability

(2010), pp. 69-81, Wroclaw, Poland.

[79] K , S., U , V. R., S , V., T ,

P. Object-oriented software prediction using neural networks. Information and

Software Technology 49, 5 (2007), pp. 483-492.

241

Bibliography

[80] K , B. A. Guidelines for performing systematic literature review in

software engineering. Technical report, EBSE-2007-001, 2007.

[81] K , A. G., L , H. Identifying and characterizing change-prone classes

in two large-scale open-source products. The Journal of Systems and Software

80, 1 (2007), pp. 63-73.

[82] K , A. G., T , J. Comparing high-change modules and modules with

the highest measurement values in two large-scale open-source products. IEEE

Transactions on Software Engineering 31, 8 (2005), pp. 625-642.

[83] K , M., M , S. Addressing the curse of imbalanced training sets:

one-sided selection. In Proceeding of the 14th International conference on

machine learning (1997), pp. 179-186, Nashville, USA.

[84] L , N., H , M., F , E. Logistic model trees. Machine

Learning 95, 12 (2005), pp. 161-205.

[85] L , Y., L , B., W , S., W , F. Measuring the coupling and cohe-

sion of an object-oriented program based on information flow. In Proceedings

of the International Conference on Software Quality (1995), pp. 81-90, Mari-

bor, Slovenia.

[86] L , S., B , B., S , C., P . Benchmarking clas-

sification models for software defect prediction: a proposed framework and

novel findings. IEEE Transactions on Software Engineering 34, 4 (2008), pp.

485-496.

242

Bibliography

[87] L , W. Another metric suite for object-oriented programming. Journal of Sys-

tems and Software 44, 2 (1998), pp. 155-162.

[88] L , W., H , W. Object-oriented metrics that predict maintainability.

Journal of Software and Systems 23, 2 (1993), pp. 111-122.

[89] L , M. Are large C++ classes change-prone? An empirical investiga-

tion. Software Practice and Experience 28, 15 (1998), pp. 1551-1558.

[90] L , M. Measurement of change: stable and change-prone constructs in

a commerical C++ system. In Proceedings of the 6th International Software

Metrics Symposium (1999), pp. 40-49, Boca Raton, FL, USA.

[91] L , M., K , J. Object-Oriented Metrics. Prentice Hall, (1994).

[92] L , H., Z , Y., X , B., L , H., C , L. The ability of object-

oriented metrics to predict change-proneness: a meta-analysis. Empirical Soft-

ware Engineering 17, 3 (2011), pp. 200-242.

[93] L , M. R. Handbook of Software Reliability Engineering. IEEE Computer

Society Press and McGraw-Hill, (1996).

[94] M , Y., C , B. Adequate and precise evaluation of quality models in

software engineering studies. In Proceedings of the 3rd International Work-

shop Predictor Models in Software Engineering (2007), pp. 1-9, Minneapolis,

USA.

[95] M , R. Empirical Research in Software Engineering: Concepts, Anal-

ysis, and Applications. CRC Press, (2015).

243

Bibliography

[96] M , R., A , A. Cms tool: calculating defect and change

data from software project repositories. ACM SIGSOFT Software Engineering

Notes 39, 1 (2014), pp. 1-5.

[97] M , R., B , A. Software change proneness prediction: A

literature review (to be published). International Journal of Computer Appli-

cations in Technology.

[98] M , R., B , A. Cross project change prediction using open

source projects. In 3rd International Conference on Advances in Computing,

Communications and Informatics (2014), pp. 201-207, New Delhi, India.

[99] M , R., B , A. Predicting software change in an open source

software using machine learning algorithms. International Journal of Relia-

bility Quality and Safety Engineering 20, 6 (2014), pp. 1-14.

[100] M , R., B , A. Fault prediction considering threshold effects

of object oriented metrics. Expert Systems 32, 2 (2015), pp. 203-219.

[101] M , R., B , A. Predicting change using software metrics : a

review. In 4th International Conference on Reliability, Infocom Technologies

and Optimization (2015), pp. -, New Delhi, India.

[102] M , R., B , A. Prediction of change prone classes using

threshold methodology. Advances in Computer Science and Information Tech-

nology 2, 11 (2015), pp. 30-35.

244

Bibliography

[103] M , R., K ,M. Investigation of relationship between object-

oriented metrics and change proneness. Machine Learning and Cybernetics 4,

4 (2013), pp. 273-286.

[104] M , R., K , M. A newmetric for predicting software change

using gene expression programming. In Proceedings of the 5th International

Workshop on Emerging Trends in Software Metrics (2014), pp. 8-14, Hyder-

abad, India.

[105] M , R., P , A. Application of adaptive neuro-fuzzy inference

system for predicting software change proneness. In International Conference

on Advances in Computing Communications and Informatics (2013), pp. 2026-

2031, Mysore, India.

[106] M , R., P , N., N , K., U , P. Defect collec-

tion and reporting system for git based open source software. In International

Conference on Data Mining and Intelligent Computing (2014), pp. 1-7, New

Delhi, India.

[107] M , C. How good is genetic programming at predicting changes and

defects? In 16th International Symposium onSymbolic and Numeric Algo-

rithms for Scientific Computing (2014), pp. 544-548, Timis, Romania.

[108] M , T. J. A complexity measure. IEEE Transactions on Software Engi-

neering SE-2, 4 (1976), pp. 308-320.

[109] M C , J., R , P., W , G. Factors in software quality. Na-

tional Technical Information Service 1,2 and 3 (1977).

245

Bibliography

[110] M , T., G , J., F , A. Datamining static code attributes

to learn defect predictors. IEEE Transactions on Software Engineering 33, 1

(2007), pp. 2-13.

[111] M , K., K , H. Correlation-based feature selection strat-

egy in neural classification. In Sixth international conference on intelligent

systems design and applications (2006), pp. 741-746, Jinan, China.

[112] M , L., F , P. How perceptions of open source software in-

fluence adoption: an exploratory study. In Proceedings of the 15th European

Conference on Information Systems (2007), pp. 973-984, St. Gallen, Switzer-

land.

[113] M , I., S , E., M, S. Reliability and validity in compar-

ative studies of software prediction models. IEEE Transactions on Software

Engineering 31, 5 (2005), pp. 380-391.

[114] N , N., B , T., Z , A. Mining metrics to predict compo-

nent failures. In Proceedings of the 28th International Conference on Software

Engineering (2006), pp. 452-461.

[115] N , R. E. Learning Bayesian Networks. Prentice Hall, (2004).

[116] N , B. A. Npath: A measure of execution path complexity and its appli-

cation. Commun. ACM 31, 2 (1988), pp. 188-200.

246

Bibliography

[117] O , T., W , E., B , R. Predicting the location and number

of faults in large software systems. IEEE Transactions on Software Engineer-

ing 31, 4 (2005), pp. 340-355.

[118] P , G. Empirical analysis of software fault content and fault proneness using

Bayesian methods. IEEE Transactions on Software Engineering 33, 10 (2007),

pp. 675-686.

[119] P , M. D., C , L., G , Y. G., A , G. An em-

pirical sudy of the relationships between design pattern roles and class change

proneness. In IEEE International conference on SoftwareMaintenance (2008),

pp. 217-226, Beijing, China.

[120] P , D., B , C., D , P. An empirical study on the influence

of pattern roles on change-proneness. Empirical Software Engineering 16, 3

(2011), pp. 396-423.

[121] P , L., U , B., P , M., T , W. A controlled exper-

iment on inheritance depth as a cost factor for code maintenance. J. Systems

and Software 65, 2 (2003), pp. 115-126.

[122] Q , J. C4.5: Programs for Machine Learning. Morgan Kaufmann,

(1993).

[123] R.M , A.J . Fault prediction using statistical and machine

learning methods for improving software quality. Journal of Information Pro-

cessing Systems 8, 2 (2012), pp. 241-262.

247

Bibliography

[124] R , D., P , M. Using source code metrics to predict change-

prone java interfaces. Technical Report, ISSN 1872-5392, 2011.

[125] R , L. Metrics for object-oriented environment. In Proceedings of

EFAITP/AIE Third Annual Software Metrics Conference (1997).

[126] S , W., F , J., F , B., H , S., L , K. Un-

derstanding free/open source software development processes. Software Pro-

cess: Improvement and Practice 11, 2 (2006), pp. 95-105.

[127] S , A. R., T , L. A probabilistic approach to predict

changes in object-oriented software system. In 11th European Conference

on Software Maintenance and Reengineering (2007), pp. 27-38, Amsterdam,

Netherlands.

[128] S , A. R., T , L. Change prediction in object-oriented

software systems: a probabilistic approach. Journal of Software 3, 5 (2008),

pp. 26-39.

[129] S , R. A quantitative investigation of the acceptable risk levels of

object-oriented metrics in open-source systems. IEEE transactions on Soft-

ware Engineering 36, 2 (2010), pp. 216-225.

[130] S , R., L , W. The effectiveness of software metrics in identifying

error-prone classes in post release software evolution process. The Journal of

Systems and Software 81, 11 (2008), pp. 1868-1882.

248

Bibliography

[131] S , R., L , W., S , J., N , T. Finding software metrics

threshold values using ROC curves. Journal of Software Maintenance and

Evolution: Research and Practice 22, 1 (2010), pp. 1-16.

[132] S , P. Dtreg predictive modeling software.

[133] S , F., S , F., L , C. Metrics based refactoring.

In Proceedings of the 5th European Conference on Software Maintenance and

Reengineering (2001), pp. 30-38, Washington DC, USA.

[134] S , Y., K , A., M , R. Empirical validation of object-

oriented metrics for predicting fault proneness models. Software Quality Jour-

nal 18, 1 (2010), pp. 3-35.

[135] S , D., H , J., H , O., K , V., K , A.,

L , N., R , A. A survey of controlled experiments in software

engineering. IEEE Transactions on Software Engineering 31, 9 (2005), pp.

733-753.

[136] T , M. H., K , M. H., C , M. An empirical study on object-

oriented metrics. In Proceedings of the 6th International Software Metrics

Symposium (1999), pp. 242-249, Boca Raton, Florida.

[137] T , A., T , B., B , A. Practical considerations in deploy-

ing ai for defect prediction: a case study within the turkish telecommunication

industry. In Proceedings of the 5th International Conference on Predictor

Models in Software Engineering (2009), pp. 1-9, Vancouver, Canada.

249

Bibliography

[138] T , N., C , A., S , G. Predicting the

probability of change in object-oriented systems. IEEE Transactions on Soft-

ware Engineering 31, 7 (2005), pp. 601-614.

[139] T , J. Advantages and disadvantages of using artificial neural networks ver-

sus logistic regression for predicting medical outcomes. Journal of Clinical

Epidemiology 49, 11 (1996), pp. 1225-1231.

[140] T , B., B , A., M , T. Regularities in learning defect pre-

dictors. In The 11th International Conference on Product Focused Software

Development and Process Improvement (2010), pp. 116-130, Limerick, Ire-

land.

[141] T , B., M , T., B , A. On the relative value of cross-

company and within company data for defect prediction. Empirical Software

Engineering 14, 5 (2009), pp. 540-578.

[142] U , K. A statistical method for assessing a threshold in epidemiological stud-

ies. Statistics in Medicine 10, 3 (1991), pp. 341-349.

[143] W , D., R , D., B , S. A framework for defect prediction

in specific software project contexts. In The 3rd IFIP Central and East Eu-

ropean Conference on Software Engineering Techniques (2008), pp. 295-308,

Brno, Czech Republic.

[144] W , E. Software Quality Assurance: A Quality Approach. Prentice-

Hall International, (1994).

250

Bibliography

[145] W , S., K , H., K , K. Adapting a fault prediction model to

allow inter language reuse. In Proceedings of the International Workshop on

Predictive Models in Software Engineering (2008), pp. 19-24, Leipzig, Ger-

many.

[146] W , E., O , T., B , R. Do too many cooks spoil the broth?

using the number of developers to enhance defect predictionmodels. Empirical

Software Engineering 13, 5 (2008), pp. 539-559.

[147] W , E., O , T., B , R. Comparing the effectiveness of sev-

eral modeling methods for fault prediction. Empirical Software Engineering

15, 3 (2009), pp. 277-295.

[148] W , F. Individual comparisons by ranking methods. Biometrics 1, 6

(1945), pp. 80-83.

[149] Y , P., S , T., M , H. Predicting fault-proneness using oo met-

rics: an industrial case study. In Proceedings of the 6th European Conference

on Software Maintenance and Reengineering (2002), pp. 99-107, Budapest,

Hungary.

[150] Z , H. The optimality of naive bayes. In Proceedings of the 17th Inter-

national Florida Artificial Intelligence Research Society Conference (2004),

pp. 562-567, Florida.

[151] Z , H., Z , X. Comments on data mining static code attributes

to learn defect predictors. IEEE Transactions on Software Engineering 33, 9

(2007), pp. 635-637.

251

Bibliography

[152] Z , Y., L , H. Empirical analysis of object-oriented design metrics

for predicting high and low severity faults. IEEE Transactions on Software

Engineering 32, 10 (2006), pp. 771-789.

[153] Z , Y., L , H., X , B. Examining the potentially confounding

effect of class size on the associations between object oriented metrics and

change proneness. IEEE Transactions on Software Engineering 35, 5 (2009),

pp. 607-623.

[154] Z , Y., X , B., L , H. On the ability of complexity metrics to

predict fault-prone classes in object-oriented systems. Journal of Systems and

Software 83, 4 (2010), pp. 660-674.

[155] Z , T., N , N., G , H. Cross-project defect predic-

tion:a large scale experiment on data vs. domain vs. process. In Proceedings of

the 7th Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on The Foundations of Software Engineering

(2009), pp. 91-100, Amsterdam, Netherland.

[156] Z , H. Software Complexity: Measures and Methods. Walter De Gryter,

Berlin, (1990).

252

Bibliography

SUPERVISOR’S BIOGRAPHY

Ruchika Malhotra

Associate Head and Assistant Professor

Department of Software Engineering,

Delhi Technological University, Delhi

Email: ruchikamalhotra2004@yahoo.com

E Q :

Ph.D. (Information Technology), MCA(SE), BIS(H)

Prior to joining the University, she was an assistant professor at the University School

of Information Technology, Guru Gobind Singh Indraprastha University, Delhi, In-

dia. She received her master’s and doctorate degree in software engineering from

the University School of Information Technology, Guru Gobind Singh Indraprastha

253

Bibliography

University, Delhi, India. She has been awarded the prestigious UGC Raman Postdoc-

toral Fellowship by the Indian government for pursuing postdoctoral research from

the Department of Computer and Information Science, Indiana University-Purdue

University Indianapolis (2014–15), Indianapolis, Indiana. She received the presti-

gious IBM Faculty Award 2013. She has received the Best Presenter Award in Work-

shop on Search Based Software Testing, ICSE, 2014, Hyderabad, India. She is an

executive editor of Software Engineering: An International Journal and is a coauthor

of a book Object Oriented Software Engineering. Her research interests are in em-

pirical research in software engineering, improving software quality, statistical and

adaptive prediction models, software metrics, the definition and validation of soft-

ware metrics, and software testing. Her H-index as reported by Google Scholar is 17.

She has published more than 100 research papers in international journals and con-

ferences. She has visited foreign Universities like Imperial College, London, UK;

Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; Ball State

University, Muncie, Indiana; and Harare Institute of Technology, Zimbabwe. She has

served on the technical committees of several international conferences in the area of

software engineering.

254

AUTHOR’S BIOGRAPHY

Ankita Bansal
Assistant Professor, Department of Information Technology

Netaji Subhas Institute of Technology, Sector 3, Dwarka, Delhi 110078
Email: ankita.bansal06@gmail.com

T T :
Development of Techniques and Models for Improving Software Quality

E Q :
Master of Engineering (Computer Technology and Applications), Bachelor of Tech-
nology (Computer Science)

A A :
Secured 1st position in order of merit inM.E. and awarded a scholarship of Rs. 10,000
in each semester of M.E. for the same from Delhi Technological University (formerly
Delhi College of Engineering)

R I :
Software quality, software metrics, software testing, development and validation of
prediction models

	List of Tables
	List of Figures
	List of Publications
	Abbreviations
	Introduction and Literature Survey
	Introduction
	Software Quality Attributes
	Software Metrics
	Software Quality Prediction
	Literature Survey
	Object Oriented Metrics
	Software Quality Prediction Models Using Statistical or Machine Learning Techniques
	Software Quality Assessment Using Thresholds of Software Metrics

	Significant Insights
	Goals of the Thesis
	Organization of the Thesis

	Research Methodology
	Introduction
	Research Process
	Define Research Problem
	Literature survey
	Define Variables
	Independent Variables
	Dependent Variable

	Selection of Data Analysis Methods
	Logistic Regression
	Decision Tree
	Bayesian Networks
	Ensemble Learners
	Artificial Neural Networks
	Support Vector Machines

	Empirical Data Collection
	Change Collection Process
	Open Source Software Used

	Data Analysis and Pre - processing
	Descriptive Statistics
	Data Reduction

	Model Prediction
	Model Construction using Data Analysis Techniques
	Threshold Computation

	Validation Methods
	Internal Validation
	External Validation

	Performance Measures Used
	Significance Tests
	Friedman Test
	Post - hoc Analysis

	Predicting Change Using Software Metrics: A Review
	Introduction
	Research Methodology
	Review Process
	Formulation of Research Questions
	Inclusion and Exclusion criteria
	Selection of Relevant Studies

	Review Documentation
	Review Analysis and Results
	RQ1: What types of metrics are most commonly used in the prediction of change proneness?
	RQ2: What types of datasets are most widely used for prediction?
	RQ3: What type of machine learning techniques are used for model prediction?
	RQ4: What are the significant predictors of change proneness?
	RQ5: Have appropriate performance measures used to evaluate the performance of the models?
	RQ6: Have appropriate statistical tests used to measure the performance?
	RQ7: What are the risk indicators for various OO metrics?
	RQ8: What validation techniques are used to validate the models?

	Review Conclusion and Future Directions

	Investigation on Feasibility of Machine Learning Techniques for Predicting Software Change
	Introduction
	Research Methodology
	Software Used
	Empirical Data Collection
	Descriptive Statistics

	Result Analysis
	Univariate Logistic Regression Analysis
	Validation Result Analysis

	Discussion

	Models for Predicting Change Proneness for Popular Mobile Operating System, Android
	Introduction
	Research Background
	The Variables Used
	Empirical Data Collection

	Data Analysis Methods
	Statistical Model
	Machine Learning Techniques

	Research Methodology
	Performance Evaluation
	Validation Methods
	Correlation Analysis

	Result Analysis
	Model Evaluation Using 10 - Cross Validation

	Inter - Release Model Prediction
	Research Question Analysis
	Discussion

	Fault Prediction Considering Threshold Effects of Object Oriented Metrics
	Introduction
	Research Background
	Dependent and Independent Variables
	Empirical Data Collection
	Descriptive Statistics

	Research Methodology
	Calculation of Threshold Values

	Result Analysis
	Univariate Analysis
	Threshold Analysis

	Results Discussion
	KC1 Result Analysis
	Ivy Result Analysis
	Inter - Project Validation

	Discussion

	Identifying Threshold Values of Object Oriented Metrics for Change Prediction
	Introduction
	Research Background
	Dependent and Independent Variables
	Empirical Data Collection
	Descriptive Statistics

	Research Methodology
	Data Analysis Techniques Used
	Calculation of Threshold Values

	Analysis of Univariate Logistic Regression and Threshold Methodology
	Univariate Analysis
	Threshold Analysis

	Validation Result Analysis
	Results of Validation of Freemind
	Results of Validation of Xerces
	External Validation

	Comparison with non-binary models using statistical tests
	Discussion
	Comparison with Studies in Literature
	Comparison of Univariate Results
	Comparison of Model Validation Results
	Comparison of Threshold Results

	Identifying Threshold Values Using Receiver Operating Characteristics Curve
	Introduction
	Independent and Dependent Variables
	Research Methodology
	Empirical Data Collection
	Descriptive Statistics

	ROC Analysis to Calculate Threshold Values
	Results Analysis
	Analysis and Interpretation of Threshold Values
	Analysis of Inter - Release Validation

	Calculation of Thresholds Using Statistical Method
	Discussion

	Cross Project Change Prediction Using Open Source Projects
	Introduction
	Research Background
	Variables and Performance Measures Used

	Empirical Data Collection
	Research Methodology
	Creation of Train/Test Combinations
	Measuring Distributional Characteristics
	Predicting Model for Each Possible Prediction
	Verifing the Relationship Between Distributional Characteristics of Datasets and Selection of Training Set

	Result Analysis
	Discussion

	Conclusion
	Summary of the Work
	Applications of the Work
	Future Directions

	Bibliography
	Supervisor's Biography
	Author's Biography

