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CHAPTER 1 

 

  

1. INTRODUCTION 

Today we live in the digital world. The quantity of structured and unstructured data being 

created and spaced is breaking out with increasing level of digitization. The data is being 

generated from various sources – social media, transactions, sensors, digital images, 

videos, audios and clicks for domains including healthcare, retail, energy and utilities. 

Besides business and organizations, individuals add up to the data volume too. For 

instance, 32 billion content are being shared on Facebook every month; the photos viewed 

every 16 seconds in Picasa could cover a football field (Shelley). 

 Big data is a term for massive data sets having large, more varied and complex structure 

with the difficulties of storing, analyzing and visualizing for further processes or results 

(SINANC, SAGIROGLU, & Duygu, 2013). It is increasingly becoming obligatory for 

organizations to mine this data to stay competitive. Analyzing this data can provide 

additive competitive benefits for an enterprise. However the current volume of big data 

sets are too complicated to be managed and processed by conventional relational 

databases and data warehousing technologies. 

 

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm that was 

inspired by experiments with simulated bird flocking. This evolutionary algorithm has 

become popular because it is simple, requires little tuning, and has been found to be 

effective for a wide range of problems. Often a function that needs to be optimized takes 

a long time to evaluate. A problem using web content, commercial transaction 

information, or bioinformatics data, for example, may involve large amounts of data and 

require minutes or hours for each function evaluation. To optimize such functions, PSO 

must be parallelized (McNabb, Monson, & D., 2012). 

 

In our project we have proposed and implemented Particle Swarm Optimization (PSO), 

an evolutionary algorithm in a parallel fashion using MapReduce architecture. This 

optimization algorithm is generally used to analyze and extract some meaningful 
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information from large scale data that is usually available in unstructured manner. The 

MapReduce Particle Swarm Optimization program performs the same operations faster 

and more efficient than the sequential code. However, instead of performing PSO 

iterations internally, it delegates this work to the Hadoop MapReduce system, which 

makes it run in a parallel fashion. 

 

1.1  Motivation 

Big Data has become one of the buzzwords in IT industry during the last couple of years. 

Initially it was shaped by organizations which had to deal with speedy growth rates of 

data like web data, data resulting from scientific or business simulations or other data 

sources. The Google File System and MapReduce Architecture were resulted from the 

pressure to handle the expanding data amount on the web by Google (Ghemawat, Dean, 

& Sanjay, 2008). These technologies were tried to rebuild as open source software. This 

lead to Apache Hadoop and the Hadoop File System and laid the foundation for 

technologies under the umbrella of ‘big data’. 

 

Evolutionary Computing (EC) is a field of Computer science that adapts the theory of 

Darwinian evolution to optimize Computing problems (Eiben & Smith, 2003). The basis 

of EC revolves around the process of natural evolution such as competition, random 

variation, and reproduction. The process of EC is globally applicable for wide range of 

problems due to the fact that evolution itself is an optimization process. Two of its most 

popular algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) 

have been used ubiquitously to optimize problems in numerous fields of study.  

 

Despite the robust nature of EC, expensive computing and storing resources are required 

due to its parallel nature. Thus when EC gets parallely executed it performs better as 

compared to that of its normal serial execution. Therefore, EC has since become a popular 

subject of parallelization using various parallel processing techniques and architectures. 

 

Optimization is the process of search for the maximum or minimum of a given objective 

function. Particle Swarm Optimization (PSO) is a simple and effective evolutionary 

algorithm, but it may take hours or days to optimize difficult objective functions which 

are deceptive or expensive. Deceptive functions may be highly multimodal and 
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multidimensional, and PSO requires extensive exploration to avoid being trapped in local 

optima. Expensive functions, whose computational complexity may arise from 

dependence on detailed simulations or large datasets, takes a long time to evaluate. For 

deceptive or expensive objective functions, PSO must be parallelized to use 

multiprocessor systems and clusters efficiently. 

 

This thesis investigates the implications of parallelizing PSO and in particular, the details 

of parallelization and the effects of large swarms. PSO can be expressed naturally in 

Google's MapReduce framework (Ghemawat, Dean, & Sanjay, 2008) to develop a robust 

and simple parallel implementation that includes communication, load balancing, and 

fault tolerance. This flexible implementation makes it easy to apply modifications to the 

algorithm, such as those that improve optimization of difficult objective functions and 

improve parallel performance. 

 

1.2 Objective 

The objective of the thesis is to propose and realize an approach to implement Particle 

Swarm Optimization Algorithm in a parallel manner and use it to compute the effort of 

COCOMO Model. The population of the swarm here are in the form of big data are 

stored in Hadoop Distributed File System (HDFS) on Hadoop to have better fault 

tolerance and to store large amount of data in distributed manner.  

 

The machine learning technique used in our model is Particle Swarm Optimization. PSO 

is a fairly recent addition to the family of non-gradient based, probabilistic search 

approach that is based on a simple social model and is closely related to swarming theory. 

Although PSO algorithm presents several attractive properties to the designer, they are 

plagued by high computational cost as measured by elapsed time (Ludwig, 2014). 

 

Thus, this evolutionary algorithm is implemented in MapReduce architecture on Hadoop 

to overcome its limitations of large scale serial implementation for computationally 

intensive functions. MapReduce PSO is simple, flexible, scalable and robust because it is 

designed in the MapReduce parallel programming model.  
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The benefits that can be obtained using this model are remarkable: the unique property of 

Hadoop of replication factor provides us at different level of abstraction with the 

availability of documentation that is beneficial for anyone who wants to access the 

records. Hadoop also improves response time and is fault tolerant due to which storing 

database on it is very advantageous. 

 

Thus, this model overall proves to be beneficial for both data owner as well as end-users. 

Using this model an optimal value of effort required could be computed for a given 

project within a small span of time which could save both computation time and resources 

when there are reasonable numbers of projects or complex computations. 

 

1.3 Thesis Outline 

The thesis is divided into 6 chapters: 

Chapter 1 is the introduction part. It describes the motivation of the work, objective of 

the thesis and also the structure of the thesis. 

 

Chapter 2 is the literature survey. It includes the description of the work and contribution 

of various people in the same field and their findings. 

 

Chapter 3 is basically the research background. This chapter discusses optimization, 

overview of particle swarm optimization and its application. Also a brief overview of big 

data, its characteristics, challenges faced by big data and its benefits. Workflow of 

MapReduce architecture is also discussed in this chapter. 

 

Chapter 4 presents the detailed explanation of Hadoop and its components used in the 

work and their working. 

 

Chapter 5 presents the implementation or proposed work and the results obtained after 

running the code on our setup. 

 

Conclusion and future work are presented in chapter 6. 
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CHAPTER 2 

 

 

2. LITERATURE REVIEW 

In the work proposed by Andrew W. McNabb, Christopher K. Monson, and Kevin D. 

Seppi (McNabb, Monson, & D., 2012), they have stated that a problem using web 

content, commercial transaction information or bioinformatics data may involve large 

amounts of data and requires minutes and hours for each function evaluation. And PSO 

must be parallelized to optimize such functions. They have proposed MapReduce Particle 

Swarm Optimization (MRPSO) that is intended for computationally intensive functions 

and have used problem of training a Radial Basis Function (RBF) Network as 

representative of optimization problems which uses large amount of data. Once a program 

successfully scales, it must still address the issue of failing nodes. Google too faced the 

same problem in large scale parallelization. It is demonstrated that MRPSO scales to 256 

processors on moderately difficult problems and tolerates node failures. 

 

In the work of Junjun Wang, Dongfeng Yuan and Mingyan Jiang (Wang, Yuan, & Jiang, 

2012), the authors have proposed an improved method called parallel K-PSO. As K-

Means has limited processing capability because of its time complexity in serial scenario, 

improving the performance of K-Means has become challenging and significant. The K-

Means Clustering Algorithm has following two inherent drawbacks:  

i) Excessively depends on the initial cluster centers. 

ii) Converges easily to the local optimum. 

The idea proposed focuses on enhancing the global search capability of K-Means by 

taking the improved PSO to optimize its initial clusters, and improving the performance 

in dealing with massive data by transforming K-Means from serial to parallel using 

MapReduce. 
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In the work of Chia-Yu Lin, Yuan-Ming Pai, Kun-Hung Tsai, Charles H.-P. Wen, and Li-

Chun Wang (Lin, Pai, Tsai, & Wen, 2013), a MapReduce Modified Cuckoo Search 

(MRMCS) has been proposed. This is an efficient modified Cuckoo Search 

implementation on MapReduce architecture. Cuckoo Search is modified to deal with the 

issue of job partitioning i.e. which job goes to the mappers and which job goes to the 

reducers. Following four evaluation functions and two engineering design problems are 

used to conduct the experiment: 

a) Evaluations Functions 

i) Griewank Function 

ii) Rastrigrin Function 

iii) Rosenbrock Function 

iv) Sphere Function 

b) Engineering Design Problems 

i) Application of Spring Design 

ii) Application of Welded Beam Design 

The result shows that the MRMCS outperforms and shows better convergence in 

obtaining optimality than MRPSO with 2-4 times speedup. 

 

The work proposed by Dino Kečo, Abdulhamit Subasi (Kečo & Subasi, 2012), presents 

parallel implementation of Genetic Algorithm. This parallel implementation of Genetic 

Algorithm is compared with its serial implementation in solving One Max (Bit Counting) 

problem. The comparison criteria used in this work are fitness convergence, quality of 

final solution, algorithm scalability and cloud resource utilization. The proposed model 

shows better performance and fitness convergence than serial model, but has lower 

quality of solution because of species problem.  
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CHAPTER 3 

 

 

3. RESEARCH BACKGROUND 

 

3.1 Particle Swarm Optimization 

Particle swarm optimization (PSO) is an artificial intelligence (AI) technique that can be 

used to find approximate optimal solutions to extremely difficult or impossible numeric 

maximization and minimization problems. Particle Swarm Optimization is an algorithm 

capable of optimizing a non-linear and multimodal problem which usually reaches good 

solutions efficiently and quickly while requiring minimal parameterization. 

The algorithm and its concept of "Particle Swarm Optimization"(PSO) were introduced 

by James Kennedy and Russel Eberhart in 1995 (Eberhart, Kennedy, & Russell, 1995). 

However, its origins go further backwards since the basic principle of optimization by 

swarm is inspired in previous attempts at reproducing observed behaviors of animals in 

their natural habitat, such as bird flocking or fish schooling, and thus ultimately its origins 

are nature itself. These roots in natural processes of swarms lead to the categorization of 

the algorithm as one of Swarm Intelligence and Artificial Life. 

3.1.1 Overview 

The basic concept of the algorithm is to create a swarm of particles which move in the 

space around them (problem space) searching for their goal, the place which best suits 

their needs given by a fitness function. A nature analogy with birds is the following: a 

bird flock flies in its environment looking for the best place to rest (the best place can be a 

combination of characteristics like space for all the flock, food access, water access or 

any other relevant characteristic). 

The PSO algorithm is population-based: a set of potential solutions evolves to approach a 

convenient solution (or set of solutions) for a problem. Being an optimization method, the 
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aim is finding the global optimum of a real-valued function (fitness function) defined in a 

given space (search space). 

The social metaphor that led to this algorithm can be summarized as follows: the 

individuals that are part of a society hold an opinion that is part of a "belief space" (the 

search space) shared by every possible individual. Individuals may modify this "opinion 

state" based on three factors: 

 The knowledge of the environment (its fitness value) 

 The individual's previous history of states (its memory) 

 The previous history of states of the individual's neighborhood 

An individual's neighborhood may be defined in several ways, configuring somehow the 

"social network" of the individual. Several neighborhood topologies exist (full, ring, star, 

etc.) depending on whether an individual interacts with all, some, or only one of the rest 

of the population. 

Following certain rules of interaction, the individuals in the population adapt their scheme 

of belief to the ones that are more successful among their social network. Over the time, a 

culture arises, in which the individuals hold opinions that are closely related. 

 

3.1.2 Optimization 

Optimization is the mechanism by which one finds the maximum or minimum value of a 

function or process. This mechanism is used in fields such as physics, chemistry, 

economics, and engineering where the goal is to maximize efficiency, production, or 

some other measure. Optimization can refer to either minimization or maximization; 

maximization of a function f is equivalent to minimization of the opposite of this 

function, −f. 

Mathematically, a minimization task is defined as:  

Given f: R
n
 → R  

Find ŷ∈ R
n
 such that f (ŷ) ≤ f (ŷ), ∀ ŷ ∈ R

n 
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Similarly, a maximization task is defined as: 

Given f: R
n
 → R  

Find ŷ∈ R
n
 such that f (ŷ) ≥ f (ŷ), ∀ ŷ ∈ R

n
 

The domain R
n
 of f is referred to as the search space (or parameter space). Each element 

of R
n
 is called a candidate solution in the search space, with ŷ being the optimal solution. 

The value n denotes the number of dimensions of the search space, and thus the number 

of parameters involved in the optimization problem. The function f is called the objective 

function, which maps the search space to the function space. Since a function has only 

one output, this function space is usually one-dimensional. The function space is then 

mapped to the one-dimensional fitness space, providing a single fitness value for each set 

of parameters. This single fitness value determines the optimality of the set of parameters 

for the desired task.  

In most cases, the function space can be directly mapped to the fitness space. However, 

the distinction between function space and fitness space is important in cases such as 

multi-objective optimization tasks, which include several objective functions drawing 

input from the same parameter space. For a known (differentiable) function f, calculus 

can fairly easily provide us with the minima and maxima of f. However, in real-life 

optimization tasks, this objective function f is often not directly known. Instead, the 

objective function is a “black box” to which we apply parameters (the candidate solution) 

and receive an output value. The result of this evaluation of a candidate solution becomes 

the solution’s fitness. The final goal of an optimization task is to find the parameters in 

the search space that maximize or minimize this fitness.  

In some optimization tasks, called constrained optimization tasks, the elements in a 

candidate solution can be subject to certain constraints (such as being greater than or less 

than zero). 
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3.1.3 The PSO Algorithm 

As stated before, PSO simulates the behaviors of bird flocking. Suppose the following 

scenario: a group of birds are randomly searching food in an area. There is only one piece 

of food in the area being searched. All the birds do not know where the food is. But they 

know how far the food is in each iteration. So what's the best strategy to find the food? 

The effective one is to follow the bird which is nearest to the food.  

 

 

Figure 3.1: Basic Idea- Particle Swarm Optimization 

 

PSO learned from the scenario and used it to solve the optimization problems. In PSO, 

each single solution is a "bird" in the search space. We call it "particle". All of particles 

have fitness values which are evaluated by the fitness function to be optimized, and have 

velocities which direct the flying of the particles. The particles fly through the problem 

space by following the current optimum particles.  

 

PSO is initialized with a group of random particles (solutions) and then searches for 

optima by updating generations. In every iteration, each particle is updated by following 

two "best" values.  
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The first one is the best solution (fitness) it has achieved so far. (The fitness value is also 

stored.) This value is called pbest. Another "best" value that is tracked by the particle 

swarm optimizer is the best value, obtained so far by any particle in the population. This 

best value is a global best and called gbest. 

 

After finding the two best values, the particle updates its velocity and positions with 

following equation (a) and (b). 

v[ ] = v[ ] + c1 * rand() * (pbest[ ] - present[ ]) + c2 * rand() * (gbest[ ] - present[ ])….(a) 

present[ ] = present[ ] + v[ ]....…………………………………………………………..(b) 

v[ ] is the particle velocity, present[ ] is the current particle (solution). pbest[ ] & gbest[ ] 

are defined as stated before. rand () is a random number between (0,1). c1, c2 are learning 

factors, usually c1 = c2 = 2.  

 

 

Figure 3.2: Resultant velocity of the particles 
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The pseudo code of the procedure is as follows: 

 

For each particle  

    Initialize particle 

END 

Do 

    For each particle  

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            set current value as the new pBest 

    End 

    Choose the particle with the best fitness value of all the particles as the gBest 

    For each particle  

        Calculate particle velocity according equation (a) 

        Update particle position according equation (b) 

    End  

While maximum iterations or minimum error criteria is not attained 

 

Figure 3.3: Flowchart of PSO 
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3.1.4 Applications 

The applications of the Particle Swarm Optimization Algorithm can be summarized as: 

I. Non-convex Search Spaces 

 Convexity is extremely important in optimization algorithms because it has nice 

properties involving gradients that can make optimization guaranteed. In a space like the 

Rastrigin function, particle swarm optimization is able to deal with the local minima and 

in many cases finds the global optimum. 

 

II. Integer or Discontinuous Space  

In a similar vein, integer search spaces are difficult for traditional optimization 

algorithms. In problems that involve integer variables, the search space is discontinuous 

and gradient information is rarely effective. Particle swarm optimization does not require 

the space to be continuous but precautions need to be taken to position particles exactly 

on specific values. 

 

III. Neural-Networks 

One could treat the neural network weight space as a high dimensional particle swarm 

optimization search space. In this application of PSO, particles could be a swarm of 

neural networks attempting to find the lowest error on some classification or regression 

task. 

 

 

IV. Support Vector Machines (and Regression) 

For classification and regression tasks using Support Vector Machines, the user has the 

ability to choose a few hyper parameters that control the kernel function, the cost 

associated with failing to correctly classify a training item, the loss function parameters, 

etc. Since the search space is continuous there is a combinatorial explosion as the number 

of hyper parameters increases. Particle swarm optimization could be used to find the 

optimal set of hyper parameters by creating particles that search a space of various values 

for each of the hyper parameters while attempting to produce the best error on the data. 
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V. Multi-Objective Optimization  

In the spirit of optimization problems, multi-objective programs involve optimizing 

programs with multiple objective functions where objective functions are potentially in 

conflict with one another. In these problems, particle swarm optimization can be used to 

find a good trade-off between the different objective functions. 

 

3.2 Big Data 

Big Data is the next generation of data warehousing and business analytics and is poised 

to deliver top line revenues cost efficiently for enterprises. The greatest part about this 

phenomenon is the rapid pace of innovation and change; where we are today is not where 

we’ll be in just two years and definitely not where we’ll be in a decade. 

This new age didn’t suddenly emerge. It’s not an overnight phenomenon. It’s been 

coming for a while. It has many deep roots and many branches. In fact, if you speak with 

most data industry veterans, Big Data has been around for decades for firms that have 

been handling tons of transactional data over the years—even dating back to the 

mainframe era. The reasons for this new age are varied and complex can be summarized 

as: 

i) Computing perfect storm. Big Data analytics are the natural result of four major 

global trends: Moore’s Law (which basically says that technology always gets 

cheaper), mobile computing (that smart phone or mobile tablet in your hand), 

social networking (Facebook, Foursquare, Pinterest, etc.), and cloud computing 

(you don’t even have to own hardware or software anymore; you can rent or lease 

someone else’s). 

ii)  Data perfect storm. Volumes of transactional data have been around for 

decades for most big firms, but the flood gates have now opened with 

more volume, and the velocity and variety—the three Vs—of data that has arrived 

in unprecedented ways. This perfect storm of the three Vs makes it extremely 

complex and cumbersome with the current data management and analytics 

technology and practices. 
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iii) Convergence perfect storm. Another perfect storm is happening, too. 

Traditional data management and analytics software and hardware technologies, 

open-source technology, and commodity hardware are merging to create new 

alternatives for IT and business executives to address Big Data analytics. 

 

 

Figure 3.4: Big Data Variety & Complexity 

 

In summary, the Big Data world is being fueled with an abundance mentality; a rising tide 

lifts all boats. This new mentality is fueled by a gigantic global corkboard that includes 

data scientists, crowd sourcing, and opens source methodologies. 

 

3.2.1 Definition 
 

Since 2011 interest in an area known as big data has increased exponentially. The term 

big data has become ubiquitous. Owing to a shared origin between academia, industry 

and the media there is no single unified definition, and various stakeholders provide 

diverse and often contradictory definitions.  

 

 

The McKinsey Global Institute has defined this term as – “Big Data refers to data sets 

whose size is beyond the ability of typical database software tools to capture, store, 
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manage and analyze.” The process of research into massive amounts of data to reveal 

hidden patterns and secret correlations named as big data analytics (SINANC, 

SAGIROGLU, & Duygu, 2013). 

 

 

 

Figure 3.5: Sources of Big Data 

 

 

3.2.2 Characteristics: The Four V’s of Big Data 

 
Big Data is characterized by following four main components: 

 Volume – The quantity of data that is generated is very significant in this context. 

It is the size of the data which determines the value and potential of the data under 

consideration and whether it can actually be considered Big Data or not. The name 

‘Big Data’ itself contains a term which is related to size and hence the 

characteristic. 

 Variety - The next aspect of Big Data is its variety. This means that the category 

to which Big Data belongs to is also a very essential fact that needs to be known 

by the data analysts. This helps the people, who are closely analyzing the data and 

are associated with it, to effectively use the data to their advantage and thus 

upholding the importance of the Big Data. Big Data comes from a great variety of 

sources and generally is in three types: structured, semi-structured and 
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unstructured. Structured data inserts a data warehouse already tagged and easily 

sorted but unstructured data is random and difficult to analyze. Semi-structured 

data does not conform to fixed fields but contains tags to separate data elements 

(SINANC, 2013). 

 

Figure 3.6: Forms of Big Data 

 

 

 Velocity - The term ‘velocity’ in the context refers to the speed of generation of 

data or how fast the data is generated and processed to meet the demands and the 

challenges which lie ahead in the path of growth and development. 

 Veracity – Big Data ‘veracity’ refers to the biases, noise and abnormality in data. 

Is the data is being stored, and mined meaningful to the problem being analyzed. 

The quality of the data being captured can vary greatly. Accuracy of analysis 

depends on the veracity of the source data.  

 



 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE 
 

Department of Computer Science & Engineering, DTU Page 18 
 

 

Figure 3.7: 4 V’s of Big Data 

3.2.3 Big Data Challenges 

To fully take advantage of visual analytics, organizations will need to address several 

challenges related to visualization and big data. Here we’ve outlined some of those key 

challenges – and potential solutions (Singh & Ravinder, 2014). 

1. Meeting the need for speed  

In today’s hypercompetitive business environment, companies not only have to find and 

analyze the relevant data they need, they must find it quickly. Visualization helps 

organizations perform analyses and make decisions much more rapidly, but the challenge 

is going through the sheer volumes of data and accessing the level of detail needed, all at 

a high speed. The challenge only grows as the degree of granularity increases. One 

possible solution is hardware. Some vendors are using increased memory and powerful 

parallel processing to crunch large volumes of data extremely quickly. Another method is 

putting data in-memory but using a grid computing approach, where many machines are 

used to solve a problem. Both approaches allow organizations to explore huge data 

volumes and gain business insights in near-real time. 
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2. Understanding the data  

It takes a lot of understanding to get data in the right shape so that you can use 

visualization as part of data analysis. For example, if the data comes from social media 

content, you need to know who the user is in a general sense – such as a customer using a 

particular set of products – and understand what it is you’re trying to visualize out of the 

data. Without some sort of context, visualization tools are likely to be of less value to the 

user.  

One solution to this challenge is to have the proper domain expertise in place. Make sure 

the people analyzing the data have a deep understanding of where the data comes from, 

what audience will be consuming the data and how that audience will interpret the 

information. 

3. Addressing data quality  

Even if you can find and analyze data quickly and put it in the proper context for the 

audience that will be consuming the information, the value of data for decision-making 

purposes will be jeopardized if the data is not accurate or timely. This is a challenge with 

any data analysis, but when considering the volumes of information involved in big data 

projects, it becomes even more pronounced. Again, data visualization will only prove to 

be a valuable tool if the data quality is assured. To address this issue, companies need to 

have a data governance or information management process in place to ensure the data is 

clean. It’s always best to have a proactive method to address data quality issues so 

problems won’t arise later. 

4. Displaying meaningful results  

Plotting points on a graph for analysis becomes difficult when dealing with extremely 

large amounts of information or a variety of categories of information. For example, 

imagine you have 10 billion rows of retail SKU data that you’re trying to compare. The 

user trying to view 10 billion plots on the screen will have a hard time seeing so many 

data points. One way to resolve this is to cluster data into a higher-level view where 

smaller groups of data become visible. By grouping the data together, or “binning,” you 

can more effectively visualize the data. 
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5. Dealing with outliers  

The graphical representations of data made possible by visualization can communicate 

trends and outliers much faster than tables containing numbers and text. Users can easily 

spot issues that need attention simply by glancing at a chart. Outliers typically represent 

about 1 to 5 percent of data, but when you’re working with massive amounts of data, 

viewing 1 to 5 percent of the data is rather difficult. How do you represent those points 

without getting into plotting issues? Possible solutions are to remove the outliers from the 

data (and therefore from the chart) or to create a separate chart for the outliers. You can 

also bin the results to both view the distribution of data and see the outliers. While 

outliers may not be representative of the data, they may also reveal previously unseen and 

potentially valuable insights. 

3.2.4 Benefits of Big Data Analytics 

 

Google, eBay and LinkedIn were among the first to experiment with big data. They 

developed proof of concept and small-scale projects to learn if their analytical models 

could be improved with new data sources. In many cases, the results of these experiments 

were positive.  

 

Today, big data analytics is no longer just an experimental tool. Many companies have 

begun to achieve real results with the approach, and are expanding their efforts to 

encompass more data and models. Three major benefits of big data analytics are: 

 

1. Cost reduction 

Big data technologies like Hadoop and cloud-based analytics can provide substantial cost 

advantages. While comparisons between big data technology and traditional architectures 

(data warehouses and marts in particular) are difficult because of differences in 

functionality, a price comparison alone can suggest order-of-magnitude improvements. 

Virtually every large company, however, is employing big data technologies not to 

replace existing architectures, but to augment them. Rather than processing and storing 

vast quantities of new data in a data warehouse, for example, companies are using 
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Hadoop clusters for that purpose, and moving data to enterprise warehouses as needed for 

production analytical applications. 

Well-established firms like Citi, Wells Fargo and USAA all have substantial Hadoop 

projects underway that exist alongside existing storage and processing capabilities for 

analytics. While the long-term role of these technologies in enterprise architecture is 

unclear, it’s likely that they will play a permanent and important role in helping 

companies manage big data. 

2. Faster, better decision making 

Analytics has always involved attempts to improve decision making, and big data doesn’t 

change that. Large organizations are seeking both faster and better decisions with big 

data, and they’re finding them. Driven by the speed of Hadoop and in-memory analytics, 

several companies focus on speeding up existing decisions. 

For example, Caesars, a leading gaming company that has long embraced analytics, is 

now embracing big data analytics for faster decisions. The company has data about its 

customers from its Total Rewards loyalty program, web click streams, and real-time play 

in slot machines. It has traditionally used all those data sources to understand customers, 

but it has been difficult to integrate and act on them in real time, while the customer is 

still playing at a slot machine or in the resort. 

Caesars has found that if a new customer to its loyalty program has a run of bad luck at 

the slots; it’s likely that customer will never come back. But if it can present, say, a free 

meal coupon to that customer while he’s still at the slot machine, he is much more likely 

to return to the casino later. The key, however, is to do the necessary analysis in real time 

and present the offer before the customer turns away in disgust with his luck and the 

machines at which he’s been playing. 

In pursuit of this objective, Caesars has acquired Hadoop clusters and commercial 

analytics software. It has also added some data scientists to its analytics group. 
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Some firms are more focused on making better decisions analyzing new sources of data. 

For example, health insurance giant United Healthcare is using “natural language 

processing” tools from SAS to better understand customer satisfaction and when to 

intervene to improve it. It starts by converting records of customer voice calls to its call 

center into text and searching for indications that the customer is dissatisfied. The 

company has already found that the text analysis improves its predictive capability for 

customer attrition models. 

3. New products and services 

Perhaps the most interesting use of big data analytics is to create new products and 

services for customers. Online companies have done this for a decade or so, but now 

predominantly offline firms are doing it too. GE, for example, has made a major 

investment in new service models for its industrial products using big data analytics. 

Verizon Wireless is also pursuing new offerings based on its extensive mobile device 

data. In a business unit called Precision Market Insights, Verizon is selling information 

about how often mobile phone users are in certain locations, their activities and 

backgrounds. Customers thus far have included malls, stadium owners and billboard 

firms. 

 

3.3 Map Reduce Architecture 

 

MapReduce is a programming model and an associated implementation for processing 

and generating large data sets with a parallel, distributed algorithm on a cluster. 

Conceptually similar approaches have been very well known since 1995 with 

the Message Passing Interface standard having reduce and scatter operations.  

A MapReduce program is composed of a Map( ) procedure that performs filtering and 

sorting (such as sorting students by first name into queues, one queue for each name) and 

a Reduce( ) procedure that performs a summary operation (such as counting the number 

of students in each queue, yielding name frequencies). The "MapReduce System" (also 

called "infrastructure" or "framework") orchestrates the processing by marshalling the 

distributed servers, running the various tasks in parallel, managing all communications 

https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Cluster_(computing)
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Map_(parallel_pattern)
https://en.wikipedia.org/wiki/Procedure_(computing)
https://en.wikipedia.org/wiki/Marshalling_(computer_science)
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and data transfers between the various parts of the system, and providing 

for redundancy and fault tolerance. 

 

Figure 3.8: Map Reduce Architecture 

The model is inspired by the map and reduce functions commonly used in functional 

programming, although their purpose in the MapReduce framework is not the same as in 

their original forms. The key contributions of the MapReduce framework are not the 

actual map and reduce functions, but the scalability and fault-tolerance achieved for a 

variety of applications by optimizing the execution engine once. As such, a single-

threaded implementation of MapReduce (such as MongoDB) will usually not be faster 

than a traditional (non-MapReduce) implementation; any gains are usually only seen 

with multi-threaded implementations.  

The use of this model is beneficial only when the optimized distributed shuffle operation 

(which reduces network communication cost) and fault tolerance features of the 

MapReduce framework come into play. Optimizing the communication cost is essential 

to a good MapReduce algorithm.  

MapReduce libraries have been written in many programming languages, with different 

levels of optimization. A popular open-source implementation that has support for 

distributed shuffles is part of Apache Hadoop. The name MapReduce originally referred 

https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Fault-tolerant_computer_system
https://en.wikipedia.org/wiki/Map_(higher-order_function)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Single-threaded
https://en.wikipedia.org/wiki/Single-threaded
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Multi-threaded
https://en.wikipedia.org/wiki/Library_(software)
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Apache_Hadoop
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to the proprietary Google technology, but has since been genericized. MapReduce as a 

big data processing model is considered dead by many domain experts, as development 

has moved on to more capable and less disk-oriented mechanism that incorporate full 

map and reduce capabilities. 

 

3.3.1 Inputs and Outputs 

The MapReduce framework operates exclusively on <key, value> pairs, that is, the 

framework views the input to the job as a set of <key, value> pairs and produces a set 

of <key, value> pairs as the output of the job, conceivably of different types. 

The key and value classes have to be serializable by the framework and hence need to 

implement the Writable interface. Additionally, the key classes have to implement 

the WritableComparable interface to facilitate sorting by the framework. 

Input and Output types of a MapReduce job: 

Map takes one pair of data with a type in one data domain, and returns a list of pairs in a 

different domain: 

Map (k1,v1)  → list (k2,v2).........................................................................(c)  

The Reduce function is then applied in parallel to each group, which in turn produces a 

collection of values in the same domain: 

Reduce (k2, list (v2))  → list (v3)…………………………………………(d)  

 

3.3.2 Workflow 

MapReduce is implemented in a master/worker configuration, with one master serving as 

the coordinator of many workers. A worker may be assigned a role of either a map 

worker or a reduce worker. 

Step 1. Split input 

The first step, and the key to massive parallelization in the next step, is to split the input 

into multiple pieces. Each piece is called a split, or shard. For M map workers, we want to 

https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Generic_trademark
http://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/io/Writable.html
http://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/io/WritableComparable.html
https://en.wikipedia.org/wiki/Data_domain
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have M shards, so that each worker will have something to work on. The number of 

workers is mostly a function of the amount of machines we have at our disposal. 

The MapReduce library of the user program performs this split. The actual form of the 

split may be specific to the location and form of the data. MapReduce allows the use of 

custom readers to split a collection of inputs into shards, based on specific format of the 

files. 

 

Figure 3.9: Split input into shards 

Step 2. Fork processes 

The next step is to create the master and the workers. The master is responsible for 

dispatching jobs to workers, keeping track of progress, and returning results. The master 

picks idle workers and assigns them either a map task or a reduce task. A map task works 

on a single shard of the original data. A reduce task works on intermediate data generated 

by the map tasks. In all, there will be M map tasks and R reduce tasks. The number of 

reduce tasks is the number of partitions defined by the user. A worker is sent a message 

by the master identifying the program (map or reduce) it has to load and the data it has to 

read. 

 

Figure 3.10: Remotely execute worker processes 
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Step 3. Map 

Each map task reads from the input shard that is assigned to it. It parses the data and 

generates (key, value) pairs for data of interest. In parsing the input, the map function is 

likely to get rid of a lot of data that is of no interest. By having many map workers do this 

in parallel, we can linearly scale the performance of the task of extracting data. 

 

Figure 3.11: Map task 

 

Step 4: Map worker: Partition 

The stream of (key, value) pairs that each worker generates is buffered in memory and 

periodically stored on the local disk of the map worker. This data is partitioned 

into R regions by a partitioning function. 

The partitioning function is responsible for deciding which of the R reduce workers will 

work on a specific key. The default partitioning function is simply a hash 

of key modulo R but a user can replace this with a custom partition function if there is a 

need to have certain keys processed by a specific reduce worker. 

 

Figure 3.12: Create intermediate files 

 

Step 5: Reduce: Sort (Shuffle) 

When all the map workers have completed their work, the master notifies the reduce 

workers to start working. The first thing a reduce worker needs to is to get the data that it 
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needs to present to the user's reduce function. The reduce worker contacts every map 

worker via remote procedure calls to get the (key, value) data that was targeted for its 

partition. This data is then sorted by the keys. Sorting is needed since it will usually be 

the case that there are many occurrences of the same key and many keys will map to the 

same reduce worker (same partition). After sorting, all occurrences of the same key are 

grouped together so that it is easy to grab all the data that is associated with a single key. 

This phase is sometimes called the shuffle phase. 

 

Figure 3.13: Sort and merge partitioned data 

 

Step 6: Reduce function 

With data sorted by keys, the user's Reduce function can now be called. The reduce 

worker calls the Reduce function once for each unique key. The function is passed two 

parameters: the key and the list of intermediate values that are associated with the key. 

The Reduce function writes output sent to file. 

 

Figure 3.14: Reduce function writes output 
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Step 7: Done! 

When all the reduce workers have completed execution, the master passes control back to 

the user program. Output of MapReduce is stored in the R output files that the R reduce 

workers created. 

The big picture 

Figure 7 illustrates the entire MapReduce process. The client library initializes the shards 

and creates map workers, reduce workers, and a master. Map workers are assigned a 

shard to process. If there are more shards than map workers, a map worker will be 

assigned another shard when it is done. Map workers invoke the user's Map function to 

parse the data and write intermediate (key, value) results onto their local disks. This 

intermediate data is partitioned into R partitions according to a partioning function. Each 

of R reduce workers contacts all of the map workers and gets the set of (key, 

value) intermediate data that was targeted to its partition. It then calls the 

user's Reduce function once for each unique key and gives it a list of all values that were 

generated for that key. The Reduce function writes its final output to a file that the user's 

program can access once MapReduce has completed. 

 

Figure 3.15: MapReduce 
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3.3.3 Benefits  

The following table describes some of MapReduce’s key benefits: 

  

Table 1: Benefits of MapReduce Architecture 

Benefit Description 

Simplicity 

Developers can write applications in their language of choice, 

such as Java, C++ or Python, and MapReduce jobs are easy to 

run 

Scalability 
MapReduce can process petabytes of data, stored in HDFS on 

one cluster 

Speed 

Parallel processing means that MapReduce can take problems 

that used to take days to solve and solve them in hours or 

minutes 

Recovery 

MapReduce takes care of failures. If a machine with one copy of 

the data is unavailable, another machine has a copy of the same 

key/value pair, which can be used to solve the same sub-task. 

The JobTracker keeps track of it all. 

Minimal data motion 

MapReduce moves compute processes to the data on HDFS and 

not the other way around. Processing tasks can occur on the 

physical node where the data resides. This significantly reduces 

the network I/O patterns and contributes to Hadoop’s processing 

speed. 
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CHAPTER 4 

  

4. APACHE HADOOP 

Apache Hadoop is an open-source software framework written in Java for distributed 

storage and distributed processing of very large data sets on computer clusters built 

from commodity hardware. All the modules in Hadoop are designed with a fundamental 

assumption that hardware failures (of individual machines or racks of machines) are 

commonplace and thus should be automatically handled in software by the framework. 

The core of Apache Hadoop consists of a storage part (Hadoop Distributed File System 

(HDFS)) and a processing part (MapReduce). Hadoop splits files into large blocks and 

distributes them amongst the nodes in the cluster. To process the data, Hadoop 

MapReduce transfers packaged code for nodes to process in parallel, based on the data 

each node needs to process. This approach takes advantage of data locality—nodes 

manipulating the data that they have on hand—to allow the data to be processed faster 

and more efficiently than it would be in a more conventional supercomputer 

architecture that relies on a parallel file system where computation and data are connected 

via high-speed networking. 

 

Figure 4.1: Architecture of Hadoop 

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Distributed_processing
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Commodity_hardware
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/JAR_(file_format)
https://en.wikipedia.org/wiki/Distributed_processing
https://en.wikipedia.org/wiki/Supercomputer_architecture
https://en.wikipedia.org/wiki/Supercomputer_architecture
https://en.wikipedia.org/wiki/Parallel_file_system
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The base Apache Hadoop framework is composed of the following modules: 

 Hadoop Common – contains libraries and utilities needed by other Hadoop modules; 

 Hadoop Distributed File System (HDFS) – a distributed file-system that stores data 

on commodity machines, providing very high aggregate bandwidth across the cluster; 

 Hadoop YARN – a resource-management platform responsible for managing 

computing resources in clusters and using them for scheduling of users' 

applications; and 

 Hadoop MapReduce – a programming model for large scale data processing. 

The term "Hadoop" has come to refer not just to the base modules above, but also to the 

"ecosystem", or collection of additional software packages that can be installed on top of 

or alongside Hadoop, such as Apache Pig, Apache Hive, Apache HBase, Apache Spark, 

and others.  

Apache Hadoop's MapReduce and HDFS components were inspired by Google papers on 

their MapReduce and Google File System.
  

Hadoop is supported by its own list of 

operating systems - Red Hat Enterprise, CentOS, Oracle Linux, Ubuntu, SUSE Linux 

Enterprise Server. 

 

4.1 Characteristics of Hadoop 

 
1. Scale-Out rather than Scale-Up means Hadoop requires more machines or nodes to 

be added to the existing distributed system which is easier instead of adding more RAM 

or CPU for scaling up which is more difficult.  

 

2. It brings code to data, in data to code data is loaded to the processor from storage 

device located remotely and results are sent back to storage device as done traditionally 

whereas to bring code to data means both processor and  storage are located on same 

machine and processors run code and access underlying database.  

 

3. Deal with failures – they are common while working with large number of machines 

but Hadoop is designed to cope up with failures as data is replicated on various nodes and 

tasks are retired.  

 

https://en.wikipedia.org/wiki/Pig_(programming_tool)
https://en.wikipedia.org/wiki/Apache_Hive
https://en.wikipedia.org/wiki/Apache_HBase
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Google_File_System
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4. Abstract complexity of distributed and concurrent applications, allows developers to 

focus on application development and business logic and frees developer from worrying 

about processing Big Data on clusters of commodity hardware and system level 

challenges  

5. Vibrant open-source community  

6. Many tools and products reside on top of Hadoop  

7. Hadoop consists of the Hadoop Common, which provides access to the file systems 

supported by Hadoop.  

8. Hadoop has published APIs  

 

4.2 Hadoop Cluster  

Hadoop Cluster is a set of "cheap" commodity hardware networked together which 

resides in the same location i.e. set of servers resides in set of racks which are in data 

centre. “Cheap” Commodity Server Hardware means that there is no need for super-

computers, and can use commodity unreliable hardware. The hardware used are not 

desktops but servers. Hadoop Cluster is a collection of Hadoop nodes where each node 

consists of a Processor and Storage as shown in figure 4.2. In Hadoop cluster, processors 

access underlying local storage and execute code. 

 

 

Figure 4.2: Hadoop Cluster 
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4.3  Hadoop Ecosystem 

  
1. Hadoop Distributed File System  

2. MapReduce: a distributed data processing framework  

3. HBase: Hadoop column database; supports random reads and limited queries and batch  

4. Zookeeper: Highly-Available Coordination Service  

5. Oozie: Hadoop workflow scheduler and manager  

6. Pig: Data processing language and execution environment  

7. Hive: Data warehouse with SQL interface  

 

 

 

Figure 4.3: Apache Hadoop Ecosystem 
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4.4 Comparison between Hadoop and Distributed Databases 

Table 2: Comparison between Hadoop and Distributed Databases 

S.No. Hadoop Distributed Databases 

1. 
Used with relational database for batch 

processing 

Until recently used for batch 

processing in various applications 

2. Scale out using more machines Scale up using CPUs and RAM 

3. Cheap commodity is used to scale out 
Expensive to scale for larger 

installations 

4. Works best with unstructured or semi-

structured data 

Works well with structured data 

tables that conform to a specified 

schema 

5. For offline batch processing 
For Online Transactions and low-

latency queries 

6. Is designed to stream large amounts of 

data and large files 
It works best with small records 

7. Supports JSON, XML, images, etc. 
Does not have support for JSON, 

images, XML etc. 

 

4.5 Benefits 

While large Web 2.0 companies such as Google and Facebook use Hadoop to store and 

manage their huge data sets, Hadoop has also proven valuable for many other more 

traditional enterprises based on its five big advantages. 
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1. Scalable 

Hadoop is a highly scalable storage platform, because it can store and distribute very 

large data sets across hundreds of inexpensive servers that operate in parallel. Unlike 

traditional relational database systems (RDBMS) that can’t scale to process large amounts 

of data, Hadoop enables businesses to run applications on thousands of nodes involving 

thousands of terabytes of data. 

2. Cost effective 

Hadoop also offers a cost effective storage solution for businesses’ exploding data sets. 

The problem with traditional relational database management systems is that it is 

extremely cost prohibitive to scale to such a degree in order to process such massive 

volumes of data. In an effort to reduce costs, many companies in the past would have had 

to down-sample data and classify it based on certain assumptions as to which data was the 

most valuable. The raw data would be deleted, as it would be too cost-prohibitive to keep. 

While this approach may have worked in the short term, this meant that when business 

priorities changed, the complete raw data set was not available, as it was too expensive to 

store. Hadoop, on the other hand, is designed as a scale-out architecture that can 

affordably store all of a company’s data for later use. The cost savings are staggering: 

instead of costing thousands to tens of thousands of pounds per terabyte, Hadoop offers 

computing and storage capabilities for hundreds of pounds per terabyte. 

3. Flexible 

Hadoop enables businesses to easily access new data sources and tap into different types 

of data (both structured and unstructured) to generate value from that data. This means 

businesses can use Hadoop to derive valuable business insights from data sources such as 

social media, email conversations or clickstream data. In addition, Hadoop can be used 

for a wide variety of purposes, such as log processing, recommendation systems, data 

warehousing, market campaign analysis and fraud detection. 

4. Fast 

Hadoop’s unique storage method is based on a distributed file system that basically 

‘maps’ data wherever it is located on a cluster. The tools for data processing are often on 

http://www.mapr.com/products/apache-hadoop
http://www.computerworlduk.com/in-depth/applications/3329092/hadoop-could-save-you-money-over-a-traditional-rdbms/
http://www.computerworlduk.com/in-depth/applications/3329092/hadoop-could-save-you-money-over-a-traditional-rdbms/
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the same servers where the data is located, resulting in much faster data processing. If 

you’re dealing with large volumes of unstructured data, Hadoop is able to efficiently 

process terabytes of data in just minutes, and petabytes in hours. 

5. Resilient to failure 

A key advantage of using Hadoop is its fault tolerance. When data is sent to an individual 

node, that data is also replicated to other nodes in the cluster, which means that in the 

event of failure, there is another copy available for use. 

The MapR distribution goes beyond that by eliminating the NameNode and replacing it 

with a distributed No NameNode architecture that provides true high availability. Our 

architecture provides protection from both single and multiple failures. 

When it comes to handling large data sets in a safe and cost-effective manner, Hadoop 

has the advantage over relational database management systems, and its value for any size 

business will continue to increase as unstructured data continues to grow. 

 
 

4.6 Hadoop Distributed File System (HDFS)  

Hadoop Distributed File System is a file system that runs on top of native file system like 

Ext3, Ext4 and others, and is based on Google file system. It gives user appearance of a single 

disk. It is highly fault tolerant in a way that it can handle disk crashes, machine crashes, etc. It 

is built upon cheap commodity hardware which reduces the overall cost of installation of 

Hadoop 

http://www.mapr.com/products/apache-hadoop
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Figure 4.4: HDFS Architecture 

4.6.1 HDFS Daemons  

 
File system cluster is being managed by three types of processes namely, NameNode, 

DataNode and Secondary NameNode.  

 

a. NameNode: It manages the file systems namespace, meta-data and file blocks. It 

runs on one machine and manages several machines. All DataNodes report to 

NameNode about their presence and according to the number of available 

DataNodes it manages degree of replication as decided by the Administrator. For 

fast access NameNode keeps all block meta-data in memory. The other role is to 

serve the client queries, it allows clients to add/copy/move/delete a file, it will 

records the actions into a transaction log. For the performance, it save the whole 

file structure tree in RAM and hard drive. A HDFS only allow one running 

NameNode, that's why it is a single point of failure, if the NameNode failed or 

goes down, the whole file system will goes offline too. So, for the NameNode 

machine, we need to take special cares on it, such as adding more RAM to it, this 

will increase the file system capacity, and do not make it as DataNode, JobTracker 

and other optional roles.  
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Figure 4.5: NameNode 

 

b. DataNode: It stores and retrieves data blocks according to the request after it has 

reported to NameNode about its health. It runs on many machines and forms the 

cluster. On startup, DataNode will connect to the NameNode and get ready to 

respond to the operations from NameNode. After the NameNode telling the 

position of a file to the client, the client will directly talk to the DataNode to 

access the files. DataNodes could also talk to each other when they replicating 

data. The DataNode will also periodically send a report of all existing blocks to 

the NameNode and validates the data block checksums  

 

c. Secondary NameNode: It performs the house keeping work so that NameNode 

doesn’t have to do it and reduces the load of NameNode. It requires similar 

hardware as NameNode machine and is not used for high-availability – not a 

backup for NameNode. Its works is to back-up the metadata and store it to the 

hard disk, this may helping to reduce the restarting time of NameNode. In HDFS, 

the recent actions on HDFS will be stored in to a file called EditLog on the 

NameNode, after restarting HDFS; the NameNode will replay according to the 

Editlog. Secondary NameNode will periodically combines the content of EditLog 

into a checkpoint and clear the EditLog File, after that, the NameNode will replay 

start from the latest checkpoint, the restarting time of NameNode will be reduced.  
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4.6.2 HDFS File Read and Write 
 

In the Hadoop Cluster, NameNode accepts the request but does not directly read or write 

data to HDFS which is one of the reasons for HDFS‟s scalability. Initially, client interacts 

with the NameNode to update the HDFS namespace of NameNode and client retrieves 

block locations for reading and writing then it directly interacts with Datanode to 

read/write data. The Read and Write operations on the file are explained below.  

 

4.6.2.1 HDFS Write  

The write operation in HDFS is done in seven steps as shown in figure 4.6.  

1. Create new file in the NameNode’s Namespace and calculate block topology  

2. Stream data to the first DataNode  

3. Stream data to the second DataNode in the pipeline  

4. Stream data to the third DataNode  

5. Success/Failure acknowledgement  

6. Success/Failure acknowledgement  

7. Success/Failure acknowledgement  

 

 

 

Figure 4.6: HDFS Write 
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4.6.2.2 HDFS Read 

  

The read operation in HDFS is done in three steps as shown in figure 4.7.  

1. Client retrieves block location from NameNode  

2. Client read blocks to re-assemble the file  

3. Client read blocks to re-assemble the file  

 

 

Figure 4.7: HDFS Read 
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 CHAPTER 5 

   

5. IMPLEMENTATION AND RESULTS 

This section demonstrates the parallel implementation of Particle Swarm Optimization 

algorithm with its application in finding the effort of a project using COCOMO Model. 

As described in previous section, the particles in PSO update their velocity and position 

in each iteration so as to merge to a global optimal solution. PSO has a bottleneck for 

mathematically expensive functions and thus needs to be parallelized for more efficiency. 

The steps of the algorithm that can be parallelized are: 

i) Each iteration of PSO algorithm can be executed in parallel 

ii) Each particle can update its position parallely 

But the iterations in PSO can’t be parallelized as there is a issue of message passing 

among the particles in each iteration. The results of previous iteration must be preserved 

and utilized in next iteration. Thus to transform PSO in parallel fashion following issues 

needs to be considered: 

i) Determine the input to MapReduce architecture 

ii) Determine the jobs of mapper and reducer tasks 

iii) Exchanging information between mapper tasks 

A large number of initial random population is provided as input to the MapReduce 

framework, which is then splitted into chunks and distributed across various mappers. 

Each swarm (particle) is represented as a key-value pair as: 

Key K1 : swarm_id 

Value V1 : set of attributes representing the swarm like position, velocity, personal best, 

etc. 
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 Creating initial population 

A large number of initial random population is created, which is provided as input to the 

MapReduce framework. The population created is in the form of tuples containing 

following information: swarm id, position, velocity, personal best, and position at 

personal best.  

Here, position of the particle is in the form of (a,b), where a and b are the coefficients of 

the COCOMO model used to compute effort as: 

Effort (E) = a (LOC)
b
 …………………………….(e) 

Initial velocities of the particle have been assigned to zero. The particles update their 

velocity and position at each iteration using equation (a) and (b). 

 

 Map Function 

In Parallel Particle Swarm Optimization Algorithm, the map function is called once for 

each particle. The key is the offset of the tuple which represents the swarm and the value 

is the state string representation of the swarm (particle). 

In mapper, fitness of each particle is being computed and then personal best of each 

particle is evaluated. This updated state string representation of the swarm containing 

personal best and the position at which personal best is obtained is sent to the reducer. 

Here we have taken variable block size so as to test the efficiency of our model. Thus, for 

each block one mapper task is executed. After all mapper tasks have been executed, the 

reducer is initiated. 
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map ( key, value, context ) 

1. particle = Particle ( value ) 

2. # evaluate fitness of the particle 

3. fitness = calculate_fitness ( particle.position ) 

4. # calculate personal best of the particle 

5. if ( fitness<pBest ) 

6. pBest = fitness 

7. end if 

8. emit ( key, repr ( particle ) ) 

 

 

 Reduce Function 

The reduce function in this model receives a key and a list of all associated values. Here, 

we have explicitly defined the key as 1 so as to run a single reducer to reduce overhead. 

In reduce phase the global best of all the particles is calculated and the position at which 

global best is obtained is stored. 

Next, the particle’s velocity and position are updated and this new generation with 

updated state string representation of the particles is sent to the mapper for the next 

iteration. 
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reduce ( key, value_list, context ) 

1. particle = none 

2. gBest = none 

3. # finding gBest i.e. global best 

4. for value in value_list 

5. record = Particle ( value ) 

6. if ( record.pBest<=gBest )  

7. gBest = record.pBest 

8. end if 

9. # update the particle 

10. particle.update ( new_position, new_velocity ) 

11. end for 

12. # emit the updated particle for next generation 

13. emit ( key, repr ( particle ) ) 

 

This complete process in iterated for a fixed number of iterations or until some 

terminating criteria is met. Thus, the obtained gBest is the final output and the position at 

which gBest is obtained is the required value of a and b. 

 Results 

Here, we have optimized Basic COCOMO model parameters (a,b), such that calculated 

effort approximates to the actual effort for NASA 63 project dataset.  

Formally, this problem can be described as finding parameter X= {x1, x2}, with xi ∈ {0,5} 

that minimize the following equation: 

MMRE = [Actual – x1(KLOC)
 x2

] /Actual…………………………………..(f) 

Here MMRE - Mean Magnitude of Relative Error used as evaluation criteria for 

assessment of optimized parameters. And since parameter’s x1 and x2 are specific to 

project mode therefore we execute program for each mode separately. 
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A.  Environment 

We have implemented the model on Hadoop (2.6) and ran it on our Hadoop cluster with 

three nodes. Each node runs a two dual Intel Quad cores, 4GB RAM and 250 GB hard 

disks. The nodes are integrated with Hadoop Distributed File System (HDFS) yielding a 

potential single image storage space of 2 *52/3 = 34.6TB (since the replication factor of 

HDFS is set to 3). Each node can run 5 mappers and 3 reducers in parallel. 

B. Tests 

We have performed three tests and obtained the following results: 

I. Comparison between actual effort and computed effort 

In this experiment we have taken the population size of 2 lakhs and performed 3 iterations 

to obtain the result in each case. 

 

II. Variation of execution time with different block size 

Taking the population size of 2 lakhs and performing 3 iterations we observed a 

measurable variation in execution time while changing the block size of Hadoop resulting 

in different number of mapper tasks in each iteration. 
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III. Variation of execution time with number of iterations 

The execution time also varies greatly with different number of iteration. Again while 

performing this experiment we have kept population size of 2 lakhs and block size of 

3MB. 
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CHAPTER 6 

 

6. CONCLUSION AND FUTURE WORK 

The Particle Swarm Optimization algorithm can easily be parallelized using MapReduce 

architecture to solve the optimization problems involving large search space. The problem 

of large search space could be easily tackled by generating a large number of populations 

so that each particle in the population needs to search a comparatively smaller search 

space and can thus find the solution more efficiently in less time. 

It has been seen that lots of communication, task start up overhead is associated with 

Hadoop Map Reduce Architecture thus is not suitable for problems having small search 

space with less computation. 

Experimental results shows that the proposed model can have better convergence than its 

serial implementation for intensively expensive computation functions. This model would 

be really efficient if we deal with solving the problem involving a large number of 

dimensions. In such case it would be beneficial to use this parallel implementation for 

faster convergence to an optimal solution. 

The proposed model for parallel PSO can use a large population but could not be applied 

to a big dataset due to the fact that the particles keep on updating themselves in each 

iteration. So, a further detailed study is required to modify the algorithm in such a way so 

that it could be applied to big data to conclude with some meaningful information out of 

it. 

In future work the proposed model should be modified such that it could work upon a big 

dataset involving large number of dimensions. Also some work could be done in order to 

improve the execution time of the algorithm examining other features of MapReduce 

architecture like partitioner, combiner etc. which may reduce the processing. 


