
 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 1

CHAPTER 1

1. INTRODUCTION

Today we live in the digital world. The quantity of structured and unstructured data being

created and spaced is breaking out with increasing level of digitization. The data is being

generated from various sources – social media, transactions, sensors, digital images,

videos, audios and clicks for domains including healthcare, retail, energy and utilities.

Besides business and organizations, individuals add up to the data volume too. For

instance, 32 billion content are being shared on Facebook every month; the photos viewed

every 16 seconds in Picasa could cover a football field (Shelley).

 Big data is a term for massive data sets having large, more varied and complex structure

with the difficulties of storing, analyzing and visualizing for further processes or results

(SINANC, SAGIROGLU, & Duygu, 2013). It is increasingly becoming obligatory for

organizations to mine this data to stay competitive. Analyzing this data can provide

additive competitive benefits for an enterprise. However the current volume of big data

sets are too complicated to be managed and processed by conventional relational

databases and data warehousing technologies.

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm that was

inspired by experiments with simulated bird flocking. This evolutionary algorithm has

become popular because it is simple, requires little tuning, and has been found to be

effective for a wide range of problems. Often a function that needs to be optimized takes

a long time to evaluate. A problem using web content, commercial transaction

information, or bioinformatics data, for example, may involve large amounts of data and

require minutes or hours for each function evaluation. To optimize such functions, PSO

must be parallelized (McNabb, Monson, & D., 2012).

In our project we have proposed and implemented Particle Swarm Optimization (PSO),

an evolutionary algorithm in a parallel fashion using MapReduce architecture. This

optimization algorithm is generally used to analyze and extract some meaningful

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 2

information from large scale data that is usually available in unstructured manner. The

MapReduce Particle Swarm Optimization program performs the same operations faster

and more efficient than the sequential code. However, instead of performing PSO

iterations internally, it delegates this work to the Hadoop MapReduce system, which

makes it run in a parallel fashion.

1.1 Motivation

Big Data has become one of the buzzwords in IT industry during the last couple of years.

Initially it was shaped by organizations which had to deal with speedy growth rates of

data like web data, data resulting from scientific or business simulations or other data

sources. The Google File System and MapReduce Architecture were resulted from the

pressure to handle the expanding data amount on the web by Google (Ghemawat, Dean,

& Sanjay, 2008). These technologies were tried to rebuild as open source software. This

lead to Apache Hadoop and the Hadoop File System and laid the foundation for

technologies under the umbrella of ‘big data’.

Evolutionary Computing (EC) is a field of Computer science that adapts the theory of

Darwinian evolution to optimize Computing problems (Eiben & Smith, 2003). The basis

of EC revolves around the process of natural evolution such as competition, random

variation, and reproduction. The process of EC is globally applicable for wide range of

problems due to the fact that evolution itself is an optimization process. Two of its most

popular algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)

have been used ubiquitously to optimize problems in numerous fields of study.

Despite the robust nature of EC, expensive computing and storing resources are required

due to its parallel nature. Thus when EC gets parallely executed it performs better as

compared to that of its normal serial execution. Therefore, EC has since become a popular

subject of parallelization using various parallel processing techniques and architectures.

Optimization is the process of search for the maximum or minimum of a given objective

function. Particle Swarm Optimization (PSO) is a simple and effective evolutionary

algorithm, but it may take hours or days to optimize difficult objective functions which

are deceptive or expensive. Deceptive functions may be highly multimodal and

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 3

multidimensional, and PSO requires extensive exploration to avoid being trapped in local

optima. Expensive functions, whose computational complexity may arise from

dependence on detailed simulations or large datasets, takes a long time to evaluate. For

deceptive or expensive objective functions, PSO must be parallelized to use

multiprocessor systems and clusters efficiently.

This thesis investigates the implications of parallelizing PSO and in particular, the details

of parallelization and the effects of large swarms. PSO can be expressed naturally in

Google's MapReduce framework (Ghemawat, Dean, & Sanjay, 2008) to develop a robust

and simple parallel implementation that includes communication, load balancing, and

fault tolerance. This flexible implementation makes it easy to apply modifications to the

algorithm, such as those that improve optimization of difficult objective functions and

improve parallel performance.

1.2 Objective

The objective of the thesis is to propose and realize an approach to implement Particle

Swarm Optimization Algorithm in a parallel manner and use it to compute the effort of

COCOMO Model. The population of the swarm here are in the form of big data are

stored in Hadoop Distributed File System (HDFS) on Hadoop to have better fault

tolerance and to store large amount of data in distributed manner.

The machine learning technique used in our model is Particle Swarm Optimization. PSO

is a fairly recent addition to the family of non-gradient based, probabilistic search

approach that is based on a simple social model and is closely related to swarming theory.

Although PSO algorithm presents several attractive properties to the designer, they are

plagued by high computational cost as measured by elapsed time (Ludwig, 2014).

Thus, this evolutionary algorithm is implemented in MapReduce architecture on Hadoop

to overcome its limitations of large scale serial implementation for computationally

intensive functions. MapReduce PSO is simple, flexible, scalable and robust because it is

designed in the MapReduce parallel programming model.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 4

The benefits that can be obtained using this model are remarkable: the unique property of

Hadoop of replication factor provides us at different level of abstraction with the

availability of documentation that is beneficial for anyone who wants to access the

records. Hadoop also improves response time and is fault tolerant due to which storing

database on it is very advantageous.

Thus, this model overall proves to be beneficial for both data owner as well as end-users.

Using this model an optimal value of effort required could be computed for a given

project within a small span of time which could save both computation time and resources

when there are reasonable numbers of projects or complex computations.

1.3 Thesis Outline

The thesis is divided into 6 chapters:

Chapter 1 is the introduction part. It describes the motivation of the work, objective of

the thesis and also the structure of the thesis.

Chapter 2 is the literature survey. It includes the description of the work and contribution

of various people in the same field and their findings.

Chapter 3 is basically the research background. This chapter discusses optimization,

overview of particle swarm optimization and its application. Also a brief overview of big

data, its characteristics, challenges faced by big data and its benefits. Workflow of

MapReduce architecture is also discussed in this chapter.

Chapter 4 presents the detailed explanation of Hadoop and its components used in the

work and their working.

Chapter 5 presents the implementation or proposed work and the results obtained after

running the code on our setup.

Conclusion and future work are presented in chapter 6.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 5

CHAPTER 2

2. LITERATURE REVIEW

In the work proposed by Andrew W. McNabb, Christopher K. Monson, and Kevin D.

Seppi (McNabb, Monson, & D., 2012), they have stated that a problem using web

content, commercial transaction information or bioinformatics data may involve large

amounts of data and requires minutes and hours for each function evaluation. And PSO

must be parallelized to optimize such functions. They have proposed MapReduce Particle

Swarm Optimization (MRPSO) that is intended for computationally intensive functions

and have used problem of training a Radial Basis Function (RBF) Network as

representative of optimization problems which uses large amount of data. Once a program

successfully scales, it must still address the issue of failing nodes. Google too faced the

same problem in large scale parallelization. It is demonstrated that MRPSO scales to 256

processors on moderately difficult problems and tolerates node failures.

In the work of Junjun Wang, Dongfeng Yuan and Mingyan Jiang (Wang, Yuan, & Jiang,

2012), the authors have proposed an improved method called parallel K-PSO. As K-

Means has limited processing capability because of its time complexity in serial scenario,

improving the performance of K-Means has become challenging and significant. The K-

Means Clustering Algorithm has following two inherent drawbacks:

i) Excessively depends on the initial cluster centers.

ii) Converges easily to the local optimum.

The idea proposed focuses on enhancing the global search capability of K-Means by

taking the improved PSO to optimize its initial clusters, and improving the performance

in dealing with massive data by transforming K-Means from serial to parallel using

MapReduce.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 6

In the work of Chia-Yu Lin, Yuan-Ming Pai, Kun-Hung Tsai, Charles H.-P. Wen, and Li-

Chun Wang (Lin, Pai, Tsai, & Wen, 2013), a MapReduce Modified Cuckoo Search

(MRMCS) has been proposed. This is an efficient modified Cuckoo Search

implementation on MapReduce architecture. Cuckoo Search is modified to deal with the

issue of job partitioning i.e. which job goes to the mappers and which job goes to the

reducers. Following four evaluation functions and two engineering design problems are

used to conduct the experiment:

a) Evaluations Functions

i) Griewank Function

ii) Rastrigrin Function

iii) Rosenbrock Function

iv) Sphere Function

b) Engineering Design Problems

i) Application of Spring Design

ii) Application of Welded Beam Design

The result shows that the MRMCS outperforms and shows better convergence in

obtaining optimality than MRPSO with 2-4 times speedup.

The work proposed by Dino Kečo, Abdulhamit Subasi (Kečo & Subasi, 2012), presents

parallel implementation of Genetic Algorithm. This parallel implementation of Genetic

Algorithm is compared with its serial implementation in solving One Max (Bit Counting)

problem. The comparison criteria used in this work are fitness convergence, quality of

final solution, algorithm scalability and cloud resource utilization. The proposed model

shows better performance and fitness convergence than serial model, but has lower

quality of solution because of species problem.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 7

CHAPTER 3

3. RESEARCH BACKGROUND

3.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is an artificial intelligence (AI) technique that can be

used to find approximate optimal solutions to extremely difficult or impossible numeric

maximization and minimization problems. Particle Swarm Optimization is an algorithm

capable of optimizing a non-linear and multimodal problem which usually reaches good

solutions efficiently and quickly while requiring minimal parameterization.

The algorithm and its concept of "Particle Swarm Optimization"(PSO) were introduced

by James Kennedy and Russel Eberhart in 1995 (Eberhart, Kennedy, & Russell, 1995).

However, its origins go further backwards since the basic principle of optimization by

swarm is inspired in previous attempts at reproducing observed behaviors of animals in

their natural habitat, such as bird flocking or fish schooling, and thus ultimately its origins

are nature itself. These roots in natural processes of swarms lead to the categorization of

the algorithm as one of Swarm Intelligence and Artificial Life.

3.1.1 Overview

The basic concept of the algorithm is to create a swarm of particles which move in the

space around them (problem space) searching for their goal, the place which best suits

their needs given by a fitness function. A nature analogy with birds is the following: a

bird flock flies in its environment looking for the best place to rest (the best place can be a

combination of characteristics like space for all the flock, food access, water access or

any other relevant characteristic).

The PSO algorithm is population-based: a set of potential solutions evolves to approach a

convenient solution (or set of solutions) for a problem. Being an optimization method, the

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 8

aim is finding the global optimum of a real-valued function (fitness function) defined in a

given space (search space).

The social metaphor that led to this algorithm can be summarized as follows: the

individuals that are part of a society hold an opinion that is part of a "belief space" (the

search space) shared by every possible individual. Individuals may modify this "opinion

state" based on three factors:

 The knowledge of the environment (its fitness value)

 The individual's previous history of states (its memory)

 The previous history of states of the individual's neighborhood

An individual's neighborhood may be defined in several ways, configuring somehow the

"social network" of the individual. Several neighborhood topologies exist (full, ring, star,

etc.) depending on whether an individual interacts with all, some, or only one of the rest

of the population.

Following certain rules of interaction, the individuals in the population adapt their scheme

of belief to the ones that are more successful among their social network. Over the time, a

culture arises, in which the individuals hold opinions that are closely related.

3.1.2 Optimization

Optimization is the mechanism by which one finds the maximum or minimum value of a

function or process. This mechanism is used in fields such as physics, chemistry,

economics, and engineering where the goal is to maximize efficiency, production, or

some other measure. Optimization can refer to either minimization or maximization;

maximization of a function f is equivalent to minimization of the opposite of this

function, −f.

Mathematically, a minimization task is defined as:

Given f: R
n
 → R

Find ŷ∈ R
n
 such that f (ŷ) ≤ f (ŷ), ∀ ŷ ∈ R

n

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 9

Similarly, a maximization task is defined as:

Given f: R
n
 → R

Find ŷ∈ R
n
 such that f (ŷ) ≥ f (ŷ), ∀ ŷ ∈ R

n

The domain R
n
 of f is referred to as the search space (or parameter space). Each element

of R
n
 is called a candidate solution in the search space, with ŷ being the optimal solution.

The value n denotes the number of dimensions of the search space, and thus the number

of parameters involved in the optimization problem. The function f is called the objective

function, which maps the search space to the function space. Since a function has only

one output, this function space is usually one-dimensional. The function space is then

mapped to the one-dimensional fitness space, providing a single fitness value for each set

of parameters. This single fitness value determines the optimality of the set of parameters

for the desired task.

In most cases, the function space can be directly mapped to the fitness space. However,

the distinction between function space and fitness space is important in cases such as

multi-objective optimization tasks, which include several objective functions drawing

input from the same parameter space. For a known (differentiable) function f, calculus

can fairly easily provide us with the minima and maxima of f. However, in real-life

optimization tasks, this objective function f is often not directly known. Instead, the

objective function is a “black box” to which we apply parameters (the candidate solution)

and receive an output value. The result of this evaluation of a candidate solution becomes

the solution’s fitness. The final goal of an optimization task is to find the parameters in

the search space that maximize or minimize this fitness.

In some optimization tasks, called constrained optimization tasks, the elements in a

candidate solution can be subject to certain constraints (such as being greater than or less

than zero).

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 10

3.1.3 The PSO Algorithm

As stated before, PSO simulates the behaviors of bird flocking. Suppose the following

scenario: a group of birds are randomly searching food in an area. There is only one piece

of food in the area being searched. All the birds do not know where the food is. But they

know how far the food is in each iteration. So what's the best strategy to find the food?

The effective one is to follow the bird which is nearest to the food.

Figure 3.1: Basic Idea- Particle Swarm Optimization

PSO learned from the scenario and used it to solve the optimization problems. In PSO,

each single solution is a "bird" in the search space. We call it "particle". All of particles

have fitness values which are evaluated by the fitness function to be optimized, and have

velocities which direct the flying of the particles. The particles fly through the problem

space by following the current optimum particles.

PSO is initialized with a group of random particles (solutions) and then searches for

optima by updating generations. In every iteration, each particle is updated by following

two "best" values.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 11

The first one is the best solution (fitness) it has achieved so far. (The fitness value is also

stored.) This value is called pbest. Another "best" value that is tracked by the particle

swarm optimizer is the best value, obtained so far by any particle in the population. This

best value is a global best and called gbest.

After finding the two best values, the particle updates its velocity and positions with

following equation (a) and (b).

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[])….(a)

present[] = present[] + v[]....…………………………………………………………..(b)

v[] is the particle velocity, present[] is the current particle (solution). pbest[] & gbest[]

are defined as stated before. rand () is a random number between (0,1). c1, c2 are learning

factors, usually c1 = c2 = 2.

Figure 3.2: Resultant velocity of the particles

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 12

The pseudo code of the procedure is as follows:

For each particle

 Initialize particle

END

Do

 For each particle

 Calculate fitness value

 If the fitness value is better than the best fitness value (pBest) in history

 set current value as the new pBest

 End

 Choose the particle with the best fitness value of all the particles as the gBest

 For each particle

 Calculate particle velocity according equation (a)

 Update particle position according equation (b)

 End

While maximum iterations or minimum error criteria is not attained

Figure 3.3: Flowchart of PSO

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 13

3.1.4 Applications

The applications of the Particle Swarm Optimization Algorithm can be summarized as:

I. Non-convex Search Spaces

 Convexity is extremely important in optimization algorithms because it has nice

properties involving gradients that can make optimization guaranteed. In a space like the

Rastrigin function, particle swarm optimization is able to deal with the local minima and

in many cases finds the global optimum.

II. Integer or Discontinuous Space

In a similar vein, integer search spaces are difficult for traditional optimization

algorithms. In problems that involve integer variables, the search space is discontinuous

and gradient information is rarely effective. Particle swarm optimization does not require

the space to be continuous but precautions need to be taken to position particles exactly

on specific values.

III. Neural-Networks

One could treat the neural network weight space as a high dimensional particle swarm

optimization search space. In this application of PSO, particles could be a swarm of

neural networks attempting to find the lowest error on some classification or regression

task.

IV. Support Vector Machines (and Regression)

For classification and regression tasks using Support Vector Machines, the user has the

ability to choose a few hyper parameters that control the kernel function, the cost

associated with failing to correctly classify a training item, the loss function parameters,

etc. Since the search space is continuous there is a combinatorial explosion as the number

of hyper parameters increases. Particle swarm optimization could be used to find the

optimal set of hyper parameters by creating particles that search a space of various values

for each of the hyper parameters while attempting to produce the best error on the data.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 14

V. Multi-Objective Optimization

In the spirit of optimization problems, multi-objective programs involve optimizing

programs with multiple objective functions where objective functions are potentially in

conflict with one another. In these problems, particle swarm optimization can be used to

find a good trade-off between the different objective functions.

3.2 Big Data

Big Data is the next generation of data warehousing and business analytics and is poised

to deliver top line revenues cost efficiently for enterprises. The greatest part about this

phenomenon is the rapid pace of innovation and change; where we are today is not where

we’ll be in just two years and definitely not where we’ll be in a decade.

This new age didn’t suddenly emerge. It’s not an overnight phenomenon. It’s been

coming for a while. It has many deep roots and many branches. In fact, if you speak with

most data industry veterans, Big Data has been around for decades for firms that have

been handling tons of transactional data over the years—even dating back to the

mainframe era. The reasons for this new age are varied and complex can be summarized

as:

i) Computing perfect storm. Big Data analytics are the natural result of four major

global trends: Moore’s Law (which basically says that technology always gets

cheaper), mobile computing (that smart phone or mobile tablet in your hand),

social networking (Facebook, Foursquare, Pinterest, etc.), and cloud computing

(you don’t even have to own hardware or software anymore; you can rent or lease

someone else’s).

ii) Data perfect storm. Volumes of transactional data have been around for

decades for most big firms, but the flood gates have now opened with

more volume, and the velocity and variety—the three Vs—of data that has arrived

in unprecedented ways. This perfect storm of the three Vs makes it extremely

complex and cumbersome with the current data management and analytics

technology and practices.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 15

iii) Convergence perfect storm. Another perfect storm is happening, too.

Traditional data management and analytics software and hardware technologies,

open-source technology, and commodity hardware are merging to create new

alternatives for IT and business executives to address Big Data analytics.

Figure 3.4: Big Data Variety & Complexity

In summary, the Big Data world is being fueled with an abundance mentality; a rising tide

lifts all boats. This new mentality is fueled by a gigantic global corkboard that includes

data scientists, crowd sourcing, and opens source methodologies.

3.2.1 Definition

Since 2011 interest in an area known as big data has increased exponentially. The term

big data has become ubiquitous. Owing to a shared origin between academia, industry

and the media there is no single unified definition, and various stakeholders provide

diverse and often contradictory definitions.

The McKinsey Global Institute has defined this term as – “Big Data refers to data sets

whose size is beyond the ability of typical database software tools to capture, store,

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 16

manage and analyze.” The process of research into massive amounts of data to reveal

hidden patterns and secret correlations named as big data analytics (SINANC,

SAGIROGLU, & Duygu, 2013).

Figure 3.5: Sources of Big Data

3.2.2 Characteristics: The Four V’s of Big Data

Big Data is characterized by following four main components:

 Volume – The quantity of data that is generated is very significant in this context.

It is the size of the data which determines the value and potential of the data under

consideration and whether it can actually be considered Big Data or not. The name

‘Big Data’ itself contains a term which is related to size and hence the

characteristic.

 Variety - The next aspect of Big Data is its variety. This means that the category

to which Big Data belongs to is also a very essential fact that needs to be known

by the data analysts. This helps the people, who are closely analyzing the data and

are associated with it, to effectively use the data to their advantage and thus

upholding the importance of the Big Data. Big Data comes from a great variety of

sources and generally is in three types: structured, semi-structured and

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 17

unstructured. Structured data inserts a data warehouse already tagged and easily

sorted but unstructured data is random and difficult to analyze. Semi-structured

data does not conform to fixed fields but contains tags to separate data elements

(SINANC, 2013).

Figure 3.6: Forms of Big Data

 Velocity - The term ‘velocity’ in the context refers to the speed of generation of

data or how fast the data is generated and processed to meet the demands and the

challenges which lie ahead in the path of growth and development.

 Veracity – Big Data ‘veracity’ refers to the biases, noise and abnormality in data.

Is the data is being stored, and mined meaningful to the problem being analyzed.

The quality of the data being captured can vary greatly. Accuracy of analysis

depends on the veracity of the source data.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 18

Figure 3.7: 4 V’s of Big Data

3.2.3 Big Data Challenges

To fully take advantage of visual analytics, organizations will need to address several

challenges related to visualization and big data. Here we’ve outlined some of those key

challenges – and potential solutions (Singh & Ravinder, 2014).

1. Meeting the need for speed

In today’s hypercompetitive business environment, companies not only have to find and

analyze the relevant data they need, they must find it quickly. Visualization helps

organizations perform analyses and make decisions much more rapidly, but the challenge

is going through the sheer volumes of data and accessing the level of detail needed, all at

a high speed. The challenge only grows as the degree of granularity increases. One

possible solution is hardware. Some vendors are using increased memory and powerful

parallel processing to crunch large volumes of data extremely quickly. Another method is

putting data in-memory but using a grid computing approach, where many machines are

used to solve a problem. Both approaches allow organizations to explore huge data

volumes and gain business insights in near-real time.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 19

2. Understanding the data

It takes a lot of understanding to get data in the right shape so that you can use

visualization as part of data analysis. For example, if the data comes from social media

content, you need to know who the user is in a general sense – such as a customer using a

particular set of products – and understand what it is you’re trying to visualize out of the

data. Without some sort of context, visualization tools are likely to be of less value to the

user.

One solution to this challenge is to have the proper domain expertise in place. Make sure

the people analyzing the data have a deep understanding of where the data comes from,

what audience will be consuming the data and how that audience will interpret the

information.

3. Addressing data quality

Even if you can find and analyze data quickly and put it in the proper context for the

audience that will be consuming the information, the value of data for decision-making

purposes will be jeopardized if the data is not accurate or timely. This is a challenge with

any data analysis, but when considering the volumes of information involved in big data

projects, it becomes even more pronounced. Again, data visualization will only prove to

be a valuable tool if the data quality is assured. To address this issue, companies need to

have a data governance or information management process in place to ensure the data is

clean. It’s always best to have a proactive method to address data quality issues so

problems won’t arise later.

4. Displaying meaningful results

Plotting points on a graph for analysis becomes difficult when dealing with extremely

large amounts of information or a variety of categories of information. For example,

imagine you have 10 billion rows of retail SKU data that you’re trying to compare. The

user trying to view 10 billion plots on the screen will have a hard time seeing so many

data points. One way to resolve this is to cluster data into a higher-level view where

smaller groups of data become visible. By grouping the data together, or “binning,” you

can more effectively visualize the data.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 20

5. Dealing with outliers

The graphical representations of data made possible by visualization can communicate

trends and outliers much faster than tables containing numbers and text. Users can easily

spot issues that need attention simply by glancing at a chart. Outliers typically represent

about 1 to 5 percent of data, but when you’re working with massive amounts of data,

viewing 1 to 5 percent of the data is rather difficult. How do you represent those points

without getting into plotting issues? Possible solutions are to remove the outliers from the

data (and therefore from the chart) or to create a separate chart for the outliers. You can

also bin the results to both view the distribution of data and see the outliers. While

outliers may not be representative of the data, they may also reveal previously unseen and

potentially valuable insights.

3.2.4 Benefits of Big Data Analytics

Google, eBay and LinkedIn were among the first to experiment with big data. They

developed proof of concept and small-scale projects to learn if their analytical models

could be improved with new data sources. In many cases, the results of these experiments

were positive.

Today, big data analytics is no longer just an experimental tool. Many companies have

begun to achieve real results with the approach, and are expanding their efforts to

encompass more data and models. Three major benefits of big data analytics are:

1. Cost reduction

Big data technologies like Hadoop and cloud-based analytics can provide substantial cost

advantages. While comparisons between big data technology and traditional architectures

(data warehouses and marts in particular) are difficult because of differences in

functionality, a price comparison alone can suggest order-of-magnitude improvements.

Virtually every large company, however, is employing big data technologies not to

replace existing architectures, but to augment them. Rather than processing and storing

vast quantities of new data in a data warehouse, for example, companies are using

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 21

Hadoop clusters for that purpose, and moving data to enterprise warehouses as needed for

production analytical applications.

Well-established firms like Citi, Wells Fargo and USAA all have substantial Hadoop

projects underway that exist alongside existing storage and processing capabilities for

analytics. While the long-term role of these technologies in enterprise architecture is

unclear, it’s likely that they will play a permanent and important role in helping

companies manage big data.

2. Faster, better decision making

Analytics has always involved attempts to improve decision making, and big data doesn’t

change that. Large organizations are seeking both faster and better decisions with big

data, and they’re finding them. Driven by the speed of Hadoop and in-memory analytics,

several companies focus on speeding up existing decisions.

For example, Caesars, a leading gaming company that has long embraced analytics, is

now embracing big data analytics for faster decisions. The company has data about its

customers from its Total Rewards loyalty program, web click streams, and real-time play

in slot machines. It has traditionally used all those data sources to understand customers,

but it has been difficult to integrate and act on them in real time, while the customer is

still playing at a slot machine or in the resort.

Caesars has found that if a new customer to its loyalty program has a run of bad luck at

the slots; it’s likely that customer will never come back. But if it can present, say, a free

meal coupon to that customer while he’s still at the slot machine, he is much more likely

to return to the casino later. The key, however, is to do the necessary analysis in real time

and present the offer before the customer turns away in disgust with his luck and the

machines at which he’s been playing.

In pursuit of this objective, Caesars has acquired Hadoop clusters and commercial

analytics software. It has also added some data scientists to its analytics group.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 22

Some firms are more focused on making better decisions analyzing new sources of data.

For example, health insurance giant United Healthcare is using “natural language

processing” tools from SAS to better understand customer satisfaction and when to

intervene to improve it. It starts by converting records of customer voice calls to its call

center into text and searching for indications that the customer is dissatisfied. The

company has already found that the text analysis improves its predictive capability for

customer attrition models.

3. New products and services

Perhaps the most interesting use of big data analytics is to create new products and

services for customers. Online companies have done this for a decade or so, but now

predominantly offline firms are doing it too. GE, for example, has made a major

investment in new service models for its industrial products using big data analytics.

Verizon Wireless is also pursuing new offerings based on its extensive mobile device

data. In a business unit called Precision Market Insights, Verizon is selling information

about how often mobile phone users are in certain locations, their activities and

backgrounds. Customers thus far have included malls, stadium owners and billboard

firms.

3.3 Map Reduce Architecture

MapReduce is a programming model and an associated implementation for processing

and generating large data sets with a parallel, distributed algorithm on a cluster.

Conceptually similar approaches have been very well known since 1995 with

the Message Passing Interface standard having reduce and scatter operations.

A MapReduce program is composed of a Map() procedure that performs filtering and

sorting (such as sorting students by first name into queues, one queue for each name) and

a Reduce() procedure that performs a summary operation (such as counting the number

of students in each queue, yielding name frequencies). The "MapReduce System" (also

called "infrastructure" or "framework") orchestrates the processing by marshalling the

distributed servers, running the various tasks in parallel, managing all communications

https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Cluster_(computing)
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Map_(parallel_pattern)
https://en.wikipedia.org/wiki/Procedure_(computing)
https://en.wikipedia.org/wiki/Marshalling_(computer_science)

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 23

and data transfers between the various parts of the system, and providing

for redundancy and fault tolerance.

Figure 3.8: Map Reduce Architecture

The model is inspired by the map and reduce functions commonly used in functional

programming, although their purpose in the MapReduce framework is not the same as in

their original forms. The key contributions of the MapReduce framework are not the

actual map and reduce functions, but the scalability and fault-tolerance achieved for a

variety of applications by optimizing the execution engine once. As such, a single-

threaded implementation of MapReduce (such as MongoDB) will usually not be faster

than a traditional (non-MapReduce) implementation; any gains are usually only seen

with multi-threaded implementations.

The use of this model is beneficial only when the optimized distributed shuffle operation

(which reduces network communication cost) and fault tolerance features of the

MapReduce framework come into play. Optimizing the communication cost is essential

to a good MapReduce algorithm.

MapReduce libraries have been written in many programming languages, with different

levels of optimization. A popular open-source implementation that has support for

distributed shuffles is part of Apache Hadoop. The name MapReduce originally referred

https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Fault-tolerant_computer_system
https://en.wikipedia.org/wiki/Map_(higher-order_function)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Single-threaded
https://en.wikipedia.org/wiki/Single-threaded
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Multi-threaded
https://en.wikipedia.org/wiki/Library_(software)
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Apache_Hadoop

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 24

to the proprietary Google technology, but has since been genericized. MapReduce as a

big data processing model is considered dead by many domain experts, as development

has moved on to more capable and less disk-oriented mechanism that incorporate full

map and reduce capabilities.

3.3.1 Inputs and Outputs

The MapReduce framework operates exclusively on <key, value> pairs, that is, the

framework views the input to the job as a set of <key, value> pairs and produces a set

of <key, value> pairs as the output of the job, conceivably of different types.

The key and value classes have to be serializable by the framework and hence need to

implement the Writable interface. Additionally, the key classes have to implement

the WritableComparable interface to facilitate sorting by the framework.

Input and Output types of a MapReduce job:

Map takes one pair of data with a type in one data domain, and returns a list of pairs in a

different domain:

Map (k1,v1) → list (k2,v2)...(c)

The Reduce function is then applied in parallel to each group, which in turn produces a

collection of values in the same domain:

Reduce (k2, list (v2)) → list (v3)…………………………………………(d)

3.3.2 Workflow

MapReduce is implemented in a master/worker configuration, with one master serving as

the coordinator of many workers. A worker may be assigned a role of either a map

worker or a reduce worker.

Step 1. Split input

The first step, and the key to massive parallelization in the next step, is to split the input

into multiple pieces. Each piece is called a split, or shard. For M map workers, we want to

https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Generic_trademark
http://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/io/Writable.html
http://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/io/WritableComparable.html
https://en.wikipedia.org/wiki/Data_domain

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 25

have M shards, so that each worker will have something to work on. The number of

workers is mostly a function of the amount of machines we have at our disposal.

The MapReduce library of the user program performs this split. The actual form of the

split may be specific to the location and form of the data. MapReduce allows the use of

custom readers to split a collection of inputs into shards, based on specific format of the

files.

Figure 3.9: Split input into shards

Step 2. Fork processes

The next step is to create the master and the workers. The master is responsible for

dispatching jobs to workers, keeping track of progress, and returning results. The master

picks idle workers and assigns them either a map task or a reduce task. A map task works

on a single shard of the original data. A reduce task works on intermediate data generated

by the map tasks. In all, there will be M map tasks and R reduce tasks. The number of

reduce tasks is the number of partitions defined by the user. A worker is sent a message

by the master identifying the program (map or reduce) it has to load and the data it has to

read.

Figure 3.10: Remotely execute worker processes

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 26

Step 3. Map

Each map task reads from the input shard that is assigned to it. It parses the data and

generates (key, value) pairs for data of interest. In parsing the input, the map function is

likely to get rid of a lot of data that is of no interest. By having many map workers do this

in parallel, we can linearly scale the performance of the task of extracting data.

Figure 3.11: Map task

Step 4: Map worker: Partition

The stream of (key, value) pairs that each worker generates is buffered in memory and

periodically stored on the local disk of the map worker. This data is partitioned

into R regions by a partitioning function.

The partitioning function is responsible for deciding which of the R reduce workers will

work on a specific key. The default partitioning function is simply a hash

of key modulo R but a user can replace this with a custom partition function if there is a

need to have certain keys processed by a specific reduce worker.

Figure 3.12: Create intermediate files

Step 5: Reduce: Sort (Shuffle)

When all the map workers have completed their work, the master notifies the reduce

workers to start working. The first thing a reduce worker needs to is to get the data that it

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 27

needs to present to the user's reduce function. The reduce worker contacts every map

worker via remote procedure calls to get the (key, value) data that was targeted for its

partition. This data is then sorted by the keys. Sorting is needed since it will usually be

the case that there are many occurrences of the same key and many keys will map to the

same reduce worker (same partition). After sorting, all occurrences of the same key are

grouped together so that it is easy to grab all the data that is associated with a single key.

This phase is sometimes called the shuffle phase.

Figure 3.13: Sort and merge partitioned data

Step 6: Reduce function

With data sorted by keys, the user's Reduce function can now be called. The reduce

worker calls the Reduce function once for each unique key. The function is passed two

parameters: the key and the list of intermediate values that are associated with the key.

The Reduce function writes output sent to file.

Figure 3.14: Reduce function writes output

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 28

Step 7: Done!

When all the reduce workers have completed execution, the master passes control back to

the user program. Output of MapReduce is stored in the R output files that the R reduce

workers created.

The big picture

Figure 7 illustrates the entire MapReduce process. The client library initializes the shards

and creates map workers, reduce workers, and a master. Map workers are assigned a

shard to process. If there are more shards than map workers, a map worker will be

assigned another shard when it is done. Map workers invoke the user's Map function to

parse the data and write intermediate (key, value) results onto their local disks. This

intermediate data is partitioned into R partitions according to a partioning function. Each

of R reduce workers contacts all of the map workers and gets the set of (key,

value) intermediate data that was targeted to its partition. It then calls the

user's Reduce function once for each unique key and gives it a list of all values that were

generated for that key. The Reduce function writes its final output to a file that the user's

program can access once MapReduce has completed.

Figure 3.15: MapReduce

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 29

3.3.3 Benefits

The following table describes some of MapReduce’s key benefits:

Table 1: Benefits of MapReduce Architecture

Benefit Description

Simplicity

Developers can write applications in their language of choice,

such as Java, C++ or Python, and MapReduce jobs are easy to

run

Scalability
MapReduce can process petabytes of data, stored in HDFS on

one cluster

Speed

Parallel processing means that MapReduce can take problems

that used to take days to solve and solve them in hours or

minutes

Recovery

MapReduce takes care of failures. If a machine with one copy of

the data is unavailable, another machine has a copy of the same

key/value pair, which can be used to solve the same sub-task.

The JobTracker keeps track of it all.

Minimal data motion

MapReduce moves compute processes to the data on HDFS and

not the other way around. Processing tasks can occur on the

physical node where the data resides. This significantly reduces

the network I/O patterns and contributes to Hadoop’s processing

speed.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 30

CHAPTER 4

4. APACHE HADOOP

Apache Hadoop is an open-source software framework written in Java for distributed

storage and distributed processing of very large data sets on computer clusters built

from commodity hardware. All the modules in Hadoop are designed with a fundamental

assumption that hardware failures (of individual machines or racks of machines) are

commonplace and thus should be automatically handled in software by the framework.

The core of Apache Hadoop consists of a storage part (Hadoop Distributed File System

(HDFS)) and a processing part (MapReduce). Hadoop splits files into large blocks and

distributes them amongst the nodes in the cluster. To process the data, Hadoop

MapReduce transfers packaged code for nodes to process in parallel, based on the data

each node needs to process. This approach takes advantage of data locality—nodes

manipulating the data that they have on hand—to allow the data to be processed faster

and more efficiently than it would be in a more conventional supercomputer

architecture that relies on a parallel file system where computation and data are connected

via high-speed networking.

Figure 4.1: Architecture of Hadoop

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Distributed_processing
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Commodity_hardware
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/JAR_(file_format)
https://en.wikipedia.org/wiki/Distributed_processing
https://en.wikipedia.org/wiki/Supercomputer_architecture
https://en.wikipedia.org/wiki/Supercomputer_architecture
https://en.wikipedia.org/wiki/Parallel_file_system

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 31

The base Apache Hadoop framework is composed of the following modules:

 Hadoop Common – contains libraries and utilities needed by other Hadoop modules;

 Hadoop Distributed File System (HDFS) – a distributed file-system that stores data

on commodity machines, providing very high aggregate bandwidth across the cluster;

 Hadoop YARN – a resource-management platform responsible for managing

computing resources in clusters and using them for scheduling of users'

applications; and

 Hadoop MapReduce – a programming model for large scale data processing.

The term "Hadoop" has come to refer not just to the base modules above, but also to the

"ecosystem", or collection of additional software packages that can be installed on top of

or alongside Hadoop, such as Apache Pig, Apache Hive, Apache HBase, Apache Spark,

and others.

Apache Hadoop's MapReduce and HDFS components were inspired by Google papers on

their MapReduce and Google File System.

Hadoop is supported by its own list of

operating systems - Red Hat Enterprise, CentOS, Oracle Linux, Ubuntu, SUSE Linux

Enterprise Server.

4.1 Characteristics of Hadoop

1. Scale-Out rather than Scale-Up means Hadoop requires more machines or nodes to

be added to the existing distributed system which is easier instead of adding more RAM

or CPU for scaling up which is more difficult.

2. It brings code to data, in data to code data is loaded to the processor from storage

device located remotely and results are sent back to storage device as done traditionally

whereas to bring code to data means both processor and storage are located on same

machine and processors run code and access underlying database.

3. Deal with failures – they are common while working with large number of machines

but Hadoop is designed to cope up with failures as data is replicated on various nodes and

tasks are retired.

https://en.wikipedia.org/wiki/Pig_(programming_tool)
https://en.wikipedia.org/wiki/Apache_Hive
https://en.wikipedia.org/wiki/Apache_HBase
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Google_File_System

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 32

4. Abstract complexity of distributed and concurrent applications, allows developers to

focus on application development and business logic and frees developer from worrying

about processing Big Data on clusters of commodity hardware and system level

challenges

5. Vibrant open-source community

6. Many tools and products reside on top of Hadoop

7. Hadoop consists of the Hadoop Common, which provides access to the file systems

supported by Hadoop.

8. Hadoop has published APIs

4.2 Hadoop Cluster

Hadoop Cluster is a set of "cheap" commodity hardware networked together which

resides in the same location i.e. set of servers resides in set of racks which are in data

centre. “Cheap” Commodity Server Hardware means that there is no need for super-

computers, and can use commodity unreliable hardware. The hardware used are not

desktops but servers. Hadoop Cluster is a collection of Hadoop nodes where each node

consists of a Processor and Storage as shown in figure 4.2. In Hadoop cluster, processors

access underlying local storage and execute code.

Figure 4.2: Hadoop Cluster

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 33

4.3 Hadoop Ecosystem

1. Hadoop Distributed File System

2. MapReduce: a distributed data processing framework

3. HBase: Hadoop column database; supports random reads and limited queries and batch

4. Zookeeper: Highly-Available Coordination Service

5. Oozie: Hadoop workflow scheduler and manager

6. Pig: Data processing language and execution environment

7. Hive: Data warehouse with SQL interface

Figure 4.3: Apache Hadoop Ecosystem

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 34

4.4 Comparison between Hadoop and Distributed Databases

Table 2: Comparison between Hadoop and Distributed Databases

S.No. Hadoop Distributed Databases

1.
Used with relational database for batch

processing

Until recently used for batch

processing in various applications

2. Scale out using more machines Scale up using CPUs and RAM

3. Cheap commodity is used to scale out
Expensive to scale for larger

installations

4. Works best with unstructured or semi-

structured data

Works well with structured data

tables that conform to a specified

schema

5. For offline batch processing
For Online Transactions and low-

latency queries

6. Is designed to stream large amounts of

data and large files
It works best with small records

7. Supports JSON, XML, images, etc.
Does not have support for JSON,

images, XML etc.

4.5 Benefits

While large Web 2.0 companies such as Google and Facebook use Hadoop to store and

manage their huge data sets, Hadoop has also proven valuable for many other more

traditional enterprises based on its five big advantages.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 35

1. Scalable

Hadoop is a highly scalable storage platform, because it can store and distribute very

large data sets across hundreds of inexpensive servers that operate in parallel. Unlike

traditional relational database systems (RDBMS) that can’t scale to process large amounts

of data, Hadoop enables businesses to run applications on thousands of nodes involving

thousands of terabytes of data.

2. Cost effective

Hadoop also offers a cost effective storage solution for businesses’ exploding data sets.

The problem with traditional relational database management systems is that it is

extremely cost prohibitive to scale to such a degree in order to process such massive

volumes of data. In an effort to reduce costs, many companies in the past would have had

to down-sample data and classify it based on certain assumptions as to which data was the

most valuable. The raw data would be deleted, as it would be too cost-prohibitive to keep.

While this approach may have worked in the short term, this meant that when business

priorities changed, the complete raw data set was not available, as it was too expensive to

store. Hadoop, on the other hand, is designed as a scale-out architecture that can

affordably store all of a company’s data for later use. The cost savings are staggering:

instead of costing thousands to tens of thousands of pounds per terabyte, Hadoop offers

computing and storage capabilities for hundreds of pounds per terabyte.

3. Flexible

Hadoop enables businesses to easily access new data sources and tap into different types

of data (both structured and unstructured) to generate value from that data. This means

businesses can use Hadoop to derive valuable business insights from data sources such as

social media, email conversations or clickstream data. In addition, Hadoop can be used

for a wide variety of purposes, such as log processing, recommendation systems, data

warehousing, market campaign analysis and fraud detection.

4. Fast

Hadoop’s unique storage method is based on a distributed file system that basically

‘maps’ data wherever it is located on a cluster. The tools for data processing are often on

http://www.mapr.com/products/apache-hadoop
http://www.computerworlduk.com/in-depth/applications/3329092/hadoop-could-save-you-money-over-a-traditional-rdbms/
http://www.computerworlduk.com/in-depth/applications/3329092/hadoop-could-save-you-money-over-a-traditional-rdbms/

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 36

the same servers where the data is located, resulting in much faster data processing. If

you’re dealing with large volumes of unstructured data, Hadoop is able to efficiently

process terabytes of data in just minutes, and petabytes in hours.

5. Resilient to failure

A key advantage of using Hadoop is its fault tolerance. When data is sent to an individual

node, that data is also replicated to other nodes in the cluster, which means that in the

event of failure, there is another copy available for use.

The MapR distribution goes beyond that by eliminating the NameNode and replacing it

with a distributed No NameNode architecture that provides true high availability. Our

architecture provides protection from both single and multiple failures.

When it comes to handling large data sets in a safe and cost-effective manner, Hadoop

has the advantage over relational database management systems, and its value for any size

business will continue to increase as unstructured data continues to grow.

4.6 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System is a file system that runs on top of native file system like

Ext3, Ext4 and others, and is based on Google file system. It gives user appearance of a single

disk. It is highly fault tolerant in a way that it can handle disk crashes, machine crashes, etc. It

is built upon cheap commodity hardware which reduces the overall cost of installation of

Hadoop

http://www.mapr.com/products/apache-hadoop

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 37

Figure 4.4: HDFS Architecture

4.6.1 HDFS Daemons

File system cluster is being managed by three types of processes namely, NameNode,

DataNode and Secondary NameNode.

a. NameNode: It manages the file systems namespace, meta-data and file blocks. It

runs on one machine and manages several machines. All DataNodes report to

NameNode about their presence and according to the number of available

DataNodes it manages degree of replication as decided by the Administrator. For

fast access NameNode keeps all block meta-data in memory. The other role is to

serve the client queries, it allows clients to add/copy/move/delete a file, it will

records the actions into a transaction log. For the performance, it save the whole

file structure tree in RAM and hard drive. A HDFS only allow one running

NameNode, that's why it is a single point of failure, if the NameNode failed or

goes down, the whole file system will goes offline too. So, for the NameNode

machine, we need to take special cares on it, such as adding more RAM to it, this

will increase the file system capacity, and do not make it as DataNode, JobTracker

and other optional roles.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 38

Figure 4.5: NameNode

b. DataNode: It stores and retrieves data blocks according to the request after it has

reported to NameNode about its health. It runs on many machines and forms the

cluster. On startup, DataNode will connect to the NameNode and get ready to

respond to the operations from NameNode. After the NameNode telling the

position of a file to the client, the client will directly talk to the DataNode to

access the files. DataNodes could also talk to each other when they replicating

data. The DataNode will also periodically send a report of all existing blocks to

the NameNode and validates the data block checksums

c. Secondary NameNode: It performs the house keeping work so that NameNode

doesn’t have to do it and reduces the load of NameNode. It requires similar

hardware as NameNode machine and is not used for high-availability – not a

backup for NameNode. Its works is to back-up the metadata and store it to the

hard disk, this may helping to reduce the restarting time of NameNode. In HDFS,

the recent actions on HDFS will be stored in to a file called EditLog on the

NameNode, after restarting HDFS; the NameNode will replay according to the

Editlog. Secondary NameNode will periodically combines the content of EditLog

into a checkpoint and clear the EditLog File, after that, the NameNode will replay

start from the latest checkpoint, the restarting time of NameNode will be reduced.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 39

4.6.2 HDFS File Read and Write

In the Hadoop Cluster, NameNode accepts the request but does not directly read or write

data to HDFS which is one of the reasons for HDFS‟s scalability. Initially, client interacts

with the NameNode to update the HDFS namespace of NameNode and client retrieves

block locations for reading and writing then it directly interacts with Datanode to

read/write data. The Read and Write operations on the file are explained below.

4.6.2.1 HDFS Write

The write operation in HDFS is done in seven steps as shown in figure 4.6.

1. Create new file in the NameNode’s Namespace and calculate block topology

2. Stream data to the first DataNode

3. Stream data to the second DataNode in the pipeline

4. Stream data to the third DataNode

5. Success/Failure acknowledgement

6. Success/Failure acknowledgement

7. Success/Failure acknowledgement

Figure 4.6: HDFS Write

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 40

4.6.2.2 HDFS Read

The read operation in HDFS is done in three steps as shown in figure 4.7.

1. Client retrieves block location from NameNode

2. Client read blocks to re-assemble the file

3. Client read blocks to re-assemble the file

Figure 4.7: HDFS Read

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 41

 CHAPTER 5

5. IMPLEMENTATION AND RESULTS

This section demonstrates the parallel implementation of Particle Swarm Optimization

algorithm with its application in finding the effort of a project using COCOMO Model.

As described in previous section, the particles in PSO update their velocity and position

in each iteration so as to merge to a global optimal solution. PSO has a bottleneck for

mathematically expensive functions and thus needs to be parallelized for more efficiency.

The steps of the algorithm that can be parallelized are:

i) Each iteration of PSO algorithm can be executed in parallel

ii) Each particle can update its position parallely

But the iterations in PSO can’t be parallelized as there is a issue of message passing

among the particles in each iteration. The results of previous iteration must be preserved

and utilized in next iteration. Thus to transform PSO in parallel fashion following issues

needs to be considered:

i) Determine the input to MapReduce architecture

ii) Determine the jobs of mapper and reducer tasks

iii) Exchanging information between mapper tasks

A large number of initial random population is provided as input to the MapReduce

framework, which is then splitted into chunks and distributed across various mappers.

Each swarm (particle) is represented as a key-value pair as:

Key K1 : swarm_id

Value V1 : set of attributes representing the swarm like position, velocity, personal best,

etc.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 42

 Creating initial population

A large number of initial random population is created, which is provided as input to the

MapReduce framework. The population created is in the form of tuples containing

following information: swarm id, position, velocity, personal best, and position at

personal best.

Here, position of the particle is in the form of (a,b), where a and b are the coefficients of

the COCOMO model used to compute effort as:

Effort (E) = a (LOC)
b
 …………………………….(e)

Initial velocities of the particle have been assigned to zero. The particles update their

velocity and position at each iteration using equation (a) and (b).

 Map Function

In Parallel Particle Swarm Optimization Algorithm, the map function is called once for

each particle. The key is the offset of the tuple which represents the swarm and the value

is the state string representation of the swarm (particle).

In mapper, fitness of each particle is being computed and then personal best of each

particle is evaluated. This updated state string representation of the swarm containing

personal best and the position at which personal best is obtained is sent to the reducer.

Here we have taken variable block size so as to test the efficiency of our model. Thus, for

each block one mapper task is executed. After all mapper tasks have been executed, the

reducer is initiated.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 43

map (key, value, context)

1. particle = Particle (value)

2. # evaluate fitness of the particle

3. fitness = calculate_fitness (particle.position)

4. # calculate personal best of the particle

5. if (fitness<pBest)

6. pBest = fitness

7. end if

8. emit (key, repr (particle))

 Reduce Function

The reduce function in this model receives a key and a list of all associated values. Here,

we have explicitly defined the key as 1 so as to run a single reducer to reduce overhead.

In reduce phase the global best of all the particles is calculated and the position at which

global best is obtained is stored.

Next, the particle’s velocity and position are updated and this new generation with

updated state string representation of the particles is sent to the mapper for the next

iteration.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 44

reduce (key, value_list, context)

1. particle = none

2. gBest = none

3. # finding gBest i.e. global best

4. for value in value_list

5. record = Particle (value)

6. if (record.pBest<=gBest)

7. gBest = record.pBest

8. end if

9. # update the particle

10. particle.update (new_position, new_velocity)

11. end for

12. # emit the updated particle for next generation

13. emit (key, repr (particle))

This complete process in iterated for a fixed number of iterations or until some

terminating criteria is met. Thus, the obtained gBest is the final output and the position at

which gBest is obtained is the required value of a and b.

 Results

Here, we have optimized Basic COCOMO model parameters (a,b), such that calculated

effort approximates to the actual effort for NASA 63 project dataset.

Formally, this problem can be described as finding parameter X= {x1, x2}, with xi ∈ {0,5}

that minimize the following equation:

MMRE = [Actual – x1(KLOC)
 x2

] /Actual…………………………………..(f)

Here MMRE - Mean Magnitude of Relative Error used as evaluation criteria for

assessment of optimized parameters. And since parameter’s x1 and x2 are specific to

project mode therefore we execute program for each mode separately.

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 45

A. Environment

We have implemented the model on Hadoop (2.6) and ran it on our Hadoop cluster with

three nodes. Each node runs a two dual Intel Quad cores, 4GB RAM and 250 GB hard

disks. The nodes are integrated with Hadoop Distributed File System (HDFS) yielding a

potential single image storage space of 2 *52/3 = 34.6TB (since the replication factor of

HDFS is set to 3). Each node can run 5 mappers and 3 reducers in parallel.

B. Tests

We have performed three tests and obtained the following results:

I. Comparison between actual effort and computed effort

In this experiment we have taken the population size of 2 lakhs and performed 3 iterations

to obtain the result in each case.

II. Variation of execution time with different block size

Taking the population size of 2 lakhs and performing 3 iterations we observed a

measurable variation in execution time while changing the block size of Hadoop resulting

in different number of mapper tasks in each iteration.

0

5

10

15

20

25

30

35

40

45

2.14 4.25 5.3 6.2 8.2 9.1

E
ff

o
rt

 (
p

-m
)

KLOC

Actual Effort

Computed Effort

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 46

III. Variation of execution time with number of iterations

The execution time also varies greatly with different number of iteration. Again while

performing this experiment we have kept population size of 2 lakhs and block size of

3MB.

0

5

10

15

20

25

1 MB 2 MB 5 MB 12 MB 13 MB

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Block Size

Block Size Vs Execution Time

0

5

10

15

20

25

30

35

1 2 3 4 5

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

No. of iterations

No. of Iterations Vs Execution Time

 IMPLEMENTING PARALLEL PSO ALGORITHM USING MAPREDUCE ARCHITECTURE

Department of Computer Science & Engineering, DTU Page 47

CHAPTER 6

6. CONCLUSION AND FUTURE WORK

The Particle Swarm Optimization algorithm can easily be parallelized using MapReduce

architecture to solve the optimization problems involving large search space. The problem

of large search space could be easily tackled by generating a large number of populations

so that each particle in the population needs to search a comparatively smaller search

space and can thus find the solution more efficiently in less time.

It has been seen that lots of communication, task start up overhead is associated with

Hadoop Map Reduce Architecture thus is not suitable for problems having small search

space with less computation.

Experimental results shows that the proposed model can have better convergence than its

serial implementation for intensively expensive computation functions. This model would

be really efficient if we deal with solving the problem involving a large number of

dimensions. In such case it would be beneficial to use this parallel implementation for

faster convergence to an optimal solution.

The proposed model for parallel PSO can use a large population but could not be applied

to a big dataset due to the fact that the particles keep on updating themselves in each

iteration. So, a further detailed study is required to modify the algorithm in such a way so

that it could be applied to big data to conclude with some meaningful information out of

it.

In future work the proposed model should be modified such that it could work upon a big

dataset involving large number of dimensions. Also some work could be done in order to

improve the execution time of the algorithm examining other features of MapReduce

architecture like partitioner, combiner etc. which may reduce the processing.

