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ABSTRACT 

InP MESFET  find applications in high-power microwave devices because of its high saturation 

velocity and breakdown voltage. I have performed a two-dimensional simulation on an InP 

metal-semiconductor field effect transistor (MESFET) using Ensemble Monte Carlo. In this thesis 

electronic transport of InP MESFET has been observed. InP MESFET devices have low noise, 

higher gain and higher frequency performance as compared to GaAs devices. 

                     The Monte Carlo method is the best method to obtain the solution of the Boltzmann 

Transport Equation (BTE) . The bulk Monte Carlo approach is suitable for the characterization of 

materials, so in order to study behavior of devices, Monte Carlo is coupled with the poissons 

equation. Archimedes has been used for the purpose of simulation in which the device 

description is given in script format. 
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CHAPTER-1 

Introduction 
With the advancement of semiconductor technology, the miniaturization of devices is becoming 

the need of the hour. Hence to get the optimized applications it is first required to simulate the 

devices before manufacturing it. Simulating the devices before actually manufacturing them can 

save the cost and the labour. As the technology is more advanced so are the challenges to build 

them. The consequence of device miniaturization is that simulations of submicron semiconductor 

devices requires advanced transport models. Due to the presence of very high and rapidly varying 

electric field, phenomena occur which cannot be described by means of the well-known drift-

diffusion models, which do not incorporate energy as a dynamical variable. So there is a need of 

generalization in order to obtain physically models accurately. The energy-transport models 

which are used in commercial simulators are based on phenomeno-logical constitutive equations 

for the and energy flux and particle flux which depend upon the parameters so that they can be 

fitted to homogeneous bulk material  Monte Carlo simulations. So, this is not, certainly, a 

satisfactory physical description of the internal electronic dynamics in a semiconductor device. 

There are various simulation methods currently available, but ensemble Monte is widely use in 

the academic as well as in industry. Monte Carlo is highly reliable, predictive and trusted method 

for the simulation. In Monte Carlo method, the electron is considered as exhibiting the particle 

nature (i.e.like a biliard ball). However quantum effects which are associated with the wave 

nature of electrons can be can be implemented on the Monte Carlo, but they cannot be fully 

implemented into the simulators. There is need of ensemble Monte Carlo method to be modified 

which can implement the quantum effects associated with the wave nature of the electron. This 

thesis deals with the simulation of InP MESFET using the ensemble Monte Carlo method. This 

thesis deals with the simulation of InP MESFET using ensemble Monte Carlo method. Various 

simulation results have been discussed. 
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1.1 MESFET 

MESFET (Metal Semiconductor Field Effect Transistor) is a unipolar device in which the current 

conduction occurs due to flow of majority carriers. In an n-type MESFET majority carriers are 

electrons, while in a p-type MESFET, majority carriers are holes. There are three terminals in 

MESFET which are Gate, Source and Drain. An n+ doped region is placed on both sides of the n-

doped channel which acts as Source and Drain. The channel is placed in between source and 

drain contacts, as shown in Figure 1.1[8]. The depletion layer below the metal contact is varied 

by varying the gate voltage which regulates the flow of free carrier. The n-doped material and 

gate metal junction forms a Schottky barrier which shows rectifying characteristics making it 

suitable to be used as a diode also.[6] 

 

 

 

                            Figure 1.1 Structure of a MESFET with gate length, L, and channel thickness d 

The main advantage of the MESFET over MOSFET is the higher mobility of the carriers in the 

channel. The higher mobility WHICH leads to a higher current, trans-conductance and transit 
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frequency of the device. However the presence of the Schottky metal gate is the limitation for 

the MESFET. There are two types of MESFET shown below:[10] 

1. Non self-aligned source and drain: 

For this form of MESFET, the gate is placed on a section of the 

channel. The gate contact does not cover the whole of the length of the channel. This arises 

because the source and drain contacts are normally formed before the gate. 

 

Fig1.2 Non self-aligned MESFET structure[8] 

2. self-aligned source and drain: 

This form of structure reduces the length of the channel and the gate contact covers the whole 

length. This can be done because the gate is formed first, but in order that the annealing process 

required after the formation of the source and drain areas by ion implantation, the gate contact 

must be able to withstand the high temperatures and this results in the use of a limited number 

of materials being suitable.[7] 
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Fig1.3 self-aligned MESFET structure [8] 

 

1.2 INDIUM PHOSPHIDE 
 

Indium phosphide (InP) is a semiconductor composed of indium and phosphorus. Indium 

Phosphide (InP) belongs to the III-V family of semiconductors. InP possess high electron 

velocity as compare to the other semiconductors like silicon and gallium arsenide. Due to high 

electron mobility InP finds application in high-power and high-frequency electronic devices. InP 

has a direct bandgap which find application in optoelectronics devices like laser diodes.[5] 

A summary of the important parameters of InP in comparison to the GaAs is shown in the table 1.1 

below: 

 

Properties InP GaAs 

Bandgap energy                  ev 1.34 1.43 

Gamma-L energy diff          ev 0.6 0.36 

Electron relative 
eff. mass at Gamma            

0.08 0.07 

Low field electron mob. 
for high purity 
for 1017 donors                  cm2/Vs 

5000 8000 

Threshold field                    kV/cm 12 3.6 

https://en.wikipedia.org/wiki/Semiconductor
https://en.wikipedia.org/wiki/Indium
https://en.wikipedia.org/wiki/Phosphorus
https://en.wikipedia.org/wiki/Electron_velocity
https://en.wikipedia.org/wiki/Electron_velocity
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Gallium_arsenide
https://en.wikipedia.org/wiki/Direct_bandgap
https://en.wikipedia.org/wiki/Optoelectronics
https://en.wikipedia.org/wiki/Laser_diode
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Peak electron veloc           cm/s 2.2 1.7 

Saturated el. veloc.           cm/s 0.8 0.7 

Peak-to-valley electron 
velocity ratio 

3-4 2-2.5 

Threshold energy for 
impact ionization by 
electron                                eV 

2.1 1.7 

Electric field for 
alpha = 104 cm-                     kV/cm 

530 390 

Thermal conductivity        W/cm-K 0.7 0.5 

Table 1.1 Comparison of Material Properties at 300 0 K [11] 

 

                  Fig 1.4 Unit cube of InP crystal lattice 

1.2.1 ENERGY BAND STRUCTURE 

As a result of the laws of quantum mechanics, electrons in isolated atoms can have only certain 

discrete energy values. As these isolated atoms are brought together to form a crystal, the 

electrons become restricted not to single energy levels, but rather to ranges of allowed energies, 

or bands called the valance and conduction bands. These two bands are separated by an energy 

band gap, which is a very important characteristic of the semiconductor material. At zero kelvin, 
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all the electrons are confined to the valance band and the material is a perfect insulator. Above 

zero kelvin, some electrons have sufficient thermal energy to make a transition to the conduction 

band where they are free to move and conduct current through the crystal. The probability of an 

electron having enough energy to make the transition is given by the Fermi distribution function. 

The Fermi level shown on Figure 1.5 is the energy level at which the probability function is equal 

to one half. For pure semiconductors, the Fermi level is approximately in the center of the band 

gap. Note, though, that no electron actually has an energy of EF, since they are not permitted to 

exist at energies in the band gap. 

The amount of energy required for an electron to move from the valance band to the conduction 

band (energy band gap) depends on the temperature, the semiconductor material, and the 

material’s purity and doping profile. For undoped InP, the energy band gap at room temperature 

is 1.34 eV. The energy band diagram is usually referenced to a potential called the vacuum 

potential. The electron affinity, qχ, is the energy required to remove an electron from the bottom 

of the conduction band to the vacuum potential. [4] 

InP is a direct band gap semiconductor, which means that the minimum of the conduction band 

is directly over the maximum of the valance band. Transitions between the valance band and the 

conduction band require only a change in energy, and no change in momentum, unlike indirect 

band-gap semiconductors such as silicon (Si).[13] 

1.2.2 MOBILITY AND DRIFT VELOCITY  

InP has several advantages over silicon for operation in the microwave region—primarily, higher 

mobility and saturated drift velocity and the capability to produce devices on a semi-insulating 

substrate.  

                                 In a semiconductor, when a carrier (an electron) is subjected to an electric 

field, it will experience a force (F = –qE) and will be accelerated along the field. During the time 

between collisions with other carrier ions and the semiconductor lattice, the carrier will achieve 

a velocity that is a function of the electric field strength. This velocity is defined as the drift 

velocity (v). From the conservation of momentum, it can be shown that the drift velocity (v) is 

proportional to the applied electric field can be expressed as 
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                                                                                                            (1.1) 

 

The proportionality factor depends on the mean free time between collisions (τc) and the 

electron effective mass (m*). The proportionality factor is called the electron mobility (µ) in units 

of cm2/V-s.  

Mobility is an important parameter for carrier transport because it describes how strongly the 

motion of an electron is influenced by an applied electric field. From the equation (1.1) above, it 

is evident that mobility is related directly to the mean free time between collisions, which in turn 

is determined primarily by lattice scattering and impurity scattering. Lattice scattering, which is 

a result of thermal vibrations of the lattice, increases with temperature and becomes dominant 

at high temperatures; therefore, the mobility decreases with increasing temperature. Impurity 

scattering on the other hand, which is a result of the movement of a carrier past an ionized 

dopant impurity, becomes less significant at higher temperatures.[7] 

1.3 InP MESFET 

The MESFET is a form of semiconductor technology which is very similar to a junction FET or JFET. 

As the name of the MESFET indicates, it has a metal contact directly onto the silicon, and this 

forms a schottky barrier diode junction. The material that is used can be silicon or other forms of 

semiconductor. Indium Phosphide is chosen due to high electron mobility it provides that enables 

superior high frequency operation to be achieved. The substrate for the semiconductor device is 

semi-insulating for low parasitic capacitance, and then the active layer is deposited epitaxially. 

The resulting channel is typically less than 0.2 microns thick.[4]  

1.4 ARCHIMEDES PACKAGE OVERVIEW 

The GNU package Archimedes is a 2D Quantum Monte Carlo simulator for semiconductor 

devices. At the present time it can simulate the transport of electrons and holes in Silicon, Gallium 

Arsenide, Germanium, InSb, AlSb, AlAs, InP, GaP and the two compounds AlxInxSb and 

AlxIn(1−x)Sb,(actually the purpose is reaching the possibility of simulating a quite big range of 
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materials belonging to the cubic group IV of the diamond structure and to the III-V 

semiconductors of the zinc blende structure along with all the heterostructure possible). 

        Archimedes  uses the well-known ensemble Monte Carlo method for the simulations. It can 

simulate both the transient and the steady state solution (even if the transient can be quite noisy, 

due to the statistical approach). The particles dynamics is coupled to the electrostatic potential 

by means of the simulation of a non-stationary Poisson equation. This last equation is simulated 

by a simple, but very robust, finite difference method. In this present version of Archimedes we 

can choose the physics of the various contacts present on the device. So, for example, you can 

decide if an edge (or a part of it) is an insulator, or a Schottky contact or even an Ohmic one. In 

addition, the quantum effects are taken into account by means of the recent effective potential 

method, which is starting to be used by the academic community, as you can see from scientific 

papers.  

Furthermore we can simulate a simplified MEP (Maximum Entropy Principle) model which is very 

useful for making Archimedes faster than the precedent release. Now we can simulate even a 

fixed constant magnetic field and/or the self-consistent magnetic field by means of the Faraday’s 

equation. This is a quite rare feature in semiconductor simulator that Archimedes is already able 

to implement. 

All the particles in this code have a ‘statistical weight’ which is made a piecewise-function of the 

position. We can choose the number of particle used in the simulation, even if this last will vary 

during the simulation, but it is not allowed to be more than 10 million. If we want a bigger number 

we have to change it in the code (modifying the definition of NPMAXIMUM in the 

file”archimedes.c” and recompiling it). I have chosen to not dynamically allocate the memory 

because the number of particles in the devices can vary very rapidly (depending on the device 

structure, obviously) and this can enormously tax the velocity of the simulation, which is very 

undesirable in a Monte Carlo simulation. 

These are only some keywords (or commands) we can use in Archimedes to describe the 

geometry and the physical characteristics of a simulated device. As we will see, they are simple 
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to understand and very general. So it is easy to define a device with quite general 

characteristics.[12] 
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CHAPTER-2 

Physical Models Used in Archimedes 

 

Describing the physical models used in Archimedes, It is very important to understand this 

chapter in order to fully exploit the possibility offered by this code. Obviously, everything here is 

a brief review of what you can find in papers and books on the Monte Carlo subject. We will, also, 

describe the simplified MEP (Maximum Entropy Principle) model, which is a simplified version of 

the MEP model. The professors of the Department of Mathematics and Computer Sciences of 

the University of Catania who came up with this model were A.M.Anile and V.Romano[]. The 

accuracy of this model is very high when compared to the other hydrodynamical models of its 

kind. 

The coupling of MEP model and Monte Carlo method have been used in order to obtain very 

accurate simulation results in very short running times. 

2.1 The Semi classical Approach 

In semi classical approach we are discussing about a well-defined group of approximations. 

1. Quantum size effects. Firstly, the dimensions of the device simulated have to be such 

that the envelope wavelength of the carriers (in our case electrons or holes) are negligible with 

respect to the characteristic length of the device. In that case, the particles can be described by 

wave-packets well-localised in the phase-space. In this case, we can consider the particles as 

”biliard balls”. 

2. Slow Physical Phenomena. The dynamics of electrons or holes are significantly slow with 

respect to the dynamics of the electric and/or magnetic field. So we have worked in a physical 

context in which it is justified to use electrostatic rather than full set of Maxwell’s equations. Thus 

we have simulated only the Poisson equation, neglecting the potential retardation effects and 

the coupling with the photons. 



XIX 
 

3. The effective mass approximation. It is well-known, both from the quantum theory of matter 

and from physical experiments, that a particle moving in a periodic potential, as the potential 

experienced by a particle in a lattice, can be described as a free particle with a mass lightly smaller 

than the original one. Then if an electron move in a semiconductor lattice, its mass will be smaller 

by a well-defined factor. This is the approximation have been used in order to take into account 

the effects of the lattice on the particles.  

4. The scattering events. The scattering are considered as semi classical, i.e. they are obtained 

from quantum theory of scatterings, but the scattering events are considered instantaneous, 

uncorrelated and localised in space and time. 

5. The Many Body effects. In our simulations, we have neglected the Pauli principle as a result of 

which all the particles in the simulation have interaction with each other. Even if it is evident, 

from experiments, that in the real world and for enough diluted doping concentrations, the 

electrons don’t interact with other electrons, hence there are no collisions between electrons.[18] 

2.2 The Quantum Effects 

Concerning the quantum effects, while we consider the particles as semiclassical objects, we 

want to have the possibility of simulating relevant quantum effects in recently manufactured 

semiconductor devices (like the diode tunnel, or the nanoscopic MOSFETs). This is something 

hard to achieve, because we need an accurate solution of the Wigner equation to simulate 

these effects correctly. Unfortunately, the solution of the Wigner equation is a very difficult 

challenge, both from the point of view of numerical analysis and the point of view of computer 

resources, because it is an integro-differential equation, with a non-local term for the potential, 

which is very difficult to solve numerically, even in the one dimensional case and the solution of 

such an equation is a function of the phase-space variables and time, which means that it is an 

enormously expensive solution from the point of view of computer memory. So, we have to use 

another approach than the Wigner equation one. For this purpose, recently, a new 

interpretation of quantum mechanics has been presented which is, at least at first order, 

equivalent to the Wigner quantum approach (and to the density gradient approach): this 

approach is known as @sampthe effective potential method. While in the Wigner, but even in 
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the Schroedinger, quantum theory we consider the particles as wave-like objects (with 

very strange and unphysical properties, like negative probability, or non-locality...), in the 

effective potential we keep on considering particles as well-positioned particles in the phase-

space, which is actually what we experience in the real world. So, instead of giving a new 

definition of particles we redefine the electrostatic potential. In order to do it we compute the 

classical electrostatic potential by means of the classical and widely used Poisson equation 

                                             ∇ · [ǫ(x)∇φcl(x, t)] = −q[ND(x) − NA(x) − n(x, t) + p(x, t)] [19]                (2.1) 

where ∇ is the gradient operator, ǫ the material dielectric constant, ND and NA the donor and 

acceptor densities respectively, q the elementary charge, n and p the electron and hole densities 

respectively. Then we transform the precedent obtained classical potential in a quantum one in 

the following fashion 

                                                [19]                   (2.2) 

where n is the dimension of the spatial space (here , being ~ 

the Planck constant divided by 2π, m∗ the precedently discussed effective mass, kB the Boltzmann 

constant and TL the lattice temperature.[17] 

2.3 The Particle Dynamics 

The purpose of this simulation is to solve the Boltzmann or the Wigner equation including the 

most accurate physical models, i.e. one of the following two equations (depending on including 

or not the quantum effects).   [20] 

                                                                             (2.3) 

 

  (2.4) 

 

                                     (2.5) 
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where f = f(k,x,t) is the Boltzmann probability density function, w = w(k,x,t) the Wigner probability 

density function, k the particle pseudo-wave vector, x the position vector, ı the imaginary unity, 

V (x,t) the classical electrostatic potential, E = −∇φ the classical electric field, E = E(k) the energy 

band relation. The operators C[f] and CW [w] are the collision kernel for the Boltzmann and the 

Wigner equation respectively. Let us note that both the collision terms are numerically very 

difficult to simulate (as we will see in the mathematical expression of them) and it has a not very 

mathematically clear expression (at the present time) for the Wigner equation. These equations 

have to be simulated in order to get accurate and predictive results. 

In this section we report the basic models used in our simulations, in order to compute the 

solution of the two precedent equations.[17] 

2.3.1 The Band Structure 

It is well-known from the crystallography that crystals can be described in terms of Bravais 

lattices, which means, physically, that the crystal lattice can be though as a periodic potential 

made of ions. The quantum mechanical dynamics of an electron in a periodic potential can be 

described by the following well-known Bloch’s theorem. Theorem. 

Let us consider an electron whose motion is governed by the potential VL generated by the ions 

located at the points of the crystal lattice L. The Schrodinger equation is 

                                                                    Hψ = Eψ                                                                               (2.6) 

With the Hamiltonian H given by 

 

Then, this theorem states that the bounded Eigen states have the following form 

                                                                      ψ(x) = exp(ık · x)uk(x)                                                                 (2.7) 

And  

                                                                uk(x + X) = uk(x)                                                                        (2.8) 
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With x belonging to L. Furthermore, it is possible to prove the existence of an infinite sequence 

of Eigen pairs of solutions 

                                                               El(k), uk,l 

With l belonging to the non-negative integers set N. The function E = El(k)  describes the l-th 

energy band of the crystal. 

The energy band of crystals can be obtained at the cost of intensive numerical calculations by 

the quantum theory of solids. However, in order to describe electron and hole transport, for 

most applications, a simplified description is adopted which is based on simple analytical 

models. These are the effective mass approximation and the Kane dispersion relation, which 

are used in this simulations. In the approximation of the Kane dispersion relation, which takes 

into account the non parabolicity at high energy, the energy still depends only on the modulus 

of the pseudo-wave vector, but we have the following relation 

                                                                                                                (2.9)                                                               

Where α is the non-parabolicity parameter. 

The Kane dispersion relation is the best choice if we consider the accuracy of the electron 

energy and velocity along with velocity of computation. 

2.3.2 The Drift Process 

An electron moving in a crystal lattice moves just like a free electron, but with a change of 

mass. We have used the classical equations of motion in order to describe the motion of 

electrons and holes in a semiconductor device. Thus Hamilton formalism have been used to 

get the electron equations of motion which are given below: 

                                                    

                                          
𝑑𝑥

 𝑑𝑡
=

1

ℎ
𝛻𝑘𝐻                                           (2.10) 

       
𝑑𝑘

 𝑑𝑡
= −

1

ℎ
𝛻𝑥𝐻          (2.11) 
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Where  H is the Hamiltonian of the system, i.e. 

                                 H = E(k) + V(x) 

Finally, by using the Kane dispersion relation, the expression for the electron velocity is given 

below: 

  (2.12)   

                                   

2.4 Initial Conditions 

In this paragraph, we explain how we have specified the initial conditions for the super-particles. 

Concerning the spatial distribution, this is trivially done according to the donor (resp. acceptor) 

profile density specified by the user in the input file for the electrons (resp. holes). Concerning 

the distribution in the pseudo-wave vector space, things are a little bit more complex. We have 

to specify an initial particle distribution in the k-space. This is done in the following way. We have 

considered all the particles at the initial time of the simulation, nearly the thermal equilibrium, 

which means that the energy of a particle reads 

                                                   (2.13) 

where r is a random number between 0 and 1. 

Once we have specified the energy of the electrons, then we have choosen the pseudo-wave 

vectors of all particles which is done by the following algorithm.  

1. The modulus of the pseudo-wave vector is computed from the Kane dispersion relation, which 

is given by the below expression 
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                                                      (2.14) 

2. Then we have generated two random numbers between 0 and 1, say θ and φ. 

3. The three component of the pseudo-wave vector is computed as 

   

kx  = k sinθ cosφ (2.15) 

      Ky =  k sinθ sinφ                                                             (2.16) 

                                                       Kz =   k sinθ                                                                          (2.17) 

 

2.5 Contacts and Boundaries 

We have divided the contacts into three categories i.e. Insulator boundary, Ohmic and Schottky 

contacts. We have imagined a contact or a boundary  as a line on an edge of the device. There is 

no limitation in using the number of contacts.  

2.5.1 Insulator Boundaries 

This kind of boundary is also called as a “mirror boundary” in which a particle when interact with 

such a contact will be simply reflected by this one. This is necessary to simulate the insulator 

boundaries of a device. We can also apply a non-zero potential on a boundary even if this is an 

insulator edge. 

2.5.2 Ohmic Contacts 

Ohmic contacts are open contacts in which particles can either go out or enter in the device 

through it, but hold the neutrality charge condition, i.e. the charge have to be assigned constant 

on it. Thus Ohmic contacts behave as electron reservoirs from which the particles can go out from 

the device. 

2.5.3 Schottky Contacts 
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Schottky contacts are also open contacts but they don’t have an electron reservoir, which means 

that electrons (or particles) can go out through it, but they are only absorbing contacts, which 

means neutrality charge condition have to hold on it. 

2.6 The Scattering Process 

1. Self-Scattering-This scattering in used to find the flight time. It is need to compute this 

scattering accurately, as it influences all process during the simulation. Let us report, how the 

self-scattering is introduced in the simulation. If the various scatterings read 

                                                                           Wi(E(k)) 

for i = 1,2, ..., N, where N is the number of the scatterings taken into account in the simulation, 

then we define the following variable Γ as follows 

                                                            (2.18) 

 Then the free flight τ of a particle will read 

                                                                (2.19) 

Where r is a random number between 0 and 1. The factor Γ will be used to determine when the 

self-scattering occurs which has been discussed below. 

 

2. Elastic Acoustic Phonon Scattering.    From quantum mechanics, applying the Fermi’s golden 

rule and some other approximations, it is possible to show that the probability that an electron 

with a starting pseudo-wave vector k scatters with an elastic acoustic phonon and having a final 

pseudo-wave vector k′, is 

                                          (2.20) 
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Where Ξ is a proportionality constant called deformation potential, cL the elastic constant of the 

material, θ′ the polar angle between the two vectors k and k′, qw the modulus of the phonon 

wave vector and Ω the volume of the crystal. Now integrating on k′ one can easily obtain the 

probability that an electron of energy E scatters with an acoustic phonon. This last reads 

                                               (2.21) 

Where N (E) is the density of states and reads 

                                                 (2.22) 

3. Non-Polar Optical Phonon Scattering. Concerning the non-polar optical phonon, following 

the same rules as before we get the two probabilities                   

 (2.23) 

    (2.24) 

Where Dopt is the optical deformation potential constant, ω0 the phonon angular frequency, n0 a 

value almost equal to the intrinsic density of the material. 

 

2.6.1 The Choice of the Scattering 

The choice of the scattering is quite simple. First of all, we select randomly a scattering process 

and after this has been done, we compute the particle state after the scattering event. To this 

purpose we define the following functions 

                                                   (2.25) 
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for i = 1,2,...,N where N is, as before, the number of scattering taken into account during the 

simulation. A scattering mechanism is, then, chosen generating a number r lying between 0 and 

1 and doing the following comparison 

                                                   (2.26) 

for a particle with energy . 

2.7 The Simplified MEP Model 

From the vast literature, it is known that Monte Carlo method is the best way for obtaining very 

accurate simulations for the transport of electrons in semiconductor devices. Although this 

method is highly accurate, but simulation time is very high. Thus we have the possibility of 

coupling MEP and Monte Carlo in order to make Monte Carlo method faster. 

The MEP model is a very advanced hydrodynamical model for both electrons and holes in Silicon 

devices. Since we need simple initial conditions for the Monte Carlo method, So we have used 

the simplified version. The MEP model is based on the closure of the semiclassical Boltzmann 

equation by means of the maximum entropy principle. 

Using the relaxation time approximation (for only the moments and not for the energy moment) 

and using the so-called Liotta-Mascali distribution function which has the following form 

                      (2.27) 

we get the following hydrodynamical model for electrons, which we will call the Simplified MEP 

model. 

                               (2.28) 

     (2.29) 
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     (2.30) 

where τW is a function of the electrons energy, as you can see from the precedent papers. This 

function is computed numerically and reads: 

 

    (2.31) 

Furthermore, we have the following relations: 

                                                        (2.32)        

                                          (2.33) 

 

For the moment relaxation time we have the following relations which are taken from the 

Baccarani model: 

                                                                                                                                        (2.34) 

where 

                                                                                                                         (2.35) 

with µ0 the low field mobility and TL the lattice temperature. It is very easy to see how to adapt 

everything to Silicon heavy holes, so we do not report the Simplified MEP model for them. 

2.7.1 Coupling Simplified MEP model and Monte Carlo method                        

       In this section we show, in a cursory fashion, how it is possible to use the MEP 

simulation results to obtain faster Monte Carlo simulation. 
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The method is surprisingly simple and gives very fast and accurate results. First of all, we simulate 

a device by means of the simplified MEP model. When the simulation reaches the stationary 

solution, we save it and use it as a starting point for the Monte Carlo simulation. It uses the 

electron density, the potential, and what is the most important, the electron energy as a starting 

point. Concerning the energy as a starting point, it is very easy but, surprisingly, works very well. 

When we start the Monte Carlo simulation, we usually assign an electron energy which is 

proportional to KBTL, i.e. related to the lattice energy. Now, the only thing to do is to assign to the 

electrons the energy present in the cell i,j which has been computed by means of simplified MEP 

model. Then we assign the same potential and the same density computed previously by MEP.  
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CHAPTER-3 

LINKING BETWEEN MONTE CARLO AND POISSON 

 

3.1 Introduction 

The most correct and predictive tool for the simulation of an electron gas in solid state matter 

coupled to its electrostatic potential, should be the Schrodinger-Poisson system. Even if some 

works have been done on this topic, it remains a very difficult.  

Important problems still remains in the application of the boundary conditions for the 

Schrodinger equation, and it is very difficult, and for some process still impossible, to take into 

account all the relevant scattering events. Furthermore, solving Schrodinger-Poisson system is a 

very difficult task also from the numerical point of view, since the Schrodinger wave-function to 

be solved is a function in a 3Ne space, where Ne is the number of electrons simulated in the device. 

A solution like this, in realistic devices, is certainly a daunting task from the point of view of 

computer memory. This is why we have used the Monte Carlo method for the simulation. 

In Monte Carlo electron gas simulations, it is very necessary to solve correctly both the dynamics 

of the particles and the computation of the electric field raising from the electron-hole 

distribution and, eventually, from applied potentials. This is because the charge transport in 

semiconductor devices is strongly dependent on the electric field, so, if the mentioned electric 

field is not correctly coupled to the charge dynamics, and correctly computed, all the simulation 

will be of no utility. How the Monte Carlo simulations and the Poisson equation are coupled are 

explained in this chapter.[2] 

3.2 The Cloud-in-a-Cell algorithm 

Since the number of particles in a simulation is quite limited, if compared to the number of 

particles in a real semiconductor device, noise will always be present in the solutions. That is the 

reason to use an advanced algorithm in order to avoid, as the best as possible, this noise, instead 

of simply counting the number of particles in the cells of the simulation.  
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The brief description of the cloud-in-cell method is given below: 

Let us consider a finite difference mesh with the nodes located at (xi,yj). Let us denote by ∆x and 

∆y the constant spatial step in the x-direction and y-direction. Then, if we denote by (x,y) the 

point coordinates in which one wants to compute the density charge, with xi < x < xi+1 and yi < y < 

yi+1, we compute the density in the following way 

   (3.1)

   (3.2) 

  (3.3) 

  (3.4) 

where ni,j is the density located at (xi,yj), Si,j the statistical weight of the particles located at (xi,yj) 

and Ai,j = ∆xi∆yj. Methods do exist that avoid the problems of self-forces but they are necessary 

only when the grid is not regular and when we deal with hetero structures.[14] 

3.3 The Non-Stationary Poisson Equation 

This equation is very easy to implement and solve with the numerical schemes. The NSP equation 

is given below: 

                                (3.6) 

Where kS is a constant for giving the right dimensions of the term 
𝑑∅

𝑑𝑡
 and the other variables have 

the usual meaning. The solution of this equation will converge in time, to the solution of the 

classical Poisson equation described in the precedent paragraph, whatever are the initial 

potential conditions and with the same boundary conditions. So, if we have a numerical solver 
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for this equation, it would be very easy to get the solution of the classical Poisson equation, 

simply getting the solution of the NSP equation for very big final time. 

Actually it is trivial to develop and implement a numerical solver for NSP. In fact, in the context 

of finite difference, such a numerical scheme can be obtained applying finite-difference 

approximations of derivatives to the NSP equation. This is what we have discussed in the 

following paragraph. 

Numerical Resolution of the NSP Equation 

In the context of finite-difference approximations, we can trivially write 

          (3.7) 

(3.8) 

 

Where φn
i,j is the potential computed at time tn = ti + n∆t, in the point (xi,yj).Applying these 

approximations to the NSP equation, we have got the following numerical scheme 

(3.9) 

Note that the above scheme is valid only for the homogeneous case. 

As we can see, once we have the initial conditions and the boundary conditions, it is very easy to 

implement this equation in the simulator.[15] 

3.4 The Stationary Poisson Equation 

In semiconductor devices, the potential retardation effects are completely negligible so 

1. We have neglected the computation of the magnetic field. 
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2. We can adopt the stationary description of the electric potential, i.e. we select and calculate 

only the Poisson equation among the set of Maxwell’s equations. 

 The Poisson equation is given below: 

            (3.5) 

Actually, if we have a two-dimensional regular finite-difference grid, the discretization of the 

Poisson will give an algebraic system to solve, which is quite complicated to solve.[20] 

3.5 Electric Field Calculation 

The electric field is easily computed once we have the solution of the static Poisson equation or 

the NSP equation. The definition of the electric field is as follows 

                                                       (3.10) 

So, in the context of finite-difference approximations, the electric field is computed in the 

various cells of the grid as follows 

                                   (3.11) 

              (3.12) 

These simple expressions are accurated and robust. 
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CHAPTER 4 

ARCHIMEDES INSTRUCTIONS SET 

 

In order to make a simulation of a new general device, in Archimedes, we needs to describe this 

device by means of ASCII scripts using keywords belonging to Archimedes meta-language. This 

meta-language is very generic, so it gives the possibility of defining semiconductor devices of 

quite general structures. Furthermore, since the keywords are very simple to understand (and 

remember), it is possible to define devices in short amounts of time and change them with small 

modifications in the input ASCII file, in case of, for example, optimization process or similar. 

Thus, in this chapter, we describe the syntax of all the commands actually implemented in 

Archimedes. The definition of a new device is done by means of a user defined ASCII input file, 

which is processed by Archimedes. This is done typing the following command line in a shell 

 

Where”filename.extension” is the name of the ASCII file in which the user have defined the 

device to be simulated. Some extra options are possible with Archimedes. For this type in a shell 

window 

 

VERY IMPORTANT REMARK:  Archimedes is case sensitive so every command have to be written 

in capitals, otherwise it will not understand the command. Furthermore, all the unity of measure 

are taken from the international M.K.S.C. system. 

4.1 ACCEPTOR DENSITY 

In the definition of a new device, even if the holes are considered as fixed in 

Archimedes, we have to specify the acceptor density, i.e. the spatial distribution of the 

acceptors in the device. This is done in order to solve correctly the Poisson equation. In 

fact, this last equation needs both the donor and acceptor distribution, so it is necessary 
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to specify them. If we do not specify any constant value or distribution of the acceptors, 

Archimedes will consider that the acceptor distribution is constant on all the device and 

it is equal to the intrinsic density as default. Furthermore, if we specify the value of the 

acceptor distribution only on a part of the device, the resistant part will be considered 

equal to the intrinsic density. 

Let us see, now, how to specify the acceptor distribution on a device. In Archimedes a 

sub-domain (but also the entire device) on which we want to specify an acceptor value 

for the spatial distribution is just a simple rectangle. This means that we can specify 

the value of the acceptor density on a rectangle (the entire device or a part of it), 

specifying only five numbers i.e. 

1. The x-coordinate value of the left-bottom vertex of the rectangle. Let us denote it by xmin 

2. The y-coordinate value of the left-bottom vertex of the rectangle. Let us denote it by ymin 

3. The x-coordinate value of the right-upper vertex of the rectangle. Let us denote it by xmax 

4. The y-coordinate value of the right-upper vertex of the rectangle. Let us denote it by ymax 

5. The value of the acceptor density on the rectangular sub-domain. Let us denote it by NA  

Then we will have the acceptor density NA on the rectangle [xmin,xmax] × [ymin,ymax]. 

An example will clarify everything 

 

  

 

4.2 CIMP 

Since the impurity scattering can be very relevant in the GaAs material, it is implemented in 

Archimedes. In order to specify the density of impurity, we type 

 
4.3 COMMENTS 
Like in every computer language, comments are very important for the clarity of a code. We can 

make our own comments by simply preceding them by the # symbol. So, for example, the 

following rows of an ASCII file processed by Archimedes will be interpreted as comments. 
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Pay attention to the fact that everything after the # symbol is a comment even if this is a 

command usually recognized by Archimedes. 

4.4 CONTACT 

When a new device is defined, we needs to specify where the edges of insulator, where there 

are Ohmic contacts and where the Schottky contacts are positioned. Even, we can have the need 

of applying a potential on an insulator edge (for simulation purposes). All this definitions are 

possible by the use of only one command, i.e. CONTACT. Let us describe the syntax of this 

command. 

This command can be described as follows 

 

Where place can be one of the following choice 

1. UP. This in invoked when the contact have to be placed on the upper edge of the device. 

2. DOWN. This in invoked when the contact have to be placed on the bottom edge of the device. 

3. RIGHT. This in invoked when the contact have to be placed on the right edge of the device. 

4. LEFT. This in invoked when the contact have to be placed on the left edge of the device. 

Furthermore, init_pos is the initial position of the contact, fin_pos is the final position of the same 

contact. The choice kind can be one of the following 

1. INSULATOR. This is invoked in the case the contact is of insulator type. In this case, the 

contact will be “reflective mirror” for the particles, i.e. the particles cannot go out or inside 

the device through that contact. 

 

2. OHMIC. This is invoked in the case the contact is of Ohmic type. This kind of contact can be 

considered as a gate through which the particles can go out. Furthermore, it can be considered 

as a particle reservoir from which particles can go into the device. 

 

3. SCHOTTKY. This is invoked in the case the contact is of Schottky type. This kind of contact is 

the same as the Ohmic one with the exception that this is not a particle reservoir, so this 

contact is only an absorbing one. 



XXXVII 
 

The choice pot is the potential which is applied to this contact. In the case the edge, or a part of 

it, is of insulator type and there is no potential applied there, then it have to be put to 0. 

The choice dens is the density of the particle reservoir, so it has to be specified only in the Ohmic 

contact case. 

              When an edge, or part of it, will not be specified by us, it will be considered as of insulator 

type with zero potential applied, as default. 

If we want to specify that the upper edge is of insulator type, with no applied potential, in a diode 

with x-direction length 1.0 micron, than we have to write 

 

If we want to specify that the left edge is of Ohmic type, with zero applied potential and , in 

a diode with y-direction length 0.1 micron, than we have to write 

  

Finally, if we want to specify that a part of the upper edge is of Schottky type, with −0.8 Volts 

applied potential starting from 0.2 × 10−6 to 0.4 × 10−6, in a MESFET, than the we have to write  

  

4.5 DONORDENSITY 

In the definition of a new device, we have to specify the donor density, i.e. the spatial distribution 

of the donors in the device. This is done in order to solve correctly the Poisson equation. In fact, 

this last equation needs both the donor and acceptor distribution, so it is necessary to specify 

them. If we do not specify any constant value or distribution of the donors, Archimedes will 

consider that the donor distribution is constant on all the device and it is equal to the intrinsic 

density as default. 

Furthermore, if we specify the value of the donor distribution only on a part of the device, the 

restart part will be considered equal to the intrinsic density. 

Let us see, now, how to specify the donor distribution on a device. In Archimedes a sub-domain 

(but also the entire device) on which we want to specify a donor value for the spatial distribution 

is just a simple rectangle. This means that we can specify the value of the donor density on a 

rectangle (the entire device or a part of it), specifying only five numbers i.e. 

1. The x-coordinate value of the left-bottom vertex of the rectangle. Let us denote it by xmin 

2. The y-coordinate value of the left-bottom vertex of the rectangle. Let us denote it by ymin 
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3. The x-coordinate value of the right-upper vertex of the rectangle. Let us denote it by xmax 

4. The y-coordinate value of the right-upper vertex of the rectangle. Let us denote it by ymax 

5. The value of the donor density on the rectangular sub-domain. Let us denote it by NA 

then we will have the donor density NA on the rectangle [xmin, xmax] × [ymin, ymax]. 

An example will clarify everything. 

 

 

4.6 LEID 

This is a very powerful command. This command is invoked when we want to obtain Monte Carlo 

simulations in a very fast way. Let us suppose that we have simulated a device by means of the 

simplified MEP model. Then we can use the results obtained by this model as a starting point for 

the Monte Carlo simulation. All it has to be done is to save the electron density, the electron 

energy and the potential in files named respectively 

 

Then we have to invoke the command LEID (LEID stands for Load Electrons Initial Data). Pay 

attention to the fact that the input files have to be of the same dimension of the grid for the 

Monte Carlo simulation. 

4.7 MATERIAL 

When we simulate a new device, we have the freedom to choose to simulate a heterostructure. 

we should specify which zone is made of a certain semiconductor material (like Silicon, Gallium 

Arsenide, Germanium, InSb, AlSb, AlAs and so on.. ) 

This is done by using the command MATERIAL. The syntax of this command is as follows 
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Where (xi,yi) and (xf,yf) are the initial and final corners of a rectangle made of semmat. semmat 

can be one of the following choice: 

 

 

4.8 FARADAY 

It is possible to simulate the self-consistent magnetic field produced by the charged particles in 

the device. This is obtained by simulating the well-known Faraday equation which deals with 

dynamic magnetic fields due to the moving charged particles. 

By default, the simulation of the self-consistent magnetic field is NOT taken into account (since 

it is usually negligible in the majority of simulated devices). If we want to simulate it, he has to 

specify it by means of the command FARADAY. 

The syntax of this command is straight simple, being 

 

In other words, the user decides, by means of this command, to switch on or off the self-

consistent magnetic field. 

4.9 BCONSTANT 

It is possible to simulate the presence of an externally applied magnetic field. This is done by 

means of the command CONSTANTMAGNETICFIELD (in this case, it is strongly suggested to 

switch off the FARADAY command). 

The syntax of this command is straight forward: 
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Where (xi,yi) and (xf,yf) are the corners of the rectangle where the magnetic field B is applied (B 

is in Weber/m2 units, i.e. a Newton / (Ampere * meter ) 

 

4.10 TRANSPORT 

When the device is defined, the user has to choose what kind of transport Archimedes have to 

simulate, i.e. if the transport is unipolar, bipolar and what kind of particles have to be simulated. 

This is done by the command TRANSPORT. The following list shows the choice we can make. The 

only choices which is still not implemented is the Monte Carlo simulation of heavy holes. They 

are simulated by means of a simplified MEP model since they can be considered as almost fixed 

and do not contribute to the total device current. First of all, after typing the command 

TRANSPORT we have to specify the model (i.e. Monte Carlo or MEP). This is done typing one of 

the following two choices. 

1. MC. This is invoked when we want to simulate a device by means of Monte Carlo method. 

2. MEP. This is invoked when we want to simulate a device by means of the simplified MEP 

model. 

Once the method has been specified, we have to choose what particles have to be simulated. 

This is done choosing between the followings: 

1. ELECTRONS. This is invoked when the transport is unipolar and made of only electrons. 

2. HOLES. This is invoked when the transport is unipolar and made of only holes. 

3. BIPOLAR. This is invoked when the transport is bipolar and made of both electrons and holes. 

So, some examples of this command, in the Archimedes, are 

 

 

 
4.11 FINALTIME  

It is important to choose the final time of a simulation. In fact, if we want to simulate the 

stationary solution of a semiconductor device, he have to choose an appropriate final time, in 

order to get the stationary state but without waiting for not-necessary long simulation run-time. 

At the moment, there is no algorithm which can predict the final time in order to get the 

stationary state of a device, so the freedom of choosing this final time is given to us. This is also 

useful in the case in which we want to study and simulate the transient behavior of a 
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semiconductor device. So, for example, if we want to set the final time to 5 picoseconds, this will 

be done by the following line of the input file 

 

4.12 TAUW 

This command is only needed if we are using the simplified MEP model for electrons. Indeed, in 

this case the relaxation time approximation for the electrons energy can be equal to zero (as we 

can see from the definition of the function τW ) comporting the presence of NaN. This is avoided 

by specifying a value for tauw that will be used in the case it is equal to zero. The command is 

invoked as it follows 

 

Where value is the value specified. Usually a good value is 0.4 picoseconds. We report an example 

 

As we can see from the example, the unit of measure is the second. 

 

4.13 TIMESTEP 

It is very important to choose correctly the time step of a simulation. This is a very important 

topic of a simulation. This have to be done in a very accurate manner, in order to avoid unphysical 

phenomena like strange oscillations in electric field or too much scattering effects and so on... 

Actually, algorithm based on the plasma oscillations of a gas of charged particles exists which are 

useful in the choice of a correct time step. This is not implemented, at the moment, so we have 

to specify it. This is done in the following fashion. For example, if we want to set the time step to 

0.01 picoseconds, the following command line in the input file is needed 

 

4.14 XLENGTH 

In Archimedes, the device is defined as a rectangular domain. So we have to specify the x-

direction and the y-direction length of this rectangular domain. Concerning the x-direction 

length, this is settled by the following command line. For example, if the x-length is 5 micron, we 

have to write 

 

4.15 YLENGTH 



XLII 
 

In Archimedes, the device is defined as a rectangular domain. So we have to specify the x-

direction and the y-direction length of this rectangular domain. Concerning the y-direction 

length, this is settled by the following command line. For example, if the y-length is 1 micron, we 

have to write 

 

4.16 XSPATIALSTEP 

Once the x-direction length of the new device is defined, we have, obviously, to define the 

number of cells in the x-direction. This is done in order to solve every equations of the simulation 

in the finite difference approximation context. The bigger is the number of cells in the x-direction 

the best will be the accuracy in that direction, but we will pay the better accuracy in a more long 

run-time. So, pay attention in the choice of this number of cells. Usually, a grid of 100 × 50 is 

enough for the majority of devices, but it strongly depends on the device structure and the 

requirements of the user. To specify, for example, 100 cells in the x-direction, the following line 

have to be typed in the input 

 

4.17 YSPATIALSTEP 

Once the y-direction length of the new device is defined, we have, obviously, to define the 

number of cells in the y-direction. This is done in order to solve every equations of the simulation 

in the finite difference approximation context. The bigger is the number of cells in the y-direction 

the best will be the accuracy in that direction, but we will pay the better accuracy in a more long 

run-time. So, pay attention in the choice of this number of cells. Usually, a grid of 100 × 50 is 

enough for the majority of devices, but it strongly depends on the device structure and the 

requirements of the user. To specify, for example, 50 cells in the x-direction, the following line 

have to be typed in the input 

 

4.18 QUANTUMEFFECTS 

As we have said in a precedent chapter, Archimedes is able to simulate, at least at first order, 

the quantum effects present in a semiconductor device, by means of the recently introduced 

effective potential method. So, if we want to take into account the quantum effects in the 

simulation, we have to tell to Archimedes in the input file. This is done in the following fashion 

 

Pay attention to the fact that taking into account the quantum effects can be numerically heavy, 

so we will need to wait for more long run-time to get the solution. So attention have to be putted 

in this choice. If we know appropriately, that the quantum effects are not relevant in that type of 
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device (because, for example, the characteristic length of the device is bigger than 1 micron), it 

is probably a good choice to avoid these extra calculations. 

 

4.19 NOQUANTUMEFFECTS 

In the case we want to avoid the calculations of the quantum effects, it is necessary to set it 

into the input file processed by Archimedes. This is done in the following way 

 

4.20 MAXIMINI 

During the simulation computations, it is, sometimes, important to see in a very rapid way, how 

the macroscopic variables evolves. This can be very useful in the debugging process of a new 

defined (and not yet well-defined) semiconductor device. Archimedes gives a simple way of 

doing it. When we inserts the following line in an input file, it will get some interesting 

information about the macroscopic evolution of the devices. 

 
Pay attention to the fact that the calculation of this information can be, in some cases (for 

example, for highly refined grid), computationally heavy. So use it only in the case it is necessary 

or not heavy for the simulation, in order to avoid too big run-time. 

 

4.21 NOMAXIMINI 

In the case we want to avoid to have extra information about the macroscopic evolution of some 

variables, this have to be specified in the input file processed by Archimedes. This is done by the 

following row  

 
This will be useful in the case we already know the transient macroscopic behavior of the device 

and does not need such information, in order to not tax the computer run-time. 

 

4.22 SAVEEACHSTEP 

When it is required to simulate the transient behavior of a semiconductor device, it is very useful 

to save all the solutions at each time step of the simulation. In this way, it is possible to create 

movies which show the transient behavior of the density, or of the electrostatic potential, for 

examples. This movies are very good in the comprehension of the transient states of a new 

semiconductor device. The only thing to do is to put the following line in the input file processed 

by Archimedes 

 
This will save all the solution, in the chosen format, with the following convention: the file are 

named in increasing order, i.e., for density, density001.xyz, density002.xyz, density003.xyz, ..., 
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density010.xyz and so on. Instead, the last final step will be saved with the suffix ’000’. 

Pay attention to the fact that the savings of all this information can be, in some cases (for 

example, for highly refined grid), computationally heavy. So use it only in the case it is necessary 

or not heavy for the simulation, in order to avoid too big run-time 

 

4.23 LATTICETEMPERATURE 

Archimedes is a semiconductor device simulator in a quite general context. So when we simulate 

a new device, we have to specify the lattice temperature. If we do not specify this value, the 

room temperature will be taken as default (i.e. 300 Kelvin degrees). All the temperatures are 

given in Kelvin. So if we deal with a cryogenic device, i.e. working at 77 Kelvin degrees, we have 

to specify the following row in the input file 

 
 

4.24 STATISTICALWEIGHT 

The method implemented in Archimedes is the Monte Carlo one. So every particle carries a 

statistical weight which is a piecewise-function of the position. The greater is the statistical 

weight, the greater is the number of super-particles in a cell. In this Archimedes, the statistical 

weight we can specify is that of the cell in which the density is at maximum. In the other cells, 

the statistical weight is opportunely calculated. If we, for example, want to set the statistical 

weight equal to 1500, we have to write in the input file. 

 

Pay attention to the fact that the bigger is the statistical weight the longer will be simulation run-

time. 

4.25 MEDIA 

Monte Carlo method is a statistical one. So, in order to get the macroscopic variables at a certain 

time, we need to compute the average mean value of this variable on an enough long period of 

time. This is done, in Archimedes, by specifying on how many final time step the mean average 

value have to be computed. So, for example, if we want to compute the average mean value of 

the macroscopic variables on the last 500 time steps of the simulation, we have to type in the 

input file processed by Archimedes 

 

4.26 OUTPUTFORMAT 

When Archimedes saves the various solution outputs, it has to know in which format to do it. 

This is specified in the following way, in the input file 
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Where format type can be one of the following two choices 

1. GNUPLOT. This sets that the output files will finish by the extension xyz which means that 

the file will be in the following format 

 

 

2. MESH. The MESH format is a little bit more complex than the GNUPLOT one. In this case, 

we have a file which describes the mesh and another which describes the solution on that 

mesh. Concerning the mesh file, it have a file structure like the following 
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Concerning the file for the solution on the mesh, the file have the following structure 

 

This kind of format is becoming very popular in the scientific/numerical community.[12] 
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CHAPTER 5 

SIMULATION RESULTS AND DISCUSSION 

 

Simulation of electronic transport in InP MESFET has been done using ensemble Monte Carlo 

method using Archimedes software package and GUI plot. The following device modelling is used 

for simulation. 

5.1 DEVICE MODELLING 

 

 

Fig 5.1: InP MESFET Device structure 

Where  

L1: Length of Source   =250nm, 

L2: Length of Drain     =250nm, 

LC: Length of Channel=250nm, 

d: Width of MESFET    =500nm, 

n+: Doping concentration in Source and Drain= 1019/cm3 

n=doping concentration of substrate = 1016/cm3 
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5.2 OBJECTIVES: 

(i) Simulation of energy band structure in x-y plane. 

(ii) Simulation of electron density in x-y plane. 

(iii) Simulation of electron energy in x-y plane. 

(iv) Simulation of electrostatic potential in device area. 

(v) Simulation of E-field in device area. 

(vi) Simulation of carrier velocity in x-y plane. 

(vii) Drift velocity Vs Electric field. 

 

5.3 SIMULATION RESULTS 

 (I) Simulation of energy band structure in x-y plane 

 

 

Fig 5.2: Conduction band in x-direction 
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Fig 5.3: Conduction band in y-direction 

 

From the figure 5.2 it can be observed that the electrons in the conduction band of source region 

has higher energy than the electrons in the conduction band of drain region. This is due to the 

biasing voltage in drain region is larger than source region, as a result the barrier potential for 

the electrons in the drain region is lesser than the source region which cause the electrons to 

move from source to drain and hence current IDS in produced in the opposite direction. 
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 (II) SIMULATION OF ELECTRON DENSITY IN X-Y PLANE 

 

 

Fig 5.4: Electron density profile of InP MESFET 
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Fig 5.5: Electron density in x-direction 

 

Fig 5.6: Electron density in y-direction 

For the Fig. 5.5, in which the electron density in the MESFET have been observed. As I have doped 

source and drain with higher concentration, the electron density is high in these areas which can 

be verified from the fig.5.5. In the channel region there are very less charge carriers  because due 

to the application of the drain voltage source and strong electric fields, a depletion region under 

the gate is formed which push the charge carriers of the channel region. There is a fluctuation in 

the electron density region which occurs due to thermal vibration of the carriers.[1] 
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 (III) SIMULATION OF ELECTRON ENERGY IN X-Y PLANE 

 

 

Fig 5.7: Electron energy profile in InP MESFET  

 

 

Fig 5.8: Electron energy in x-direction 
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Fig 5.9: Electron energy in y-direction 

In the Fig. 5.8 shown, the strong electric fields accelerated the electrons and they gain energy 

which led to the maximum energy at n-n+ interface. The average energy continues to be declined 

near the contact with the drain. Region. The reason for declining is due to the diffusion process 

in which electron lose their energy. In the channel region, maximum energy of electron is found, 

as the channel has more free space than source and drain so that the carriers can move freely 

and they gain kinetic energy.[2] 

  



LIV 
 

(IV) SIMULATION OF ELECTROSTATIC POTENTIAL IN DEVICE AREA  

 

 

Fig 5.10: Electrostatic potential profile in InP MESFET 

In the Fig.5.10, when tension is applied to the structure the potential decreases in the active 

region has been observed and it rises sharply till the value of the applied voltage is reached.[9] 
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(V) SIMULATION OF ELECTRIC FIELD IN DEVICE AREA 

 

 

Fig 5.11: Electric field profile in InP MESFET 

 

In the source region MESFET InP does not has an integrated electric field which is shown in the 

Fig. 5.11, and in the source and drain regions electric field intensity is maximum as these regions 

have higher concentration of the carriers, as well as their effect along with biasing field is also 

the reason for high field intensity in source and drain regions. 
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(VI) SIMULATION OF CARRIER VELOCITY IN X-Y PLANE 

 

 

Fig 5.11: velocity (m/s) profile in InP MESFET 

 

In the 5.11 the component of the electron drift velocity (in the x and y direction) have been 

observed  which increased to a value of about 107 cm / sec. Near the drain region it has been 

observed that the velocity exhibits a sharp decrease which occurs due to the accumulation of L-

valley slow electrons in drain region. Near the source region a large electron accumulation is also 

present which is caused by the electron Spillover from the doped region. This high concentration 

balances the small electron velocity to sustain the large drain current of the device. In the channel 

region high velocity of electrons are found in which carriers are moving freely rather than the 

other regions.[1] 

The peak negative velocity obtained (blue region) is 1.681x107 cm/s due to differential mobility 

phenomenon caused by transfer mechanism of electrons to upper valley and peak positive 

velocity obtained by electrons is 3.85 x 107 cm/s. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

 

6.1 CONCLUSION 

InP has a higher thermal conductivity and avalanche breakdown field than those of GaAs and the 

electrons in InP have a higher peak drift and saturated velocity. Therefore, InP-based fieleffect 

transistors (FETs) are potentially better than GaAs metal-semiconductor FETs (MESFETs) for 

microwave power application. Very high velocity of electrons is found in the channel region 

where carriers are moving rather freely than other regions.The negative velocity is obtained due 

to differential mobility phenomenon caused by transfer mechanism of electrons to upper valley 

and peak negative velocity obtained by electrons is 3.85x107 cm/s 

Maximum electric field intensity is found in source and drain regions of MOSFET. The negative 

electric field experienced by electrons is due to the inter valley transfer of electrons. The value 

of electric field obtained at the peak negative drift velocity is -1.681x107 V/m. 

Differential mobility is found at the starting edge of drain region of MESFET and calculated to be 

as  

 

Where   : Average drift velocity of electrons 

              µ    : Mobility of electrons in device 

              E    : Electric field intensity inside device 

 

= 3.85x105 m/s 

  E = -0.796x106 V/m 

Hence, 

µ = 4836 cm2/V 

Note: Simulations are performed at the room temperature. 
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6.2 FUTURE SCOPE 

The Monte Carlo method is the best method to obtain the solution of the Boltzmann Transport 

Equation (BTE) . The bulk Monte Carlo approach is suitable for the characterization of materials, 

so in order to study behavior of devices, Monte Carlo is coupled with the poissons equation. 

But the accuracy of various phenomena depend upon the distribution(i.e. no. of particles 

considered in the simulation). So there is a need of large particles to be considered for the 

simulation. But due to large particles, simulation takes more time. Hence In future version of 

Archimedes it is necessary to solve Poisson equation, in the simulation, at very short time. 

Because the charge density fluctuations are damped by the self-consistent field and may give 

rise to plasma oscillations. 
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APPENDIX I 

SCRIPT OF InP MESFET 
# This file simulate a InP MESFET. 

# To run it type: archimedes mesfet.input  

 

TRANSPORT MC ELECTRONS 

 

FINALTIME 1.0e-12 

TIMESTEP 2.e-15 

 

XLENGTH 0.75e-6 

YLENGTH 0.5e-6 

 

XSPATIALSTEP 75 

YSPATIALSTEP 25 

 

# definition of the material (all the device is made of Indium Phosphide) 

MATERIAL X 0.0 0.75e-6    Y 0.0 0.5e-6  INP 

 

# Definition of the Impurity Concentration 

CIMP 7.e22 

 

# Definition of the doping concentration 

# ====================================== 

DONORDENSITY    0.       0.    0.75e-6   0.5e-6    7.e22 

DONORDENSITY    0.       0.    0.25e-6   0.5e-6    1.e24 

DONORDENSITY    0.5e-6   0.    0.75e-6   0.5e-6    1.e24 

ACCEPTORDENSITY 0.       0.    0.75e-6   0.5e-6    1.e20 

 

# Definition of the various contacts 

# ================================== 

CONTACT LEFT  0.0      0.50e-6 INSULATOR 0.0 

CONTACT RIGHT 0.0      0.50e-6 INSULATOR 0.0 

CONTACT UP    0.0      0.20e-6 OHMIC     0.0   1.e24 

CONTACT UP    0.25e-6  0.50e-6 SCHOTTKY  -0.4 

CONTACT UP    0.55e-6  0.75e-6 OHMIC     0.8   1.e24 

CONTACT DOWN  0.0      0.75e-6 INSULATOR 0.0 

 

NOQUANTUMEFFECTS 

MAXIMINI 

# SAVEEACHSTEP 

 

LATTICETEMPERATURE 77. 

 

STATISTICALWEIGHT 500 

 

MEDIA 500 

 

OUTPUTFORMAT GNUPLOT 

# end of MESFET  


