PHOSPHATE REMOVAL FROM WASTEWATER BY CANNA LILY

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

ENVIRONMENTAL ENGINEERING

Submitted by: Research Supervisor:

Sarbari Dutta Dr. A . K. Haritash (2K11/ENE/03) Dr. P. Albino Kumar

Department of Environmental Enginering Delhi Technological University June, 2013

CERTIFICATE

This is to certify that this report entitled "PHOSPHATE REMOVAL FROM WASTEWATER BY CANNA LILY" is an authentic report of the major project done by Sarbari Dutta (2K11/ENE/03) in the partial fulfillment of the requirement for the award of the degree of Master of Technology in Environmental Engineering in the Delhi Technological University during the year 2013.

Date:	Dr. A . K. Haritash
Place:	(Research Supervisor)

ACKNOWLEDGEMENT

It is of extreme pleasure to express my deep sense of gratitude and indebtedness to my guide **Dr**

A.K. Haritash and Dr. P. Albino Kumar, Department of Environmental Engineering, Delhi

Technological University (Formerly Delhi College of Engineering), for their invaluable

guidance, encouragement and patient reviews. Without their help and guidance, this dissertation

would have been impossible.

It gives me immense pleasure to take this opportunity to thank our Head of Department of

Environmental Engineering, Prof. S. K. Singh for providing the lab facilities required to carry

out the project. I am also thankful to all other teachers of the department who directly or

indirectly helped me in completion of my project successfully.

A special word of thanks to Mr. Sunil Tirkey, and Ms. Navita laboratory staff of Environmental

Engineering Department for their help and support in my laboratory work.

I am grateful to my parents for their moral support, they have been always around to cheer me

up, in the odd times of this work. I am also thankful to my classmates and friends Sarah and

Bhabna for their unconditional support and motivation during this work.

Date:

Sarbari Dutta

Place:

M. Tech (Environmental Engineering)

Roll No. 2K11/ENE/03

CONTENT

1.I	.Introduction		1-3
2. 1	Literatur	re review	4-18
	2.1	Wetland Vegetation	5-10
	2.1.1	Water hyacinth	5-7
	2.1.2	Lemna	7
	2.1.3	Typha	7-8
	2.1.4	Canna lily	8-10
	2.2	Contaminant Removal mechanisms in the Constructed Wetlands	10-13
	2.2.1	Removal mechanism of Organic compounds	11-12
	2.2.2	Removal mechanism of Suspended Solids	12
	2.2.3	Removal mechanism of Heavy Metals / Contaminants	12
	2.2.4	Removal mechanism of Nutrients (Nitrogen and Phosphorus)	12-13
	2.3	Role of aquatic mycrophytes in secondary-treated wastewater	13-16
	2.3.1	BOD, COD, TDS, TSS Removal Efficiency	13-14
	2.3.2	Removal of Heavy Metal	14
	2.3.3	Removal of Total Nitrogen	14-15
	2.3.4	Removal of Phosphate (P)	15-16
	2.4	Mobility of Phosphorus in the Sediment of Wetland System	16-18
	2.4.1	Phosphorus Fraction Present in Sediments	17-18
3. I	Materials	s and Methods	19-30
	3.1	Bench-scale wetland	19

3.2	Plants	19-20
3.3	Experiments	20
3.3.1	Experiment-I (Waste Water Analysis)	20
3.3.2	Experiment-II (Sediment Analysis)	20
3.3.3	Experiment-III (Plant Analysis)	20
3.4	Phosphate-Fractions	22-28
3.4.1	Available Phosphate	22-23
3.4.2	Total Phosphate	24
3.4.3	Inorganic Phosphate	26
3.4.4	Non-Appetite Inorganic Phosphate (NAIP)	27
3.4.5	Appetite Inorganic Phosphate (AP)	27-28
3.5	Measurement of Phosphate in Plant Tissue	28-30
4. Results a	and Discussion	31-46
4.1	Ambient temperature profile	31-32
4.2	Analysis of Waste Water Samples	33-38
4.3	Analysis of Sediment Samples	39-42
4.4	Analysis of Plant Tissue	43
4.5	Effect of wastewater on Canna Lily	44-45
4.6	Conclusion	46
5. Summary	y	47-48
6. Bibliogra	aphy	49-53

LIST OF TABLES

Гable No.	Particulars	Page No
4.1	Ambient temperature profile during the study period	32
4.2	Percent Removal of TP and AP by canna lily	37-38
4.3	Summary of Laboratory Test Results	40
4.4	Fraction of Phosphate present in sediment before and after the study	42
4.5	Characteristics of <i>Canna lily</i> before and after the experiment	45

LIST OF FIGURES

Figure	Particulars	Page No
No.		
2.1	Emergent Aquatic Macrophytes , Floating and Submerged Aquatic	6
	Macrophytes	
2.2	Common Wetland Vegetation: 1. Water Hyacinth, 2. Lemna minor,	6
	3.Typha	
2.3	Canna lily	9
2.4	Diagram courtesy of Soil and Water Science Department, Florida	17
	Cooperative Extension Service,	
3.1	Line Diagram of Experimental plot planted with Canna lily	19
3.2	Experimental plot filled with gravel-sand bed planted with Canna lily	21
3.3	Photograph of Sample Collection	21
3.4	Standards of Phosphate	23
3.5	Extraction of Total Phosphate in Microwave Digestion Unit	25
3.6	Photograph of Sediment collected from the wetland	26
3.7	Photograph of various parts of plant	29
4.1	Ambient temperature profile	31
4.2	Influent and Effluent concentration (mg/l) of Total Phosphate	33
4.3	Removal efficiency (%) of Canna lily (Total Phosphate)	34
4.4	Influent and Effluent concentration (mg/l) of Available Phosphate	35
4.5	Removal efficiency (%) of Canna lily (Available Phosphate)	36
4.6	Particle size Distribution of Sediments	40
4.7	Comparison study between Initial and Final sediment samples	41
4.8	Total Phosphate Concentration (mg/g) in different Plant tissues	43
4.9	Growth parameters of <i>Canna lilv</i> before and after the experiment	44

ABBREVIATIONS

APHA: American Public Health Association

AP: Available Phosphate

AIP: Appetite Inorganic Phosphate

BOD: Biochemical Oxygen Demand

COD: Chemical Oxygen Demand

CW: Constructed Wetland

DO: Dissolved Oxygen

G: Specific Gravity

HCl: Hydrochloric acid

HRT: Hydraulic Retention Time

IP: Inorganic Phosphate

KW: Kilo-Watt

NAIP: Non-Appetite Inorganic Phosphate

OP: Organic Phosphate

ppm: Parts per million

RGR: Relative Growth Rate

SF: Surface Flow

SSFW: Sub-Surface Flow Wetland

TDS: Total Dissolved Solids

TP: Total Phosphate

CHAPTER-1 INTRODUCTION

CHAPTER-2 REVIEW OF LITARETURE

CHAPTER-3 MATERIALS AND METHODS

CHAPTER-4 RESULTS AND DISCUSSION

CHAPTER-5

SUMMARY

CHAPTER-6

BIBLIOGRAPHY