
SOCKETS DIRECT PROTOCOL OVER INFINIBAND FOR

HIGH PERFORMANCE & FAULT-TOLERANT

SCALE OUT NAS SYSTEM

A Dissertation Submitted in Partial Fulfillment of the Requirement

For the Award of the Degree of

MASTER OF ENGINEERING

(Computer Technology & Application)

Submitted By:

THUMMAR BHAVINKUMAR VRUJLAL

College Roll No: 15/CTA/09

University Roll No: 8554

Under the esteemed guidance of:

Mr. MANOJ KUMAR

ASST. PROFESSOR

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI

(2009-2011)

Page i

CERTIFICATE

DELHI COLLEGE OF ENGINEERING

(Govt. of NationalCapitalTerritory of Delhi)

BAWANA ROAD, DELHI – 110042

 Date: ___________

This is certified that the major project report entitled Sockets Direct Protocol

over Infiniband for High Performance and Fault-Tolerant Scale Out NAS System is

a work of THUMMAR BHAVINKUMAR VRUJLAL (University Roll No-8554) a

student of Delhi College of Engineering. This work is completed under my direct

supervision and guidance and forms a part of master of engineering (Computer

Technology and Application) course and curriculum. He has completed his work with

utmost sincerity and diligence.

The work embodied in this major project has not been submitted for the award of

any other degree to the best of my knowledge.

Mr. MANOJ KUMAR
ASST. PROFESSOR & PROJECT GUIDE

Department of Computer Engineering

DelhiCollege of Engineering,

University of Delhi, India

Page
ii

ACKNOWLEDGEMENT

This thesis has been a brain stimulating experience for me. The knowledge gained

by me during the course of this thesis will stand me in good stead in the future. I would

like to thank my guide Mr. Manoj Kumar, Asst. Professor, COE Dept. for his constant

support, encouragement and advice. Without his help and guidance, this dissertation

would have been impossible. He remained a pillar of help throughout the project. Also I

would like to express my gratitude to my teachers Dr. Daya Gupta, Mrs. Rajni Jindal,

Mr. Vinod Kumar and other staff of COE department for providing me any time

access to the resources and guidance.

My thanks are due to Dr. Ranjit Noronha, IBM (India Storage Lab) forgiving

opportunity to work on this challenging project. I appreciate the time and effort he

invested in steering my research work. Also I would like to express my gratitude to

Mr.AshishChaurasia for providing excellent research environment in the organization.

Special thanks to Rohit, Praveen, Deepak, Tushar, Malik, Anuj and Faiz of the IBM

(ISL) for making my work at IBM a pleasant one.

I feel deeply indebted to my parents, sisters and my entire family for their love,

affection and confidence in me.

Last but not least, I thank to the crowd who are active in various Infinibandlists

and forum.

THUMMAR BHAVINKUMAR VRUJLAL
Master of Engineering(Computer Technology & Application)
College Roll No. - 15/CTA/09

University Roll No. - 8554

Department of Computer Engineering (DCE)

Page
iii

ABSTRACT

Conventional network protocols such as TCP/IP have traditionally been

implemented in kernel space and have not been able to scale with increasing network

speeds. Accordingly, they form the primary communication bottleneck in current high-

speed networks like 10G Ethernet and Infiniband. In order to allow existing TCP/IP

applications thathad been written on top of the sockets interface to take advantage of

high-speednetworks, researchers have come up with a number of solutions including high

performance sockets. The primary idea of high-performance sockets is to build apseudo

sockets-like implementation which utilizes the advanced features of high-speednetworks

while maintaining the TCP/IP sockets interface. This allows existing TCP/IPsockets

based applications to transparently achieve a high performance. The Sockets Direct

Protocol (SDP) is an industry standard for such high performance sockets over the

InniBand (IB) and Ethernet networks.

In this dissertation, we focus on designing and enhancing SDP over IB for storage

systems like Network Attached Storage (NAS) and Storage Area Network (SAN).

Specifically we divide the research performed into two parts: (i) Enhancing performance

of network communication by using SDP over IB. (ii) Ensuring high availability of the

system by designing failover mechanisms for SDP over IB. In this dissertation, we

propose application aware failover as well as application transparent failover for SDP

over IB.

Page
iv

Table of Contents

Chapters:

1. INTRODUCTION .. 1

1.1 SDP: State-of-the-Art and Limitations 4

1.1.1 Failover .. 4

1.1.2 Performance Tuning ... 5

1.2 SONAS .. 5

1.3 ORGANIZATION OF DISSERTATION 7

2. BACKGROUND AND MOTIVATION .. 9

2.1 OVERVIEW OF INFINIBAND ... 9

2.1.1 IB Communication ... 10

2.1.2 IB Configurations .. 11

2.1.3 RDMA Communication Model ... 13

2.2 SOCKETS DIRECT PROTOCOL (SDP) 13

2.3 OFED STACK ... 16

3. REVIEW OF LITERATURES .. 18

3.1 SDP .. 18

3.2 FAILOVER ... 18

4. EXPERIMENTAL SETUP .. 21

4.1 NETWORK SYSTEM CONFIGURATION 21

5. FAILOVER MECHANISMS FOR SDP OVER IB 23

5.1 FAILOVER ... 23

5.1.1 Link Detection .. 24

5.1.2 Switch Over To Redundant Link 25

5.2 APPLICATION AWARE FAILOVER 25

Page v

5.2.1 SDP Bonding .. 26

5.3 APPLICATION TRANSPARENT FAILOVER 29

5.3.1 Implementation .. 30

6. PERFORMANCE TUNING FOR SDP OVER IB 33

6.1 SDP_ZCOPY_THRESH: 0 ... 34

6.2 SDP_ZCOPY_THRESH: 64 KB .. 36

6.3 SDP_ZCOPY_THRESH: 1MB .. 39

6.4 SDP_ZCOPY_THRESH: 10 MB ... 41

7. PERFORMANCE MEASUREMENT .. 44

7.1 THROUGHPUT & LATENCY OVER IPoIB 44

7.2 THROUGHPUT & LATENCY FOR SDP OVER IB 44

8. CONCLUDING REMARKS & FUTURE WORK 45

8.1 CONCLUSION ... 45

8.2 FUTURE WORK .. 46

BIBLIOGRAPHY ... 47

Page
vi

Table of Figures

Figure 1-1: Traditional IPoIB (TCP/IP) vs. SDP over IB 2

Figure 1-2: SONAS Architecture.. 6

Figure 2-1: Infiniband Architecture (Courtesy Infiniband Specifications) 10

Figure 2-2: IPoIB Stack .. 11

Figure 2-3: SDP & RDMA Stacks .. 12

Figure 2-4: SDP Data Transfer Modes (BCopy & ZCopy) 14

Figure 2-5: Performance Comparision for SDP vs. IPoIB 15

Figure 2-6: OFED Stack (Courtesy Mellanox) ... 17

Figure 3-1: SDP Stack Components ... 18

Figure 3-2: System Architecture of Socket Cloning (SC) 20

Figure 5-1: System Configuration for Failover .. 23

Figure 5-2: SDP Bonding.. 26

Figure 5-3: SDP Bonding: Flow Chart ... 27

Table 1: Throughput Test: SDP Bonding vs. Without Bonding 28

Page 1

Chapter 1

INTRODUCTION

Cluster systems are becoming increasingly popular in various application domains

mainly due to their high performance-to-cost ratio. Cluster systems are now presentat all

levels of performance, due to the increasing capability of commodity processors, memory

and the network communication stack.

Since the nodes in a clustersystem rely on the network communication stack in

order to coordinate and communicate with each other, it forms a critical component in the

efficiency and scalabilityof the system. Therefore, it is of particular interest. The network

communicationstack itself comprises of two components:

(i) The network hardware

(ii) Thecommunication protocol and the associated software stack.

With respect to the first component, during the last few years, the research

andindustry communities have been proposing and implementing high-speed networking

hardware such as InfiniBand (IB) [4], 10-Gigabit Ethernet (10GigE) [20, 27, 28, 21]and

Myrinet [15], in order to provide efficient support for such cluster systemsamongst

others. For the second component (communication protocol stack), however, there has

not been as much success.

Earlier generation communication protocols such as TCP/IP [38, 42] relied

uponthe kernel for processing the messages. This caused multiple copies and

kernelcontext switches in the critical message passing path. Thus, the

communicationperformance was low. Researchers have been looking at alternatives to

increase communication performance delivered by clusters in form of low-latency and

high-bandwidth ULPs such as FM [33] and GM [18] for Myrinet [15] &EMP [37, 36] for

Gigabit Ethernet [23].

Page 2

These developments are reducing the gap between the performance capabilitiesof

the physical network and that obtained by the end users. While this approachis good for

developing new applications, it might not be so beneficial for existingapplications. A

number of applications have been developed on kernel-based protocols such as TCP/IP or

UDP/IP using the sockets interface. To support suchapplications on high performance

user-level protocols without any changes to theapplication itself, researchers have come

up with different techniques including high-performance sockets implementations [12,

30, 35, 14]. High-performance sockets arepseudo sockets-like implementations to meet

two primary goals:

(i) To directly andtransparently allow existing sockets applications to be

deployed on to clusters connected with modern networks such as IB

and iWARP and

(ii) Allow such deploymentwhile retaining most of the raw performance

provided by the networks.

In an attempt to standardize these efforts towards high-performance

socketsimplementations, the Remote Direct Memory Access (RDMA) Consortium

brought out a new standard known as theSockets Direct Protocol (SDP) [2]. Figure 1.1

shows the traditional IP over InfiniBand (IPoIB)stackand the SDP stack over IB.

Figure 1-1: Traditional IPoIB (TCP/IP) vs. SDP over IB

Page 3

Modern storage systems such as Scale Out Network Attached Storage (SONAS)

are designed around hybrid architectures like Network Attached Storage (NAS) and

Storage Area Network (SAN). In such systems, storage devices are connected through

high performance network components and form a clustered system area network. Clients

are connected to the interface nodes which host file systems to operate on multiple

storage nodes connected through a high performance network. Interface nodes read and

write data to/from storage nodes through socket applications. As data is move around the

system area network, the network overhead is the main bottleneck in the performance of

any storage systems.

Performance is not only the issue while designing any scalable storage system.

System should be highly available too. Failure may occur in many ways such as network

link failure, system hardware failure, disk failure etc. These failures can be handled by

having redundancy in almost each and every component of the system such as redundant

disks, redundant network links, redundant nodes etc. The mechanism involved in

switching over to the redundant component at the time of failure is called Failover.

Failover should be carried out transparently.

As a result of tradeoff between performance and availability, most of the modern

storage systems use conventional TCP/IP based network communication for data transfer

between interface nodes and storage nodes. IPoIB is the Upper Layer Protocol (ULP)

which is being used for communication over IB to ensure the network link failover while

achieving comparatively higher performance than Ethernet.

Page 4

1.1 SDP: State-of-the-Art and Limitations

As indicated earlier, the SDP standard attempts to transparently provide high

performance for existing sockets-based applications over high-speed networking stacks

such as IB and iWARP. While, there are several implementations of the SDP standard

[10, 25, 24, 7], these lack in several aspects. Some of these aspects correspond to designs

proposed in the SDP standard which might not be optimal in all scenarios, while the

others are specific to existing SDP implementations where the current designs have scope

for improvement in multiple dimensions.

In this dissertation, we work on replacing IPoIB with SDP over Infiniband for the

storage systems like SONAS. We propose prototypes to overcome following two

limitations:

(i) Failover

(ii) Performance Tuning

1.1.1 Failover

Network Link failure of any node may lead to failure of the node itself. To avoid

such failure, link redundancy is used. At the time of link failure, switching over to the

redundant link should be performed without affecting the normal operation of the system.

IPoIB uses the Linux Bonding driver to tackle this problem but there is no such

mechanism exists for the SDP. This failover can be performed in two ways as follows:

(i) Application aware failover

(ii) Application transparent failover

Page 5

1.1.2 Performance Tuning

Proper performance tuning is required to ensure highest performance

enhancements of SDP. Replacing IPoIB with SDP enables the use of Zero Copy (ZCopy)

and Buffered Copy (BCopy). Setting of proper thresh-hold value is needed in order to

specify that when to use BCopy and when to use ZCopy in order to gain highest possible

performance. Further to this, variable configuration components like message size,

Naggle’s switch etc. are also need to be set properly in order to achieve highest possible

performance.

1.2 SONAS

Scale Out Network Attached Storage (SONAS) is a highly scalable Network

Attached Storage system for large scale as deployments requiring very large storage

capacities - from 100’s Terabytes to multiple Peta-bytes, independent capacity and

performance scaling, support for very large file systems and parallel access to data.

Figure 1-2 shows the architecture of the SONAS from the project’s perspective.

On application side, there are various file systems such as CIFS, NFS, RSYNC

etc. through which clients access the storage of the system. Clustered Trivial Database

Daemon (CTDB) is a cluster implementation of the TDB database used by Samba and

other projects to store temporary data.CTDB provides HA features such as node

monitoring, node failover, and IP takeover, like controlling “public” IP addresses –

distribute public addresses across nodes, movement of addresses to “healthy” nodes in

case a node having an address transitions from healthy to unhealthy.

Page 6

Figure 1-2: SONAS Architecture

The General Parallel File System (GPFS) is a high-performance shared-disk

clustered file system developed by IBM. It is used by many of the supercomputers that

populate the Top 500 List of the most powerful supercomputers on the planet. In

SONAS, GPFS is an embedded component managed by the SONAS Management stack

for Setup, Configuration and Monitoring. There are also some other management utilities

such as management node interface.

In SONAS, multiple interface nodes hosting GPFS are connected to the storage

nodes through the underlying Infiniband network. At present, the communication

between interface and storage nodes over Infiniband uses the IPoIB Upper Layer

Protocol. Primary objective of this research is to replace IPoIB with the more optimized

SDP upper layer protocol.

Page 7

1.3 ORGANIZATION OF DISSERTATION

This dissertation begins with quick introduction of the Sockets Direct Protocol

(SDP) and limitations with the SDP. Chapter 1 is dedicated to the quick introduction

about this dissertation having overview of SDP, failover and performance.

Chapter 2 is all about the background of this project. This chapter starts with the

introduction of Infiniband which includes Communication mechanisms, various

configurations and Remote Direct Memory Access (RDMA) Model. Further to

Infiniband, this chapter also introduces the SDP and the OFED software stack.

Chapter 3 covers the review of some of the research literatures from which ideas

has been taken and used in the proposed architectures.

Chapter 4 presents the experimental setup used in design and implementation of

the proposed solutions.

Chapter 5 discusses proposed solutions in detail. It start with the detailed

description of the Failover and problems in implementing it. Later in the chapter both the

proposed failover solutions are discussed.

Chapter 6 is dedicated to the Performance Tuning to gain the optimal performance

enhancement from SDP over Infiniband.

Chapter 7 presents all the results taken to prove the performance enhancement in

terms of throughput and latency.

Chapter 8concludes the dissertation and also presents ideas about future planned

works.

Page 8

At the end, Bibliography shows all references which is used throughout this

dissertation.

Page 9

Chapter 2

BACKGROUND AND MOTIVATION

In this chapter, we start with an overview of Infiniband and subset of its features

and various configurations in Section 2.1. The SDP is described in Section 2.2. Next, in

Section 2.3, we provide a brief overview on Open Fabrics Enterprise Distribution

(OFED) stack.

2.1 OVERVIEW OF INFINIBAND

The InfiniBand Architecture (IB) is an industry standard that defines a System

Area Network (SAN) to design clusters offering low latency and high bandwidth. The

compute nodes are connected to the IB fabric by means of Host Channel Adapters

(HCAs). IB defines a semantic interface called as Verbs for the consumer applications to

communicate with the HCAs. VAPI is one such interface developed by Mellanox

Technologies [1].

IB mainly aims at reducing the system processing overhead by decreasing the

number of copies associated with a message transfer and removing the kernel from the

critical message passing path. This is achieved by providing the consumer applications

direct and protected access to the HCA. The specification for the verbs interface includes

a queue-based interface, known as a Queue Pair (QP), to issue requests to the HCA.

Figure 2-1 illustrates the InfiniBand Architecture model.

Page
10

 Figure 2-2: Infiniband Architecture (Courtesy Infiniband Specifications)

2.1.1 IB Communication

Each Queue Pair is a communication endpoint. A Queue Pair (QP) consists of the

send queue and the receive queue. Two QPs on different nodes can be connected to each

other to form a logical bi-directional communication channel. An application can have

multiple QPs. Communication requests are initiated by posting Work Queue Entries

(WQEs) to these queues. Each WQE is associated with one or more pre-registered buffers

from which data is either transferred (for a send WQE) or received (receive WQE). The

application can either choose the request to be a Signaled (SG) request or an Un-Signaled

request (USG). When the HCA completes the processing of a signaled request, it places

an entry called as the Completion Queue Entry (CQE) in the Completion Queue (CQ).

The consumer application can poll on the CQ associated with the work request to check

for completion. There is also the feature of triggering event handlers whenever a

completion occurs. For un-signaled requests, no kind of completion event is returned to

the user. However, depending on the implementation, the driver cleans up the Work

Queue Request from the appropriate Queue Pair on completion.

Page
11

2.1.2 IB Configurations

 Various IB configurations have been evolved for different applications and

requirements such as IPoIB, SDP over IB, RDMA enabled IB application, Message

Passing Interface (MPI), iSCSI enabled RDMA etc. In this dissertation, we focus mainly

on three of them.

1. IPoIB:

IPoIB is specified by the IETF (RFC 4931/4932). IP over Infiniband provides

TCP/UDP interface for Infiniband. It uses IB as a transport for IP. There is no RDMA

available in IPoIB. IPoIB is also used for address resolution for other ULPs such as SDP,

iSER and RDS. IPoIB has the highest level of application compatibility which means that

there is no change at application side required to use IPoIB. Figure 2-2 shows the IPoIB

protocol stack.

Figure 2-2: IPoIB Stack

Page
12

2. SDP Over IB:

SDP also provides a compatible socket interface although some minor

configurations are needed in the host machine in order to use SDP. SDP provides RDMA

mechanism through ZCopy.

3. RDMA Enabled Application:

As SDP module is implemented in the kernel space, SDP over IB is not the

optimal solution for performing RDMA. To overcome this problem, Infiniband also

provides necessary APIs (verbs) to implement RDMA enabled applications which give

optimal performance due to no kernel intervention at all.

Figure 2-3 shows SDP over IB and RDMA enabled application stacks.

Figure 2-3: SDP & RDMA Stacks

Page
13

2.1.3 RDMA Communication Model

IB supports two types of communication semantics: channel semantics (send-

receive communication model) and memory semantics (RDMA communication model).

In channel semantics, every send request has a corresponding receive request at

the remote end. Thus, there is a one-to-one correspondence between every send and

receive operation. Failure to post a receive descriptor on the remote node results in the

message being dropped and retransmitted for a user specified amount of time. In the

memory semantics, Remote Direct Memory Access (RDMA) operations are used. These

operations are transparent at the remote end since they do not require the remote end to

involve in the communication. Therefore, an RDMA operation has to specify both the

memory address for the local buffer as well as that for the remote buffer. There are two

kinds of RDMA operations: RDMA Write and RDMA Read. In an RDMA write

operation, the initiator directly writes data into the remote node's user buffer. Similarly,

in an RDMA Read operation, the initiator directly reads data from the remote node's user

buffer. Most entries in the WQE are common for both the Send-Receive model as well as

the RDMA model, except an additional remote buffer virtual address which has to be

specified for RDMA operations.

2.2 SOCKETS DIRECT PROTOCOL (SDP)

The SDP standard focuses specifically on the wire protocol, finite state machine

and packet semantics. Operating system issues, etc., can be implementation specific. It is

to be noted that SDP supports only SOCK STREAM or streaming sockets semantics and

not SOCK DGRAM (datagram) or other socket semantics.

SDP enables existing socket based applications to transparently utilize the IB

capabilities and achieve superior performance. As SDP enables direct data transfer

between two applications running on two different nodes without any intervention of

kernel from either side, performance of the data transfer gets improved significantly.

Page
14

SDP's Upper Layer Protocol (ULP) interface is a byte-stream protocol that is

layered on top of IB’s message-oriented transfer model. The mapping of the byte stream

protocol to the underlying message-oriented semantics was designed to enable ULP data

to be transferred by one of two methods:

(i) Through intermediate private buffers (using a buffer copy)

(ii) Directly between ULP buffers (zero copy).

A mix of send/receive and RDMA mechanisms are used to transfer ULP data. The

SDP specification also suggests two additional control messages known as Buffer

Availability Notification messages, viz., source-avail and sink-avail messages for

performing zero-copy data transfer.

Figure 2-4 shows the data transfer modes over SDP.

Figure 3-4: SDP Data Transfer Modes (BCopy&ZCopy)

Page
15

Sink-avail Message: If the data sink has already posted a receive buffer andthe

data source has not sent the data message yet, the data sink does the followingsteps:

(i) Registers the receive user buffer (for large message reads)

(ii) Sendsa sink-avail message containing the receive buffer handle to the

source.

 The datasource on a data transmit call, uses this receive buffer handle to directly

RDMAwrite the data into the receive buffer.

Source-avail Message: If data source has already posted a send bufferand the

available SDP window is not large enough to contain buffer, it does thefollowing 2 steps:

(i) Registers the transmit user buffer (for large message sends)

(ii) Sends a source-avail message containing the transmit buffer handle to the

16data sink.

The data sink on a data receive call, uses this transmit buffer handle to directly

RDMA read the data into the receive buffer.Figure 2-5 shows the performance

improvements by replacing IPoIB with SDP for sockets applications.

Figure 2-5: Performance Comparision for SDP vs. IPoIB

Page
16

2.3 OFED STACK

OFED is high performance server and storage connectivity software for field-

proven RDMA and Transport Offload hardware solutions. The OFED from OpenFabrics

alliance has been hardened through collaborative development and testing by all major

InfniBand vendors. OFED is supported by Mellanox and major InfniBand vendors to

enable OEMs to meet the needs of HPC applications.

OFED includes kernel-level drivers, channel-oriented RDMA and send/receive

operations, kernel bypasses of the operating system, both kernel and user-level

application programming interface (API) and services for parallel message passing

(MPI), sockets data exchange (e.g., RDS, SDP), NAS and SAN storage (e.g. iSER, NFS-

RDMA, SRP) and file system/database systems.

The network and fabric technologies that provide RDMA performance with

OFED include: legacy 10 Gigabit Ethernet, iWARP for Ethernet, RDMA over Converged

Ethernet (RoCE), and 10/20/40 Gigabit InfiniBand.

OFED is available for many Linux and Windows distributions, including: Red

Hat Enterprise Linux (RHEL), Novell SUSE Linux Enterprise Distribution (SLES),

Oracle Enterprise Linux (OEL) and Microsoft Windows Server operating systems. Some

of these distributions ship OFED in-box. This makes OFED easily accessible and usable

by OEMs and end users facilitating quick adoption in multiple market verticals in the

high performance computing, enterprise data centre and storage sectors. The entire set of

OpenFabrics Software – from which modules and patches are selected to form OFED

releases resides on the OpenFabrics servers and is available for download.Figure 2-6

shows the complete OFED stack.

Page
17

Figure 2-6: OFED Stack (Courtesy Mellanox)

Page
18

Chapter 3

REVIEW OF LITERATURES

In this chapter, we presented related research literatures which have been

published or presented earlier on similar issues.

3.1 SDP

BZcopy and Zcopy are the results of earlier research work from various

researchers. Earlier researchers have already proved the performance enhancement over

SDP compare to IPoIB [10]. Researchers have proved that by using SDP instead of

IPoIB improves the Bandwidth and Latency while ZCopy [25] actually lowers the CPU

utilization of the host machine. Figure 3-1 shows the SDP stack components for ZCopy.

Figure 3-1: SDP Stack Components

3.2 FAILOVER

The primary focus of this dissertation is on solving the problem of failover. We

have discussed two approaches; SDP Bonding and Socket Duplication. SDP bonding is

proposed around the idea of extending the Linux bonding mechanism for IPoIB to work

with SDP.

Page
19

There is another approach proposed by researchers called Automatic Path

Migration (APM) [45].

Researchers have proposed Automatic Path Migration (APM), which allows user

transparent detection and recovery from network fault(s), without application restart. In

this paper, they designed a set of modules; which work together for providing network

fault tolerance for user level applications leveraging the APM feature. Performance

evaluation at the MPI Layer shows that APMincurs negligible overhead in the absence of

faults in the system. In the presence of network faults, APM incurs negligible overhead

for reasonably long running applications.

In this paper, they addressed challenges regarding the failover. They designed a

set of modules; alternate path specification module, path loading request module and path

migration module, which work together for providing network fault tolerance for user

level applications. They evaluated these modules with simple micro-benchmarks at the

Verbs Layer, the user access layer for InfiniBand, and study the impact of different state

transitions associated with APM. They have also integrated these modules at the MPI

(Message Passing Interface) layer to provide network fault tolerance for MPI

applications. Performance evaluation at the MPI Layer shows that APM incurs negligible

overhead in the absence of faults in the system. In the presence of network faults, APM

incurs negligible overhead for reasonably long running applications. For Class B FT and

LU NAS Parallel Benchmarks [46] with 8 processes, the degradation is around 5-7% in

the presence of network faults.

This mechanism was proposed for the Message Passing Interface. As MPI uses IB

verbs at application layer to communicate to the OFED stack components, this

mechanism can’t be used with the socket based applications directly. Due to the various

design issues with the use of APM for socket based applications this approach was never

taken as the solution of the failover problem.

Page
20

Another approach we proposed in this dissertation is Application Transparent

Failover through Socket Duplication. Socket Duplication (Socket Cloning) is primarily

designed and used for the closeted web servers [47].

To solve the caching problems in dispatcher based systems researchers have

proposed a novel idea called socket cloning. In this paper, they presented a newnetwork

support mechanism, called Socket Cloning (SC), inwhich an opened socket can be

migrated efficiently betweencluster nodes. With SC, the processing of HTTP requestscan

be moved to the node that has a cached copy of therequested document, thus bypassing

any object transfer between peer servers. A prototype has been implemented andtests

shown that SC incurs less overhead than all the mentioned approaches. In trace-driven

benchmark tests, their system outperforms these approaches by more than 30%with a

cluster of twelve web server nodes.

Figure 4-2:System Architecture of Socket Cloning (SC)

To design an application transparent failover for SDP over Infiniband, we have

taken this idea of socket cloning and used it for the single system. Instead of cloning

sockets across two different machines, in this dissertation we propose a duplication

(cloning) of the socket from broken link interface to the redundant link interface. As in

this case the cloning is across the same system the IP address of the socket would remain

same while just the port address might need to change.

Page
21

Chapter 4

EXPERIMENTAL SETUP

In this chapter, we provide information about the setup we used to perform

required experiments. In section 4.1, we provide information about network system

configuration needed to setup experiments.

4.1 NETWORK SYSTEM CONFIGURATION

For the experimental test-bed, we used cluster of four nodes connected through 10

Gbps DDR Infiniband link. Each node in the system has installed two Infiniband network

interface cards from Mallenox. We worked on Red-Hat Enterprise (Linux) operating

system RHEL 6 and OFED 5.2.1 to perform all required experiments. All systems are the

System X from IBM.

Additional host side configuration is needed to enable SDP to use existing socket

interface of all targeted socket based applications. There is two methods for conversing

from IPoIB to SDP.

(i) Automatic Conversion

(ii) Explicit/Source code Conversion

Automatic Conversion:

 Load the ib_sdp module of OFED

 Set the environmental variable LIBSDP_CONFIG_FILE = /etc/libsdp.conf

 Set the environmental variable LD_PRELOAD=libsdp.so to preload the SDP

socket library in to memory so that it can be used instead of original socket library

comes with Linux kernel.

Page
22

By using libsdp.conf, one may control the use of SDP. This method configures the

driver to automatically translate TCP to SDP based on Source IP, Destination IP, Port

Number or Application Name.

Explicit/Source code Conversion:

One has to define #define AF_INET_SDP 27 a separate protocol type in the

socket application so that this constant can be used in the socket system call as follows:

 socket(AF_INET_SDP, SOCK_STREAM,0);

As this method requires change in the application for conversion from IPoIB to

SDP, we haven’t used this configuration. Throughout the dissertation, all the displayed

results are taken by configuring system through automatic conversion.

Page
23

Chapter 5

FAILOVER MECHANISMS FOR SDP OVER IB

5.1 FAILOVER

Process of switching over the redundant link in case of active network link failure

is called as Failover. Figure 5-1 shows the configuration of the system needed for any

failover mechanism.

Figure 5-1: System Configuration for Failover

As shown in figure, Interface A and Interface B are two NICs. Initially Interface

A is in active state so all the communication is passes through this link. Suppose that at

some point of time Interface A goes down due to some technical issue, at this moment

communication transfer should be switch over to the passive link B without affecting the

normal operation of the system. This process of switching over is called as Failover.

Failover mechanism must have two primary functionalities as follows:

(i) Link Detection

(ii) Switch over to redundant link

Application

Upper Layer Protocol

Connection Manager

Failover Mechanism

Interface A Interface B

Active Link Passive Link

Link Failure Failover

Page
24

5.1.1 Link Detection

 Two schemes have been proposed by researchers and any one of them can be used

with Linux bonding driver to monitor the link status. These two methods are:

(i) ARP Monitor

(ii) MII Monitor

ARP Monitor:

The ARP monitor operates as its name suggests: it sends ARP queries to one or

more designated peer systems on the network, and uses the response as an indication that

the link is operating. This gives some assurance that traffic is actually flowing to and

from one or more peers on the local network.

The ARP monitor relies on the device driver itself to verify that traffic is flowing.

In particular, the driver must keep up to date the last receive time, dev->last_rx, and

transmit start time, dev->trans_start. If these are not updated by the driver, then the ARP

monitor will immediately fail any slaves using that driver, and those slaves will stay

down. If networking monitoring (tcpdump, etc) shows the ARP requests and replies on

the network, then it may be that your device driver is not updating last_rx and trans_start.

MII Monitor:

 The MII monitor monitors only the carrier state of the local network

interface. It accomplishes this in one of three ways: by depending upon the device driver

to maintain its carrier state, by querying the device's MII registers, or by making an

ethtool query to the device.

Page
25

If the use_carrier module parameter is 1 (the default value), then the MII monitor

will rely on the driver for carrier state information (via the netif_carrier subsystem). As

explained in the use_carrier parameter information, above, if the MII monitor fails to

detect carrier loss on the device (e.g., when the cable is physically disconnected), it may

be that the driver does not support netif_carrier.

If use_carrier is 0, then the MII monitor will first query the device's (via ioctl)

MII registers and check the link state. If that request fails (not just that it returns carrier

down), then the MII monitor will make an ethtool ETHOOL_GLINK request to attempt

to obtain the same information. If both methods fail (i.e., the driver either does not

support or had some error in processing both the MII register and ethtool requests), then

the MII monitor will assume the link is up.

5.1.2 Switch Over To Redundant Link

As mentioned earlier, Failover mechanism can be implemented using two

methodologies:

(i) Application Aware Failover

(ii) Application Transparent Failover

Both the methods have its pros and cons in terms of configuration requirements,

performance etc.

5.2 APPLICATION AWARE FAILOVER

In this dissertation we propose prototypeof SDP Bonding as an application aware

failover mechanism.

Page
26

5.2.1 SDP Bonding

IPoIB uses the Linux Bonding driver to perform failover at the time of network

link failure. As SDP also uses the IPoIB for address resolution, bonding driver can also

be used with SDP. As data communication paths for IPoIB and SDP are different,

operations needed to perform at the time of failover would be different. Figure 4-2 shows

the proposed prototype for the SDP Bonding.

Figure 5-2: SDP Bonding

Upon detecting the broken link by the Bonding layer, Connection Manager

abstract layer sends an RDMA_CM_ADDR_CHANGE event to the upper layer

protocol’s connection manager.

Page
27

Flow Chart:

Figure 5-3: SDP Bonding: Flow Chart

At this time, SDP module might have been performing read or write operations

through BCopy or ZCopy. As these copy operation uses the IB Access layer to access the

HCA, these operations can’t be stopped or notified about the link failure. As link has got

failed, the state of the SDP module performing read/write operation would be undefined.

Due to this reason, it is not possible to reconnect the broken connection from the kernel

itself. So instead of reconnecting from kernel level SDP module, we propose to notify

upper layer socket library by sending CM_ADDR_CHANGE event. Upon receiving this

event, application just need to call connect again with the saved parameters. As we

discussed, application code needs to be changed in order to have failover through SDP

Bonding.

Page
28

As we are not performing any extra operations at the SDP kernel layer modules,

SDP Bonding mechanism doesn’t imposes any kind of overhead during the normal

operations of the system.

We have taken performance results by running Netperf[44] benchmarks on

proposed solution. Proposed solution will be available to open source community once

the thorough testing of the implementation is carried out. Throughput test results are as

follows:

Message Size Without Bonding With Bonding

8 KB 10107 Mbps 6678 Mbps

64 KB 10133 Mbps 6703 Mbps

1 MB 9926 Mbps 9923 Mbps

10 MB 10101 Mbps 10053 Mbps

100 MB 10097 Mbps 10068 Mbps

Table 1: Throughput Test: SDP Bonding vs. Without Bonding

Page
29

5.3 APPLICATION TRANSPARENT FAILOVER

In this section, we propose an application transparent failover mechanism using

Socket Duplication technique. This technique is influenced from the socket cloning

solution for clustered web servers’ implementation [47].

As we described earlier, bonding driver notifies the Connection Manager about

the link failure through sending an event RDMA_CM_ADDR_CHANGE but as both the

modules (Connection Manager and SDP send/recv) are in different context, we can’t

perform reconnection in the kernel layer itself.

When a socket exists in one address space and is then accessed in a different

address space (on the same peer), the socket needs to be duplicated into the second

address space. Note that if two threads are accessing the socket in the same address

space, socket duplication is not required.

Performing socket duplication in user-mode imposes certain restrictionsbecause

socket state cannot be shared between the address spaces. In fact, in the context of

InfiniBand networks available today, the socket can only exist in one address space at a

time (since HCAs are not required to support sharing queue pairs between multiple

address spaces).

Because of these restrictions, SDP allows only one address space at a time to

execute operations that either transfer data or change state for an underlying shared

socket. Address spaces dynamically swap control of the underlying socket, as needed, to

execute requested operations. The SDP socket duplication procedure serializes operations

that different address spaces request on a shared socket. The procedure waits for all In-

Process operations to complete before swapping control of an underlying socket to

another address space. Logically, the procedure takes control of the underlying socket

away from the controlling address space as soon as a non-controlling address space

requests an operation on that socket.

Page
30

After control is taken away, the procedure treats the original controlling address

space like a non-controlling address space if the original controlling address space

requests operations on that socket. In this way a socket may transition back and forth

between controlling address spaces based on ULP behavior.

We enabled socket duplication by bringing the connection to a consistent state,

closing the InfiniBand connection, handing the state to the new controlling address space,

and then creating a new reliable connection in the new address space. Note that after the

connection is suspended and then restarted on a new InfiniBand connection, the

connection by definition does not have any outstanding SinkAvail or SrcAvail

advertisements. Any incomplete SinkAvail or SrcAvail advertisements were effectively

canceled during the transition to a new connection.

In managed failover, the SDP connection may in fact be reestablished using

different paths, ports, HCAs or hosts. The original connection in a managed failover

scenario is analogous to the controlling address space in socket duplication. The new

failed over connection is analogous to the non-controlling address space. Managed

failover changes where one end of the connection is situated. Failing over both ends

requires two managed failover operations.

The decision to attempt a managed failover must occur before the socket

duplication may take place. For this purpose we rely on the link detection technique used

by the Linux bonding driver for IPoIB. Bonding driver sends a notification to the

connection manager at the time of link failure. This notification in turn starts the socket

duplication procedure.

5.3.1 Implementation

In implementation details, the new failed over connection is analogous to the non-

Controlling Address Space.

Page
31

This implementation in the controlling address space waits for all In-Process data

transfer operations to complete, and then it sends a SuspComm Message to the Remote

Peer to request a suspension of the session. This SDP Message contains the destination

TCP port number received from the non-Controlling Address Space. The Remote Peer

connects to this TCP port number when resuming communication. The Local Peer

doesn’t send additional SDP Messages or perform any RDMA operations from the

Controlling Address Space, after sending the SuspComm Message.

Upon receiving the SuspComm Message, the Remote Peer waits for all In-Process

data transfer operations to complete, then sends a SuspCommAck Message indicating

that the session is suspended. After sending the SuspCommAck Message, this peer

doesn’t send any more SDP Messages or perform any RDMA operations until a new

connection is set up.

The Remote Peer waits for completion of the Send of the SuspCommAck

Message, then close the LLP connection. The Remote Peer then initiate the new

connection to the destination TCP port number received through the SuspComm

Message, utilizing the same IP address specified in the prior connection setup sequence.

Posting of receive Private Buffers and the contents of the header follows the same rules

as connection setup.

Once the SuspCommAck Message is received, the Controlling Address Space on

the Local Peer sends a signal to the non-Controlling Address Space through a new

message introduced by us: AckRecv. This message may contain following data:

 Any buffered receive ULP data.

 The Remote Peer’s TCP port number (to ensure the parameter does not

change when the socket is re-connected).

 The sizes of the local receive Private Buffers.

 The current values for IRD and ORD.

Page
32

The non-Controlling Address Space accepts the connection request from the

Remote Peer and initializes its state variables for the new connection. The Hello Message

initializes SDP connection state.

The (previously) non-Controlling Address Space then sends a HelloAck Message

to the Remote Peer. The receive Private Buffer size parameter in the HelloAck Message

MUST be the values received from the Controlling Address Space. The IRD and ORD

values MAY be the values received from the Controlling Address Space. It also makes

buffered received ULP data from the Controlling Address Space available to the ULP.

When connection setup is complete, the Local Peer resumes normal data transfer.

We haven’t implemented this technique completely due to lack of time, so we don’t have

any test results for this methods.

Page
33

Chapter 6

PERFORMANCE TUNING FOR SDP OVER IB

In this section we propose ideal settings for Zcopy threshold value in terms of

message size to gain the optimal performance. We carried out various experiments for

different message sizes with combination of Zcopy threshold values to make a decision

making statement for the optimal configuration.

As initiating Zcopy involves the cost of making the user space buffer to be

available to the Host Channel Adapter until the data transfer is over. This preparation

takes place by defining Fast Memory Regions (FMR) which can be break in to two

different procedures

(i) Mapping

(ii) Locking

In order to transfer the control of any user space buffer directly to the device, first

the user space virtual address must be converted into the physical address and then make

sure that this memory region remains in the physical memory until the data transfer is

over.

So, this process of preparing user space buffer takes some time. This time is the

main decision factor in deciding the Zcopy threshold value.

All the experiments are done on system having 16 cores of 2.67 GHz CPUs and

32 GB of RAM. The experiment results are taken for the Netperf benchmarks. These are

as follows:

Page
34

6.1 SDP_ZCOPY_THRESH: 0

 ZCopy Disabled

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1024

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 1024 10.10 2000.35 12.48 7.08 8.178 4.641

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m8192

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send RecvSend Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 8192 10.10 9176.81 12.50 6.26 1.785 0.894

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 65536

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 65536 10.01 10133.04 8.18 6.63 1.058 0.858

[[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 1048576 10.01 9926.18 6.75 6.86 0.891 0.906

Page
35

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 10485760

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

 87380 65536 10485760 10.02 10101.18 6.51 6.33 0.845 0.822

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 104857600

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

 87380 65536 104857600 10.05 10097.56 6.46 6.29 0.839 0.816

 Result Summary for Zcopy Threshold = 0:

Message Size Throughput Local CPU Utilization Remote CPU Utilization

1 KB 2 Gbps 12.48 7.08

8 KB 9.1 Gbps 12.50 6.26

64 KB 10.1 Gbps 8.18 6.63

1 MB 9.9 Gbps 6.75 6.86

10 MB 10.1 Gbps 6.51 6.33

100 MB 10.1 Gbps 6.46 6.33

Page
36

6.2 SDP_ZCOPY_THRESH: 64 KB

[root]# modprobeib_sdpsdp_zcopy_thresh=65536

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1024

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 1024 10.10 1883.85 12.52 6.24 8.710 4.344

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 8192

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 8192 10.10 9104.75 12.49 6.26 1.798 0.902

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 65536

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send RecvSend Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 65536 10.01 10131.13 8.39 7.03 1.085 0.910

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 131072

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

 87380 65536 131072 10.00 4901.58 2.77 7.02 0.742 1.878

Page
37

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 1048576 10.10 6411.63 1.98 1.32 0.406 0.269

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 10485760

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

 87380 65536 10485760 10.00 6725.33 1.65 1.16 0.321 0.227

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 104857600

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 104857600 10.02 6677.41 1.54 1.44 0.303 0.282

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576000

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 1048576000 10.40 9676.80 5.90 5.69 0.799 0.771

Page
38

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 2048576000

Recv Send SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 2048576000 10.24 9602.05 5.86 5.58 0.800 0.762

 Result Summary for Zcopy Threshold = 64KB:

Message Size Throughput Local CPU Utilization Remote CPU Utilization

1 KB 1.9Gbps 12.52 6.24

8 KB 9.1 Gbps 12.49 6.26

64 KB 10.1 Gbps 8.39 7.02

128 KB 4.9 Gbps 2.77 7.02

1 MB 6.4Gbps 1.98 1.32

10 MB 6.7Gbps 1.65 1.16

100 MB 10.1 Gbps 1.52 1.44

1 GB 9.7 Gbps 5.09 5.69

2 GB 9.6 Gbps 5.86 5.58

Page
39

6.3 SDP_ZCOPY_THRESH: 1MB

[root]# modprobeib_sdpsdp_zcopy_thresh=1048576

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 8192

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 8192 10.10 7907.50 13.71 6.47 2.272 1.073

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 65536

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 65536 10.01 10129.16 8.25 6.36 1.067 0.824

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 1048576 10.01 9927.18 6.72 6.29 0.888 0.831

Page
40

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 10485760

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

 87380 65536 10485760 10.01 6519.21 1.65 1.75 0.332 0.353

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 104857600

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 104857600 10.02 6690.25 1.60 1.21 0.313 0.238

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576000

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 1048576000 10.50 9586.22 5.90 5.63 0.806 0.770

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 2048576000

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 2048576000 10.30 9545.88 5.88 6.02 0.807 0.826

Page
41

 Result Summary for Zcopy Threshold = 1MB:

Message Size Throughput Local CPU Utilization Remote CPU Utilization

8 KB 7.9 Gbps 13.71 6.47

64 KB 10.1 Gbps 8.25 6.36

1 MB 9.9Gbps 6.72 6.29

10 MB 6.5Gbps 1.65 1.16

100 MB 6.7Gbps 1.6 1.21

1 GB 9.6Gbps 5.9 5.63

2 GB 9.6 Gbps 5.88 6.02

6.4 SDP_ZCOPY_THRESH: 10 MB

[root]# modprobeib_sdpsdp_zcopy_thresh=10485760

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 65536

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 65536 10.01 9939.40 8.31 6.31 1.096 0.832

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 1048576

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 1048576 10.01 9928.36 6.72 6.75 0.888 0.892

Page
42

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 10485760

Recv Send Send Utilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSize Time Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 10485760 10.10 6585.33 1.67 1.37 0.332 0.274

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 104857600

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 104857600 10.02 6598.41 1.50 1.29 0.298 0.257

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 1048576000

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

 87380 65536 1048576000 10.80 9320.61 5.88 5.98 0.827 0.841

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 2048576000

RecvSend SendUtilization Service Demand

Socket Socket Message Elapsed Send Recv Send Recv

Size SizeSizeTime Throughput local remote local remote

bytes bytesbytessecs. 10^6bits/s % S % S us/KB us/KB

87380 65536 2048576000 10.68 9210.10 5.84 6.36 0.831 0.905

Page
43

 Result Summary for Zcopy Threshold = 10 MB

Message Size Throughput Local CPU Utilization Remote CPU Utilization

64 KB 9.9 Gbps 8.31 6.

1 MB 9.9Gbps 6.75 6.31

10 MB 6.5Gbps 1.67 1.37

100 MB 6.6Gbps 1.5 1.29

1GB 9.3Gbps 5.88 5.98

2 GB 9.2Gbps 5.84 6.36

As we can see in the performance measurements, for higher message size keeping

Zcopy threshold value around 1MB to 8 MB gives better performance in terms of CPU

utilization of local and remote machines. While CPU utilization of machines has reduced,

throughput of the communication has also reduced little bit for Zcopy. While for smaller

message sizes, disabling the Zcopy by setting Zcopy threshold to 0, gives higher

performance in terms of throughput as well as CPU utilization.

So as we present, Zcopy operation affects mainly CPU utilization of the system

while throughput and latency has minimal effects.

Page
44

Chapter 7

PERFORMANCE MEASUREMENT

In this chapter we present all performance comparisons for throughput and

latency over IPoIB and SDP over IB. All the results are taken by keeping Zcopy

threshold value equal to 64KB and with SDP Bonding enable.

7.1 THROUGHPUT& LATENCYOVER IPoIB

Message Size Throughput Latency

8KB 1206 Mbps 4.1 us

64KB 897 Mbps 6.3 us

4MB 2223 Mbps 4 us

1 GB 2622 Mbps 2.7 us

7.2 THROUGHPUT & LATENCY FOR SDP OVER IB

Message Size Throughput Latency

8KB 9104 Mbps 1.2 us

64KB 10131 Mbps 1.02 us

4MB 7112 Mbps 0.8 us

1GB 9673 Mbps 0.8 us

Page
45

Chapter 8

CONCLUDING REMARKS &FUTURE WORK

8.1 CONCLUSION

As CPU speed increases CPU copying becomes expensive unless zero copy

techniques are being used. SDP with Zcopy path does a great job of increasing the CPU

effectiveness for application processing. SDP allows existing applications to

transparently utilize Infiniband high performance capabilities without any code changes.

Using Zcopy for whole communication won’t give the optimal performance

enhancement. In this dissertation, we presented the choice of Zcopy threshold value to

ensure the highest possible performance enhancement. Zcopy gives higher performance

for larger messages while for short messages Bcopy should be used in order to gain

higher performance. Another parameter called MTU size also plays important role in

ensuring optimal performance. In this dissertation, we presented that increase in size of

MTU slightly from the default one, increases the performance significantly.

Another major aspect of any system design is Availability. System uses redundant

copies of resources to tackle the failure issues. In this dissertation, we Proposed

architectures for application aware as well as application transparent failover mechanisms

to ensure the failover in case of link failure.

Application aware failover mechanism needs the reconnection from the

application side and so application code needs to be changed. This Bonding mechanism is

a simple technique to tackle the link failure issue. In this dissertation, we presented

performance results with and without bonding which shows that Bonding doesn’t

imposes much overhead in the normal operation of the system.

Page
46

Another approach we proposed in this dissertation is application transparent

failover. We proposed Socket Duplication technique to tackle link failure completely

transparent to the application. This technique doesn’t need any change in the application

at all and can be implemented in the kernel stack completely. As this technique is

implemented in the kernel it imposes the performance degradation in the system’s

communication.

Selection should be done by considering the need of the system. If the system is

getting developed from scratch, application aware failover (SDP Bonding) can be used

and in other hand if whole system is available, application transparent technique can be

used to gain the performance enhancement.

 In this dissertation, we tested both mechanisms for the GPFS; a SONAS system

component but in actual this solutions can be deployed to any system as they operates on

socket interface.

8.2 FUTURE WORK

Testing of all the proposed techniques for failover has not been carried out

thoroughly at present due to lack of available time. In future, we would like to test all

techniques for many more storage and cluster configuration.

Apart from the SDP over Infiniband, there are another similar configurations have

been proposed such as Direct Socket over Myrinet. In future, we look forward for

studying such configurations and try to solve their limitations. By doing so, it would be

very useful in designing any cluster systemfor optimal performance and high availability.

Page
47

BIBLIOGRAPHY

[1] Mellanox Technologies. http://www.mellanox.com.

[2] SDP Specification. http://www.rdmaconsortium.org/home.

[3] Universal, 64/32-bit, 66/33MHz, Myrinet/PCI interfaces.

http://www.myri.com/news/99903/index.html.

[4] Infiniband Trade Association. http://www.infinibandta.org.

[5] S. Bailey and T. Talpey. Remote Direct Data Placement (RDDP), April 2005.

[6] P. Balaji. High Performance Communication Support for Sockets-based

ApplicationsOver High-speed Networks. PhD thesis, The Ohio State

University,Columbus, OH, 2006.

[7] P. Balaji, S. Bhagvat, H.-W. Jin, and D. K. Panda. Asynchronous Zero-

copyCommunication for Synchronous Sockets in the Sockets Direct Protocol (SDP) over

Infiniband. In the Workshop on Communication Architecture for Clusters held in

conjunction with the IEEE International Parallel and Distributed Processing Symposium

(IPDPS), Rhodes Island, Greece, Apr 2006.

[8] P. Balaji, H. W. Jin, K. Vaidyanathan, and D. K. Panda. Supporting

iWARPCompatibility and Features for Regular Network Adapters. In Workshop on

Remote Direct Memory Access (RDMA): Applications Implementations, and

Technologies (RAIT); held in conjunction with IEEE International Conference on Cluster

Computing, 2005.

[9] P. Balaji, S. Narravula, K. Vaidyanathan, H. W. Jin, and Dhabaleswar K.Panda. On

the Provision of Prioritization and Soft QoS in Dynamically Reconfigurable Shared Data-

Centers over InfiniBand. In the Proceedings of the IEEEInternational Symposium on

Performance Analysis of Systems and Software(ISPASS), 2005.

[10] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D.

K.Panda. Sockets Direct Protocol over InfiniBand in Clusters: Is it Beneficial?In IEEE

International Symposium on Performance Analysis of Systems andSoftware (ISPASS),

2004.

[11] P. Balaji, H. V. Shah, and D. K. Panda. Sockets vs RDMA Interface over10-Gigabit

Networks: An In-depth analysis of the Memory Traffic Bottleneck.In Workshop on

Remote Direct Memory Access (RDMA): Applications, Implementations, and

Technologies (RAIT); held in conjunction with IEEE International Conference on Cluster

Computing, San Diego, CA, Sep 20 2004.

http://www.mellanox.com/
http://www.rdmaconsortium.org/home
http://www.myri.com/news/99903/index.html
http://www.infinibandta.org/

Page
48

[12] P. Balaji, P. Shivam, P. Wyckoff, and D.K. Panda. High Performance UserLevel

Sockets over Gigabit Ethernet. In Proceedings of the IEEE InternationalConference on

Cluster Computing, September 2002.

[13] P. Balaji, K. Vaidyanathan, S. Narravula, H.-W. Jin K. Savitha, and D.K.Panda.

Exploiting Remote Memory Operations to Design Efficient Reconfiguration for Shared

Data-Centers over InfiniBand. In Proceedings of Workshop onRemote Direct Memory

Access (RDMA): Applications, Implementations, andTechnologies (RAIT 2004); held in

conjunction with the IEEE InternationalConference on Cluster Computing, San Diego,

CA, September 2004.

[14] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda, and J. Saltz. Impact ofHigh

Performance Sockets on Data Intensive Applications. In Proceedings of theIEEE

International Symposium on High Performance Distributed Computing(HPDC), 2003.

[15] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.Seizovic,

and W. K. Su. Myrinet: A Gigabit-per-Second Local Area

Network.http://www.myricom.com.

[16] A. Cohen, S. Rangarajan, and H. Slye. On the Performance of TCP Splicingfor

URL-aware Redirection. In the Proceedings of the USENIX Symposium onInternet

Technologies and Systems, October 1999.

[17] Remote Direct Memory Access Consortium. http://www.rdmaconsortium.org.

[18] Myricom Corporations. The GM Message Passing System.

[19] P. Culley, U. Elzur, R. Recio, and S. Bailey. Marker PDU Aligned Framing forTCP

Specification, November 2002.

[20] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda.

PerformanceCharacterization of a 10-Gigabit Ethernet TOE. In Proceedings of Hot

Interconnects Symposium, 2005.

[21] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin, F. Coccetti,C.

Jin, D. Wei, and S. Low. Optimizing 10-Gigabit Ethernet for Networksof Workstations,

Clusters and Grids: A Case Study. In Proceedings of theSupercomputing (SC), 2003.

[22] Internet Engineering Task Force. http://www.ietf.org.

[23] H. Frazier and H. Johnson. Gigabit Ethernet: From 100 to 1000Mbps.

http://www.myricom.com/
http://www.rdmaconsortium.org/
http://www.ietf.org/

Page
49

[24] D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin. Transparently Achieving

Superior Socket Performance using Zero Copy Socket Direct Protocol over20 Gb/s

InfiniBand Links. In Workshop on Remote Direct Memory Access(RDMA):

Applications Implementations, and Technologies (RAIT); held inconjunction with IEEE

International Conference on Cluster Computing, 2005.

[25] D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin. Zero Copy SocketsDirect

Protocol over InfiniBand - Preliminary Implementation and PerformanceAnalysis. In

IEEE Hot Interconnects: A Symposium on High PerformanceInterconnects, 2005.

[26] http://www.top500.org. Top 500 supercomputer sites.

[27] J. Hurwitz and W. Feng. Initial End-to-End Performance Evaluation of10-Gigabit

Ethernet. In IEEE Hot Interconnects: A Symposium on High-Performance Interconnects,

Palo Alto, California, 2003.

[28] J. Hurwitz and W. Feng. End-to-End Performance of 10-Gigabit Ethernet

onCommodity Systems. IEEE Micro, 2004.

[29] H. W. Jin, S. Narravula, G. Brown, K. Vaidyanathan, P. Balaji, and D. K.Panda.

Performance Evaluation of RDMA over IP: A Case Study with theAmmasso Gigabit

Ethernet NIC. In Workshop on High Performance Interconnects for Distributed

Computing (HPI-DC); In conjunction with HPDC-14,2005.

[30] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-level Sockets Layer overVirtual

Interface Architecture. In Proceedings of the International Conferenceon Cluster

Computing, 2001.

[31] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D.

K.Panda. Supporting Strong Coherency for Active Caches in Multi-Tier Data-Centers

over InfiniBand. In SAN-1 Workshop, held in conjunction with Int'lSymposium on High

Performance Computer Architecture (HPCA-8), 2004.

[32] Network-Based Computing Laboratory. MVAPICH: MPI over

InfiniBand.http://nowlab.cse.ohio-state.edu/projects/mpi-iba/index.html.

[33] S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Work-stations:

Illinois Fast Messages (FM). In Proceedings of Supercomputing (SC),1995.

[34] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner. InternetSmall

Computer Systems Interface (iSCSI), RFC 3720, April 2004.

[35] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High Performance Socketsand

RPC over Virtual Interface (VI) Architecture. In International Workshopon

Communication and Architectural Support for Network-Based Parallel Computing

(CANPC), 1999.

http://nowlab.cse.ohio-state.edu/projects/mpi-iba/index.html

Page
50

[36] P. Shivam, P. Wyckoff, and D. K. Panda. Can User-Level protocols take advantage

of Multi-CPU NICs? In Proceedings of the IEEE International Paralleland Distributed

Processing Symposium (IPDPS), 2002.

[37] P. Shivam, P. Wyckoff, and D.K. Panda. EMP: Zero-copy OS-bypass NIC-driven

Gigabit Ethernet Message Passing. In Proceedings of Supercomputing(SC), 2001.

[38] W. R. Stevens. TCP/IP Illustrated, Volume I: The Protocols. Addison Wesley,2nd

edition, 2000.

[39] J. Stone and C. Partridge. When the CRC and TCP Checksum Disagree. InACM

SIGCOMM, 2000.

[40] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive Queue basedScalable

MPI Design for InfiniBand Clusters. In International Parallel andDistributed Processing

Symposium (IPDPS), 2006.

[41] S. Sur, M. J. Koop, and Dhabaleswar K. Panda. High-Performance and ScalableMPI

over InfiniBand With Reduced Memory Usage: An In-Depth PerformanceAnalysis. In

Proceedings of SuperComputing, 2006.

[42] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume II: The

Implementation. Addison Wesley, 2nd edition, 2000.

[43] SithaBhagvat. Designing and Enhancing the Sockets Direct Protocol (SDP) over

iWARP and InfiniBand. MS Thesis, The State Ohio University, 2006

[44] www.netperf.org

[45] Abhinav Vishnu,Amith R. Mamidala,SundeepNarravula andDhabaleswar K. Panda.

Automatic Path Migration over InfiniBand: Early Experiences in IEEE 2007.

[46] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,R. L. Carter, D. Dagum, R.

A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,V.

Venkatakrishnan, and S. K. Weeratunga. The NASParallel Benchmarks. Number 3, pages

63–73, Fall1991.

[47] Yiu-Fai Sit, Cho-Li Wang, Francis Lau. Socket Cloning for Cluster-BasedWeb

Servers at Proceedings of the IEEE International Conference on Cluster Computing

(CLUSTER’02).

[48] Bob Woodruff, Sean Hefty, Roland Dreier, Hal Rosenstock. Introduction to the

InfiniBandCore Software.

http://www.netperf.org/

Page
51

[49] Ariel Cohen. A Performance Analysis of the Sockets Direct Protocol (SDP) with

Asynchronous I/O over 4x Infiniband in IEEE 2004.

[50] www.rdma-linuxlist.com

