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ABSTRACT 

 

 
Conventional network protocols such as TCP/IP have traditionally been 

implemented in kernel space and have not been able to scale with increasing network 

speeds. Accordingly, they form the primary communication bottleneck in current high-

speed networks like 10G Ethernet and Infiniband. In order to allow existing TCP/IP 

applications thathad been written on top of the sockets interface to take advantage of 

high-speednetworks, researchers have come up with a number of solutions including high 

performance sockets. The primary idea of high-performance sockets is to build apseudo 

sockets-like implementation which utilizes the advanced features of high-speednetworks 

while maintaining the TCP/IP sockets interface. This allows existing TCP/IPsockets 

based applications to transparently achieve a high performance. The Sockets Direct 

Protocol (SDP) is an industry standard for such high performance sockets over the 

InniBand (IB) and Ethernet networks. 

 

In this dissertation, we focus on designing and enhancing SDP over IB for storage 

systems like Network Attached Storage (NAS) and Storage Area Network (SAN). 

Specifically we divide the research performed into two parts: (i) Enhancing performance 

of network communication by using SDP over IB. (ii) Ensuring high availability of the 

system by designing failover mechanisms for SDP over IB. In this dissertation, we 

propose application aware failover as well as application transparent failover for SDP 

over IB.  
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Chapter 1 

INTRODUCTION 

 

Cluster systems are becoming increasingly popular in various application domains 

mainly due to their high performance-to-cost ratio. Cluster systems are now presentat all 

levels of performance, due to the increasing capability of commodity processors, memory 

and the network communication stack.  

 

Since the nodes in a clustersystem rely on the network communication stack in 

order to coordinate and communicate with each other, it forms a critical component in the 

efficiency and scalabilityof the system. Therefore, it is of particular interest. The network 

communicationstack itself comprises of two components:  

(i) The network hardware 

(ii) Thecommunication protocol and the associated software stack. 

 

With respect to the  first component, during the last few years, the research 

andindustry communities have been proposing and implementing high-speed networking 

hardware such as InfiniBand (IB) [4], 10-Gigabit Ethernet (10GigE) [20, 27, 28, 21]and 

Myrinet [15], in order to provide efficient support for such cluster systemsamongst 

others. For the second component (communication protocol stack), however, there has 

not been as much success. 

 

Earlier generation communication protocols such as TCP/IP [38, 42] relied 

uponthe kernel for processing the messages. This caused multiple copies and 

kernelcontext switches in the critical message passing path. Thus, the 

communicationperformance was low. Researchers have been looking at alternatives to 

increase communication performance delivered by clusters in form of low-latency and 

high-bandwidth ULPs such as FM [33] and GM [18] for Myrinet [15] &EMP [37, 36] for 

Gigabit Ethernet [23]. 
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These developments are reducing the gap between the performance capabilitiesof 

the physical network and that obtained by the end users. While this approachis good for 

developing new applications, it might not be so beneficial for existingapplications. A 

number of applications have been developed on kernel-based protocols such as TCP/IP or 

UDP/IP using the sockets interface. To support suchapplications on high performance 

user-level protocols without any changes to theapplication itself, researchers have come 

up with different techniques including high-performance sockets implementations [12, 

30, 35, 14]. High-performance sockets arepseudo sockets-like implementations to meet 

two primary goals:  

(i) To directly andtransparently allow existing sockets applications to be 

deployed on to clusters connected with modern networks such as IB 

and iWARP and  

(ii) Allow such deploymentwhile retaining most of the raw performance 

provided by the networks. 

 

In an attempt to standardize these efforts towards high-performance 

socketsimplementations, the Remote Direct Memory Access (RDMA) Consortium 

brought out a new standard known as theSockets Direct Protocol (SDP) [2]. Figure 1.1 

shows the traditional IP over InfiniBand (IPoIB)stackand the SDP stack over IB. 

 

Figure 1-1: Traditional IPoIB (TCP/IP) vs. SDP over IB 
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Modern storage systems such as Scale Out Network Attached Storage (SONAS) 

are designed around hybrid architectures like Network Attached Storage (NAS) and 

Storage Area Network (SAN). In such systems, storage devices are connected through 

high performance network components and form a clustered system area network. Clients 

are connected to the interface nodes which host file systems to operate on multiple 

storage nodes connected through a high performance network. Interface nodes read and 

write data to/from storage nodes through socket applications. As data is move around the 

system area network, the network overhead is the main bottleneck in the performance of 

any storage systems. 

 

Performance is not only the issue while designing any scalable storage system. 

System should be highly available too. Failure may occur in many ways such as network 

link failure, system hardware failure, disk failure etc. These failures can be handled by 

having redundancy in almost each and every component of the system such as redundant 

disks, redundant network links, redundant nodes etc. The mechanism involved in 

switching over to the redundant component at the time of failure is called Failover. 

Failover should be carried out transparently. 

 

As a result of tradeoff between performance and availability, most of the modern 

storage systems use conventional TCP/IP based network communication for data transfer 

between interface nodes and storage nodes. IPoIB is the Upper Layer Protocol (ULP) 

which is being used for communication over IB to ensure the network link failover while 

achieving comparatively higher performance than Ethernet.  
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1.1 SDP: State-of-the-Art and Limitations 

 

As indicated earlier, the SDP standard attempts to transparently provide high 

performance for existing sockets-based applications over high-speed networking stacks 

such as IB and iWARP. While, there are several implementations of the SDP standard 

[10, 25, 24, 7], these lack in several aspects. Some of these aspects correspond to designs 

proposed in the SDP standard which might not be optimal in all scenarios, while the 

others are specific to existing SDP implementations where the current designs have scope 

for improvement in multiple dimensions. 

 

In this dissertation, we work on replacing IPoIB with SDP over Infiniband for the 

storage systems like SONAS. We propose prototypes to overcome following two 

limitations:  

(i) Failover 

(ii) Performance Tuning 

 

1.1.1 Failover 

Network Link failure of any node may lead to failure of the node itself. To avoid 

such failure, link redundancy is used. At the time of link failure, switching over to the 

redundant link should be performed without affecting the normal operation of the system. 

IPoIB uses the Linux Bonding driver to tackle this problem but there is no such 

mechanism exists for the SDP. This failover can be performed in two ways as follows: 

(i) Application aware failover 

(ii) Application transparent failover 
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1.1.2 Performance Tuning 

Proper performance tuning is required to ensure highest performance 

enhancements of SDP. Replacing IPoIB with SDP enables the use of Zero Copy (ZCopy) 

and Buffered Copy (BCopy). Setting of proper thresh-hold value is needed in order to 

specify that when to use BCopy and when to use ZCopy in order to gain highest possible 

performance. Further to this, variable configuration components like message size, 

Naggle’s switch etc. are also need to be set properly in order to achieve highest possible 

performance. 

1.2 SONAS 

 

Scale Out Network Attached Storage (SONAS) is a highly scalable Network 

Attached Storage system for  large scale  as deployments requiring very large storage 

capacities - from 100’s Terabytes to multiple Peta-bytes, independent capacity and 

performance scaling, support for very large file systems and parallel access to data. 

Figure 1-2 shows the architecture of the SONAS from the project’s perspective. 

 

On application side, there are various file systems such as CIFS, NFS, RSYNC 

etc. through which clients access the storage of the system.  Clustered Trivial Database 

Daemon (CTDB) is a cluster implementation of the TDB database used by Samba and 

other projects to store temporary data.CTDB provides HA features such as node 

monitoring, node failover, and IP takeover, like controlling “public” IP addresses – 

distribute public addresses across nodes, movement of addresses  to “healthy” nodes in 

case a node having an address transitions from healthy to unhealthy. 
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Figure 1-2: SONAS Architecture 

 

The General Parallel File System (GPFS) is a high-performance shared-disk 

clustered file system developed by IBM. It is used by many of the supercomputers that 

populate the Top 500 List of the most powerful supercomputers on the planet. In 

SONAS, GPFS is an embedded component managed by the SONAS Management stack 

for Setup, Configuration and Monitoring. There are also some other management utilities 

such as management node interface. 

 

In SONAS, multiple interface nodes hosting GPFS are connected to the storage 

nodes through the underlying Infiniband network. At present, the communication 

between interface and storage nodes over Infiniband uses the IPoIB Upper Layer 

Protocol. Primary objective of this research is to replace IPoIB with the more optimized 

SDP upper layer protocol. 
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1.3 ORGANIZATION OF DISSERTATION 

 

This dissertation begins with quick introduction of the Sockets Direct Protocol 

(SDP) and limitations with the SDP. Chapter 1 is dedicated to the quick introduction 

about this dissertation having overview of SDP, failover and performance. 

 

Chapter 2 is all about the background of this project. This chapter starts with the 

introduction of Infiniband which includes Communication mechanisms, various 

configurations and Remote Direct Memory Access (RDMA) Model. Further to 

Infiniband, this chapter also introduces the SDP and the OFED software stack. 

 

Chapter 3 covers the review of some of the research literatures from which ideas 

has been taken and used in the proposed architectures. 

 

Chapter 4 presents the experimental setup used in design and implementation of 

the proposed solutions. 

 

Chapter 5 discusses proposed solutions in detail. It start with the detailed 

description of the Failover and problems in implementing it. Later in the chapter both the 

proposed failover solutions are discussed. 

 

Chapter 6 is dedicated to the Performance Tuning to gain the optimal performance 

enhancement from SDP over Infiniband. 

 

Chapter 7 presents all the results taken to prove the performance enhancement in 

terms of throughput and latency. 

 

Chapter 8concludes the dissertation and also presents ideas about future planned 

works. 
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At the end, Bibliography shows all references which is used throughout this 

dissertation.  
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Chapter 2 

BACKGROUND AND MOTIVATION 

 

In this chapter, we start with an overview of Infiniband and subset of its features 

and various configurations in Section 2.1. The SDP is described in Section 2.2. Next, in 

Section 2.3, we provide a brief overview on Open Fabrics Enterprise Distribution 

(OFED) stack. 

2.1  OVERVIEW OF INFINIBAND 

 

The InfiniBand Architecture (IB) is an industry standard that defines a System 

Area Network (SAN) to design clusters offering low latency and high bandwidth. The 

compute nodes are connected to the IB fabric by means of Host Channel Adapters 

(HCAs). IB defines a semantic interface called as Verbs for the consumer applications to 

communicate with the HCAs. VAPI is one such interface developed by Mellanox 

Technologies [1]. 

 

IB mainly aims at reducing the system processing overhead by decreasing the 

number of copies associated with a message transfer and removing the kernel from the 

critical message passing path. This is achieved by providing the consumer applications 

direct and protected access to the HCA. The specification for the verbs interface includes 

a queue-based interface, known as a Queue Pair (QP), to issue requests to the HCA. 

Figure 2-1 illustrates the InfiniBand Architecture model. 
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 Figure 2-2: Infiniband Architecture (Courtesy Infiniband Specifications) 

 

2.1.1 IB Communication 

Each Queue Pair is a communication endpoint. A Queue Pair (QP) consists of the 

send queue and the receive queue. Two QPs on different nodes can be connected to each 

other to form a logical bi-directional communication channel. An application can have 

multiple QPs. Communication requests are initiated by posting Work Queue Entries 

(WQEs) to these queues. Each WQE is associated with one or more pre-registered buffers 

from which data is either transferred (for a send WQE) or received (receive WQE). The 

application can either choose the request to be a Signaled (SG) request or an Un-Signaled 

request (USG). When the HCA completes the processing of a signaled request, it places 

an entry called as the Completion Queue Entry (CQE) in the Completion Queue (CQ). 

The consumer application can poll on the CQ associated with the work request to check 

for completion. There is also the feature of triggering event handlers whenever a 

completion occurs. For un-signaled requests, no kind of completion event is returned to 

the user. However, depending on the implementation, the driver cleans up the Work 

Queue Request from the appropriate Queue Pair on completion. 
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2.1.2  IB Configurations 

 Various IB configurations have been evolved for different applications and 

requirements such as IPoIB, SDP over IB, RDMA enabled IB application, Message 

Passing Interface (MPI), iSCSI enabled RDMA etc. In this dissertation, we focus mainly 

on three of them. 

 

1. IPoIB: 

IPoIB is specified by the IETF (RFC 4931/4932). IP over Infiniband provides 

TCP/UDP interface for Infiniband. It uses IB as a transport for IP. There is no RDMA 

available in IPoIB. IPoIB is also used for address resolution for other ULPs such as SDP, 

iSER and RDS. IPoIB has the highest level of application compatibility which means that 

there is no change at application side required to use IPoIB. Figure 2-2 shows the IPoIB 

protocol stack. 

 

 

Figure 2-2: IPoIB Stack 
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2. SDP Over IB: 

SDP also provides a compatible socket interface although some minor 

configurations are needed in the host machine in order to use SDP. SDP provides RDMA 

mechanism through ZCopy.  

 

3. RDMA Enabled Application: 

As SDP module is implemented in the kernel space, SDP over IB is not the 

optimal solution for performing RDMA. To overcome this problem, Infiniband also 

provides necessary APIs (verbs) to implement RDMA enabled applications which give 

optimal performance due to no kernel intervention at all. 

 

Figure 2-3 shows SDP over IB and RDMA enabled application stacks. 

 

 

Figure 2-3: SDP & RDMA Stacks 
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2.1.3 RDMA Communication Model 

IB supports two types of communication semantics: channel semantics (send- 

receive communication model) and memory semantics (RDMA communication model).  

 

In channel semantics, every send request has a corresponding receive request at 

the remote end. Thus, there is a one-to-one correspondence between every send and 

receive operation. Failure to post a receive descriptor on the remote node results in the 

message being dropped and retransmitted for a user specified amount of time. In the 

memory semantics, Remote Direct Memory Access (RDMA) operations are used. These 

operations are transparent at the remote end since they do not require the remote end to 

involve in the communication. Therefore, an RDMA operation has to specify both the 

memory address for the local buffer as well as that for the remote buffer. There are two 

kinds of RDMA operations: RDMA Write and RDMA Read. In an RDMA write 

operation, the initiator directly writes data into the remote node's user buffer. Similarly, 

in an RDMA Read operation, the initiator directly reads data from the remote node's user 

buffer. Most entries in the WQE are common for both the Send-Receive model as well as 

the RDMA model, except an additional remote buffer virtual address which has to be 

specified for RDMA operations. 

2.2 SOCKETS DIRECT PROTOCOL (SDP) 

 

The SDP standard focuses specifically on the wire protocol, finite state machine 

and packet semantics. Operating system issues, etc., can be implementation specific. It is 

to be noted that SDP supports only SOCK STREAM or streaming sockets semantics and 

not SOCK DGRAM (datagram) or other socket semantics. 

 

SDP enables existing socket based applications to transparently utilize the IB 

capabilities and achieve superior performance. As SDP enables direct data transfer 

between two applications running on two different nodes without any intervention of 

kernel from either side, performance of the data transfer gets improved significantly. 
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SDP's Upper Layer Protocol (ULP) interface is a byte-stream protocol that is 

layered on top of IB’s message-oriented transfer model. The mapping of the byte stream 

protocol to the underlying message-oriented semantics was designed to enable ULP data 

to be transferred by one of two methods:  

(i) Through intermediate private buffers (using a buffer copy)  

(ii) Directly between ULP buffers (zero copy). 

 

A mix of send/receive and RDMA mechanisms are used to transfer ULP data. The 

SDP specification also suggests two additional control messages known as Buffer 

Availability Notification messages, viz., source-avail and sink-avail messages for 

performing zero-copy data transfer. 

 

Figure 2-4 shows the data transfer modes over SDP. 

 

 

Figure 3-4: SDP Data Transfer Modes (BCopy&ZCopy) 
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Sink-avail Message: If the data sink has already posted a receive buffer andthe 

data source has not sent the data message yet, the data sink does the followingsteps: 

(i) Registers the receive user buffer (for large message reads)  

(ii) Sendsa sink-avail message containing the receive buffer handle to the 

source. 

 The datasource on a data transmit call, uses this receive buffer handle to directly 

RDMAwrite the data into the receive buffer. 

 

Source-avail Message: If data source has already posted a send bufferand the 

available SDP window is not large enough to contain buffer, it does thefollowing 2 steps:  

(i) Registers the transmit user buffer (for large message sends) 

(ii) Sends a source-avail message containing the transmit buffer handle to the 

16data sink.  

The data sink on a data receive call, uses this transmit buffer handle to directly 

RDMA read the data into the receive buffer.Figure 2-5 shows the performance 

improvements by replacing IPoIB with SDP for sockets applications. 

 

 

Figure 2-5: Performance Comparision for SDP vs. IPoIB 
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2.3 OFED STACK 

 

OFED is high performance server and storage connectivity software for field-

proven RDMA and Transport Offload hardware solutions. The OFED from OpenFabrics 

alliance has been hardened through collaborative development and testing by all major 

InfniBand vendors.  OFED is supported by Mellanox and major InfniBand vendors to 

enable OEMs to meet the needs of HPC applications. 

 

OFED includes kernel-level drivers, channel-oriented RDMA and send/receive 

operations, kernel bypasses of the operating system, both kernel and user-level 

application programming interface (API) and services for parallel message passing 

(MPI), sockets data exchange (e.g., RDS, SDP), NAS and SAN storage (e.g. iSER, NFS-

RDMA, SRP) and file system/database systems. 

 

The network and fabric technologies that provide RDMA performance with 

OFED include: legacy 10 Gigabit Ethernet, iWARP for Ethernet, RDMA over Converged 

Ethernet (RoCE), and 10/20/40 Gigabit InfiniBand. 

 

OFED is available for many Linux and Windows distributions, including: Red 

Hat Enterprise Linux (RHEL), Novell SUSE Linux Enterprise Distribution (SLES), 

Oracle Enterprise Linux (OEL) and Microsoft Windows Server operating systems. Some 

of these distributions ship OFED in-box. This makes OFED easily accessible and usable 

by OEMs and end users facilitating quick adoption in multiple market verticals in the 

high performance computing, enterprise data centre and storage sectors. The entire set of 

OpenFabrics Software – from which modules and patches are selected to form OFED 

releases resides on the OpenFabrics servers and is available for download.Figure 2-6 

shows the complete OFED stack. 
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Figure 2-6: OFED Stack (Courtesy Mellanox) 
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Chapter 3 

REVIEW OF LITERATURES 

  

In this chapter, we presented related research literatures which have been 

published or presented earlier on similar issues. 

3.1 SDP 

 

BZcopy and Zcopy are the results of earlier research work from various 

researchers. Earlier researchers have already proved the performance enhancement over 

SDP compare to IPoIB [10].  Researchers have proved that by using SDP instead of 

IPoIB improves the Bandwidth and Latency while ZCopy [25] actually lowers the CPU 

utilization of the host machine. Figure 3-1 shows the SDP stack components for ZCopy. 

 

Figure 3-1: SDP Stack Components 

3.2 FAILOVER 

The primary focus of this dissertation is on solving the problem of failover. We 

have discussed two approaches; SDP Bonding and Socket Duplication. SDP bonding is 

proposed around the idea of extending the Linux bonding mechanism for IPoIB to work 

with SDP. 
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There is another approach proposed by researchers called Automatic Path 

Migration (APM) [45]. 

 

Researchers have proposed Automatic Path Migration (APM), which allows user 

transparent detection and recovery from network fault(s), without application restart. In 

this paper, they designed a set of modules; which work together for providing network 

fault tolerance for user level applications leveraging the APM feature. Performance 

evaluation at the MPI Layer shows that APMincurs negligible overhead in the absence of 

faults in the system. In the presence of network faults, APM incurs negligible overhead 

for reasonably long running applications. 

 

In this paper, they addressed challenges regarding the failover. They designed a 

set of modules; alternate path specification module, path loading request module and path 

migration module, which work together for providing network fault tolerance for user 

level applications. They evaluated these modules with simple micro-benchmarks at the 

Verbs Layer, the user access layer for InfiniBand, and study the impact of different state 

transitions associated with APM. They have also integrated these modules at the MPI 

(Message Passing Interface) layer to provide network fault tolerance for MPI 

applications. Performance evaluation at the MPI Layer shows that APM incurs negligible 

overhead in the absence of faults in the system. In the presence of network faults, APM 

incurs negligible overhead for reasonably long running applications. For Class B FT and 

LU NAS Parallel Benchmarks [46] with 8 processes, the degradation is around 5-7% in 

the presence of network faults. 

 

This mechanism was proposed for the Message Passing Interface. As MPI uses IB 

verbs at application layer to communicate to the OFED stack components, this 

mechanism can’t be used with the socket based applications directly. Due to the various 

design issues with the use of APM for socket based applications this approach was never 

taken as the solution of the failover problem. 
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Another approach we proposed in this dissertation is Application Transparent 

Failover through Socket Duplication. Socket Duplication (Socket Cloning) is primarily 

designed and used for the closeted web servers [47]. 

 

To solve the caching problems in dispatcher based systems researchers have 

proposed a novel idea called socket cloning. In this paper, they presented a newnetwork 

support mechanism, called Socket Cloning (SC), inwhich an opened socket can be 

migrated efficiently betweencluster nodes. With SC, the processing of HTTP requestscan 

be moved to the node that has a cached copy of therequested document, thus bypassing 

any object transfer between peer servers. A prototype has been implemented andtests 

shown that SC incurs less overhead than all the mentioned approaches. In trace-driven 

benchmark tests, their system outperforms these approaches by more than 30%with a 

cluster of twelve web server nodes. 

  

Figure 4-2:System Architecture of Socket Cloning (SC) 

To design an application transparent failover for SDP over Infiniband, we have 

taken this idea of socket cloning and used it for the single system. Instead of cloning 

sockets across two different machines, in this dissertation we propose a duplication 

(cloning) of the socket from broken link interface to the redundant link interface. As in 

this case the cloning is across the same system the IP address of the socket would remain 

same while just the port address might need to change. 
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Chapter 4 

EXPERIMENTAL SETUP 

 

In this chapter, we provide information about the setup we used to perform 

required experiments. In section 4.1, we provide information about network system 

configuration needed to setup experiments.  

4.1 NETWORK SYSTEM CONFIGURATION 

 

For the experimental test-bed, we used cluster of four nodes connected through 10 

Gbps DDR Infiniband link. Each node in the system has installed two Infiniband network 

interface cards from Mallenox. We worked on Red-Hat Enterprise (Linux) operating 

system RHEL 6 and OFED 5.2.1 to perform all required experiments. All systems are the 

System X from IBM. 

 

Additional host side configuration is needed to enable SDP to use existing socket 

interface of all targeted socket based applications. There is two methods for conversing 

from IPoIB to SDP. 

(i) Automatic Conversion 

(ii) Explicit/Source code Conversion 

Automatic Conversion: 

 Load the ib_sdp module of OFED 

 Set the environmental variable LIBSDP_CONFIG_FILE = /etc/libsdp.conf 

 Set the environmental variable LD_PRELOAD=libsdp.so to preload the SDP 

socket library in to memory so that it can be used instead of original socket library 

comes with Linux kernel. 
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By using libsdp.conf, one may control the use of SDP. This method configures the 

driver to automatically translate TCP to SDP based on Source IP, Destination IP, Port 

Number or Application Name. 

 

Explicit/Source code Conversion: 

One has to define #define AF_INET_SDP 27 a separate protocol type in the 

socket application so that this constant can be used in the socket system call as follows: 

 socket(AF_INET_SDP, SOCK_STREAM,0); 

 

As this method requires change in the application for conversion from IPoIB to 

SDP, we haven’t used this configuration. Throughout the dissertation, all the displayed 

results are taken by configuring system through automatic conversion.  
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Chapter 5 

FAILOVER MECHANISMS FOR SDP OVER IB 

5.1 FAILOVER 

Process of switching over the redundant link in case of active network link failure 

is called as Failover. Figure 5-1 shows the configuration of the system needed for any 

failover mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: System Configuration for Failover 

 

As shown in figure, Interface A and Interface B are two NICs. Initially Interface 

A is in active state so all the communication is passes through this link. Suppose that at 

some point of time Interface A goes down due to some technical issue, at this moment 

communication transfer should be switch over to the passive link B without affecting the 

normal operation of the system. This process of switching over is called as Failover. 

Failover mechanism must have two primary functionalities as follows: 

(i) Link Detection 

(ii) Switch over to redundant link 

Application 

Upper Layer Protocol 

Connection Manager 

Failover Mechanism 

Interface A Interface B 

Active Link Passive Link 

Link Failure Failover 
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5.1.1 Link Detection 

 Two schemes have been proposed by researchers and any one of them can be used 

with Linux bonding driver to monitor the link status. These two methods are: 

(i) ARP Monitor 

(ii) MII Monitor 

 

ARP Monitor: 

The ARP monitor operates as its name suggests: it sends ARP queries to one or 

more designated peer systems on the network, and uses the response as an indication that 

the link is operating. This gives some assurance that traffic is actually flowing to and 

from one or more peers on the local network. 

 

The ARP monitor relies on the device driver itself to verify that traffic is flowing. 

In particular, the driver must keep up to date the last receive time, dev->last_rx, and 

transmit start time, dev->trans_start. If these are not updated by the driver, then the ARP 

monitor will immediately fail any slaves using that driver, and those slaves will stay 

down. If networking monitoring (tcpdump, etc) shows the ARP requests and replies on 

the network, then it may be that your device driver is not updating last_rx and trans_start. 

 

MII Monitor: 

 The MII monitor monitors only the carrier state of the local network 

interface. It accomplishes this in one of three ways: by depending upon the device driver 

to maintain its carrier state, by querying the device's MII registers, or by making an 

ethtool query to the device. 
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If the use_carrier module parameter is 1 (the default value), then the MII monitor 

will rely on the driver for carrier state information (via the netif_carrier subsystem). As 

explained in the use_carrier parameter information, above, if the MII monitor fails to 

detect carrier loss on the device (e.g., when the cable is physically disconnected), it may 

be that the driver does not support netif_carrier.  

 

If use_carrier is 0, then the MII monitor will first query the device's (via ioctl) 

MII registers and check the link state. If that request fails (not just that it returns carrier 

down), then the MII monitor will make an ethtool ETHOOL_GLINK request to attempt 

to obtain the same information. If both methods fail (i.e., the driver either does not 

support or had some error in processing both the MII register and ethtool requests), then 

the MII monitor will assume the link is up.  

 

5.1.2 Switch Over To Redundant Link 

As mentioned earlier, Failover mechanism can be implemented using two 

methodologies: 

(i) Application Aware Failover 

(ii) Application Transparent Failover 

 

Both the methods have its pros and cons in terms of configuration requirements, 

performance etc. 

5.2 APPLICATION AWARE FAILOVER 

In this dissertation we propose prototypeof SDP Bonding as an application aware 

failover mechanism. 
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5.2.1 SDP Bonding 

IPoIB uses the Linux Bonding driver to perform failover at the time of network 

link failure. As SDP also uses the IPoIB for address resolution, bonding driver can also 

be used with SDP. As data communication paths for IPoIB and SDP are different, 

operations needed to perform at the time of failover would be different. Figure 4-2 shows 

the proposed prototype for the SDP Bonding. 

 

 

 

Figure 5-2: SDP Bonding 

 

Upon detecting the broken link by the Bonding layer, Connection Manager 

abstract layer sends an RDMA_CM_ADDR_CHANGE event to the upper layer 

protocol’s connection manager. 
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Flow Chart: 

 

 

Figure 5-3: SDP Bonding: Flow Chart 

 

At this time, SDP module might have been performing read or write operations 

through BCopy or ZCopy. As these copy operation uses the IB Access layer to access the 

HCA, these operations can’t be stopped or notified about the link failure. As link has got 

failed, the state of the SDP module performing read/write operation would be undefined. 

Due to this reason, it is not possible to reconnect the broken connection from the kernel 

itself. So instead of reconnecting from kernel level SDP module, we propose to notify 

upper layer socket library by sending CM_ADDR_CHANGE event. Upon receiving this 

event, application just need to call connect again with the saved parameters. As we 

discussed, application code needs to be changed in order to have failover through SDP 

Bonding. 
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As we are not performing any extra operations at the SDP kernel layer modules, 

SDP Bonding mechanism doesn’t imposes any kind of overhead during the normal 

operations of the system. 

 

We have taken performance results by running Netperf[44] benchmarks on 

proposed solution. Proposed solution will be available to open source community once 

the thorough testing of the implementation is carried out. Throughput test results are as 

follows:  

 

Message Size Without Bonding With Bonding 

8 KB 10107 Mbps 6678 Mbps 

64 KB 10133 Mbps 6703 Mbps 

1 MB 9926 Mbps 9923 Mbps 

10 MB 10101 Mbps 10053 Mbps 

100 MB 10097 Mbps 10068 Mbps 

Table 1: Throughput Test: SDP Bonding vs. Without Bonding 
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5.3 APPLICATION TRANSPARENT FAILOVER 

In this section, we propose an application transparent failover mechanism using 

Socket Duplication technique. This technique is influenced from the socket cloning 

solution for clustered web servers’ implementation [47]. 

 

As we described earlier, bonding driver notifies the Connection Manager about 

the link failure through sending an event RDMA_CM_ADDR_CHANGE but as both the 

modules (Connection Manager and SDP send/recv) are in different context, we can’t 

perform reconnection in the kernel layer itself. 

 

When a socket exists in one address space and is then accessed in a different 

address space (on the same peer), the socket needs to be duplicated into the second 

address space. Note that if two threads are accessing the socket in the same address 

space, socket duplication is not required. 

 

Performing socket duplication in user-mode imposes certain restrictionsbecause 

socket state cannot be shared between the address spaces. In fact, in the context of 

InfiniBand networks available today, the socket can only exist in one address space at a 

time (since HCAs are not required to support sharing queue pairs between multiple 

address spaces). 

 

Because of these restrictions, SDP allows only one address space at a time to 

execute operations that either transfer data or change state for an underlying shared 

socket. Address spaces dynamically swap control of the underlying socket, as needed, to 

execute requested operations. The SDP socket duplication procedure serializes operations 

that different address spaces request on a shared socket. The procedure waits for all In-

Process operations to complete before swapping control of an underlying socket to 

another address space. Logically, the procedure takes control of the underlying socket 

away from the controlling address space as soon as a non-controlling address space 

requests an operation on that socket.  
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After control is taken away, the procedure treats the original controlling address 

space like a non-controlling address space if the original controlling address space 

requests operations on that socket. In this way a socket may transition back and forth 

between controlling address spaces based on ULP behavior. 

 

We enabled socket duplication by bringing the connection to a consistent state, 

closing the InfiniBand connection, handing the state to the new controlling address space, 

and then creating a new reliable connection in the new address space. Note that after the 

connection is suspended and then restarted on a new InfiniBand connection, the 

connection by definition does not have any outstanding SinkAvail or SrcAvail 

advertisements. Any incomplete SinkAvail or SrcAvail advertisements were effectively 

canceled during the transition to a new connection. 

 

In managed failover, the SDP connection may in fact be reestablished using 

different paths, ports, HCAs or hosts. The original connection in a managed failover 

scenario is analogous to the controlling address space in socket duplication. The new 

failed over connection is analogous to the non-controlling address space. Managed 

failover changes where one end of the connection is situated. Failing over both ends 

requires two managed failover operations. 

 

The decision to attempt a managed failover must occur before the socket 

duplication may take place. For this purpose we rely on the link detection technique used 

by the Linux bonding driver for IPoIB. Bonding driver sends a notification to the 

connection manager at the time of link failure. This notification in turn starts the socket 

duplication procedure. 

 

5.3.1 Implementation 

In implementation details, the new failed over connection is analogous to the non-

Controlling Address Space.  
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This implementation in the controlling address space waits for all In-Process data 

transfer operations to complete, and then it sends a SuspComm Message to the Remote 

Peer to request a suspension of the session. This SDP Message contains the destination 

TCP port number received from the non-Controlling Address Space. The Remote Peer 

connects to this TCP port number when resuming communication. The Local Peer 

doesn’t send additional SDP Messages or perform any RDMA operations from the 

Controlling Address Space, after sending the SuspComm Message. 

 

Upon receiving the SuspComm Message, the Remote Peer waits for all In-Process 

data transfer operations to complete, then sends a SuspCommAck Message indicating 

that the session is suspended. After sending the SuspCommAck Message, this peer 

doesn’t send any more SDP Messages or perform any RDMA operations until a new 

connection is set up. 

 

The Remote Peer waits for completion of the Send of the SuspCommAck 

Message, then close the LLP connection. The Remote Peer then initiate the new 

connection to the destination TCP port number received through the SuspComm 

Message, utilizing the same IP address specified in the prior connection setup sequence. 

Posting of receive Private Buffers and the contents of the header follows the same rules 

as connection setup. 

 

Once the SuspCommAck Message is received, the Controlling Address Space on 

the Local Peer sends a signal to the non-Controlling Address Space through a new 

message introduced by us: AckRecv. This message may contain following data: 

 Any buffered receive ULP data. 

 The Remote Peer’s TCP port number (to ensure the parameter does not 

change when the socket is re-connected).   

 The sizes of the local receive Private Buffers.  

 The current values for IRD and ORD. 
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The non-Controlling Address Space accepts the connection request from the 

Remote Peer and initializes its state variables for the new connection. The Hello Message 

initializes SDP connection state. 

 

The (previously) non-Controlling Address Space then sends a HelloAck Message 

to the Remote Peer. The receive Private Buffer size parameter in the HelloAck Message 

MUST be the values received from the Controlling Address Space. The IRD and ORD 

values MAY be the values received from the Controlling Address Space. It also makes 

buffered received ULP data from the Controlling Address Space available to the ULP. 

 

When connection setup is complete, the Local Peer resumes normal data transfer. 

We haven’t implemented this technique completely due to lack of time, so we don’t have 

any test results for this methods.
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Chapter 6 

PERFORMANCE TUNING FOR SDP OVER IB 

 

In this section we propose ideal settings for Zcopy threshold value in terms of 

message size to gain the optimal performance. We carried out various experiments for 

different message sizes with combination of Zcopy threshold values to make a decision 

making statement for the optimal configuration.  

 

As initiating Zcopy involves the cost of making the user space buffer to be 

available to the Host Channel Adapter until the data transfer is over. This preparation 

takes place by defining Fast Memory Regions (FMR) which can be break in to two 

different procedures 

(i) Mapping 

(ii) Locking 

 

In order to transfer the control of any user space buffer directly to the device, first 

the user space virtual address must be converted into the physical address and then make 

sure that this memory region remains in the physical memory until the data transfer is 

over. 

 

So, this process of preparing user space buffer takes some time. This time is the 

main decision factor in deciding the Zcopy threshold value. 

 

All the experiments are done on system having 16 cores of 2.67 GHz CPUs and 

32 GB of RAM. The experiment results are taken for the Netperf benchmarks. These are 

as follows:  
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6.1 SDP_ZCOPY_THRESH: 0 

 

 ZCopy Disabled 

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1024 

Recv     Send      Send                                   Utilization       Service Demand 

Socket   Socket   Message  Elapsed                    Send     Recv     Send    Recv 

Size       SizeSize         Time    Throughput  local     remote   local   remote 

bytes     bytesbytessecs.    10^6bits/s       % S      % S      us/KB   us/KB 

87380  65536    1024       10.10      2000.35      12.48     7.08      8.178   4.641   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m8192 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed                   Send     RecvSend    Recv 

Size   SizeSize    Time   Throughput  local    remote  local   remote 

bytes  bytesbytessecs.   10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536   8192    10.10    9176.81   12.50    6.26     1.785   0.894   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 65536 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536  65536     10.01    10133.04   8.18     6.63     1.058   0.858   

 

[[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536   1048576   10.01      9926.18   6.75     6.86     0.891   0.906   
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[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 10485760 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

 87380  65536   10485760  10.02      10101.18   6.51     6.33     0.845   0.822   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 104857600 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

 87380  65536   104857600  10.05      10097.56   6.46     6.29     0.839   0.816 

 

 Result Summary for Zcopy Threshold = 0: 

 

Message Size Throughput Local CPU Utilization Remote CPU Utilization 

1 KB 2 Gbps 12.48 7.08 

8 KB 9.1 Gbps 12.50 6.26 

64 KB 10.1 Gbps 8.18 6.63 

1 MB 9.9 Gbps 6.75 6.86 

10 MB 10.1 Gbps 6.51 6.33 

100 MB 10.1 Gbps 6.46 6.33 
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6.2 SDP_ZCOPY_THRESH: 64 KB 

 

[root]# modprobeib_sdpsdp_zcopy_thresh=65536 

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1024 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536   1024    10.10      1883.85   12.52    6.24     8.710   4.344   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 8192 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size  SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536   8192    10.10      9104.75   12.49    6.26     1.798   0.902   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 65536 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     RecvSend    Recv 

Size  SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536  65536    10.01      10131.13   8.39     7.03     1.085   0.910   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 131072 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

 87380  65536 131072    10.00      4901.58   2.77     7.02     0.742   1.878   
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[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 1048576    10.10      6411.63   1.98     1.32     0.406   0.269   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 10485760 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

 87380  65536 10485760    10.00      6725.33   1.65     1.16     0.321   0.227   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 104857600 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 104857600  10.02      6677.41   1.54     1.44     0.303   0.282   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576000 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size  SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536   1048576000  10.40      9676.80   5.90     5.69     0.799   0.771   

  



 

  
Page 
38 

 

  

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 2048576000 

Recv   Send    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 2048576000    10.24      9602.05   5.86     5.58     0.800   0.762 

 

 Result Summary for Zcopy Threshold = 64KB: 

 

Message Size Throughput Local CPU Utilization Remote CPU Utilization 

1 KB 1.9Gbps 12.52 6.24 

8 KB 9.1 Gbps 12.49 6.26 

64 KB 10.1 Gbps 8.39 7.02 

128 KB 4.9 Gbps 2.77 7.02 

1 MB 6.4Gbps 1.98 1.32 

10 MB 6.7Gbps 1.65 1.16 

100 MB 10.1 Gbps 1.52 1.44 

1 GB 9.7 Gbps 5.09 5.69 

2 GB 9.6 Gbps 5.86 5.58 
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6.3 SDP_ZCOPY_THRESH:  1MB 

[root]# modprobeib_sdpsdp_zcopy_thresh=1048576 

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 8192 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536   8192    10.10      7907.50   13.71    6.47     2.272   1.073   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 65536 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536  65536    10.01      10129.16   8.25     6.36     1.067   0.824   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 1048576    10.01      9927.18   6.72     6.29     0.888   0.831   
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[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 10485760 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

 87380  65536 10485760    10.01      6519.21   1.65     1.75     0.332   0.353   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 104857600 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 104857600    10.02      6690.25   1.60     1.21     0.313   0.238   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 1048576000 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 1048576000    10.50      9586.22   5.90     5.63     0.806   0.770   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 2048576000 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 2048576000    10.30      9545.88   5.88     6.02     0.807   0.826  
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 Result Summary for Zcopy Threshold = 1MB: 

Message Size Throughput Local CPU Utilization Remote CPU Utilization 

8 KB 7.9 Gbps 13.71 6.47 

64 KB 10.1 Gbps 8.25 6.36 

1 MB 9.9Gbps 6.72 6.29 

10 MB 6.5Gbps 1.65 1.16 

100 MB 6.7Gbps 1.6 1.21 

1 GB 9.6Gbps 5.9 5.63 

2 GB 9.6 Gbps 5.88 6.02 

 

6.4 SDP_ZCOPY_THRESH:  10 MB 

[root]# modprobeib_sdpsdp_zcopy_thresh=10485760 

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 65536 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536  65536    10.01      9939.40   8.31     6.31     1.096   0.832   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 1048576 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 1048576    10.01      9928.36   6.72     6.75     0.888   0.892   
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[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 10485760 

Recv   Send    Send                          Utilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSize     Time     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 10485760    10.10      6585.33   1.67     1.37     0.332   0.274   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 104857600 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 104857600    10.02      6598.41   1.50     1.29     0.298   0.257   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C ---m 1048576000 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

 87380  65536 1048576000    10.80      9320.61   5.88     5.98     0.827   0.841   

 

[root]# LD_PRELOAD=libsdp.so netperf -H 172.31.134.1 -c -C -- -m 2048576000 

RecvSend    SendUtilization       Service Demand 

Socket Socket  Message  Elapsed              Send     Recv     Send    Recv 

Size   SizeSizeTime     Throughput  local    remote   local   remote 

bytes  bytesbytessecs.    10^6bits/s  % S      % S      us/KB   us/KB 

87380  65536 2048576000    10.68   9210.10   5.84     6.36     0.831   0.905 
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 Result Summary for Zcopy Threshold = 10 MB 

 

Message Size Throughput Local CPU Utilization Remote CPU Utilization 

64 KB 9.9 Gbps 8.31 6. 

1 MB 9.9Gbps 6.75 6.31 

10 MB 6.5Gbps 1.67 1.37 

100 MB 6.6Gbps 1.5 1.29 

1GB 9.3Gbps 5.88 5.98 

2 GB 9.2Gbps 5.84 6.36 

 

As we can see in the performance measurements, for higher message size keeping 

Zcopy threshold value around 1MB to 8 MB gives better performance in terms of CPU 

utilization of local and remote machines. While CPU utilization of machines has reduced, 

throughput of the communication has also reduced little bit for Zcopy. While for smaller 

message sizes, disabling the Zcopy by setting Zcopy threshold to 0, gives higher 

performance in terms of throughput as well as CPU utilization. 

 

So as we present, Zcopy operation affects mainly CPU utilization of the system 

while throughput and latency has minimal effects.  
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Chapter 7 

PERFORMANCE MEASUREMENT 

 

In this chapter we present all performance comparisons for throughput and 

latency over IPoIB and SDP over IB. All the results are taken by keeping Zcopy 

threshold value equal to 64KB and with SDP Bonding enable. 

7.1 THROUGHPUT& LATENCYOVER IPoIB 

 

Message Size Throughput Latency 

8KB 1206 Mbps 4.1 us 

64KB 897 Mbps 6.3 us 

4MB 2223 Mbps 4 us 

1 GB 2622 Mbps 2.7 us 

7.2 THROUGHPUT & LATENCY FOR SDP OVER IB 

 

Message Size Throughput Latency 

8KB 9104 Mbps 1.2 us 

64KB 10131 Mbps 1.02 us 

4MB 7112 Mbps 0.8 us 

1GB 9673 Mbps 0.8 us 
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Chapter 8 

CONCLUDING REMARKS &FUTURE WORK 

8.1 CONCLUSION 

As CPU speed increases CPU copying becomes expensive unless zero copy 

techniques are being used. SDP with Zcopy path does a great job of increasing the CPU 

effectiveness for application processing. SDP allows existing applications to 

transparently utilize Infiniband high performance capabilities without any code changes. 

 

Using Zcopy for whole communication won’t give the optimal performance 

enhancement. In this dissertation, we presented the choice of Zcopy threshold value to 

ensure the highest possible performance enhancement. Zcopy gives higher performance 

for larger messages while for short messages Bcopy should be used in order to gain 

higher performance. Another parameter called MTU size also plays important role in 

ensuring optimal performance. In this dissertation, we presented that increase in size of 

MTU slightly from the default one, increases the performance significantly. 

 

Another major aspect of any system design is Availability. System uses redundant 

copies of resources to tackle the failure issues. In this dissertation, we Proposed 

architectures for application aware as well as application transparent failover mechanisms 

to ensure the failover in case of link failure. 

 

Application aware failover mechanism needs the reconnection from the 

application side and so application code needs to be changed. This Bonding mechanism is 

a simple technique to tackle the link failure issue. In this dissertation, we presented 

performance results with and without bonding which shows that Bonding doesn’t 

imposes much overhead in the normal operation of the system. 
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Another approach we proposed in this dissertation is application transparent 

failover. We proposed Socket Duplication technique to tackle link failure completely 

transparent to the application. This technique doesn’t need any change in the application 

at all and can be implemented in the kernel stack completely. As this technique is 

implemented in the kernel it imposes the performance degradation in the system’s 

communication. 

 

Selection should be done by considering the need of the system. If the system is 

getting developed from scratch, application aware failover (SDP Bonding) can be used 

and in other hand if whole system is available, application transparent technique can be 

used to gain the performance enhancement. 

 

 In this dissertation, we tested both mechanisms for the GPFS; a SONAS system 

component but in actual this solutions can be deployed to any system as they operates on 

socket interface.  

 

8.2 FUTURE WORK 

Testing of all the proposed techniques for failover has not been carried out 

thoroughly at present due to lack of available time. In future, we would like to test all 

techniques for many more storage and cluster configuration. 

 

Apart from the SDP over Infiniband, there are another similar configurations have 

been proposed such as Direct Socket over Myrinet. In future, we look forward for 

studying such configurations and try to solve their limitations. By doing so, it would be 

very useful in designing any cluster systemfor optimal performance and high availability.  
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