DELHI TECHNOLOGICAL UNIVERSITY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DELHI-110042

CERTIFICATE

This is to Certify that the major project work entitled, "TWO STEP 4 BIT CURRENT MODE FLASH ADC USING CC-II BASED CURRENT COMPARATOR" submitted by PRIYANK KUMAR SAXENA (09/VLSI/2k10) in partial fulfilment of the requirements for the award of degree of Master of Technology in VLSI Design and Embedded System at Delhi Technological University is an original work carried out under my supervision and has not been submitted for the award of any other degree to the best of my knowledge and belief.

Prof. Asok Bhattacharyya

Department of Electronics & Communication Engineering Delhi Technological University Delhi-110042

ACKNOWLEDGEMENT

I am indebted to my project Guide "Prof. Asok Bhattacharyya", Department

of Electronics and Communication Engineering, for his eminence guidance

and very valued constructive criticism.

I am deeply grateful to "Dr. Rajiv Kapoor", Head of Department

(Electronics and Communication Engineering), Delhi Technological

University for his encouragement and support.

I would like to express my deep sense of respect and gratitude towards Mrs.

"Veepsa Bhatia" (research scholar) Department of Electronics and

Communication Engineering, for her invaluable help rendered to me in the

completion of the thesis.

I wish to express my heartfelt thanks to all my seniors and friends for their

goodwill and support that helped me a lot in successful completion of this

major project.

PRIYANK KUMAR SAXENA

Roll No.: 09/VLSI/2K10

M.Tech. (VLSI Design &

Embedded System)

ii

ABSTRACT

The evolution of submicron technologies has resulted in the requirement to use low power supply voltages which makes it difficult to design voltage mode circuits with high linearity and wide range. Current mode devices have many advantages over voltage one such as low power, small area and potentially high speed. Analog to Digital Converters (ADCs) are the most commonly used mixed-signal modules which transfer analog blocks output data to digital gates.

The main building blocks of the proposed flash ADC are Current Comparator, Encoder and DAC. A high-speed current comparator based on current conveyor-II is used to design the proposed two step 4 bit current mode flash ADC. Also CMOS implementation of 3x2 priority encoder is used which converts the thermometric code to the binary output code. The conversion of four bits is performed in two stages. In the first stage, most significant bits, B_3 and B_2 , are generated from the analog input current. The other two bits, B_1 and B_0 , are produced in the second stage depending on the output values of the first stage. The DAC is used in between the two stages of proposed flash ADC and is used to give the output in form of current. This current is used to generate total reference current for second stage.

PSpice is used for simulation of this project with 0.18µm CMOS technology and supply voltage taken is 1.8V. The static characteristics of the ADC such as offset error, gain error, integral nonlinearity (INL) and differential nonlinearity (DNL) are calculated from the simulation result. The delay calculated for the proposed flash ADC is less than 0.85ns. This approach has resulted in major reduction of the response time resulting the wide band application of the circuit. The current mode flash ADC is faster than the other types of ADCs. Therefore proposed work may find wide applications.

TABLE OF CONTENTS

Certificate		i
Acknowledg	gement	ii
Abstract		iii
Table of con	itents	iv
List of figure	es	vi
List of tables	S	viii
Chapter 1	Introduction	1
1.1	Motivation	1
1.2	Literature review	2
1.3	Objective and scope of the Project	3
1.4	Organization of Thesis	3
Chapter 2	Analog to Digital Converters	5
2.1	Introduction	5
2.2	Characteristics of ADC	6
2.3	Types of ADC	9
	2.3.1 Integrating ADC	9
	2.3.2 Successive Approximation ADC	12
	2.3.3 Flash ADC	13
	2.3.4 Pipelined ADC	15
	2.3.5 Algorithm ADC	16
Chapter 3	Current Conveyor	18
3.1	Introduction	18
3.2	First Generation Current Conveyor	18
3.3	Second Generation Current Conveyor	20
3.4	Comparison of Current Conveyor with OP AMP	21
Chapter 4	Current Mirrors	23
4.1	Introduction	23

4.2	Basic current mirror	23
4.3	Current mirror structure	24
Chapter 5	Current Comparator	27
5.1	Introduction	27
5.2	CC-II based current comparator structure	30
Chapter 6	Encoder	32
6.1	Digital encoder	32
6.2	Priority encoder	33
6.3	CMOS implementation of 3x2 priority encoder	34
Chapter 7	Proposed Current Mode Flash ADC	35
7.1	Operation	35
7.2	Approach of ADCM	36
Chapter 8	Simulation Result	39
8.1	Simulation for simple current mirror	39
8.2	Simulation for CC-II based current comparator	40
8.3	Simulation for 1 bit DAC	41
8.4	Simulation for 3x2 priority encoder	42
8.5	Simulation for proposed 4 bit flash ADC	43
8.6	Comparison with earlier work	46
Chapter 9	Conclusion	47
References		48
Appendix		50

LIST OF FIGURES

Fig. 2.1	General block diagram of an ADC	5
Fig. 2.2(a)	Transfer curve for an ideal 3 bit ADC	6
Fig. 2.2(b)	Quantization error centred about zero	6
Fig. 2.3	Block diagram of single-slope ADC	9
Fig. 2.4(a)	Single slope ADC timing diagram for comparator input and output	10
Fig. 2.4(b)	Resulting counted pulses of single slop ADC	10
Fig. 2.5	Block diagram of dual-slope ADC	11
Fig. 2.6	Integrating periods and counter output for two separate samples of a	
	3-bit dual slope ADC	11
Fig. 2.7	Block diagram of successive approximation ADC	12
Fig. 2.8	Flash ADC architecture	14
Fig. 2.9	Block diagram of Pipeline ADC	15
Fig. 2.10	Block diagram of the Algorithmic ADC	16
Fig. 3.1	Small signal diagram for CC-I	18
Fig. 3.2	representation of CC-I	18
Fig. 3.3	MOS implementation of CC-I	19
Fig. 3.4	Representation of CC-II	20
Fig. 3.5	small signal diagram of CC-II	21
Fig. 4.1	Block representation of a Current Mirror	23
Fig. 4.2	Simple current mirror structure	24
Fig. 5.1	Simple current comparator	27
Fig. 5.2	Traff's current comparator structure	28
Fig. 5.3	Tang's current comparator	29
Fig. 5.4	Bank's current comparator	29
Fig. 5.5	Min and Kim's current comparator	30
Fig. 5.6	Current comparator concept	30
Fig. 5.7	CC-II is used as input stage of current comparator	31

Fig. 5.8	Schematic of CC-II based current comparator	1
Fig. 6.1	4-to-2 bit binary encoder	2
Fig. 6.2	8-to-3 Bit Priority Encoder	3
Fig. 6.3	CMOS implementation of 3x2 priority encoder	4
Fig. 7.1	Block diagram of the proposed two step 4 bit current mode flash ADC3	5
Fig. 7.2	1-bit DAC	7
Fig. 8.1	Response of simple NMOS current mirror	9
Fig. 8.2	Input and output characteristics of CC-II based current comparator4	0
Fig. 8.3	Schematic of 1 bit DAC4	1
Fig. 8.4	Response of 1 Bit DAC4	-1
Fig. 8.5	Input of 3x2 priority encoder4	2
Fig. 8.6	Output characteristics of 3x2 priority encoder4	13
Fig. 8.7	Resultant 4 bits of proposed flash ADC for 24µA input current	14
Fig. 8.8	I/O characteristics of proposed 4 bit flash ADC4	5
Fig. 8.9	Propagation delay for varying input current4	6

LIST OF TABLES

Table I	Extraction of B ₁ and B ₀ bits	.34
Table II	Values of all currents in the proposed Flash ADC block diagram	.36
Table III	Extraction of B3 and B2 from the output of current comparators	.37
Table IV	Transistor sizing of Fig.5.8	.40
Table V	Current values when input is between $0\mu A$ and $30\mu A$.44
Table VI	Propagation delay	.45