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Chapter-1 

Introduction 

     Semiconductor devices used in various applications have some harmful effects, which are 

to be eliminated by power quality (PQ) engineers. Elimination of these unwanted PQ events 

uses classification methods. Different digital signal processing methods have been used to 

process the PQ signals and then various features are extracted to fed the classifiers to classify 

the PQ events.  

      Various transforms has been used to obtain the harmonic information of the signal. 

Among these are Fourier transform, short time Fourier transform (STFT) and wavelet 

transform. Here we used wavelet transform to obtain the analytic signal for instantaneous 

feature extraction of PQ disturbances and constructing the feature vector which are fed to K-

NN classifier [1]. We also compared the classification accuracy by constructing the feature 

vector using analytic signal by Hilbert transform. 

 Hilbert transform gives phase shift of 90 degree of given signal which is combined to 

original signal to give analytic signal. Let s(t) is original signal and g(t) is Hilbert transform 

of s(t) then analytic signal defined as z(t)i = s(t) + jg(t). Using this analytic function we 

estimate instantaneous amplitude, phase and frequency. They are 

|    |   √|    |  |    |   

                                                               (
    

    
) 

                                                       f(t)i = 
 

  

      

  
 

Using amplitude and phase we have estimated energy, standard deviation of amplitude and 

standard deviation of phase after passing the classifiers and compared the result which are 

obtained using wavelet transform.  

   Here we are generating 135 signals for each disturbance like sag, swell, harmonic and 

transient. Out of these, 100i cases are taken for testing LDA+K-NN classifier and 35iicases 

are taken for training. 
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1.1 Use of Power Quality 

Power quality is an important issue for the producers, distributors and consumers. The 

common problems, like harmonics, short term voltage variations (sags, swells and 

interruptions), [2] long term voltage variations (under voltages, over voltages and 

interruptions), transients, unbalance, frequency variations and others, can cause several 

problems to the consumers which require high levels of power quality for their industrial 

processes or home use. 

Power quality studies are the necessary so that measures can be taken to solve the problems. 

Several international standards related to power quality and electrical system monitoring, like 

IEEE 519, IEC 61000 and EN 50160, help to classify and offer possible solutions to the 

problems described above, but specialized equipment is necessary in order to find which 

problems affect a given facility [3].  

Since many of the commercially available equipment‟s are either too expensive, or have too 

many limitations, it was decided to develop a new low-cost power quality monitor that could 

be an alternative to the equipment in the market. 

 

1.2 Literature Survey 

There is a need to analyze power-quality (PQ) signals and to extract their different features to 

take preventative actions in power systems. [2] Classify PQ signals using Hilbert and Clarke 

Transforms as new feature extraction techniques. Both techniques accommodate Nearest 

Neighbor Technique for automatic recognition of PQ events. The Hilbert transform is 

introduced as single-phase monitoring technique, while with the Clarke Transformation all 

the three-phases can be monitored simultaneously. [4] The performance of each technique is 

compared with the most recent techniques (S-Transform and Wavelet Transform) using an 

extensive number of simulated PQ events that are divided into four classes.  

 [5] Used generalized S-transform with a variable window as a function of PQ signal 

frequency to generate contours and feature vectors for pattern classifications. The new 

classifier provides a complete characterization of both steady state and transient PQ signals 
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using fuzzy logic-based decision systems the fuzzy PQ classifier uses 14 rules based on 

trapezoidal membership functions for most of the PQ disturbance events with an accuracy 

rate close to 98% average. 

         [6] Presents a brief description of the S-transform and Wavelet transform together with 

two novel PQ monitoring approaches It was concluded that the K-NN based techniques can 

offer an effective automatic classification of PQ events. To identify the best number of 

neighbors in the classification of the events, new feature extraction techniques were 

examined. The K-NN-DHT method was developed for the single phase analysis of the power 

systems, and the K-NN-CT was offered for three phase systems. The performance of these 

two techniques was also compared with the Wavelet and ST techniques, using K-Nearest 

Neighbor pattern recognition technique. To ensure a higher accuracy in each classifier, the 

number of neighbours was varied. This provided a pattern based on increasing or decreasing 

profile of the average error. The results were given between 1 to 50 neighbours. The above 50 

neighbors, the profile of the average error followed the same pattern. 

[7] Presents S-Transform based probabilistic neural network (PNN) classifier for recognition 

of power quality (PQ) disturbances. This method requires less number of features as 

compared to wavelet based approach for the identification of PQ events. The features 

extracted through the S-Transform are trained by a PNN for automatic classification of the 

PQ events. This method can reduce the features of the disturbance signal to a large extent 

without losing its original property, less memory space and learning PNN time are required 

for classification. Four types of disturbances are considered for the classification problem. 

The simulation results show that the combination of S-Transform and PNN can effectively 

detect and classify different PQ events. The classification performance of PNN is compared 

with a feed forward multilayer (FFML) neural network (NN) and learning vector quantization 

(LVQ) NN. The classification performance of PNN is better than both FFML and LVQ. 

These features correctly classify the PQ disturbances, even under noisy conditions, as these 

features are based on magnitude, frequency, and phase of the disturbance signal. This has 

advantage over wavelet analysis in which some of the features are noise prone (like the 

energy at dilation levels 1 and 2) and a de-noising scheme is to be implemented to extract 

those features accurately.  PNN correctly classifies the PQ class with high accuracy. The 

PNN is compared with both LVQ and FFML and it is found that PNN gives the best result.  
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1.3 Thesis Organization 

    Organization of thesis is as follows. Chapter-2 presents brief introduction of wavelet 

transform and its properties.  Chapter-3 presents theory of analytic signal using Hilbert 

transform and wavelet transform. Chapter-4 presents Empirical mode decomposition and 

intrinsic mode function in brief. Chapter-5 presents classification, types of classifier, linear 

discriminant analysis and K-NN classifier.Chapter-6 presents implementation and results. 

Chapter-7 presents conclusion and future work.  
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Chapter-2 

Wavelet Transforms 

 

2.1 Continuous-Time Wavelets  

Consider a real or complex-value continuous time function  (t) with the following properties 

1. The function integrates to zero: 

                                                     ∫         
 

  
                                                             (2.1.1) 

2. It is square integrable or, equivalently, has a finite energy 

∫ |    |      
 

  

 

Where the function  (t) is called mother wavelet or it is also called wavelet if it is satisfies 

above two conditions. The first property states that the function is oscillatory or that has wavy 

appearance. Thus, it is a “small wave” or a wavelet. The two conditions are easily satisfied 

and there is an infinitive of functions that qualifies as mother wavelet [8]. 

2.2 Definition of the Continuous Wavelet Transform 

Assume x(t) be any square integrable function. The Continuous wavelet transform or 

continuous-time wavelet transform of x(t) with respect to a wavelet  (t) is defined as  

                                               W(a,b) = ∫     
 

√| |
   

  
 
   

 
                                         (2.2.1) 

Where a is called scale parameter and b is called translation parameter and both are real, the 

function    denotes complex conjugation of function  . Here both function x(t) and    

belongs to set of square integrable functions. It is also called set of energy signals. 

We can also write  

                                         W(a,b) =  ∫         
  

  
                                                        (2.2.2) 

         Where           

                                                   
 

√| |
  

   

 
                                                               (2.2.3) 

If we take value of a=1 and, b=0 then  

                                                      (t)                                                                       (2.2.4) 

The normalised factor  
 

√| |
  ensures that energy stays the same for all a and b that is 

                             ∫ |       |
    ∫ |     |   

 

  

 

  
                                                      (2.2.5) 
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for all a,b. For any given value of a, the function           is shift of         by amount of b, 

along the time axis. Thus the variable b represents time shift or the translation. From 

                                                  
 

√| |
  

 

 
                                                                   (2.2.6) 

        is a time-scaled and amplitude-scale version of     . 

2.3 Properties of Continuous Wavelet Transform  

Wavelet transform of a signal contains two variables. They are dilation and translation 

parameter. On the basis of these parameter continuous wavelet transform has following 

properties   

               1 Scaling 

               2 Shifting     

               3 Time Reversal     

1 Scaling 

Since a determines the amount of time scaling or dilation, it is referred to as the scale or 

dilation variable.  

                                                         
 

√| |
  

 

 
                                                            (2.3.1) 

In the above equation if a > 1 then there is starching of function along the time axis, where as 

if 0 < a < 1, there is contraction of function. 

2 Shifting 

The wavelet transform is defined as  

                                                    W(a,b) = ∫     
 

√| |
   

  
 
   

 
                                   (2.3.2) 

For different value of b we can get different wavelet coefficients that is shifting of wavelet 

3 Time Reversal  

The negative value of dilation parameter gives time reversal in combination with dilation. 

The get time reversal for negative value of b also. 

 

2.4 The CWT as a Correlation 

The CWT has application in area such as pattern detection and classification, the set of square 

integrable function form a linear vector space under addition and vector multiplication. This 

vector space comes with the well-defined inner product. If two signals x(t) and y(t)  have 

finite energy , then their inner product are defined as  

                                 〈         〉  ∫            
 

  
                                                       (2.4.1) 
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The total energy of y(t) is given as ∫ |    |   
 

  
 which is 〈          〉. The square root of 

energy is called the norm of y(t) and is denoted by ||y(t)|| 

   CWT can be represented as inner products of signal x(t) and translated and dilated wavelet 

        for all a and b. 

                                      W(a,b) = 〈            〉                                                              (2.4.2) 

The continuous wavelet transform has a cross-correlation representation also. The cross-

correlation of two signal x(t) and y(t) are defined as 

                                            ∫             〈           〉                             (2.4.3) 

Where   is lag or shift parameter, similarly we can write the wavelet transform as cross-

correlation 

                               W(a,b) = 〈              〉         
                                     (2.4.4) 

In other word the continuous wavelet transform is the cross correlation at lag b between x(t) 

and wavelet dilated to scale factor a. 

2.5 Inverse Continuous Wavelet Transforms      

The inverse Fourier transform of wavelet W(a,b) defined as  

                                       X(t) = 
 

 
∫ ∫

 

| | 
      

 

    

 

    
                                   (2.5.1) 

Where C is the constant from the admissibility condition and it is defined as 

                                                  C = ∫
|    | 

| |
  

 

  
                                                           (2.5.2) 

And is such that 0 < C <   

In above equation the term 
      

| | 
 provide the weighting function for constructing x(t)         

the translated and dilated of mother wavelet. 

  

There are 5 steps process to be taken to calculate wavelet coefficient 

Step 1 

         Takei a wavelet and compared it to a part at the start of the original signal 

Step 2 

        Calculate a number, C, that represent how closely the signal is correlated with the 

wavelet. The higher C, is larger the similarity. The result will depend on the shape of the 

wavelet. 

Step 3  

        Shift the wavelet to the right and repeats step 1-2 until the whole signal is covered. 



                                                                    8 

 

Step 4 

 

        Scale(stretch) the waveleiand repeats the steps 1-3 

Step 5 

        Repeat step 1-4 for all scale 

There are two types of wavelet transform.  

                             1 Continuous wavelet transform  

                             2 Discrete wavelet transform 

Here we have used only continuous wavelet transform. 

There are various wavelet families   

1. Haar wavelet 

2. Daubechies wavelet 

3. Symlet wavelet 

4. Coeflets wavelet 

5. Biorthogonal wavelet 

6. Revers biorthogomal wavelet 

7. Meyer wavelet 

8. Gaussian wavelet 

9. Morlet wavelet 

10. Complex Morlet wavelet                                                                                                                                 

 

2.6 Haar Wavelet     

Haar wavelet is basis wavelet of wavelet families. Haar wavelet is discontinuous. It is similar 

to a step function. It is defined as wavelet   and scaling function ϕ. 

 

                                                   (x)  =    

{
 
 

 
                                 

 

 

                                  
 

 

                                            
 

            }
 
 

 
 

                         (2.6.1) 
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                                                 Φ x           ,
                     
                      

-                                                (2.6.2) 

The shifting by b and scaling by a, gives 

  a,b(x)ii =  
 

 ⁄  Ψ(     )      b = 0,1,2…..        a = 0,1,……    .                             (2.6.3) 

ϕ a,b(x)i =  
 

 ⁄ ϕ               b = 0,1,2…..        a = 0,1,……    .                           (2.6.4) 

Coefficient corresponding to   a,b are average or sum coefficients   

Coefficient corresponding to ϕa,b are difference or detailed coefficients 

2.7 Morlet Wavelet 

The Morlet wavelet is also called Gabor wavelet is given by 

                                            (t)i =    
  

                                                                       (2.7.1) 

The value   =  
  and    are defined in such a way so that admissibility condition is satisfied. 

The function is called Morlet wavelet. This wavelet is used for the time frequency analysis of 

acoustic signals. 

Using wavelet transform we obtain the scalogram defined as 

                                             |  
      |  

The scalogram is a measure of the energy distribution over time shift b and scaling factor a 

of the signal. It holds that the energy Es of a signal s is 

                                            ∬  |  
      | 

 

  
                                                      (2.7.2) 

It is possible to divide this total energy into an energy density over time and over frequency. 

This is achieved by one integration over frequency or time. The energy density over time is 

defined by 

                                     E(b) = ∫  |  
      |

  

  
                                                          (2.7.3)() 

The energy density over frequency or the energy density spectrum is defined by 

                                    E(f) = ∫  |  
      | 

 

  
                                                            (2.7.4) 
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Figure.1.2.2 

 

2.8 Application of Wavelet Transforms 

There are various applications of wavelet transforms 

• Signal processing 

• Data compression 

• Smoothing and image denoising 

• Fingerprint verification 

• Biology for cell membrane recognition, to distinguish the normal from the pathological 

membranes 

• DNA analysis, protein analysis 

• Blood-pressure, heart-rate and ECG analyses 

• Finance for detecting the properties of quick variation of values 

• In Internet traffic description, for designing the services size 

• Industrial supervision of gear-wheel 

• Speech recognition 

• Computer graphics and multifractal analysis 

• Many areas of physics have seen this paradigm shift, including molecular 

Dynamics, astrophysics, optics, turbulence and quantum mechanics. Wavelets have been used 

successfully in other areas of geophysical study. Orthonormal wavelets, for instance, have 

been applied to the study of atmospheric layer turbulence. 
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Chapter-3 

Analytic Signal Using Hilbert Transform And Wavelet 

Transforms  

3.1 Hilbert Transform 

 

Hilbert transform was introduced by Gabor. It is used for time-frequency analysis in different 

applications of signal processing. It gives analytic signal. Hilbert transform of a real-valued 

signal x (t) is defined as: 

 ̃     [ ]    
 

 
∫

    

   
                                                                                               (3.1.1)                                                                                           

This  ̃    is the convolution of      with 
 

  
  over          which is represented in the 

Fourier domain as  

 ̂̃              ̂                                                                                                      (3.1.2) 

 

Where  ̂     [ ]                                                                                                       

And 

       *
     
     

+                                                                                                   

 

Given the Hilbert transform of a real-valued signal     , the complex-valued analytic signal 

is defined as 

 

            ̃                                                                                                             (3.1.3)                                                                                                       

 

3.2 The Discrete-Time Hilbert Transform  

The Hilbert transform introduces a 90-degreei phase shift to all sinusoidal components. In the 

discrete-time periodic-frequency domain, the transfer function of Hilbert transform is defined 

as, 

                                                 

 

                                                H(j )i   = {
            

                  
}                                       (3.2.1)  
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The convolution kernel for H(j ) can bei calculated through the inverse Fourier transform  

                                                  h[n]i = 
 

  
∫            

 

  
.                                               (3.2.2) 

 

                                           = {
 

  

        

 
           

                             
}                                                  (3.2.3) 

h[n]i has a infinite support from n= -      . In practice, the entire function cannot be stored 

digitally. 

 

3.3 Application of Hilbert Transforms 

      1. Propagation time estimation 

      2. Decay rate estimation 

      3. To estimate envelope 

      4. For estimation of instantaneous frequency and phase 

 

3.4 Analytic Signal Using Wavelet Transform 

In this section we present the wavelet transform method to obtain an analytic signal It was 

presented by Gao [9]. 

 

Given an analytic wavelet function ( )g t  and its Fourier transforms ( )g  satisfying

1 2( ) ( , ) ( , )g t L R dt L R dt                                                                        (3.4.1)            

   1 2( ) ( \ 0 , / ) ( \ 0 , / )g L R d L R d                                                                  (3.4.2) 

For a given signal 2( ) ( , )s t L R dt  the wavelet transform of  ( )s t  with respect to wavelet 

( )g t is defined as  

1
( , ) ( )

t b
S b a s t g dt

a a





 
  

 
                                                                                            (3.4.3) 

Where , ,t b R R the real number is set and  0, ( )a g t  is complex conjugate of ( )g t . 

Theorem 1: If ( )s t is a signal with finite energy and ( )g t is an analytic wavelet function, the

( , )S b a , the wavelet transform ( )s t , with respect to ( )g t is a complex function with respect to 

real valued variable b and the scale factor ( 0)a a  . For a fixed value of a ,the imaginary part 

of this complex function is the Hilbert transform of the real part i.e., ( , )S b a is an analytic 

function with respect to b .                                                                              
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Theorem 2: If ( )g t is an analytic wavelet function with its real part even and

0

( ( ) / )gC gR d  


 ,                           (3.4.4) 

With 0 gC   .                                                                   

For an arbitrary real 2( ) ( , )s t L R dt , 

     
0

1
, ( )

g

da
S t a s t jH s t

C a



                                                                                       (3.4.5) 

Where ( , )S t a is defined as given in equation (3.4.3) and  H s t   is the Hilbert transform of

 s t . We have  

1
( , ) ( )

1
( , ) ( ) ( )

1 1
( ) ( )

( , ) ( , )

R i

R i

R i

b t
S t a s b g db

a a

b t b t
S t a s b g jg db

a a a

b t b t
s b g db j s b g db

a a a a

S t a jS t a









 

 

 
  

 

   
    

  

    
    

   

 





 

                                                            (3.4.6) 

Where 

       ( ) Re , Im

1
( , ) ( )

1
( , ) ( )

R I

R R

I I

g t g t g t g t

b t
S t a s b g db

a a

b t
S t a s b g db

a a









 

 
  

 

  
  

 





                                                                               (3.4.7) 

From theorem 1 for an arbitrary , 0,a R a  we can get 

 

( , ) ( , ) ( , )

( , ) ( , )

1 1
( ) ( )

R I

R I

R R

S t a S t a jS t a

S t a jH S t a

b t b t
s b g db jH s b g db

a a a a

 

 

 

 

     
      

    
 

                                                     (3.4.8) 

Both side of equation (3.4.8) multiplied by1/  gC a and then by integrating it with respect to 

a, we have 
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0

2

0

1
( , )

1 1
( )

( )

g

R

g

da
S t a

C a

b t
S b g dbda

C aa

s t



 



 
  

 





                                                                                        (3.4.9) 

The Morlet wavelet is  

 
2

2 ( 6)
t

jmtg t e e m


                                                                                                     (3.4.20) 

It is easy to verify that ( )g t  satisfy the theorem 2 in numerically approximate sense [5] 

 

 

The modified Morlet Wavelet is given as 

                                                            

                                                          (3.4.21) 

 

Let 2 / (2 )C m   In equation (3.4.20) and (3.4.21) m is angular frequency,  is the 

number of cycles of the carrier wave in an envelope, and is a real number. When ( )g t is a 

wavelet, the analytic counter part of a real valued signal can be calculated without cut-off 

error and it will give more accurate results than the Hilbert Transform. The frequency 

dependence of the phase is very less as compared to the maximum entropy method. The 

wavelet given in above equations (3.4.20) and (3.4.21) are not compactly supported, but their 

amplitude decay at the rate of 
2(1/2)te so the equation (3.4.15) gives the more accurate result 

than Hilbert transform. 

 

Using the analytic signal, the instantaneous parameters are defined as  

               1 Instantaneous amplitude e(t) 

                                           e(t) = √         [    ]                                                (3.4.22) 

          2 Instantaneous phase 

   

       

2

2 2
1 12 / 2 2 / 2

2 2

1 2 / 2
2( )

( ) sin( )
m t m t

m timt

rg t e e

Cos mt e j mt e
   

 

    
   

 
 

 
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                                             (
 [    ]

    
)                                                        (3.4.23) 

          3 Instantaneous frequency  

                                   f(t) = 
 

  

 

  
[        

 [    ]

    
 ]                                   (3.4.24) 
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                                     Chapter-4 

Empirical Mode Decomposition Algorithm  

EMD filters out functions or signals that form a complete and nearly orthogonal basis for the 

original signal. Completeness depends upon on the method of the EMD [10]-[11]. i.e the way 

it is decomposed implies completeness. The decomposed functions are known as intrinsic 

mode function (IMFs). The decomposed functions are sufficient to describe the signal, even 

though they are not necessarily orthogonal. 

The functions in to which a signal is decomposed are all in the time domain and of the same 

length as the original signal. These functions allow for varying frequency in time to be 

preserved. Obtaining IMFs from real world signals is important as the natural processes often 

have multiple causes, and each of these causes may happen at specific time. This type of data 

is evident in an EMD analysis, but hidden in the Fourier domain or in wavelet coefficients. 

The EMD method required to reduce any given data in to a collection of intrinsic mode 

function (IMF) to which further analysis can be applied. 

 The principle of EMD is to extract oscillatory modes existing in time scales defined by the 

interval between local extrema. Ai local maxima and minima point is any point on the signal 

where its derivative is zero, and its second derivative non-zero. The term local is used to 

differentiate it from a global maximum and minimum point. There may be several local 

maxima and minima within an observed window, however only one global maximum and 

global minimum point may be present. Once the time scales are identified, IMFsi with zero 

mean are sifted out of the signal. 

IMF represents a simple oscillatory mode as a counterpart to the simple harmonic function, 

but it is much more general: instead of constant amplitude and frequency in a simple 

harmonic component, an IMF can have variable amplitude and frequency along the time axis. 

The procedure of extracting an IMF is called sifting. The sifting process is as follows: 

1. Identify all the local extrema in the test data. 

2. Connect all the local maxima by a cubic spline line as the upper envelope. 

3. Repeat the procedure for the local minima to produce the lower envelope. 

The upper and lower envelopes should cover all the data between them. Their mean  is m1. 

The difference between the data and m1 is the first component h1: 

                                                              X(t) –                                                             (4.a) 
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Ideally, h1 should satisfy the definition of an IMF, since the construction of h1 should have 

made it symmetric and having all maxima positive and all minima negative. After the first 

round of sifting, a crest may become local maxima. New extrema generated in this way 

shows the proper modes lost in the initial examination. In the subsequent sifting process, 

h1 can only be treated as a proto-IMF. In the next step, h1 is treated as data: 

                                                                        (4.b) 

After repeated sifting up to k times, h1 becomes an IMF, that is 

                                                                                                                            (4.c) 

Then, h1k is designated as the first IMF component of the data: 

                                                                                                                                      (4.d) 

4.1  Intrinsic Mode Function (IMF)  

An intrinsic mode function (IMF) is a function that satisfies two conditions: 

1. In the whole data set, the number of extrema and the number of zero crossings must    

either equal or differ at most by one. 

2. At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero. 

The first condition is similar to the traditional narrow band requirements for a stationary 

Gaussian process. The second condition is necessary so that the instantaneous frequency will 

not have the unwanted fluctuations induced by asymmetric wave forms. For non-stationary 

data, the „local mean‟ involves a „local time scale‟ to compute the mean, which is impossible 

to define. So, the local mean of the envelopes defined by the local maxima are used and the 

local minima is used to force the local symmetry. This is a necessary step to avoid the 

definition of a local averaging time scale. It introduces an alias in the instantaneous frequency 

for nonlinearly deformed waves, the effects of nonlinearity are much weaker in comparison 

with non-stationary. 
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4.2 Empirical Mode Decomposition (EMD) Steps:- 

The steps of EMD method [12] are as follows: 

1. Determine local maxima and minima of generated signal, s(t), 

2. Implement cubic spline interpolation between the maxima and the minima to  

    Obtain the envelopes       and    , respectively, 

3. Estimate the mean value of envelope, M(t)i = 
              

 
  

4. Substrat mean value from original signal  C1 i= s(t)i – M(t)i, 

5. C1(t)i is an intrinsic mode function(IMF)i if the number of local maxima or local 

    minima of C1(t), is equal to or differs from the number of zero crossings by one, 

    and   the average value of C1(t) as much as equal to zero. If C1(t) is not an  

    Intrinsic mode function (IMF)i , then repeat steps 1-4 on C1(t) instead of s(t), until 

  i the new C1(t)i obtained satisfies the conditions of an IMF, 

6. Compute the residue, R1(t)i = S(t)i – C1(t)i, 

7. If the residue, R1(t), is above a threshold value of error tolerance, then repeat 

i   steps 1-6 on R1(t)i, to obtain the next intrinsic mode function and a new residue. 

An appropriate stopping criterion, in step 5, avoids „over-modeling‟ in C1(t) to avoid 

significant loss of information. The first intrinsic mode function consists of the highest 

frequency components present in the original signal. The successive intrinsic mode function 

(IMFs) contains continuously lower frequency components of the signal. [13] To guarantee 

that the IMF components retain enough amplitude and frequency modulations, we have to 

determine a criterion for the sifting process to stop. This is performed by limiting the size of 

the standard deviation, SD, computed from the two consecutive sifting results as 

                                         SD = ∑ [
|                  |

 

       
    

]   
  

A typical valued of standard deviation is varied between 0.2 < SD < 0.3, N is number of 

sample. If n orthogonal intrinsic mode function is obtained in this iterative manner, the 

original signal may be reconstructed as, 

                                                             ∑           

The final residue contains general trends of the original signal. 
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Chapter-5 

 Classification  

Classification is some decision or forecast made on the basis of currently available 

information, and a classification procedure is then some formal method for repeatedly 

making such judgments in new situations. The problem concerns the construction of a 

procedure that will be applied to a continuing sequence of cases, in which each new case 

must be assigned to one of a set of pre-defined classes on the basis of observed attributes or 

features. The construction of a classification procedure from a set of data for which the true 

classes are known has been also termed pattern recognition [14]. 

 

5.1 Perspectives on Classification  

A wide variety of approaches has been taken towards this task. Three main historical strands 

of research can be identified: statistical, machine learning and neural network.   

 

5.1.1 Statistical Approaches  

Two main phases of work on classification can be identified within the statistical approaches. 

The first, “classical” phase concentrated on derivatives of Fisher‟s early work on linear 

discrimination. The second, “modern” phase exploits more flexible classes of models, many 

of which attempt to provide an estimate of the joint distribution of the features within each 

class, which in turn provide a classification rule. Statistical approaches are generally 

characterised by probability model, which provides a probability of being in each class rather 

than simply a classification.  

 

5.1.2 Machine Learning  

Machine Learning is used to encompass automatic computing procedures based on logical or 

binary operations that learn a task from a series of examples. Decision-tree based approaches 

are used in this type of learning, in which classification results from a sequence of logical 

steps. These are capable of representing the most complex problem given sufficient. Other 

techniques, such as genetic algorithms and inductive logic procedures (ILP), are also used. 

This allow us to deal with more general types of data, including cases where the number and 

type of attributes may vary, and where additional layers of learning are superimposed, with 
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hierarchical structure of attributes and classes and so on. Machine Learning aims to generate 

classifying expressions simple enough to provide insight into the decision process. 

  

5.1.3 Neural Networks  

In neural networks, the excitement of technological progress is supplemented by the 

challenge of reproducing intelligence itself. Neural networks consist of layers of 

interconnected nodes, each node producing a non-linear function of its input [15]. The input 

to a node may come from other nodes or directly from the input data. Also, some nodes are 

identified with the output of the network. The complete network therefore represents a very 

complex set of interdependencies which may incorporate any degree of nonlinearity, allowing 

very general functions to be modelled. In the simplest networks, the output from one node is 

fed into another node in such a way as to propagate “messages” through layers of 

interconnecting nodes. More complex behaviour may be modelled by networks in which the 

final output nodes are connected with earlier nodes, and then the system has the   

characteristics of a highly nonlinear system with feedback. Neural network approaches 

combine the complexity of some of the statistical techniques with the machine learning 

objective of imitating human intelligence. 

  

There are many issues of concern to the classifier. Some of them are:- 

a Accuracy: There is the reliability of the rule, usually represented by the proportion of 

correct classifications 

b Speed In some circumstances, the speed of the classifier is a major issue.  

c Comprehensibility If it is a human operator that must apply the classification procedure, 

the 

Procedure must be easily understood else mistakes will be made in applying the rule.  

Time to Learn Especially in a rapidly changing environment, it may be necessary to learn a 

classification rule quickly. 

 

5.2 Linear Discriminant Analysis  

The objective of LDA is to perform dimensionality reduction while preserving as much of the 

class discriminatory information as possible. 

There are many possible techniques for classification of data. Principal Component Analysis 

(PCA) and Linear Discriminant Analysis (LDA) are two commonly used techniques for data 
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classification and dimensionality reduction. Linear Discriminant Analysis easily handles the 

case where the within-class frequencies are unequal and their performances have been 

examined on randomly generated test data. This method maximizes the ratio of between-class 

variance to the within-class variance in any particular data set thereby guaranteeing maximal 

separability. The use of Linear Discriminant Analysis for data classification is used for 

classification problem in speech recognition. The main difference between LDA and PCA is 

that PCA does more of feature classification and LDA does data classification. In PCA, the 

shape and location of the original data sets changes when transformed to a different space 

whereas LDA doesn‟t change the location but only tries to provide more class separability 

and draw a decision region between the given classes. This method also helps to better 

understand the distribution of the the feature data. 

 

5.3 Different Approaches to LDA 

 Data sets can be transformed and test vectors can be classified in the transformed space by 

two different approaches [16]. Class-dependent transformation: This type of approach 

involves maximizing the ratio of between class variance to within class variance. The main 

objective is to maximize this ratio so that adequate class separability is obtained. The class-

specific type approach involves using two optimizing criteria for transforming the data sets 

independently. Class-independent transformation: This approach involves maximizing the 

ratio of overall variance to within class variance. This approach uses only one optimizing 

criterion to transform the data sets and hence all data points irrespective of their class identity 

are transformed using this transform. In this type of LDA, each class is considered as a 

separate class against all other classes. 

 

5.4 K-Nearest Neighbor Classifier    

The K-NN algorithm [17] is a nonparametric method. In this, the proximity of neighbouring 

Input (x) observations in the training data set and their corresponding output values (y) are 

used to predict (score) the output values of cases in the validation data set. This output 

variables can either be interval variables in which case the K-NN algorithm is used for 

prediction while if the output variables are categorical, either nominal or ordinal, the K- NN 

algorithm is used for classification purposes. Before getting into details of the K-NN 

algorithm we need to define the Euclidean distance between two input vectors Xr and Xs.           

Consider the two input variable case since it is easy to represent in two-dimensional space. 

The two vectors Xr =(Xr1, Xr2) and Xs = (Xs1, Xs2) represented in Figure   below. The 
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distance between these two vectors is computed as the length of the difference vector Xr - Xs, 

denoted by 

                   d(Xr , Xs ) = |Xr - Xs| = √                      

                      

                                                          Figure 5.4 

More generally the distance between two p-dimensional vectors u = (u1, u2,…,up) and v = 

(v1, v2,…,vp) is calculated as 

              d(u,v) = |u-v| = √                                       

   Given that the K-NN method is dependent on distance measures, it is recommended that the 

input data be standardized first before proceeding to build an optimal K-NN model. The 

minimum distance between the vectors gives the closest neighbour so it is predicted that it 

belongs to the same class with the test object. 
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Chapter-6 

Implementation and Results 

2. We generated four signals  Sag, Swell, Harmonic and Transient signal in MATLAB, having 

frequency 3.2 kHz.  Then we applied EMD to find IMFs of these signals.  We used three 

IMFs for feature extraction.  Then wavelet transform method is implemented  to obtain the 

analytic signal  Using these analytic signals, three instantaneous parameters have been 

calculated. They are energy, standard deviation of the contour, standard deviation of phase 

contour There are total nine features for an signal because three IMF are taken for one signal 

and we have extracted three features for one IMF. 

Signal which are generated in MAT lab given below  

                                                

                                                   

                                                     

                                                        

1.   Sag signal 

         t1=0.05; t2=0.1; 

         vi=(1-A*(u(t-t1)-u(t-t2))).*sin(2*pi*50*t); 

 

 
Figure.6.1 

 

2.   Swell signal 
      

      t1=0.05; t2=0.1; 

     xi=(1+A*(u(t-t1)i-u(t-t2)i))i.*sin(2*pi*50*t)i; 
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Figure 6.2 

2. Harmonic signal     
    fs=3.2*10^3; 

         t=0:(1/fs):0.25; 

         a = 0.05; 

         b = 0.15; 

        r2 = (b-a).*rand(1000,1) + a; 

        r3 = (b-a).*rand(1000,1) + a; 

        r5 = (b-a).*rand(1000,1) + a;   

        r7 = ones(1000,1)-(r2.^2 + r3.^2 + r5.^2 ); 

  y = 

(asin(2*pi*5t)+bsin(3*2*pi*t)+csin(5*2*pi*5t)+dsin(7*2*pi*50*t

)); 

 
 

Figure 6.3 

4.  Transient signal  

          
         fs=3.2*10^3; 

         t=0:(1/fs):0.25; 

         K=0.7; 

         s=0.0015; 
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         a = 900; 

         b = 1300; 

         r = (b-a).*rand(1000,1) + a; 

        t1=0.05; t2=0.1; 

      delt=(t-t1); 

     term3i=(u(t-t2)i-u(t-t1)i).*(cos(2*pi*A*delt)i); 

         z=(cos(2*pi*50*t)+K*exp(-delt/s).*term3 ); 

 

Figure 6.4 

 

   

    The extracted features obtained by taking wavelet transform of IMFs have been used for 

PQ events classification. We used k-NN classifier in conjunction with LDA algorithm. We 

calculted the classifier efficiency and compared the results with feature extraction using the 

Hilbert transform method. Tabel I and II shows the classification using feature extraction by 

Hilbert transform and Wavelet transform methods respectively. 
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TABLE –I 

6.1 Classification result using EMD and Hilbert Transform 

                                                          

CASE 

            

   

 

93   2 

    

3 

100  2 

    

 

 100  

   4 

 

  96 

Classification  

Efficiency in 

         % 

 

9 

 

   100 

 

   100 

 

 96 

Error  

Efficiency in 

         % 

 

  7 

 

    

      0 

       

      0 

    

  4 

Overall 

Efficiency in 

         %  

       

                                                   97.25% 

    

    

 

Overall Efficiency = 
                                      

                     
 

(Considering all the classes)  

 

                                                               

I 
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TABLE –II 

6.2 Classificationi result using EMD and Wavelet Transform method 

CASE             

   

 

     

          93 

    

           

            2 

    

           3 

        

         100 

              

            2 

    

 

        

        100 

             

             

              4 

 

         

           96 

Classification  

Efficiency in 

         % 

 

          93 

 

         100 

 

         100 

 

           96 

Error  

Efficiency in 

         % 

 

          7 

 

    

         0 

       

         0 

    

          4 

Overall 

Efficiency in 

         %  

       

                                                   97.25% 

 

      

 

A maximum classification accuracy of 97.25 % in both the cases i.e. 97.25%. 
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Chapter-7 

 Conclusion and Future Work 

Feature extraction and instantaneous parameter calculation using wavelet transform method is 

important as wavelet transform is useful for nonstationary signals. Due to time frequency 

localization property of wavelet transform it helps in antinoise performance. 

The method can be improved using different types of complex wavelets. We can use wavelet 

transform based compression algorithms to reduce the data size. Also we can use different 

types of denoising algorithms.              
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