EMPIRICAL MODE DECOMPOSITION WITH ANALYTIC SIGNAL FOR POWER-QUALITY ASSESSMENT

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY IN SIGNAL PROCESSING AND DIGITAL DESIGN

Submitted by

Amarendra Kumar Mishra

2K13/SPD/02

Under the supervision of

Dr. Sudipta Majumdar

(Assistant Professor)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

2013-2015

Certificate

This is to certify that the dissertation title "Empirical Mode Decomposition with Analytic Signal for Power- Quality Assessment" submitted by Mr Amarendra Kumar Mishra, Roll. No. 2K13/SPD/02, in partial fulfilment for the award of degree of Master of Technology in Signal Processing & Digital Design at Delhi Technological University, Delhi, is a bonafide record of student's own work carried out by him under my supervision and guidance in the academic session 2014-15. To the best of my belief and knowledge the matter embodied in dissertation has not been submitted for the award of any other degree or certificate in this or any other university or institute.

Amarendra Kumar Mishra M.tech(SPDD) 2k13/spd/02 Dr. Sudipta Majumdar Supervisor Assistant Professor Dep. ECE Delhi Technological University

Place: Delhi Date:

Acknowledgement

I am indebted to my thesis supervisor **Dr. Sudipta Majumdar, Assistant Professor** Department of Electronics and Communication, for his gracious encouragement and very valued constructive criticism that has driven me to carry out the project successfully.

I am greatly thankful to **Prof. Prem R. Chadda,** Head of Department (Electronics & Communication Engineering), entire faculty and staff of Electronics & Communication Engineering and friends for their continuous support, encouragement and inspiration in the execution of this "**Thesis**" work.

Finally I express my deep sense of gratitude to my parents who bestowed upon me their grace and were source of my inspiration and encouragement.

Amarendra Kumar Mishra M.Tech (SPDD)

2K13/SPD/02

Table of Contents

Certificate Acknowledgement List of table		ii	
		iii vii	
			List of figure
Acronyms		ix	
Abstract		X	
Chapter-1	Introduction	1-2	
1.1	Use of Power Quality	2	
1.2	Literature Review	2	
1.3	Thesis Organization	4	
Chapter-2	Wavelet Transform	5-10	
2.1	Continuous-Time Wavelet	5	
2.2	Definition of Continuous Wavelet	5	
2.3	Properties of Wavelet Transform	6	
2.4	Continuous Wavelet Transform as a Correlation	6	
2.5	Inverse Continuous wavelet Transform	7	
2.6	Haar Wavelet	8	
2.7	Morlet Wavelet	9	
2.8	Application of Wavelet Transform	10	

Chapter-3 Analytic Signal Using Hilbert Transform and Wavelet Transform 11-12 3.1 Hilbert Transform 11 Discrete Time Hilbert Transform 11 3.2 Application of Hilbert Transform 3.3 12 3.4 Analytic Signal Using Wavelet Transform 12 **Empirical Mode Decomposition Algorithm 16-18** Chapter-4 4.1 Intrinsic Mode Function 17 4.2 **Empirical Mode Decomposition** 18 Chapter-5 Classification 19-22 5.1 Perspective on Classification 19 5.1.1 Statistical approaches 19 5.1.2 Machine Learning 19 5.1.3 Neural Network 20 Liner Discriminant Analysis 5.2 20 Different Approach to Linear Discriminant Analysis 5.3 21 5.4 K-NN Classifier 21

Chapter-6	Implementation and Results	23-27
-----------	----------------------------	-------

28

REFERENCES

List of Tables

Table No.	Table Description	Refer Pg. No.
5.1	Classification Result for IMF-Hilbert Transform	26
5.2	Classification Result for IMF-Wavelet Transform	27

List of Figures

Figure No.	Figure Description	Refer Pg. No.
1.2.2	Morlet wavelet	10
5.4	Vector relation between x_1 and x_2	22
6.1	Sag signal	23
6.2	Swell signal	24
6.3	Harmonic signal	24
6.4	Transient signal	25

Abbrevations

EMD	Empirical Mode Decomposition
IMF	Intrinsic Mode function
PQ	Power Quality
DSP	Digital Signal Processing
FT	Fourier Transform
STFT	Short Time Fourier Transform
WT	Wavelet Transform
FFT	Fast Fourier Transform
IF	Instantaneous Frequency
HT	Hilbert Transform
DFT	Discrete Fourier Transform
DHT	Discrete Hilbert Transform
IDFT	Inverse Discrete Fourier Transform
SDA	Standard Deviation of Amplitude
SDP	Standard Deviation of Phase
PNN	Probabilistic Neural Network
ANN	Artificial Neural Network
ST	S-Transform
LDA	Linear Discriminant Analysis
KNN	K-Nearest neighbour
RBFNN	Radial Basis Function Neural network

Abstract

This thesis presents a wavelet transform method in combination with emprical mode decomposition (EMD) for power quality (PQ) events assessment. EMD is a time frequency analysis that decomposes the complex signals into several instrinsic mode functions(IMF). As the PQ events are nonstationary, instantaneous parameters have been extracted from these IMFs. We extracted three parameters from IMFs and then used KNN classifier for assessment of PQ disturbance. We compared the assessment of PQ events by extracting the features using Hilbert transform method.

A maximum classification accuracy of 97.25 % in both the cases (Wavelet transform method and Hilbert transform method).