Department of Electrical Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

CERTIFICATE

This is to certify that the project entitled, "DISTURBANCE IMMUNE DFIG FOR WIND FARM APPLICATIONS", submitted by Ms. Swati Tandon, University Roll No. 2k11/PSY/19, student of Master of Technology (Power System) in Electrical Engineering department from Delhi Technological University (Formerly Delhi college of Engineering), is a dissertation work carried out by her under my guidance during session 2012-2013 towards the partial fulfillment of the requirements for the award of the degree of Master of Technology in Power System.

I wish her all the best in her future endeavours.

Date: July 2013

Dr. VISHALVERMA PROFESSOR,

Electrical Engineering Department
Delhi Technological University
Bawana road, Delhi- 110042

ACKNOWLEDGEMENT

I would like to thank my honourable guide Dr. VISHAL VERMA, Professor, Department of

Electrical Engineering, Delhi Technological University (formerly Delhi College of Engineering). It would have never been possible for me to take this project to completion without his innovative ideas and his relentless support, encouragement and patience. I consider myself fortunate to have

had a chance to work under his supervision. In spite of his hectic schedule he was always approachable and took his time to discuss my problems and give his advice and encouragement.

I would also like to thank Dr. MADHUSUDHAN SINGH, Head of the Department, Electrical

Engineering Department, Delhi Technological University (formerly Delhi College of

Engineering) for providing better facilities and constant support.

I am also very thankful to the entire faculty and staff members of the electrical engineering

department and Mr. Anil Butola (Lab assistant, Simulation Lab) for their help and cooperation.

I wish to thank Ph.D scholars Mr. Peeyush Pant, Mr. Ramesh Singh, Mr. Manoj Badoni, Ms. Lovely Goel and Mr. Amritesh Kumar for their valuable suggestions and knowledge they shared

with me during my course work.

Finally my greatest thank to my family and friends for their continuous support.

Date: July 2013

Swati Tandon

Roll no. 2k11/PSY/19

M.tech (Power System)

П

DECLARATION

I, hereby declare that the work being presented in this Project Report entitled "DISTURBANCE IMMUNE DFIG FOR WIND FARM APPLICATIONS" is an original piece of work and an authentic report of my own work carried out during the period of 4th Semester as a part of my major project.

The model developed and results presented in this report is an outcome of the work carried out during the above said period and is also compiled as thesis for my Major Project for completing the requirements of Master's Degree of Examination in Power System Engineering, as per Delhi Technological University curriculum.

_

Swati Tandon (2K11/PSY/19)

Department of Electrical Engineering

Delhi Technological University

Delhi.

ABSTRACT

Energy is one of the most important factors that continue to influence the shape of civilization since evolution of mankind to this 21st Century. The cost and availability of energy significantly impacts the quality of our life, growth of the country and the stability of our environment. In recent years there has been a global commitment to develop clean and alternative forms of energy resources.

Among renewable energy resources, wind generation technology has matured considerably, as wind is fairly distributed around the globe, and the conversion is low cost. However, more penetration of wind energy into existing power networks raises concern for power system operators and regulators. The problems of wind are associated with dependence on the local environmental conditions. Variability of the wind speed causes oscillations in the output power of the wind generators, resulting in a variety of consequences within the power system and in its operation.

The stable operation of the Wind Energy Conversion System (WECS) amidst variety of disturbance on the microgrid is seen as a challenging task. Unbalanced magnetization of the Doubly Fed Induction Generator (DFIG) largely affect the generation profile and could cause cascading effect eventually leading to shut down of the wind farm. Moreover, popular WECS, Induction Generators (IG) in order to generate real power consumes reactive power from the mains making the operation with relatively lower power factor (pf). In order to provide requisite immunity to the DFIG based WECS, each system should be controlled in way that only balanced currents are transacted by the WECS at near unity pf. The thesis dissertation presents Synchronous reference frame (SRF) method based current estimation of the reference currents both in positive and negative sequence for control of the stator side Voltage Source Converter (VSC) and slip frequency based load levelling by rotor side VSC (RSC). MATLAB based simulation results presented in the thesis show the efficient working of WECS control amidst distorted conditions at Point of Common Coupling (PCC).

Keywords: Induction Generator, Back-to-Back Converters, Wind Energy Conversion, DFIG, Voltage Source Converter

List of Figure(s)

Figure No	Description	Page No
1.1	Cumulative wind energy generation capacity in India	3
1.2	DFIG based wind farm	4
2.1	Schematic of grid side converter for vector control method	12
2.2	Block diagram representing directly coupled SCIG to the grid	17
2.3	Block diagram of SCIG with stator side converter coupled to the	Grid18
2.4	Block diagram of back-to-back PMSG based WECS	19
2.5	Block diagram representing DFIG based WECS	20
3.1	Doubly fed induction generator based WECS	28
3.2	DFIG based WECS with sub models	32
3.3	Operating regions of DFIG based wind turbine	35
3.4	Equivalent d model for Doubly fed induction generator	36
3.5	Equivalent q model for Doubly fed induction generator	36
3.6	Axes transformation	38
3.7	Block diagram of Back-to-back voltage source converter	39
4.1	Block diagram of overall DFIG Wind turbine system	47
4.2	Block diagram of overall proposed control strategy for a grid co	nnected
	DFIG based WECS	48
4.3	Control loops for stator Side converter control	49
4.4	Control loops for rotor Side converter control	50

5.1 Simulation model of DFIG based WECS	32
5.2 Waveform representing constant voltage across dc-link	53
5.3 Dynamic response of DFIG based WECS under rated balanced load	.55
5.4 Dynamic response of stator side converter of DFIG based WECS under	
balanced load condition5	57
5.5 Dynamic response or rotor side converter under balanced load condition	.58
5.6 Active and reactive power curves at stator terminal	.59
5.7 Dynamic response of WECS under unbalanced loading condition on the	
feeder6	60
5.8 Dynamics of voltages/currents at stator terminals under non-linear load	.62
5.9 FFT analysis of generator current under non-linear load condition6	63
5.10 FFT analysis of PCC voltage under non-linear load condition	.63

List of Table(s)

Table No.	Description	Page No
1.1	Summarized features of FSWT and VSWT	6
2.1	Comparison of WECS configuration characteristics and costs	22
3.1	Parameters of wind turbine model considered.	35
4.1	Comparison of control specifications for several DFIG control topolo	ogies46
5.1	Parameters of DFIG system considered	54

List of Abbreviations and Symbols

DFIG Doubly-Fed Induction Generator.
SCIG Squirrel Cage Induction Generator

PMSG Permanent Magnet Synchronous Generator

DFSG Doubly Fed Synchronous Generator

WT Wind turbine

FSWT Fixed Speed Wind Turbine
VSWT Variable Speed Wind Turbine

WECS Wind Energy Conversion Systems

DG Distributed Generation

PWM Pulse Width Modulation

PI Proportional-Integral

PLL Phase Locked Loop

PCC Point of common coupling
VSC Voltage Source Converter

GSC Grid Side Converter

SSC Stator Side Converter

RSC Rotor Side Converter

DTC Direct Torque Control

DPC Direct Power Control P_{mech} Mechanical Power λsd , λrd Stator, Rotor flux linkage

Rs, Rr Stator, Rotor winding resistance

Ls, Lr, Lm Stator, Rotor winding leakage inductance, mutual

inductance

d,q direct and quadrature axis component

 V_{ds} , V_{qs} , V_{dr} , V_{dr} Stator, Rotor direct and quadrature axis voltages

 I_{ds} , I_{qs} , I_{dr} , I_{qr} d and q-axis stator and rotor currents

 ψ_{ds} , ψ_{dr} ψ_{qs} , ψ_{qr} q and d-axis stator and rotor fluxes Ps, Qs, Pr, Qr

Stator, Rotor active and reactive power

Pwind Wind turbine power

 ωs , ωr Generator rotating speed, generator synchronous speed

P Number of poles of the machine K_f , J Friction coefficient, Inertia of the rotor Tm, Te Mechanical torque generated by wind turbine, Electromagnetic torque generated by the machine ρ , R, A Air density, radius of turbine rotor blades, area swept by rotor blades Cp, λ , β , vwind Turbine performance coefficient, turbine tip-speed-ratio, pitch angle of rotor blades, wind speed

IX

TABLE OF CONTENTS

Certificate	I
Acknowledgement	II
Declaration	III
Abstract	IV
List of Figure(s)	V
List of Table(s)	<i>VII</i>
List of abbreviations and symbol(s)	VIII
CHAPTER 1: INTRODUCTION	1-9
1.1. GENERAL	1
1.2. WIND POWER IN INDIA	2
1.3 WIND TURBINE SYSTEMS	3
1.3.1. Fixed speed wind turbine (FSWT)	4
1.3.2. Variable speed wind turbine (VSWT)	5
1.4. DFIG BASED WIND ENERGY CONVERSION SYSTEMS	6
1.5. SCOPE OF THE WORK	8
1.6. ORGANISATION OF THESIS	9
CHAPTER 2: LITERATURE SURVEY	10-26
2.1. GENERAL	10
2.2. SURVEY OF LITERTUE OF CONTROL OF WECS	10

2.3. SURVEY OF GENERATORS FOR WECS	13
2.3.1. Squirrel cage induction generators (SCIG)	14
2.3.2. Permanent Magnet Synchronous Generator (PMSG)	15
2.3.3. Doubly Fed Synchronous Generator	15
2.3.4. Doubly Fed Induction Generators	16
2.4. CONVERSION SYSTEM	16
2.3.1. SCIG directly coupled to grid	17
2.3.2. SCIG with shunt connected VSC coupled to grid	18
2.3.3. Back-to-back PMSG based WECS	19
2.3.4. DFIG based WECS	20
2.5. PROBLEMS ASSOCIATED WITH DFIG BASED WECS	22
2.6. STATE OF THE ART	24
2.7. RESEARCH GAPS/TECHNICAL CHALLENGES	25
CHAPTER 3: DFIG MODELLING AND CONTROL	27-41
3.1. GENERAL	27
3.2. DFIG SYSTEM CONFIGURATION	27
3.3. CONTROL AND ANALYSIS	29
3.4. MODELLING OF DFIG WECS SYSTEM	32
3.5. POWER ELECTRONICS CONVERTER CONTROL	38
3.6. REAL AND REACTIVE POWER CAPABILITY	41
CHAPTER 4: PROPOSED CONTROL TOPOLOGY FOR DFIG B	ASED WECS.
4.1. GENERAL	43
4.2. BROAD CONTROL SPECIFICATIONS OF THE SYSTEM	44

4.3. PROPOSED CONTROL THEORY FOR DFIG BASED WECS	46
4.4. CONCLUSION	51
CHAPTER 5: PERFORMANCE ANALYSIS	52-63
5.1. GENERAL	52
5.2. PERFORMANCE EVALUATION	54
5.3. CONCLUSION	63
CHAPTER 6: MAIN CONCLUSIONS AND FUTURE WORK	64-65
6.1. CONCLUSION	64
6.2. FUTURE SCOPE OF THE WORK	65
REFERENCES	66-71