

Electronics and Communication Engineering Department Delhi Technological University Delhi-110042 www.dce.edu

CERTIFICATE

This is to certify that the dissertation titled "**Implementation of Single Core L1 L2 Cache with the comparison of Read Policies using HDL**" is a bonafide record of work done by **RenuToppo, Roll No. 2K13/VLS/19** at **Delhi Technological University** for partial fulfilment of the requirements for the degree of Master of Technology in VLSI and Embedded System Design. This project was carried out under my supervision and has not been submitted elsewhere, either in part or full, for the award of any other degree or diploma to the best of my knowledge and belief.

Date: _____

(Dr. S. Indu) Associate Professor Electronics & Comm. Engg.Dept. Delhi Technological University

ACKNOWLEDGEMENTS

I would like to express my deep sense of respect and gratitude to my project supervisor **Dr. S. Indu,** Associate Professor, Electronics and Communication Engineering Department, DTU for providing the opportunity of carrying out this project and being the guiding force behind this work. I am deeply indebted to her for the support, advice and encouragement she provided without which the project could not have been a success.

I am also grateful to **Prof. PR Chadda**, HOD, Electronics and Communication Engineering Department, DTU for his immense support.

I am failing if I miss my special thanks to my friend Siddharth Mohta who supported me at every step while facing several kinds of difficulties.

I would also like to acknowledge Delhi Technological University for providing the right academic resources and environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my family and college friends for constantly encouraging me during the completion of work.

Renu Toppo Roll no: 2K13/VLS/19 M.Tech. (VLSI and Embedded System Design) Department of Electronics & Communication Engineering Delhi Technological University

ABSTRACT

This thesis focuses on the comparison of three different replacement policies for Cache memory by using hit rate as the performance criteria. Random, LRU and Pseudo-LRU.

It involves the implementation of 2-way, 4-way and 8-way Set Associative mapping technique for varying cache sizes. For the sake of comparison a 4KB ,8KB ,16KB ,32KB, 64KB,cache memory is taken as base on which the policies are executed. The implementation of the memory controller and the required glue logic is carried out. Test bench is written for simulating the input signals to the memory controllers. At the next level, a higher capacity L2 cache memory is considered and the same process is repeated to estimate the performance with respect to Hit Rate. Verilog language is used for the hardware implementation. Memory controllers for the Main Memory, L1 Cache and L2 Cache are realized using Verilog language.

As we double the Way of cache (2-Way to 4-Way & 4-Way to 8-Way) the performance increases in general, but the percentage increase is not same. 2-Way to 4-Way increased by~3.5%, 4-Way to 8-Way increased by ~0.2%. It implies that we won't get equal performance increment on doubling the Way-Size of cache.

To find the optimized Way-Size we have to strike a balance between the Cache-Size and Hit-Rate. In our case optimized Way-Size is 4. Performance increment also depends upon the program in execution. So the optimized Way-Size can be different for different program.

Table of Contents

С	CERTIFICATE	i	
A	CKNOWLEDGEMENTS	ii	
A	BSTRACT	iii	
Т	ABLE OF CONTENTS	iv	
L	LIST OF FIGURES		
L	IST OF TABLES	viii	
	BBREVIATIONS	ix	
1.	Introductions	01	
	1.1. Overview	01	
	1.2. Motivation	02	
	1.3. Scope of Work	03	
	1.4. Organization of Report	04	
2.	Literature Review	05	
	2.1. Memory hierarchy system	05	
	2.2. Dynamic RAM v/s Static RAM	07	
	2.3. Overview of Cache Memory	09	
	2.4. Cache entry structure	10	
	2.5. Working of Cache memory	12	
	2.6. Cache Locality	14	
	2.6.1 Temporal locality	14	
	2.6.2 Spatial locality	14	
	2.7. Levels of Cache	15	
	2.7.1 Level 1(L1) Cache	15	
	2.7.2 Level 2(L2) Cache	15	
	2.7.3 Level 3(L3) Cache	16	
	2.8. Methods for managing cache	17	
	2.8.1 Inclusive	17	

	2.8.2	Exclusive	17
	2.9. Cach	e Design Elements	18
	2.9.1	Cache block	18
	2.9.2	Cache line	19
	2.9.3	Cache set	19
	2.9.4	Tag	19
	2.9.5	Cache hit	19
	2.9.6	Cache Miss	19
	2.9.7	Valid bit	19
	2.10. Cac	he Mappings	20
	2.10.1	Direct mapping	20
	2.10.2	Fully Associative mapping	21
	2.10.3	Set-associative mapping	22
	2.11. Con	nparison of mapping functions	23
	2.12. Cacl	he replacement policies	24
	2.12.1	Random Replacement policy	24
	2.12.2	Least Recently Used (LRU)	24
	2.12.3	Pseudo-LRU	25
	2.13. Wri	te policy	26
	2.13.1	Write -through Cache	26
	2.13.2	Write-around cache	27
	2.13.3	Write-back cache	27
	2.14. Bloc	ck size	27
	2.15. Cacl	he Misses	28
	2.16. Cacl	he performance	29
3.	Design M	ethodology	30
	3.1. Objec	tive	30
	3.2. Detail	s of Implementation	30
	3.3. Mode	l description	30
	3.3.1	L1 cache	32

	3.3.2 L2 cache	33
	3.3.3 Main Memory controller	34
	3.4. Cache Controller	35
	3.4.1 Design Flow chart for Write Operation	36
	3.4.2 Design Flow chart for Read Operation	38
4.	Results and discussions	40
	4.1 Simulation Results	40
	4.2 Comparison Results	43
5.	Conclusion	48
References 50		

LIST OF FIGURES

Figure 1.1	Processor v/s Memory performance	2
Figure 2.1	Memory Hierarchy	5
Figure 2.1	Cache memory	9
Figure 2.1	Levels of Cache	15
Figure 2.1	Harvard Architecture	18
Figure 2.1	Direct Mapping Cache	20
Figure 2.1	Fully Associative Mapping Cache	21
Figure 2.1	Set Associative Mapping Cache	22
Figure 2.1	Binary tree structure in a 4-block set	25
Figure 2.1	Block diagram of memory hierarchy sub-system	31
Figure 2.1	Flow diagram for Write operation	36
Figure 2.1	Flow diagram for Read operation	38
Figure 2.1	Interface Signals of the memory modules in simulation	40
Figure 2.1	Comparison graph of replacement policies for 2-way SA	43
Figure 2.1	Comparison graph of replacement policies for 4-way SA	45
Figure 2.1	Comparison graph of replacement policies for 8-way SA	46

LIST OF TABLES

Table 2.1	Comparison of memories	6
Table 2.2	Comparison between dynamic and static RAM	8
Table 2.3	Comparison of L1 L2 and L3 cache	16
Table 2.4	Comparison of Mapping functions	23
Table 4.1	Comparison graph of replacement policies for 2-way SA	44
Table 4.2	Comparison graph of replacement policies for 4-way SA	45
Table 4.3	Comparison graph of replacement policies for 2-way SA	47

ABBREVIATIONS

VLSI	Very Large Scale Integration
DRAM	Dynamic Random Access Memory
SRAM	Static Random Access Memory
L1, L2, L3	Level 1,Level 2,Level 3 caches
CPU	Central Processing Unit
LRU	Least Recently Used
P-LRU	Pseudo-Least Recently Used
CAM	Contents Addressable Memory