Major Project II UTILISATION OF 1-OCTANOL AND DIESEL IN A SINGLE CYLINDER CI ENGINE

Submitted to **Delhi Technological University** in Partial fulfilment of the requirement for the award of the Degree of

Master of Technology

In

Thermal Engineering

RASHI KOUL

2K11/THE/14

UNDER THE SUPERVISION OF

Dr. Naveen Kumar

Professor & Head

Mechanical Engineering Department

Delhi Technological University, Shahabad Daulatpur

Bawana Road, Delhi-110042, INDIA

July-2013

By

DECLARATION

I, hereby declare that the work embodied in the dissertation entitled "UTILISATION OF 1-OCTANOL AND DIESEL IN A SINGLE CYLINDER CI ENGINE" in partial fulfilment for the award of degree of MASTER of TECHNOLOGY in "THERMAL ENGINEERING", is an original piece of work carried out by me under the supervision of Prof. Naveen Kumar, Mechanical Engineering Department, Delhi Technological University. The matter of this work either full or in part have not been submitted to any other institution or University for the award of any other Diploma or Degree or any other purpose what so ever.

(RASHI KOUL)

M.Tech (Thermal Engineering)

Roll No.: 2K11/THE/14

CERTIFICATE

This is to certify that the work embodied in the dissertation entitled "UTILISATION OF 1-OCTANOL AND DIESEL IN A SINGLE CYLINDER CI ENGINE" by RASHI KOUL, (Roll No.-2K11/THE/14) in partial fulfilment of requirements for the award of Degree of Master of Technology (M.Tech) in Thermal Engineering, is an authentic record of student's own work carried by him under my supervision.

This is also certified that this work has not been submitted to any other Institute or University for the award of any other diploma or degree.

(Dr. Naveen Kumar)

Professor & Head Mechanical Engineering Department Delhi Technological University Delhi- 110042.

ACKNOWLEDGEMENT

It gives me distinct pleasure to acknowledge my deep sense of gratitude and indebtedness to my learned guide Dr. Naveen Kumar, Head, Mechanical Engineering Department, Delhi College of Engineering, Delhi for his invaluable guidance, patient review and encouraging attitude throughout the project work. In spite of his busy schedule, he could find time to provide me his precious guidance. I also take this opportunity to thank Mechanical Engineering Department and other faculty members of the department for their encouragement and guidance.

I would very much like to extend my sincere thanks to CASRAE lab attendant Mr. Manoj Kadiyan for assisting me in a lab work.

My sincere thanks to my fellow friends especially Vipul Vibhanshu, Chinmay Mishra and Ashish Singh who were always there to lend a helping hand in the hour of need.

RASHI KOUL

M.TECH (Thermal Engineering) Roll No.- 2K11/THE/14

ABSTRACT

The use of alcohols provides an attractive alternative fuel option for internal combustion engines. Alcohol can be produced using bio-refineries and may reduce the burden on fossil fuel resources due to renewable nature. There is a growing interest on using alcohols to substitute diesel fuel, as the use of oxygenated fuels involves oxygen enrichment leading to enhancement of premixed combustion phase and improved emissions. Various research related to the use of alcohols so far as alternative fuels for internal combustion engines has been focused on the employment of short chain alcohols, mainly methanol and ethanol, blended with fossil fuels. And long chain alcohols like butanol or Octanol have been barely investigated. The present study deals with the utilisation of octanol and diesel blends on a single cylinder diesel engine to evaluate performance and emissions parameters. The blend of octanol in 5%, 10%, 15% and 20% proportion with mineral diesel (v/v) were prepared. Evaluation of various physico-chemical properties of different test fuels was carried out. The characterisation results indicated reduced viscosity, density and calorific values for various Octanol-diesel blends compared to the baseline diesel fuel. However, the cold flow properties of the blends were found to be better than neat diesel.

The experimental engine trial results showed an increase in brake thermal efficiency (BTE) with increase in volume percentage of 1-octanol in octanol-diesel blends. The increase in brake thermal efficiency was due to the oxygenated nature of octanol and reduced kinematic viscosity, leading to higher combustion efficiency and improved atomization. The brake specific energy consumption (BSEC) of OC 20 was found to be lowest.

The emission analysis focused on all regulated pollutants, i.e. particulate matter, nitrogen oxides, carbon monoxide, carbon-dioxide and unburnt hydrocarbons. However, there was an increase in the carbon-dioxide emission with the increase in the volume of octanol added to octanol-diesel blend. The variation of NOx emissions for all the test increased for various octanol-diesel blends till 60% engine load and thereafter a downward trend was observed. Carbon-monoxide and Unburnt hydrocarbon and smoke opacity was found out to be lower than the baseline data of neat diesel.

The experiment results clearly show that the engine performance has improved with the addition of 1-octanol in diesel to the neat diesel. It can also be concluded that 1-octanol is a potential alternative fuel to be blended with the neat diesel for diesel engine application.

CONTENTS

Cover	page	i
Candi	date's declaration	ii
Certif	icate	iii
Ackn	owledgement	iv
Abstr	act	v
Conte	ents	vii
List o	f figures	X
	f plates	
	f tables	
Nome	enclature	Xii
Chapter	r 1: Introduction	
1.1	Energy crises	1
1.1	Energy scenario	1
1.3	Renewable energy sources	4
1.4	Future outlook	4
1.5	Global enviornment degradation	7
1.6	CO2 emission outlook	8
1.7	Climate change	10
1.8	Role of diesel engine in Indian economy	10
1.9	Alternative fuels forcompression ignition engine	11
1.10	Necessity of an alternative fuels	11
1.11	Present work	12
Chapte	er 2: Literature Review	13
2.1	Introduction	13
2.2	1-Octanol as blend in diesel	14
2.3	Literature review	16

2.4		Statement of a problem	18
С	Chapter 3: System Development and Experimental Procedure		
3.	3.1 Introduction		19
3.	2	Physico-Chemical properties	20
	3.2.1	Density	20
	3.2.2	Viscosity	21
	3.2.3	Calorific value	23
	3.2.4	Cold filter plugging point	25
3.	3	Engine selection	25
3.4		Development of an experimental test rig	26
3.	5	Installation of the instrument control panel	28
3.6		Parameters selection	30
3.	7	Measurement methods	31
	3.7.1	Fuel flow measuring system	31
	3.7.2	Temperature measurement	33
	3.7.3	Exhaust emission analysis	33
3.	8	Experimental procedure	34
Chapter 4: Results and Discussions		4: Results and Discussions	34
4.	1	Introduction	36
4.	2	Comparison of physico-chemical properties between diesel and	36
		octanol diesel blend	
4.	3	Performance characteristics	37
	4.3.1	Brake thermal efficiency	37
	4.3.2	Break specific energy consumption	38
	4.3.3	Exhaust Temperature	39

4.3	Emission characteristics	39
4.4.1	NOx emissions	39
4.4.2	CO emissions	40
4.4.3	CO ₂ emissions	41
4.4.4	Un-burnt hydro carbon emissions	42
4.4.5	Smoke opacity	43

Chapter 5: Conclusion and Scope for Future Work	45
---	----

LIST OF FIGURES

Sl. No.	Title	Page No.
Figure 1.1	Growth in India energy consumption by fuel, 2009-2035	3
Figure 1.2	CO ₂ emissions by OECD, Developing Countries & Transition Economies	n 5
Figure 1.3	Increase in CO_2 Concentration	7
Figure 3.6	Schematic Diagram of the Experimental Set Up	28
Figure 4.1	BTE v/s BMEP	37
Figure 4.2	BSFC v/s BMEP	38
Figure 4.3	Exhaust Temperature v/s BMEP	39
Figure 4.4	NOx v/s BMEP	40
Figure 4.5	CO v/s BMEP	41
Figure 4.6	CO2 v/s BMEP	42
Figure 4.7	UBHC v/s BMEP	43
Figure 4.8	Smoke opacity v/s BMEP	43

LIST OF PLATES

Sl. No.	Title	Page No.
Plate 3.1	U-Tube Oscillating True Density Meter	21
Plate 3.2	Kinematic Viscometer	22
Plate 3.3	Bomb calorimeter	23
Plate 3.4	Cold Filter Plugging Point Apparatus	24
Plate 3.5	Test Engine	26
Plate 3.6	Control panel (front end)	28
Plate 3.7	Load bank (rear end)	28
Plate 3.8	Two tank system	29
Plate 3.9	Fuel flow measuring system	31
Plate 3.10	Smoke and Emission measuring system	33

LIST OF TABLES

Sl. No.	Title	Page No.
Table 1.1	Primary Energy Requirement for India, 2030	2
Table 1.2	World primary energy demand	5
Table 1.3	Global Oil demand	6
Table 1.4	Increase in CO2 by different sources	8
Table 1.5	Contribution of Different Fuels in Global CO ₂ Emissions	9
Table 2.1	Properties of 1-octanol	15
Table 3.1	Density of various blends	21
Table 3.2	Viscosity of various blends	22
Table 3.3	Detailed technical specifications of the engine	26,27
Table 3.4	Exhaust temp. of various blends at different loads	32
Table 4.1	Physico-Chemical Properties of Diesel and Octanol Diesel blend	35

NOMENCLATURE

GDP	Gross Domestic Product
OECD	Organisation for Economic and Co-operation Development
KGOE	Kilogram of Oil Equivalent
	-
Btoe	Billion tonnes of oil equivalent
Mtoe	Millions tonnes of oil equivalent
CO ₂	Carbon Dioxide
UNFCCC	United Nations Framework Convention on Climate Change
GHGs	Greenhouse gases
N_2O	Nitrous Oxide
O ₃	Ozone
RET	Renewable Energy Technologies
MNES	Ministry of Non-Conventional Energy Sources
MNRE	Ministry of New & Renewable Energy
CFCs	Chlorofluorocarbons
IC	Internal Combustion
СО	Carbon monoxide
NOx	Nitrogen oxides
PM	Particulate matter
UBHC	Un-burnt hydrocarbon
CI	Compression Ignition
DI	Direct Injection
MJ/Kg	Mega Joules per Kilo gram
g	Grams
kWh	Kilowatt hour
°K	Degree Kelvin

atm	Atmospheric
°C	Degree Celsius
TDC	Top dead centre
rpm	Revolutions per minute
TDI	Turbocharged Direct Injection
NCV	Net calorific value
PD	Petro-diesel
Μ	Methanol
°F	Degree Fahrenheit
THC	Total hydrocarbon
m/s	Meters per second
Btu/lb	British thermal unit/ pound
Gal	Gallon
SCF	Standard cubic foot
NREL	National Renewable Energy Laboratory
~	Nearly
CNG	Compressed Natural Gas
v/v	volume/volume ratio
ASTM	American Society of Testing and Materials
kJ	Kilojoules
mm	Millimetres
bhp	Brake horsepower
kVA	Kilovolt ampere
AC	Alternating current
Min	Minutes
nm	Nanometre
D100	Pure diesel

- OC5 5% Octanol in diesel (v/v)
- OC10 10% Octanol in diesel (v/v)
- OC 15 15% Octanol in diesel (v/v)
- OC 20 20% Octanol in diesel (v/v)