

A

Dissertation
on

Design & Development of Stabilised
Platform for Indian Naval ships using

MEMS Sensors

submitted in partial fulfilment of the requirements
for the award of degree of

Master of Technology

in

VLSI Design and Embedded System

Submitted
By

Lt Cdr Rajat Agarwal

University Roll Number- 2K12/VLS/16

Under the guidance of

Dr. S Indu
Professor,

Department of Electronics and Communication Engineering
Delhi Technological University

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

i | P a g e

Electronics and Communication Engineering Department
Delhi Technological University
Delhi-110042

CERTIFICATE

This is to certify that the dissertation titled “Design & Development of Stabilised

Platform for Indian Naval ships using MEMS Sensors” is a bonafide record of work

done by Lt Cdr Rajat Agarwal, Roll No. 2K12/VLS/16 at Delhi Technological

University for partial fulfilment of the requirements for the degree of Master of Technology in

VLSI Design and Embedded System. This project was carried out under my supervision and

has not been submitted elsewhere, either in part or full, for the award of any other degree or

diploma to the best of my knowledge and belief.

Date: _________

 (Dr. S Indu)
 Professor

 Department of Electronics and Communication Engineering
 Delhi Technological University

ii | P a g e

ACKNOWLEDGEMENTS

I would like to express my deep sense of respect and gratitude to my project supervisor

Dr. S Indu, Professor, Electronics and Communication Engineering Department, DTU for

providing the opportunity of carrying out this project and being the guiding force behind this

work. I am deeply indebted to him for the support, advice and encouragement she provided

without which the project could not have been a success.

I am also grateful to Prof. P R Chadha, HOD, Electronics and Communication Engineering

Department, DTU for his immense support.

I would also like to acknowledge Delhi Technological University for providing the right

academic resources and environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my colleagues in service in

helping choosing this topic and constantly encouraging me during the completion of work.

(Lt Cdr Rajat Agarwal)

 University Roll no: 2K12/VLS/16

 M.Tech (VLSI Design and Embedded System)

 Department of Electronics & Communication Engineering

 Delhi Technological University

Delhi – 110042

iii | P a g e

ABSTRACT

The use of roll and pitch stabilised platforms onboard ships, aircrafts and submarines is a

common practice so as to ensure common plane of operation for all systems in a three

dimensional space. It is to ensure that their performance is not affected by movement of vessel

due to various undesirable forces acting on it. While weapon systems require a higher degree of

accuracy and precision in stabilisers, there are other systems where accuracy and precision of

stabilisation can be compromised to a certain extent. Some such systems are communication

antennas, TV satellite dish, solar panel etc. installed on ships and aircrafts. These systems, if

stabilised over a platform using some economic system, then accuracy can be compromised to

certain extent. Present thesis deals with design and development of similar low cost MEMS

sensor based roll, pitch stabilised platform. It uses ADXL345 accelerometer sensor which senses

raw acceleration values in all three axes in terms of acceleration due to gravity (g) and transmits

to a controller which converts the acceleration into roll and pitch values. The roll and pitch is

further transformed into negative feedback and given to servo motors connected to a platform

that is free to rotate in x and y axes. Thus, movement of X and Y planes of platform in the

direction opposite to roll and pitch experienced by the ship helps in realising a stabilised

platform which can be employed to

iv | P a g e

TABLE OF CONTENTS

CERTIFICATE i

ACKNOWLEDGEMENT ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS ix

1 Introduction

 1.1 Motivation 1

 1.2 Navigation Systems 1

 1.3 Inertial Navigation Systems 2

1.4 Why Inertial? (Naïve concept) 3

1.5 Objective and scope of thesis 4

2 Need for stabilised platform onboard IN ships

2.1 Roll, Pitch and Yaw 5

2.2 Effect of Roll and Pitch on ship’s systems 6
2.3 Concept of stabilised platform onboard Naval ships 7

3 Low Cost MEMS Sensors for sensing Roll and Pitch

3.1 MEMS Sensor ADXL345 9

3.2 Roll and Pitch Estimation Algorithms 11
3.3 Noise reduction using Digital Low pass Filter 13

4 Embedded System Design and development

 4.1 Definition of Embedded Systems 16

 4.2 Development environment for embedded systems 16

 4.3 Micro-controller programming 17

v | P a g e

4.4 Single Board Computers (SBCs) 18

5 Simulation of Roll pitch data using ADXL345 MEMS sensor

5.1 Tool chain for Data Acquisition and representation 22

5.2 I2C protocol for data transfer with I2C scanner 24

 5.2.1 I2C Scanner 26

 5.3 ADXL345 interfaced over I2C protocol 27

 5.3.1 Connection of ADXL345 module over I2C protocol 27

5.4 Development of simulation program 29

 5.4.1 Initialising ADXL345 module 29

 5.4.2 Reading the raw acceleration values and converting it to Gs 30

6 Realisation of Roll Pitch Stabilised Platform

6.1 Design of a 3-D printed Platform with two axes degree of freedom 33

6.2 Interfacing servo motors to micro-controller 35

6.3 Negative feedback to servo motors to stabilise platform 37

6.4 Circuit schematic for realisation of project 38

7 Conclusion and Future work

7.1 Conclusion 39

7.2 Future work 39

8 References 40

9 Appendix 41

vi | P a g e

LIST OF TABLES

SL No. TABLE No. DESCRIPTION PAGE No.

1 3.1 Connection between ADXL345 and Microcontroller
board

10

2 3.2 Sample of X axis acceleration values taken for digital
low pass filter

14

3 4.1 Features of ATMEGA328 micro-controller (as per
datasheet)

18

4 5.1 Contents of DATA_FORMAT register as per ADXL345
datasheet

30

5 5.2 D0 and D1 bits for Range setting as per ADXL345
datasheet

30

vii | P a g e

LIST OF FIGURES

SL No. FIGURE No. DESCRIPTION PAGE No.
1 1.1 Ship's mast containing RADAR and communication

antennas
1

2 1.2 Strap down Inertial Navigation System 3
3 2.1 Roll, Pitch and yaw experienced by a ship 5
4 2.2 Roll, Pitch and yaw experienced by an Aircraft 6
5 2.3 Gun mount locked on target 6
6 2.4 Direction of gun mount after ship experiencing Roll /

Pitch
6

7 2.5 Satellite TV dish onboard Naval ship 7
8 3.1 ADXL345 Accelerometer module 9
9 3.2 Functional block diagram of ADXL345 module 9
10 3.3 ADXL345 module connected to micro-controller board

over I2C protocol
11

11 3.4 Plot of raw X,Y,Z acceleration values as obtained from
ADXL345 module

12

12 3.5 Signal flow graph of a digital low pass filter 13
13 3.6 Plot of raw [x(t)] and filtered [y(t)] data as obtained

from ADXL345 module
14

14 3.7 Plot of raw [x(t)] and filtered [y(t)] data for two different
α values 0.5 and 0.7

15

15 4.1 Flowchart showing the process of programming an
embedded system

17

16 4.2 MPLAB IDE for programming PIC micro-controllers 18
17 4.3 Beagleboard (ARM cortex A8 based) SBC 19
18 4.4 Raspberry Pi (ARM cortex A7 based) SBC 19
19 4.5 Arduino UNO R3 development board 20
20 5.1 Graphical image of Circuit for interfacing Digital

switch, Analog POT and LM35 IC interfaced to Arduino
Uno R3 board

22

21 5.2 Pin diagram of Atmega328 micro-controller 23
22 5.3 Actual hardware setup for Data Acquisition Console 23

viii | P a g e

23 5.4 Plot of data obtained from sensors interfaced to micro-
controller board

24

24 5.5 I2C scanner result with two devices connected on bus 26
25 5.6 Hardware setup for ADXL345 interfaced over I2C

protocol
27

26 5.7 Connection diagram for ADXL345 module interfaced
over I2C protocol

28

27 5.8 Register map for ADXL345 module 28
28 6.1 3-D printed part to align the platform in X-axis 33
29 6.2 Software for generating G-codes from STL file 34
30 6.3 Servo motor 35
31 6.4 Parts of servo motor 36
32 6.5 Schematic to interface two servo motors to micro-

controller board
36

33 6.6 Actual connection diagram of servo motors interfaced to
micro-controller board

37

34 6.7 Servo motors connected to stabilizing platform in X and
Y Axis

37

35 6.8 Circuit schematic for Controller for stabilised platform 38

ix | P a g e

ABBREVIATIONS

INS Inertial Navigation System

SINS Strap down Inertial Navigation System

MEMS Micro Electro-Mechanical Systems

I2C Inter-Integrated Circuit

SPI Serial Peripheral Interface

GUI Graphical User Interface

UART Universal Asynchronous Receiver Transmitter

1 | P a g e

CHAPTER 1

INTRODUCTION

1.1 Motivation

Navigation has been an interesting area of Research & Development from centuries. It is a useful

subject appealing to people ranging from a ship’s captain to an aircraft pilot to an astronaut and

to a car driver. But, the accuracy and criticality of navigation data varies from individual to

individual and so do the cost and components involved in building a complete navigation system.

Unlike navigation on surface, there are various problems faced when we navigate at sea or in an

aircraft. One such problem is of roll, pitch and yaw which are experienced while onboard any of

such platforms.

1.2 Navigation Systems

Few commonly known tools for navigation onboard ships, submarines and aircrafts are RADAR,

SONAR, Gyroscopes, Magnetic Compass, Global Positioning System (GPS) and ECDIS

(Electronic Chart Display System). All these systems have their own expertise and limitations.

While RADAR & SONAR emit a lot of power to sense distant objects, Magnetic compass is

affected by surrounding magnetic fields due to ship’s or air craft’s metallic body and other

electrical equipments onboard.

Figure 1.1 Ship's mast containing RADAR and communication antennas

2 | P a g e

GPS relies on continuous line of sight communication with Geo stationary satellites. So, none of

the navigation systems described are self sufficient in providing correct position of the travelling

body. Moreover, war ships and military aircrafts have to operate in stealth mode so they cannot

emit energy at all times. Submarines operate under water and therefore they cannot receive

electromagnetic GPS signals. Hence, there exists a need for self sufficient Navigation system

which could calculate its position using some inbuilt hardware and a software algorithm without

emitting any energy. ‘Necessity is the mother of invention’; this has led to development of

Inertial Navigation System (INS) which is discussed in this thesis and an application derived

from sensors involved in INS is developed and explained in detail.

1.3 Inertial Navigation Systems

Inertial navigation is an arrangement designed to offer navigation information using direct

measurements of acceleration, without any external measurements. Before the advent of global

positioning systems, such as the United State’s GPS or the EU’s Galileo system, inertial

navigation was relied upon to provide accurate position data for a number of vehicles, including

guided missiles, aircraft, submarines, and spacecraft.

SINS (Strap down inertial navigation system) is a type of inertial navigation system where the

sensor package is simply strapped to the vehicle. Instead of a gimballed platform, small sensors

called “rate gyroscopes” are used to measure the angular acceleration. These sensors work in a

similar fashion to the linear accelerometers, in that they provide an instantaneous reading of the

angular acceleration. This value must be recorded and integrated over time to calculate the

vehicle’s orientation, and is subject to the same accuracy and sample frequency problems as the

linear acceleration sensors.

3 | P a g e

Figure 1.2 Strap down Inertial Navigation System

1.4 Why Inertial? (Naïve concept)

The concept of finding one’s position lies in Newton’s basic laws of inertia and motion.

Newton’s Second law of motion states that

Force (F) = Mass (m) x Acceleration (a)

So, if a body of mass (m) is moving under influence of some force (F), its acceleration (a) can be

calculated using above equation easily.

Further, the acceleration (a) can be integrated over time (t) to calculate velocity (v) which can be

further integrated over time (t) to calculate Distance (s).

s = ∬ 푎. 푑푡

Thus, if the initial position of an object is known, current position of the object can be calculated

by adding the distance to it. Although this is very naïve concept and requires a lot of other

concepts, components and processing before developing into a self sufficient Inertial Navigation

System (INS) moving freely in 3-dimensional space as explained ahead in this thesis.

4 | P a g e

1.5 Objective and scope of thesis

There are various algorithms to calculate Position of object as described in [2]. This thesis is

limited to understanding the concept and developing a prototype of Inertial Navigation System

by extracting Accelerometer data over I2C protocol and transporting the data packet over UART

protocol to the Computer where roll and pitch are calculated using either of the available

algorithms. The accuracy of angular movement calculated entirely depends on algorithm used for

computing. Although, the thesis discusses Inertial Navigation systems, the project is limited to

developing a Roll/Pitch stabilised platform for use onboard ships and aircrafts using raw

accelerometer data obtained from ADXL345 module.

The prototype is realised using ATMEGA 328 micro-controller over Arduino based open source

platform. It is a faster way of converting ideas into prototypes. A hardware schematic for

designing complete systems using ATMEGA 328 micro-controller without Arduino board is also

described in thesis. Complete tool-chain of data acquisition and graphical display of information

is developed using various open source software. Complete model is then realised using a micro-

controller board interfaced to ADXL345 module interfaced over I2C protocol on input side and

servo motors controlling the X and Y planes of a platform at output side. The platform with two

degrees of freedom is also built using fused deposition modelling (FDM) technique.

5 | P a g e

CHAPTER 2

NEED FOR STABILISED PLATFORMS ONBOARD IN SHIPS

2.1 Roll, Pitch and Yaw

Roll, pitch and yaw are three movements possible for an object in a three dimensional space. An

aircraft, a ship or a submarine moving in a three dimensional space can experience either of these

movements across its three axes.

Figure 2.1 Roll, Pitch and yaw experienced by a ship

Roll is defined as oscillatory angular movement of object across x axis. Pitch is defined as

oscillatory angular movement of object across y axis and Yaw refers to oscillatory angular

movement of object across Z axis in a three dimensional space. It can be experienced by any

object travelling in a three dimensional space such as ship, submarine, air craft or missile. While

it is desirable to have these movements in aircrafts or missiles for manoeuvring them, they are

undesirable on a platform like ship and submarine as it affect the stability of the vessel.

6 | P a g e

Figure 2.2 Roll, Pitch and yaw experienced by an Aircraft

2.2 Effect of Roll, pitch and yaw on ship’s systems

The roll, pitch and yaw movements affect many of the ship’s systems adversely. While, the

stability of a ship is greatly affected by roll and pitch movement and may be dangerous for

stability of big oil tankers, it can be fatal for warships. The effect of roll and pitch can be

explained by taking an example of a gun mount pointing towards a target and ready to fire.

The ship being in open sea may experience roll or pitch due to sea waves just before firing

through the gun mount and it may be fatal as the gun may hit its own surface or men. Hence, it is

very important for a naval ship to counter the effect of Roll, pitch and yaw on regular basis,

especially for weapon platforms.

Figure 2.3 Gun mount locked on target

Figure 2.4 Direction of gun mount after ship
experiencing Roll / Pitch

7 | P a g e

2.3 Concept of stabilised platforms onboard Naval ships

As shown in figures 2.3 and 2.4 above, the erratic movement of gun mounts and other weapons

onboard ship due to roll and pitch during firing operations may be critical for its smooth

operation. There exists a need for some setup that would constantly compute the error occurred

in the original orientation of gun mount due to roll or pitch movement and apply the equal torque

in opposite direction so as to keep the mount stable with respect to original position. Similarly,

there are many other systems onboard ship whose performance is affected by roll, pitch and yaw

movements. Some examples of such ship's systems are:-

(a) Communication antennas

(b) Satellite TV dish

(c) Solar panels

Figure 2.5 Satellite TV dish onboard Naval ship

However, unlike weapon platforms, above systems do not require very precise correction in roll

and pitch. The performance is not affected much if some economic solution for stabilising the

platform containing above systems is used.

The current thesis tries to achieve this goal by computing the acceleration across x and y axes of

the ship's surface using ADXL345 sensor module and converting it into equivalent roll and pitch

values using algorithm suggested in [1]. The acceleration data thus obtained is given to a micro-

controller which computes equivalent roll and pitch values. The micro-controller further

8 | P a g e

computes equal and opposite torque to be applied to stabilise the platform. The angular position

thus calculated is fed to servo motors interfaced to micro-controller for movement in opposite

direction.

9 | P a g e

CHAPTER 3

LOW COST MEMS SENSORS FOR SENSING ROLL AND PITCH

3.1 MEMS sensor ADXL345

Figure 3.1 ADXL345 Accelerometer module

MEMS stands for Micro-Electro-Mechanical Systems which integrates mechanical units and

electronic components together through micro-fabrication technology at the sub-millimeter scale.

With this technology, we can build microstructures through micro-machining and create sensors

which are very small in size. In this project we use MEMS based 3 dimensional Accelerometer

sensor ADXL345. MEMS sensor ADXL345 senses acceleration in all three axes in terms of

acceleration due to gravity and transmits the data over serial protocol.

Figure 3.2 Functional block diagram of ADXL345 module

10 | P a g e

As shown in above schematic, the 3-axis MEMS sensor is embedded into the ADXL345 module

along with associated blocks for conversion of analog data to digital data, a digital filter and a

serial I/O module. The data obtained out of the above module is transferred to micro-controller

either using SPI (Serial Peripheral Interface) or I2C protocol.

ADXL345 supports four ranges of sensitivity from +/- 2G to +/-16G. It supports output data

ranges from 100Hz to 3200 Hz. The sensor module consists of micro machined structure on a

silicon wafer. The structure is suspended by poly-silicon springs which allow it to deflect in any

direction smoothly when subject to acceleration in X, Y or Z axis. The deflection causes a

change in capacitance between fixed plates and plates attached to the suspended structure. The

change in capacitance is proportional to acceleration caused in X, Y and Z axes which is

converted in to equivalent voltage and given out of MEMS sensor. The voltage data is then given

to ADC module onboard ADXL345 to convert it into equivalent digital data.

The digital data obtained as raw acceleration for each of the X, Y and Z axes is in 16 bit format.

The data is thus stored in two registers of eight bit each. Thus, every data read operation from

ADXL345 module must request for six bytes of data.

The data can be extracted from ADXL345 module using I2C protocol by wiring as in below

table.

ADXL345 MICRO-CONTROLLER BOARD

GND GND

Vin +5V

SDA SDA

SCL SCL

Table 3.1 Connection between ADXL345 and Microcontroller board

11 | P a g e

Actual hardware developed for the project to test the module is as below. Connections are made

as per table 3.1 above.

Figure 3.3 ADXL345 module connected to micro-controller board over I2C protocol

3.2 Roll and Pitch Estimation Algorithms

The acceleration sensed using ADXL345 module needs to be converted into corresponding Roll

and pitch values. This requires some complex mathematical algorithms described in [1]. The

ADXL345 module can be configured for various ranges (±2g, ±4g, ±8g, ±16g) where 1g unit =

9.8 m/s2. By default, the module gives 10-bit resolution data for ±2g range configuration. The

raw accelerometer readings (RawAccel) can be converted into acceleration using following

formula:-

푮푨풄풄풆풍 = 푅푎푤 .
푅푎푛푔푒

2

12 | P a g e

The raw values of acceleration in x, y and z axes were obtained and plotted over GUI developed

using processing software. The results obtained are shown below.

Figure 3.4 Plot of raw X,Y,Z acceleration values as obtained from ADXL345 module

The acceleration in all three axes (Gx, Gy and Gz) are obtained using ADXl345 module using

above formula. The components of acceleration are now to be converted into roll and pitch that

the platform would have experienced. For, converting the acceleration values to roll and pitch

following formulae are used:-

The above roll pitch formulae can be easily converted into an algorithm for writing a computer

program for calculation of roll and pitch using a micro-controller. In a C program, arctan

formula can be replaced with atan2() function from <math.h> library as shown below:-

 Roll = (atan2(-fYg, fZg)*180.0)/M_PI;

 Pitch = (atan2(fXg, sqrt(fYg*fYg + fZg*fZg))*180.0)/M_PI;

13 | P a g e

3.3 Noise reduction using Digital Low pass Filter

A problem is faced in obtaining reliable data from ADXL345 module. The readings for raw

acceleration values fluctuate a lot and thus some kind of filtering of data is required before

estimating roll and pitch. A simple low pass filter can be employed for filtering noise from data

obtained for each axis by passing the stream of data through a difference equation as shown

below:-

y(n) = x(n) + x(n-1)

Figure 3.5 Signal flow graph of a digital low pass filter

For realising the above mentioned low pass filter in computer we can employ a simple equation

that can be easily implemented using a simple C program.

푦 = 훼. 푥 + (1 − 훼).푦

Here yt is the current filtered value of acceleration while yt-1 is the previously filtered value, xt is

the raw acceleration value and α is the smoothening factor. The filtering is to be done to raw

acceleration values for each of the three axes before calculation of roll and pitch angles.

The smoothening factor α is to be chosen wisely for proper filtering of data obtained from

module. It should not be set too low as we would lose real time behaviour and it will take more

time to stabilise.

14 | P a g e

The calibration of module along with selection of value for α needs to be done before it is

actually employed for calculating roll and pitch values.

Table 3.2 Sample of X axis acceleration values taken for digital low pass filter

The data obtained for x-axis acceleration was plotted for both filtered and non-filtered values as

shown in graph below. Raw data is plotted a x(t) while filtered data is plotted as y(t). It is clearly

evident that acceleration data after passing through low pass filter is gradually changing its value

compared to non-filtered data which is abruptly changing value. Hence, it is better to use filter

over raw data.

Figure 3.6 Plot of raw [x(t)] and filtered [y(t)] data as obtained from ADXL345 module

-4

-3

-2

-1

0

1

2

3

1 2 3 4 5 6 7 8

A
cc

el
er

at
io

n

Data set

X axis Acceleration

X(t)

y(t)

Data X(t) Alpha y(t-1) y(t)
1 0.31 0.5 0.28 0.30
2 0.31 0.5 0.30 0.30
3 0.27 0.5 0.30 0.29
4 0.24 0.5 0.29 0.26
5 0.31 0.5 0.26 0.29
6 -2.79 0.5 0.29 -1.25
7 -0.89 0.5 -1.25 -1.07
8 2.5 0.5 -1.07 0.71

15 | P a g e

The value of α (alpha) chosen in above example is 0.5. However, α can have any value less than

1. It needs to be chosen wisely so as to have best possible smoothening of raw values without

losing any considerable amount of data. Various values of α were considered and data obtained

was plotted along with original values so as to see the effect of smoothening.

Figure 3.7 Plot of raw [x(t)] and filtered [y(t)] data for two different α values 0.5 and 0.7

Now when the concept of converting raw acceleration data into roll and pitch value is clear, next

step is to convert it into an algorithm that can be used to design a computer based automatic

system to control planes of a platform to counter roll and pitch. The same is explained in further

chapters of this thesis.

-4

-3

-2

-1

0

1

2

3

1 2 3 4 5 6 7 8

A
cc

el
er

at
io

n

Sample No.

X axis Acceleration

X(t)

y(t) [0.5]

y(t) [0.7]

16 | P a g e

CHAPTER 4

EMBEDDED SYSTEM DESIGN AND DEVELOPMENT

4.1 Definition of Embedded Systems

An embedded system is a combination of hardware and software (either fixed in capability or

programmable) designed for a (or few) specific purpose. An embedded system maybe an

independent system or a part of some bigger system. An embedded system involves combination

of electronics (both digital and analog), mechanical parts and software. Various examples of

embedded systems are digital watches, MP3 players and elevator control panel. This thesis

explains the design and development of an embedded system to be used onboard naval ships and

submarines for stabilising its various systems against roll and pitch. Various types of interfaces

are explained and the sensor for acceleration input, ADXL345 is interfaced over I2C protocol. On

the output side servo motors are interfaced to micro-controller which are controlled based on

input received from accelerometer module. The platform for stabilising the system is also

developed as a part of complete system.

4.2 Development environment for Embedded systems

First step for designing any embedded system is to setup a development environment. An

embedded system consists of a micro-controller, a micro-processor or an FPGA that needs to be

programmed for the specific purpose it is to be used. A development environment consists of

following components:-

a) Text Editor

b) Compiler

c) Linker

d) Simulator

e) Programmer or debugger

Nowadays, all the above components are integrated into a single setup and is called Integrated

Development Environment (IDE). Based on the micro-controller used for development of

embedded system, a specific IDE needs to be setup for developing an application for the desired

embedded system.

17 | P a g e

Figure 4.1 Flowchart showing the process of programming an embedded system

4.3 Micro-controller programming

For developing our application, we had vast range of micro-controllers available such as PIC,

AVR, Intel 8051. Each micro-controller has its own IDE which can be setup for developing the

application. PIC micro-controller requires MPLAB IDE from Mircrochip while AVR requires

AVR studio and Intel 8051 can be setup on Keil IDE.

The application program is developed in High Level Language (HLL) which is then compiled

using a compiler installed for the specific micro-controller used for designing the embedded

system. The IDE generates a hexadecimal (Hex) file which is specific to the micro-controller for

which the HLL program was compiled. This process is called cross compiling.

The Hex file thus generated is to be burnt on micro-controller's program memory using a

programmer. Once the power is switched ON, the application runs continuously in an endless

loop and performs the desired function.

High Level Language Program on Text editor

Compiler and linker from IDE

HEX File generation

Programmer

18 | P a g e

A screenshot of MPLAB IDE used for programming PIC micro-controllers is shown in figure

below.

Figure 4.2 MPLAB IDE for programming PIC micro-controllers

4.4 Single Board Computers (SBCs)

For developing our application, we had vast range of micro-controllers available such as PIC,

AVR and 8051. However, the choice of AVR micro-controller ATMEGA328 was based on

following features that were required for development of the stabilised platform without any

external interfaces required for essential components:-

PARAMETERS VALUE
Flash 32 Kbytes

RAM 2 Kbytes

Pin Count 28

Max. Operating Frequency 20 MHz

CPU 8-bit AVR

A/D converter 10- bit / 6 ch

Max I/O Pins 26

Ext Interrupts 24

Table 4.1 Features of ATMEGA328 micro-controller (as per datasheet)

19 | P a g e

For development and testing of the prototype suggested in this thesis, various Single board

computers (SBCs) were referred such as ARM micro-processor based Beagleboard and

Raspberry Pi and AVR micro-controller based Arduino UNO R3.

Figure 4.3 Beagleboard (ARM cortex A8 based) SBC

A single-board computer (SBC) is a complete computer built on a single circuit board, with

microprocessor(s), memory, input/output (I/O) and other features required of a functional

computer.

Figure 4.4 Raspberry Pi (ARM cortex A7 based) SBC

20 | P a g e

The choice of SBC for any prototype development is based on various factors such as economic

to use, ease of setup and availability of required interfaces. Being an open source development

platform and easy to setup, Arduino based SBC was preferred for development of prototype for

the project. However, after testing the system on micro-controller board, a circuit for developing

independent system to be implemented onboard Naval ships for actual systems is also suggested

later.

Figure 4.5 Arduino UNO R3 development board

Arduino UNO R3 is an ATMEGA328 micro-controller based Single Board Computer. It consists

of 8 bit AVR micro-controller with various onboard peripherals and all pins available for

programming. It can be programmed using onboard programmer that can be connected to any

computer using standard USB. The board draws power from either USB or 5V power adapter. It

features the Atmega8U2 microcontroller chip programmed as a USB-to-serial converter.

Other features of Arduino UNO R3 board are:

a) Microcontroller: ATmega328

b) Operating Voltage: 5V

c) Input Voltage (recommended): 7-12V

d) Input Voltage (limits): 6-20V

e) Digital I/O Pins: 14 (of which 6 provide PWM output)

f) Analog Input Pins: 6

g) DC Current per I/O Pin: 40 mA

21 | P a g e

h) DC Current for 3.3V Pin: 50 mA

i) Flash Memory: 32 KB of which 0.5 KB used by bootloader

j) SRAM: 2 KB (ATmega328)

k) EEPROM: 1 KB (ATmega328)

l) Clock Speed: 16 MHz

22 | P a g e

CHAPTER 5

SIMULATION OF ROLL PITCH DATA USING ADXL345 SENSOR

5.1 Tool chain for Data Acquisition

To start with, a prototype has been developed over an AVR microcontroller ATMEGA328 based

board that collects data from various sources and transmits data packet over UART interface. The

data is further converted to USB protocol through a FTDI chip. The data obtained over USB is

graphically displayed over a GUI developed on an open source software “Processing”. Hence,

this setup prepares a complete chain of acquiring data as well as its graphical representation.

Various applications are developed using the data obtained from hardware interface. The

complexity of data acquired and processing involved can be increased as we proceed. It would

help us later in acquiring data from more complex modules for our project.

A simple hardware for data acquisition console is developed using Arduino UNO R3

board as shown in graphical image in figure 5.1 below.

Figure 5.1 Graphical image of Circuit for interfacing Digital switch, Analog POT and
LM35 IC interfaced to Arduino Uno R3 board (image developed using Fritzing)

23 | P a g e

The circuit was then realised using Arduino Uno R3 board and various components such as

LM35 temperature sensing IC and potentiometer. The pin diagram of micro-controller ATMEGA

328 is shown in figure 5.2 below

Figure 5.2 Pin diagram of Atmega328 micro-controller

Actual hardware for setting up a data acquisition chain is as shown in figure 5.3 below. All data

acquired from analog sensors is fed to micro-controller through ADC (Analog to Digital

Convertor). Complete data is then converted into packets and transferred out over serial UART

protocol. UART data is then passed through FTDI chip so as to be sent to a computer over USB.

Figure 5.3 Actual hardware setup for Data Acquisition Console

24 | P a g e

Results obtained from above sensors interfaced to micro-controller board are plotted with respect

to time and results are obtained as shown below.

Figure 5.4 Plot of data obtained from sensors interfaced to micro-controller board

Similar model is applied for acquiring data from ADXL345 module which is explained further in

this thesis.

5.2 I2C protocol for data transfer with I2C scanner

I2C (Inter Integrated Circuit) popularly known as I-squared-C, is a multiple master, multiple

slave, single-ended, serial computer bus designed by Philips Semiconductor. It was primarily

used for attaching low-speed peripherals to computer motherboards and other embedded

systems. I²C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial

Clock Line (SCL), pulled up with resistors. Typical voltages used are +5 V or +3.3 V

The bus has two roles for nodes: master and slave:

 Master node — node that generates the clock and initiates communication with slaves

 Slave node — node that receives the clock and responds when addressed by the master

25 | P a g e

The bus is a multi-master bus which means any number of master nodes can be present.

Additionally, master and slave roles may be changed between messages (after a STOP is sent).

There are four possible modes of operation for a given bus device, although most devices only
use a single role and its two modes:

 Master transmit — master node is sending data to a slave

 Master receive — master node is receiving data from a slave

 Slave transmit — slave node is sending data to the master

 Slave receive — slave node is receiving data from the master

It uses 2 signal lines i.e. SDA (Serial Data) and SCL (Serial Clock). Inter Integrated circuit

communication acts as a link between microcomputer and module to be connected for data

acquisition. I²C defines basic types of messages, each of which begins with a START and ends

with a STOP:

 Single message where a master writes data to a slave;

 Single message where a master reads data from a slave;

 Combined messages, where a master issues at least two reads and/or writes to one or

more slaves.

26 | P a g e

5.2.1 I2C Scanner

I2C bus can be used to interface multiple modules using SCL (Serial Clock) and SDA (Serial

Data) lines. Each module can be accessed individually using address assigned to it. To test this,

an I2C scanner was developed where few I2C based devices were connected on same SDA and

SCA lines from micro-controller. The devices have their unique device ids and can be accessed

by sending address on SDA line. I2C scanner is developed by running a loop for addresses, once

a device is found, it is shown on the screen. The code for I2C scanner is at Appendix A.1. The

result is shown in figure below:-

Figure 5.5 I2C scanner result with two devices connected on bus

27 | P a g e

5.3 ADXL345 interfaced over I2C protocol

For getting acceleration data from X and Y axes of the platform that needs to be stablised, an

ADXL345 module may be placed parallel to its plane. The module is then interfaced to micro-

controller board over I2C protocol as shown in figure below.

Figure 5.6 Hardware setup for ADXL345 interfaced over I2C protocol

5.3.1 Connection of ADXL345 over I2C

With CS tied high to VDD I/O, the ADXL345 is in I2C mode, requires a simple 2-wire

connection, as shown in Figure 5.7. The ADXL345 conforms to the UM10204 I2C-Bus

Specification. It supports standard (100 kHz) and fast (400 kHz) data transfer modes. Single or

multiple-byte reads/writes are supported. With the ALT ADDRESS pin high, the 7-bit I2C

address for the device is 0x1D, followed by the R/W bit. This translates to 0x3A for a write and

0x3B for a read. An alternate address I2C of 0x53 (followed by the R/W bit) can be chosen by

grounding the ALT ADDRESS pin (Pin 12). This translates to 0xA6 for a write and 0xA7 for a

read.

There are no internal pull-up or pull-down resistors for any unused pins; therefore, there is no

known state or default state for the CS or ALT ADDRESS pin if left floating or unconnected. It

is required that the CS pin be connected to VDD I/O and that the ALT ADDRESS pin be

connected to either VDD I/O or GND when using I2C.

28 | P a g e

Figure 5.7 Connection diagram for ADXL345 module interfaced over I2C protocol

Due to communication speed limitations, the maximum output data rate when using 400 kHz I2C

is 800 Hz and scales linearly with a change in the I2C communication speed. For example, using

I2C at 100 kHz would limit the maximum ODR to 200 Hz. Operation at an output data rate above

the recommended maximum may result in undesirable effect on the acceleration data, including

missing samples or additional noise.

If other devices are connected to the same I2C bus, the nominal operating voltage level of these

other devices cannot exceed VDD I/O by more than 0.3 V. External pull-up resistors, RP, are

necessary for proper I2C operation.

Figure 5.8 Register map for ADXL345 module

29 | P a g e

5.4 Development of simulation program

Simulation program is developed for obtaining data from ADXL345 module using following

algorithm:-

a) Start communication over I2C bus.

b) Initialise ADXL345 module.

c) Read raw acceleration values from ADXL345 module.

d) Convert the raw acceleration values into corresponding acceleration due to gravity (g) values.

e) Apply the formulae to convert acceleration into Roll and Pitch values.

f) Calculate the angle required for movement of planes of platform in opposite direction.

g) Transfer angle of rotation to servo motors in X and Y axes.

5.4.1 Initialising ADXL345 module

For initialising the module, I2C protocol is used for communicating with the ADXL345. The

basic principle of communication with device is as following. First, we have to send the address

of register we either want to read or write. Then we send the new values to write in the

corresponding register or request some amount of bytes from the device.

The initialization of ADXL345, consists of three things, enabling measurement mode in register

POWER_CTL, specifying the data format and setting the offset in registers – OFSX, OFSY,

OFSZ.

To start the measurements we just need to set bit 3 in POWER_CTL register, basically we just

write 0x08 to it. The command required to do this is:-

writeTo(ADXL345_POWER_CTL, 0x08);

30 | P a g e

After starting the ADXL345 module, we need to specify the data format. The register

DATA_FORMAT consists of eight bits where each bit corresponds to certain meaning as shown

in table below:

Table 5.1 Contents of DATA_FORMAT register as per ADXL345 datasheet

We need to set only three bits of DATA_FORMAT register D0, D1 and D3 for extracting data

from ADXL345 module.

When FULL_RES bit is enabled, the device will run in full resolution mode, in other words, it

will always maintain 4mG/LSB. No matter what range is specified, one bit will represent 4mG of

acceleration. If it is not enabled the ADXL345 will run in 10-bit mode, and the range bits will

determine how many mg/LSB.

The Range bits basically set the range of the measurements. The table below specifies possible

configurations for range bits:

Table 5.2 D0 and D1 bits for Range setting as per ADXL345 datasheet

5.4.2 Reading the raw acceleration and converting to Gs

After initialising ADXL345 we are ready to read the data from the accelerometer. The

accelerations in raw format are stored in registers – DATAX0, DATAX1, DATAY0, DATAY1,

DATAZ0 and DATAZ1.

31 | P a g e

The results are divided in two 8 bit registers forming 16 bit registers where the format is LSB is

first then followed by MSB. Again the data are stored in two’s compliment format. With I2C

protocol, it is possible to request multiple bytes in one reading session. So to read the data, we

just provided the address of DATAX0 and requested 6 bytes.

After reading raw data from the acceleration, we need to convert them to Gs (acceleration due to

gravity). We now need to multiply the raw data with a a pre-calculated constant, which depends

on our “Range” and “full resolution” settings.

The code snippet for initialising and extracting raw data from ADXL345 module is as shown

below. The data obtained from module is passed through a low pass filter function as discussed

in chapter 3 of thesis. The filtered value is then converted into corresponding G values and

returned to main function for further processing.

AccG ADXL345::readAccG()

{

raw;

raw = readAccel();

double fXg, fYg, fZg;

fXg =raw.x * 0.00390625 + _xoffset;

fYg =raw.y * 0.00390625 + _yoffset;

fZg =raw.z * 0.00390625 + _zoffset;

AccG res;

res.x = fXg * ALPHA + (xg * (1.0-ALPHA));

xg = res.x;

res.y = fYg * ALPHA + (yg * (1.0-ALPHA));

yg = res.y;

res.z = fZg * ALPHA + (zg * (1.0-ALPHA));

zg = res.z;

return res;

}

32 | P a g e

AccelRaw ADXL345::readAccel()

{

readFrom(ADXL345_DATAX0, ADXL345_TO_READ, _buff); //read the

acceleration data from the ADXL345

// each axis reading comes in 16 bit resolution, ie 2 bytes.

Least Significat Byte first!!

// thus we are converting both bytes in to one int

AccelRaw raw;

raw.x = (((int)_buff[1]) << 8) | _buff[0];

raw.y = (((int)_buff[3]) << 8) | _buff[2];

raw.z = (((int)_buff[5]) << 8) | _buff[4];

return raw;

}

33 | P a g e

CHAPTER 6

REALISATION OF ROLL PITCH STABILISED PLATFORM

6.1 Design of a 3-D printed Platform with two axes degree of freedom

For realisation of a Roll Pitch stabilised platform, there should be two degree of freedom so that

the platform can rotate freely on X and Y axes based on input received from the controller. Such

a design for platform was made using Computer Aided Design (CAD) software and the same

was printed using a 3-D printer.

Figure 6.1 3-D printed part to align the platform in X-axis

For designing a 3-D printed part using 3-D printer, Fused deposition modelling (FDM)

technology is used. It requires an STL (Stereo Lithography) file to be generated using any CAD

software. The STL file is then given to the printing software which converts it into G-codes.

34 | P a g e

Figure 6.2 Software for generating G-codes from STL file

The G-code is then converted into a printer specific file which is given to 3-D printer that uses

PLA (Poly Lactic acid) filament to print the 3-D part using layer deposition technique.

The project is an attempt to make a completely indigenised model of roll pitch stabilised

platform. The model can be utilised for actual implementation onboard ships for various systems.

It may not be directly used for weapon platforms as it would involve lot of testing and precision.

However, for certain systems that do not require weapon like precision in stability such as a

satellite TV dish, communication antenna, solar panel etc. may be placed on the platform

stabilised using technique discussed in this thesis.

As shown in figure 6.2 above, the two planes of platform are connected to two servo motors that

are controlled by the micro-controller that receives roll and pitch data from ADXL345 module

interfaced over I2C protocol.

35 | P a g e

6.2 Interfacing servo motors to micro-controller

Another part of this project is interfacing servo motors to the micro-controller that would be

made to rotate in direction opposite to roll and pitch as obtained from the sensor module.

A servo motor consists of following parts:-

a) DC motor

b) Gearing set

c) Control circuit

d) Position sensor

PWM is used for the control signal of servo motors. Unlike DC motors its the duration of

positive pulse that determines the position rather than the speed of servo shaft.

Increasing more than neutral value (pulse dependent on servo which keeps the servo shaft in the

centre position) will make the servo turn clockwise and a shorter pulse will turn the shaft

anticlockwise. The servo control pulse is usually repeated every 20 ms, essentially telling the

servo where to go, even if that means remaining in the same position.

Figure 6.3 Servo motor

36 | P a g e

Servo motors have three wires:

 a) Power

 b) Ground

 c) Control

Figure 6.4 Parts of servo motor

For interfacing servo motors to micro-controller board following schematic is to be referred.

Figure 6.5 Schematic to interface two servo motors to micro-controller board

37 | P a g e

Using above schematic two different servo motors are connected to stabilising platforms in x and

y axes respectively.

Figure 6.6 Actual connection diagram of servo motors interfaced to micro-controller

board

6.3 Negative feedback to servo motors to stabilise platform

The roll and pitch calculated using algorithm described in chapter 3 above is further converted

into angular position that the servo motors needs to be moved in directions opposite to

experienced roll and pitch.

Figure 6.7 Servo motors connected to stabilising platform in X and Y axis

38 | P a g e

6.4 Circuit schematic for development of controller for stabilised platform

The realisation of circuit without using Arduino board was done using ATMEGA328 micro-

controller based board with ADXL345 and servo motors with external power supply. The circuit

is developed using open source software ‘Fritzing’.

Figure 6.8 Circuit schematic for Controller for stabilised platform

39 | P a g e

CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Conclusion

The objective of proving the concept of stabilised platform against roll and pitch experienced by

ship has been achieved. The platform which is free to rotate in two degrees has been controlled

using inputs received from ADXL345 module which constantly updates the acceleration

experienced in X and Y axes and transmits it to micro-controller over I2C protocol. The

controller calculates the equivalent roll and pitch experienced by the ship using algorithm

specified in chapter 4. It then calculates the angle in opposite direction (negative feedback) that

needs to be given to two servo motors connected to X and Y planes of platform and rotates it to

counter roll and pitch thereby keeping the object placed on platform stable.

Realisation of concept was done using Arduino based ATMEGA 328 micro-controller board and

ADXL345 module. The servo motors used for developing the model are 5V rating. However, a

circuit schematic for complete setup developed using micro-controller over printed circuit board,

FTDI chip and 12 V servo motors is suggested in chapter 6.

7.2 Future Work

The future scope of this project would be testing and employing the project onboard naval ships /

submarines and recording the performance. Later, it can be gradually employed for stabilising

some of the ships systems such as satellite dish and solar panels as suggested in chapter 2.

Further, the same setup can be upgraded to develop an Inertial Navigation System (INS) by

interfacing a gyroscope module which would calculate angular momentum in three axes

continuously. The data would be used in coordination with accelerometer data to calculate the

position of vessel in space without any external input using algorithms suggested in [5].

However, as discussed INS is prone to drifting problem and its accuracy is doubtful in long

duration. Hence, it would require lot of testing and tuning before actual deployment onboard

Naval platforms.

40 | P a g e

REFERENCES

[1] Seungbae Lee, Gi-Joon Nam, Junseok Chae, Hanseup Kim and Alan J. Drake, “Two-

Dimensional Position Detection System with MEMS Accelerometer for Mouse

Applications”, Department of EECS, University of Michigan.

[2] Kevin J Walchko and Dr. Paul A.C, “Inertial Navigation”, Florida Conference on Recent

Advances in Robotics, 2002.

[3] Xudong Wang and Li Quan “Filtering the Acceleration Signal in Different Algorithm for

Comparison and Analysis”, IEEE ICCP 2011 Proceedings pp. 171-173.

[4] Guangchun Li, Yunfeng He, Yanhui Wer, “The MEMS gyro stabilized platform design

based on Kalman Filter” in IEEE 978-1-4799-1216-2/13, pp. 14 – 17, 2013.

[5] Qu Pingping, Fu Li, Zhao Xin, “Design of Inertial Navigation System Based on

Micromechanical Gyroscope and Accelerometer”, IEEE 978-1-4244-2723-9/09, pp.

1351-1354, CCDC 2009.

[6] Tao Liu, Yoshio Inoue and Kyoko Shibata, “A Novel Motion Sensor with Nine Degrees

of Freedom”, 4th International Conference on Biomedical Engineering and Informatics,

2011.

[7] Alexandre Patarot, Mehdi Boukallel and Sylvie Lamy-Perbal, “A Case Study On Sensors

And Techniques For Pedestrian Inertial Navigation”, IEEE 978-1-4799-0916-2/14, 2014

41 | P a g e

APPENDIX A

A.1 I2C scanner code developed over Arduino IDE

#include <Wire.h>
void setup()
{
 Serial.begin (115200);

 while (!Serial)
 {
 }

 Serial.println ();
 Serial.println ("I2C scanner. Scanning ...");
 byte count = 0;

 Wire.begin();
 for (byte i = 8; i < 120; i++)
 {
 Wire.beginTransmission (i);
 if (Wire.endTransmission () == 0)
 {
 Serial.print ("Found address: ");
 Serial.print (i, DEC);
 Serial.print (" (0x");
 Serial.print (i, HEX);
 Serial.println (")");
 count++;
 delay (1);
 } // end of good response
 } // end of for loop
 Serial.println ("Done.");
 Serial.print ("Found ");
 Serial.print (count, DEC);
 Serial.println (" device(s).");
} // end of setup

void loop()
{
}

42 | P a g e

A.2 Program code to read raw X,Y,Z acceleration values of
ADXL345

/* Program to initialise control registers of ADXL345
 Register 0x31 = 0x0B
 Register 0x2D = 0x08
 Register 0x2E = 0x80
 and read RAW X,Y,Z data */

#include <Wire.h>

int data=0;

void setup()
{
 Serial.begin (115200);

 Wire.begin();
 Serial.println("Regsiters Status before---");
 read_ADXL345();

 Wire.beginTransmission(0x53);
 Wire.write(0x31);
 Wire.write(0x0B);
 Wire.endTransmission();

 Wire.beginTransmission(0x53);
 Wire.write(0x2D);
 Wire.write(0x08);
 Wire.endTransmission();

 Wire.beginTransmission(0x53);
 Wire.write(0x2E);
 Wire.write(0x80);
 Wire.endTransmission();
 delay(250);

 Serial.println("Regsiters Status After---");
 read_ADXL345();
}
void read_ADXL345()
 {
 for(int i=0;i<=127;i++)
 {
 Wire.beginTransmission(0x53); // Address of ADXL345
 Wire.write(i);
 Wire.endTransmission();

43 | P a g e

 Wire.requestFrom(0x53,1);
 if (Wire.available())
 data=Wire.read();

 Serial.print("Register No. ");
 Serial.print(i,HEX);
 Serial.print(" --Data= ");
 Serial.print(data,HEX);
 Serial.println();
 }
 }

void loop()
{
 Wire.beginTransmission(0x53); // Address of ADXL345
 Wire.write(0x32);
 Wire.endTransmission();
 Wire.requestFrom(0x53,1);
 if (Wire.available())
 data=Wire.read();

 Serial.print("X0=");
 Serial.print(data,HEX);
 Serial.println();

 Wire.beginTransmission(0x53); // Address of ADXL345
 Wire.write(0x34);
 Wire.endTransmission();
 Wire.requestFrom(0x53,1);
 if (Wire.available())
 data=Wire.read();

 Serial.print("Y0=");
 Serial.print(data,HEX);
 Serial.println();

 Wire.beginTransmission(0x53); // Address of ADXL345
 Wire.write(0x36);
 Wire.endTransmission();
 Wire.requestFrom(0x53,1);
 if (Wire.available())
 data=Wire.read();

 Serial.print("Z0=");
 Serial.print(data,HEX);
 Serial.println();
}

44 | P a g e

A.3 Program code to transmit raw X,Y,Z acceleration values
from ADXL345 module

/* Program to Transmit XYZ registers values of ADXL345 over
UART in Comma Separated Values
*/

#include <Wire.h>

int data=0;
int XYZ[3];

void setup()
{
 Serial.begin (4800);

// Write Control registers

 Wire.beginTransmission(0x53);
 Wire.write(0x31);
 Wire.write(0x0B);
 Wire.endTransmission();

 Wire.beginTransmission(0x53);
 Wire.write(0x2D);
 Wire.write(0x08);
 Wire.endTransmission();

 Wire.beginTransmission(0x53);
 Wire.write(0x2E);
 Wire.write(0x80);
 Wire.endTransmission();

 delay(250);

}

45 | P a g e

void loop()
{

 Wire.beginTransmission(0x53); // Address of ADXL345
 Wire.write(0x32); // X0 Reg
 Wire.endTransmission();
 Wire.requestFrom(0x53,1);
 if (Wire.available())
 data=Wire.read();

 XYZ[0]=data;

 Wire.beginTransmission(0x53); // Address of ADXL345
 Wire.write(0x34); // Y0 Reg
 Wire.endTransmission();
 Wire.requestFrom(0x53,1);
 if (Wire.available())
 data=Wire.read();

 XYZ[1]=data;

 Wire.beginTransmission(0x53); // Address of ADXL345
 Wire.write(0x36);
 Wire.endTransmission();
 Wire.requestFrom(0x53,1);
 if (Wire.available())
 data=Wire.read();

 XYZ[2]=data;

 for (int i=0;i<3;i++)
 {
 Serial.print(XYZ[i]);
 Serial.print(",");
 }
 Serial.println();
 delay(500);
}

46 | P a g e

A.4 Processing program code to make GUI to plot acceleration
values

import processing.serial.*;
Serial serial;

String stringAccX, stringAccY;

int width = 800;
int height = 600;

float[] accX = new float[width];
float[] accY = new float[width];

boolean drawValues = false;

void setup() {

size(width, height);

println(Serial.list()); // display connected serial devices

serial = new Serial(this, Serial.list()[0], 115200);
serial.bufferUntil('\n'); // Buffer until line feed

for (int i = 0; i < width; i++) // center all variables
{
 accX[i] = height/2;
 accY[i] = height/2;
}

 drawGraph(); // Draw graph at startup

}

void draw() {

 if (drawValues) {

 drawValues = false;
 drawGraph();

 }

}

47 | P a g e

void drawGraph()

{
 background(255); // White

 for (int i = 0; i < width; i++) {

 stroke(200); // Grey

 line(i*10, 0, i*10, height);

 line(0, i*10, width, i*10);

 }

 stroke(0); // Black

 for (int i = 1; i <= 3; i++)

 line(0, height/4*i, width, height/4*i); // Draw line,
indicating -90 deg, 0 deg and 90 deg

 convert();
 drawAxisX();
 drawAxisY();

}

void serialEvent (Serial serial) {

 // Get the ASCII strings:

 stringAccX = serial.readStringUntil('\t');
 serial.readStringUntil('\t'); // Ignore extra tab
 stringAccY = serial.readStringUntil('\t');
 serial.clear(); // Clear buffer
 drawValues = true; // Draw the graph

}

