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ABSTRACT 
 

 

Modern processor architectures have embraced parallelism as an important pathway to 

increased performance. Now, Central Processing Units (CPUs) improve performance 

resulted by adding multiple cores. Graphics Processing Units (GPUs) have also evolved 

from fixed function rendering devices into programmable parallel processors. As today’s 

computer systems often include highly parallel CPUs, GPUs and other types of 

processors, to take full advantage of these heterogeneous processing platforms, OpenCL 

(Open Computing Language) provides the new way of computing. OpenCL plays a 

significant role in emerging interactive graphics applications which integrates general 

parallel computing algorithms with graphics rendering pipelines. Here GPU computing is 

applied on General Purpose applications that are Key Frame Extraction and Tracking 

Algorithms with the help of OpenCL. 

 

In order to retrieve a particular piece of information in a video, of late, Video 

summarization, aimed at reducing the amount of data that must be examined and that also 

becomes an essential task in applications of video analysis and indexing. Generally, a 

video summary is a sequence of still or moving images, with or without audio. Our work 

is mainly based on acceleration of one such algorithm that utilizes visual summary using 

still images, called key frames, extracted from the video. Here advantages of still images 

is that it can summarize the video content in more rapid and compact way, so users can 

grasp the overall content more quickly from key frames than by watching a set of video 

sequences. In our case we optimized the pre-processing algorithms for image refinement 

using Frequency Selective Weighted Median Filter (FSWM) and feature extraction using 

histogram calculation to accelerate the Key Frame Extraction (KFE) algorithm. The 

optimization is done through general purpose GPU computing using OpenCL 

programming framework. 

 

Other part of our work is related to the acceleration of the feature tracking algorithms. As 

the ability to reliably detect and track human motion is a useful tool for higher-level 

applications, such as image analyzer that rely on visual input, i nteracting with human 

activities are at the core of many problems in intelligent systems, such as human-

computer interaction and robotics. Our work focuses on how to speed up the process of 

KLT (Kanade-Lucas-Tomasi) tracking and how to utilize advantages of FAST (Features 

from Accelerated Segmented Test) algorithm in the KLT tracking. The algorithm (FAST 

and KLT) selects the features that are optimal for tracking and keeps the track of these 

features. 
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ABBREVIATIONS  

 
  
GP   General-Purpose  

GPU         Graphic Processing Unit  

OpenCL       Open Compute Language  

CPU         Central Processing Unit  

CU         Compute Unit  

SIMD        Single Instruction Multiple Data  

SISD         Single Instruction Single Data  

MIMD       Multiple Instruction Multiple Data  

MISD        Multiple Instruction Single Data  

SPMD        Single Process Multiple Data  

SM         Streaming Multiprocessor  

PE          Processing Element  

SM         Streaming Multiprocessor 

API   Application Program Interface 

NDRange  N- Dimensional Range 

DSP   Digital Signal Processors 

KFE   Key Frame Extraction 

FSWM   Frequency Selective Weighted Median Filter  

KLT    Kanade-Lucas-Tomasi 

FAST    Features from Accelerated Segmented Test 
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Chapter-1 
INTRODUCTION 

1.1 Objective 

 
This work is intended to improve the applicability of KFE and KLT algorithms to real 

time scenarios using advantages of GPGPU computing. In this work we shall consider 

parallelizing the iterative components in the implementation of these algorithms over 

GPGPU. Real time applications are often served using embedded devices. The GPU 

architecture - unlike multiprocessing systems is expected to serve as good candidate for 

parallelization because of its availability in embedded devices. 

 

 

1.2 Video Summarization 

 
The growing interest of consumers in the acquisition of and access to visual information 

has created a demand for new technologies to index and retrieve multimedia data. Very 

large databases of images and videos require efficient algorithms that enable fast 

browsing and provide access to the information. In the case of videos, in particular, 

much of the visual data offered is simply redundant, and we must find a way to retain 

only the information strictly needed for functional browsing and querying [1]. 

Video summarization, aimed at reducing the amount of data that must be examined in 

order to retrieve a particular piece of information in a video, is an essential task in video 

analysis and indexing applications. Video summary is basically a sequence of still 

images (creation of the visual summary using still images, called key frames extracted 

from the video) or moving images (when video summarization is achieved using 

moving images usually called video skimming), with or without audio. Users can grasp 

the overall content more quickly from key frames than by watching a set of video 

sequences. In both the approaches images must preserve the overall contents of the 

video with a minimum of data. 

 

One improvement regards the possibility to quickly understand the content of the video 

and select more efficiently what the user is seeking, without having the necessity of 

looking all the content. 

 

1.3 Tracking algorithm 

 
In principle, the stream of images produced by a moving camera allows the recovery of 

both the shape of the objects in the field of view, and the motion of the camera. The 

problem of computing the motion in an image is known as finding the optical flow of 

the image or feature tracking. A feature, or a point of interest, is a point or a set of 

points where an algorithm can look and follow the motion through frames. There are 

several ways to select the features: based on brightness and colors or based on corners 



 

6 | P a g e  
 

and edges detection [2]. Depending on the algorithm that we choose, it will determinate 

in each way the features are selected. 

 

To track features there are essentially two important steps. The first one is to decide 

which features to track, and the second one is the tracking in itself. There are a variety 

of well- under stood techniques for doing so, but the Kanade- Lucas- Tomasi method 

stands out for its simplicity and lack of assumptions about the under lying image [3]. 

 

 

1.4 Organization of Report 

 

 Chapter 2: provides the information regarding need of parallel computing as 

well as use of GPGPU computing for Parallelism. This chapter also gives the 

introduction to OpenCL, the language used to program the GPU for General 

Purpose computing.  

 

 Chapter 3: provides the basic theory required to understand the different 

algorithms, which we have to optimize. Such algorithms are KFE, KLT and 

FAST etc. 

 

 Chapter 4: describes the methodology used for optimization of said algorithms. 

It provides the information of the hardware and software used for our work. It 

gives the information of profiling results applied to the code. 

 

 Chapter 5: gives the results achieved during this work. 

 

 Chapter 6: Concludes our work with the future scope of work that can be done 

for further performance improvements.  
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Chapter-2 

PARALLELISM 
 

2.1 Introduction to Parallel Computing [4] 

Traditionally, software has been written for serial computation:  

 

 To be run on a single computer having a single Central Processing Unit 

(CPU).  

 A problem is broken into a discrete series of instructions.  

 Instructions are executed one after another.  

 Only one instruction may execute at any moment in time.  

 

  
Figure 2.1: Sequential execution of instruction on CPU  
 

In the simplest sense, Parallel Computing is the simultaneous use of multiple 

compute resources to solve a computational problem:  

 

 To be run using multiple CPUs  

 A problem is broken into discrete parts that can be solved concurrently  

 Each part is further broken down to a series of instructions  

 Instructions from each part execute simultaneously on different CPUs  

 

 
Figure 2.2: Parallel execution of instructions on CPUs 
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2.1.1 Advantages of parallel computing 

 

 Save time and/or money: by using more resources at a task will shorten it‟s time to 

completion, with potential cost savings. Parallel computers can be built from cheap, 

commodity components. 

 Solve larger problems: Many problems are so large and/or complex that it is 

impractical or impossible to solve them on a single computer, especially given 

limited computer memory.  

 Provide concurrency: A single compute resource can only do one thing at a time. 

Multiple computing resources can be doing many things simultaneously.  

 

Current computer architectures are increasingly relying upon hardware level parallelism 

to improve performance:  

 Multiple execution units  

 Pipelined instructions  

 Multi-core  
 

As we have seen that parallel computing is the present and future of computing. Future 

microprocessor development efforts will continue to concentrate on adding cores rather 

than increasing single-thread performance. So GPUs that are high performance multi-

core processors can be used to accelerate a wide variety of applications using parallel 

computing, instead of CPUs.  

 

2.2 Parallelism through GPUs  

The highly parallel graphics processing unit (GPU) is rapidly gaining maturity as a 

powerful engine for computationally demanding applications such as- Key Frame 

Extraction, Feature Selection and Tracking Algorithms. The GPU‟s performance and 

potential offer a great deal of promise for today‟s computing systems, because of its 

different architecture and programming model than most other single-chip processors. 

The GPU is designed for a particular class of applications with the following 

characteristics- 

• Computational requirements are large: - A real-time application requires billions of 

pixels per second, and each pixel requires hundreds or more operations. GPUs must 

deliver an enormous amount of compute performance to satisfy the demand of complex 

real-time applications. 

• Parallelism is substantial: - The graphics pipeline is well suited for parallelism.  

 

2.2.1 Classification of Processor Architecture [4] 

 
There are different ways to classify processor architecture. One of the more widely used 

classifications, in use since 1966, is called Flynn's Taxonomy.  
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Flynn's taxonomy distinguishes multi-processor computer architectures according to 

how they can be classified along the two independent dimensions of Instruction and 

Data. Each of these dimensions can have only one of two possible states: Single or 

Multiple.  

The matrix below defines the 4 possible classifications according to Flynn: 

 

 
Figure2.3: Classification of Processor Architecture   

 

1. Single Instruction, Single Data (SISD):  
A serial (non-parallel) computer, Single Instruction: Only one instruction stream is 

being acted on by the CPU during any one clock cycle. Single Data: Only one data 

stream is being used as input during any one clock cycle. It has Deterministic execution.  

 

 Figure2.4: Example of SISD   
 

This is the oldest and even today, the most common type of computers. Examples: older 

generation mainframes, minicomputers and workstations; most modern day PCs.  

 

2. Single Instruction, Multiple Data (SIMD):  

 
A type of parallel computer Single Instruction: All processing units execute the same 

instruction at any given clock cycle, Multiple Data: Each processing unit can operate 

on a different data element.  

 

It is best suited for specialized problems characterized by a high degree of regularity, 

such as graphics/image processing. Most modern computers, particularly those with 

graphics processor units (GPUs) employ SIMD instructions and execution units.  
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Figure2.5: Example of SIMD 
 

3. Multiple Instruction, Single Data (MISD):  

 
A type of parallel computer Multiple Instruction: Each processing unit operates on the 

data independently via separate instruction streams. Single Data: A single data stream 

is fed into multiple processing units.  

 
Figure2.6: Example of MISD  
 

4. Multiple Instruction, Multiple Data (MIMD):  
 

A type of parallel computer Multiple Instruction: Every processor may be executing a 

different instruction stream Multiple Data: Every processor may be working with a 

different data stream.  

 

 

  

 
 

 

 

 

 

 

Figure2.7: Example of MIMD  
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Execution can be synchronous or asynchronous, deterministic or non-deterministic. 

Currently the most common type of parallel computer - most modern supercomputers 

fall into this category.  

Examples: most current supercomputers, networked parallel computer clusters and 

"grids", multi-processor SMP computers, multi-core PCs.  

Note: many MIMD architectures also include SIMD execution sub-components  

 

2.2.2 GPU Computing [5] 

Now that we have seen the hardware architecture of the GPU, we turn to its 

programming model. 

 

A. The GPU Programming Model 

The programmable units of the GPU follow a single instruction multiple-data (SIMD) 

programming model. For high performance, the GPU processes many elements 

(threads) in parallel using the same program (as discussed in section 2.2.1). Each 

element (threads) is independent from the other elements (threads), and elements cannot 

communicate with each other. Each element can operate on 32-bit integer or floating-

point data with a reasonably complete general-purpose instruction set. Elements can 

read data from a shared global memory and can write data to shared global memory. 

Most of programming model is well suited to sequential programs, as many elements 

can be processed sequential manner. Code written in this manner is single instruction, 

single data (SISD). As for GPU programming model, programs have become more 

complex, it allows different elements to take different paths through the same program, 

leading to the more general SIMD model.  

For development of GPU as a General-Purpose (GP) computing engine it is important, 

the advancement of the programming model and programming tools. The perfect 

balance between Low-level access to the hardware, for getting good performance and 

High-level programming languages and tools, for flexibility and productivity is a big 

challenge, for GPU vendors. 

 

B. General-Purpose Computing on the GPU 

 
General Purpose calculations on Graphics Processing Units (GPGPU) is a term that 

refers to using the graphics processing unit (GPU) for general purpose calculations 

instead of graphics rendering. Today GPUs are very powerful devices for faster 

computations. The time has passed when they were only usable for graphics purposes. 

Many efforts to use that calculation power are centered on the term “GPGPU” or “GPU 

Computing”. 

 

GPGPU computing applications are structured in the following way. 

1. The programmer directly defines the computation domain of interest as a 

structured grid of threads.  

2. An SPMD (SIMD) general-purpose program computes the value of each thread. 
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3. The value for each thread is computed by a combination of different math 

operations and both read accesses from and write accesses to global memory. 

Here same buffer can be used for both reading and writing, to allow more 

flexible algorithms.  

4. The resulting buffer in global memory can then be used as an input in future 

computation, which decreases the CPU-GPU memory transfer. 

 

OpenCL and CUDA are the mostly used for writing general purpose programs that 

execute on GPUs without the need to map their algorithms onto a 3D graphics API such 

as OpenGL or DirectX.  

We have used OpenCL for writing general purpose programs to port on GPUs OpenCL 

is an open industry standard for programming a heterogeneous environment of CPUs, 

GPUs and other computing  devices  organized  into  a  single  platform.  

When Apple and Khronos Group made OpenCL as a multi platform standard they had 

one very big and strong rival - CUDA from nVidia corp. Some differences between 

CUDA and OpenCL are listed below. 

 

Table2.1: Differences between CUDA and OpenCL [6] 

1. Based on Terminology 

OpenCL Terminology  CUDA Terminology 

Work-item Thread 

Work-group Thread block 

Local memory Shared memory 

Private memory Local memory, Register 

Compute Unit (CU) Streaming Multiprocessor (SM) 

Processing Element (PE) Streaming Processor (SP) 

barrier() __syncthreads() 

cl_kernel CUfunction 

cl_program CUmodule 
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2. Based on Features 

Feature OpenCL CUDA 

Compilation Method 

 

Online + Offline 

 

Offline only  

 

Mathematical  Precision 

 

Well Defined 

 

Undefined 

 

Math Libraries 

 

Defined Standard  

 

Proprietary 

 

CPU Support 

 

OpenCL CPU Device 

 

No CPU Support 

 

Native Task Support Task parallel compute 

model 

No native thread 

support 

Extension Mechanism 

 

Defined Mechanism 

 

Proprietary 

 

Vendor Support Industry- Wide support NVIDIA only 

 

2.3 OpenCL – Portable Parallelism 

The OpenCL is an open and royalty-free parallel computing API that allows GPU‟s and 

other coprocessors to work with the CPUs to provide additional raw computing power. 

Thus OpenCL is an open industry standard for programming a heterogeneous 

environment of CPUs, GPUs and other computing devices organized into a single 

platform.  Due to its broad industry support, OpenCL has the potential to become the de 

facto software for portable multi-core and many-threaded applications. 

The OpenCL standard was suggested by Apple and created by non-commercial 

Khronos Group, which has created own standards.  

2.3.1 Heterogeneous computing 

The use of various types of computational units is called heterogeneous computing. A 

computational unit can be a CPU or a GPU or a special purpose processing unit (such as 

DSPs). As given in the definition of OpenCL it provides heterogeneous environment. 
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Figure 2.8 Heterogeneous computing through OpenCL 

2.3.2 The OpenCL Framework [7] 

 
The OpenCL framework allows applications to use a host and one or more OpenCL 

devices as a single heterogeneous parallel computer system.   

 

The framework contains the following components:   

  

 OpenCL Platform layer: The platform layer allows the host program to 

discover OpenCL devices and their capabilities and to create contexts, through 

device query. 

 

 OpenCL Runtime: The runtime allows the host program to manipulate contexts 

once they have been created.  

  

 OpenCL Compiler: The OpenCL compiler creates program executables that 

contain OpenCL kernels. The OpenCL C programming language implemented 

by the compiler supports a subset of the ISO C99 language with extensions for 

parallelism. OpenCL has well defined IEEE 754 numerical accuracy for all 

floating point operations and a rich set of built-in functions.      
  

2.3.3 The Thought behind OpenCL 

The big idea behind OpenCL is a portable execution model that allows a kernel to 

execute at each point in a problem domain. A kernel is a function or a part of the 

program that runs on GPU. It is identified by the __kernel qualifier applied to any 

function defined in a program. Kernels can operate in either a data-parallel or task-

parallel fashion.  

To describe the core ideas behind OpenCL, we will use a hierarchy of models:  

  

 Platform Model  

http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
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 Memory Model  

 Execution Model  

 Programming Model  
 

1. Platform Model  

 
The Platform model for OpenCL shown in figure 2.9 consists of a host connected to one 

or more OpenCL devices.  An OpenCL device is a collection of one or more compute 

units (CUs) which are further composed of one or more processing elements (PEs). 

Computations on a device occur within the processing elements. The OpenCL 

application submits commands from the host to execute computations on the processing 

elements within a device. The processing elements within a compute unit execute a 

single stream of instructions as SIMD units or as SPMD units. SPMD instructions are 

mainly executed on CPUs while SIMD instructions executed on Vector processors such 

as a GPU or vector unit in a CPU. 

 

 
Figure 2.9 Platform Model 
 

2. Execution Model  
Execution of an OpenCL program occurs in two parts: 

 kernels that execute on one or more OpenCL devices and  

 A host program that executes on the host. 

 

The OpenCL execution model is based on the parallel execution of a computational 

kernel over a 1-D, 2-D, or 3-D grid, or NDRange (“N-Dimensional Range”).The host 

program defines the context for the kernels and manages their execution.  

 

Following are some core OpenCL terms:  

Devices: OpenCL device to execute kernels 

Work item: Kernel instances, called Work-Item. In CUDA these are known as threads. 

This enables to parallelize the execution of the kernels.  
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Kernel: the code for a work item, that execute on one or more OpenCL devices.  

Program: A collection of kernels and other functions.  

Context: The environment within which work items executes, which includes devices 

and their memories and command queues. 

 

Work Group: Work items organized into work groups. 

 

 
Figure2.10: 1D Index Space 
 

The core of the OpenCL execution model is defined by how the kernels execute.  When 

a kernel is submitted for execution by the host, an index space is defined as shown in 

figure 2.10.  Work-item executes for each point in this index space (1-D or N-D as 

shown in figure 2.11) and is identified by its point in the index space, which provides a 

global ID for the work-item.  

 

 
Figure2.11: 2D Index Space 

 

Example: processing a 1024 x 1024 image: 

Global Size (0) = Global Size (1) = 1024 

1 kernel execution per pixel =>1,048,576 total kernel executions 
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Each work-item executes the same code but the specific execution pathway through the 

code and the data can be different for each work-item.  Work-items are organized into 

work-groups. The work-items in a given work-group execute concurrently on the 

processing elements of a single compute unit.  The work-groups provide a more coarse-

grained decomposition of the index space. Work-groups are assigned a unique work-

group ID with the same dimensionality as the index space used for the work-items.  

Work-items are assigned a unique local ID within a work-group so that a single work-

item can be uniquely identified by its global ID or by a combination of its local ID and 

work-group ID.   

Inside the kernel, global coordinates are found by calling get_global_id (index), where 

index is 0, 1, or 2 depending on the dimensionality of the grid. Coordinates local to the 

work-group are found via get_local_id (index). The number of dimensions in use is 

found with get_work_dim (). 

 

 
Figure2.12: Identification of work group and work-item  

 

 
Figure2.13: 2D view of NDRange showing work group and work-item IDs  

 
An NDRange is defined by an integer array of length N specifying the extent of the 

index space in each dimension. Each work-item‟s global ID and local ID are N-

dimensional tuples.  The global ID components are values in the range from zero to the 

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/get_global_id.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/get_local_id.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/get_work_dim.html
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number of elements in that dimension minus one. A complete 3D view of NDRange is 

shown in figure 2.14 

 

 
Figure2.14: 3D view of NDRange showing work group and work-item  

 

3. Memory Model  

  
Work-item(s) executing a kernel have access to four distinct memory regions:  

  

Global Memory:  Accessible to all work items and the host. This memory region 

permits read/write access to all work-items in all work-groups.  Work-items can read 

from or write to any element of a memory object. Reads and writes to global memory 

may be cached depending on the capabilities of the device.   

  

Constant Memory: Visible to all workgroups, read-only. A region of global memory 

that remains constant during the execution of a kernel. The host allocates and initializes 

memory objects placed into constant memory.    

  

Local Memory: A memory region local (shared) to a work-group.  This memory region 

can be used to allocate variables that are shared by all work-items in that work-group.  

It may be implemented as dedicated regions of memory on the OpenCL device.   
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Private Memory: A region of memory private to a work-item. Variables defined in one 

work-item‟s private memory are not visible to another work-item.  
 
Host Memory: Host-accessible 

 

 
Figure2.15: Memory Model of OpenCL 

 

4. Programming Model   

 
OpenCL supports data-parallel and task-parallel programming models, as well as 

hybrids of these models. Of the two, the primary one is the data-parallel model. 

 

1. Data-Parallel Programming Model 

 
In the data parallel programming model, a computation is defined in terms of a 

sequence of instructions that executes at each point in an N-dimensional index space. Or 

can say same independent operations on lots of data. The OpenCL data-parallel 

programming model is hierarchical. The hierarchical subdivision can be specified in 

two ways: 

 

• Explicitly - the developer defines the total number of work-items to execute in 

parallel, as well as the division of work-items into specific work-groups.  

• Implicitly - the developer specifies the total number of work-items to execute in 

parallel, and OpenCL manages the division into work-groups. 



 

20 | P a g e  
 

Examples: 

 

 Modify every pixel in an image with the same filters 

 Update every point in a grid using the same formula 

 

2. Task-Parallel Programming Model 

 
In this model, independent threads can process separate functions. This is equivalent to 

executing a kernel on a compute device with a work-group and NDRange containing a 

single work-item. Parallelism is expressed using vector data types implemented by the 

device, enqueuing multiple tasks, and/or enqueuing native kernels developed using a 

programming model orthogonal to OpenCL. 

 

2.3.4 Structure of OpenCL Programming [7] 

A key point to note is that in OpenCL the compiler is built into the runtime, which 

provides exceptional flexibility and portability as OpenCL applications can select and 

use different OpenCL devices in the system at runtime. It is even possible to create 

OpenCL application executables today that can use - without modification - devices that 

have not even been invented yet! There is two part of OpenCL Programming: 

 

1. OpenCL Host Program 

2. OpenCL GPU Program (Kernel) 

 

2.3.4.1  OpenCL Host Program Flow 

Before, writing the kernel (i.e. the GPU code) we require writing the host program (i.e. 

the CPU code) to use and control the GPU. Host program will initialize  the  GPU;  it  

will  send  data  and  the  kernel  code  to  the  GPU. Afterwards it also instructs the 

GPU to start execution and when the results are ready, it read back the results from the 

GPU. OpenCL makes it easy for multiple implementations of OpenCL to co-exist on 

the same machine. 
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Figure2.16: OpenCL Host Program flow 

 

A Brief description of above process [7] 

1. Platform IDs: (Platform layer) First Step in any OpenCL application 

cl_int err = clGetPlatfromIDs( 

1,     // the number of entries that can added to platforms 

&platforms,   // list of OpenCL found 

&num_platforms  // the number of OpenCL platforms available 

); 

2. OpenCL Device: (Platform layer) Search for OpenCL compute devices in system 

    cl_int err = clGetDeviceIDs( 

    platform_id,  // the platform_id retrieved from clGetPlatformIDs 
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    CL_DEVICE_TYPE_GPU,    // the device type to search for 

    1,    // the number of ids to add to device_id list 

    &device_id,   // the list of device ids 

    &num_of_devices   // the number of compute devices found 

    ); 

3. Creating Context:  Manage command queues, program objects, kernel    objects, 

memory object 

 context = clCreateContext( 

    properties,   // list of context properties 

    1,    // num of devices in the device_id list 

    &device_id,  // the device id list 

    NULL, // pointer to the error callback function (if required) 

    NULL,  // the argument data to pass to the callback function 

    &err   // the return code 

    ); 

4. Creating Command Queue: Allows kernel commands to be sent to  

Compute devices 

command_queue = clCreateCommandQueue( 

   context,   // a valid context 

   device_id,  // a valid device associated with the context 

   0,    // properties for the queue (not used here) 

   &err    // the return code 

   ); 

 

5. Create Program:  

program = clCreateProgramWithSource( 

context,  // a valid context 
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1,  // the number strings in the next parameter 

(const char **) &ProgramSource,  // the array of strings 

NULL,  // the length of each string or can be NULL terminated 

&err   // the error return code 

   );  

6. Building Program Executables: (Compiler) Compile and link program object 

created from step5. 

err = clBuildProgram( 

program,  // a valid program object 

0,  // number of devices in the device list 

NULL,  // device list –NULL means for all devices 

NULL,  // a string of build options 

NULL,  // callback function when executable has been built 

NULL  // data arguments for the callback function 

); 

7. Creating Buffer: (Runtime layer) 

 cl_mem input; 

 input = clCreateBuffer( 

          context, // a valid context 

          CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, // bit- field flag to 

specify the usage of memory 

          sizeof(float) * DATA_SIZE,   // size in bytes of the buffer to allocated 

          inputsrc,  // pointer to buffer data to be copied from host 

         &err  // returned error code 

         ); 

8. Reading/Writing Buffer Objects: (Runtime Layer) 
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 cl_int   clEnqueueReadBuffer ( 

    command_queue,  // valid command queue  

              input,  // memory buffer to write to 

  CL_TRUE,  // indicate blocking write 

   0,  // the offset in the buffer object to write from 

sizeof(float) *DATA_SIZE, // size in bytes of data being read 

host_ptr,   // pointer to buffer in host mem to read data from 

   0,  // number of event in the event list 

   NULL, // list of events that needs to complete before this executes 

   NULL // event object to return on completion 

   ); 

Similarly we can use Writing buffer objects for Read back results. 

9. Creating Kernel: Kernel object encapsulates specified __kernel function along 

with the arguments. Kernel object is what get sent to command queue for 

execution. (Runtime layer) 

  cl_kernel kernel; 

   kernel = clCreateKernel( 

   program,  // a valid program object that has been successfully built 

   "program_name",  // the name of the kernel declared with __kernel 

   &err // error return code 

   ); 

10. Setting Kernel Arguments: Specify arguments that are associated with the 

__kernel function. (Runtime layer) 

 err = clSetKernelArg( 

   kernel,  // valid kernel object 

   0,  // the specific argument index of a kernel 

   sizeof(cl_mem),  // the size of the argument data 
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   &input_data  // a pointer of data used as the argument 

   ); 

 Example Kernel function declaration 

  __kernel Op_square (__global float *a, __global float *result) 

11. Executing Kernel: (Runtime layer) 

 err = clEnqueueNDRangeKernel( 

   command_queue,  // valid command queue 

   kernel,  // valid kernel object 

   1,  // the work problem dimensions 

   NULL,  // reserved for future revision - must be NULL 

   &global,  // work-items for each dimension 

   NULL,  // work-group size for each dimension 

   0,  // number of event in the event list 

   NULL, // list of events that needs to complete before this executes 

   NULL // event object to return on completion 

   ); 

12. Releasing Memory Objects 

 clReleaseKernel(vector_add_k); 

 clReleaseCommandQueue(queue); 

 clReleaseContext(context); 

 clReleaseMemObject(src_a_d); 

 

2.3.4.2 OpenCL GPU(kernel) Program 

 

Main Idea of OpenCL is to replace loops with data-parallel functions (kernels) that 

execute at each point in a problem domain 
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Figure 2.17: Example of a Basic OpenCL Kernel 

Code comparison - note differences 

 Loop over N elements ) N kernel instances execute in parallel 

 Qualifiers: kernel, global 

 Each kernel instance has a global identification number (gid) 

 An argument with __global keyword defines the global memory element of 

OpenCL. 
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Chapter-3 

PROJECT BACKGROUND 

 

3.1 Key Frame Extraction 

In order to extract valid information from video, process video data efficiently, and 

reduce the transfer stress of network, more and more attention is being paid to the video 

processing technology. The amount of data in video processing is significantly reduced 

by using video segmentation and key-frame extraction. Experimental results show that 

the extracted key frames can summarize the salient content of the video and the method 

is of good feasibility, high efficiency, and high robustness. 

 

Key Frame Extraction is a technology that allows summarizing a video in the most 

significant images, improving the organization and discovery of multimedia elements in 

large repositories. The key frame is the frame which can represent the salient content 

and information of the shot. The key frames extracted must summarize the 

characteristics of the video, and the image characteristics of a video can be tracked by 

all the key frames in time sequence. In recent years, many algorithms of key frame 

extraction focused on original video stream. It can introduce processing inefficiency and 

computational complexity when decompression is required before video processing. 

Furthermore, the content of the video can be recognized. A basic rule of key frame 

extraction is that key frame extraction would rather be wrong than not enough. So it is 

necessary to discard the frames with repetitive or redundant information during the 

extraction. 

 

 
Figure 3.1: The basic KFE algorithm from MPEG video stream 
 

The Key Frame Extraction analyzes the images of the video in order to extract 

information about the most relevant images. The analysis is performed by complex 

image analysis that could be improved through optimizations of the most intensive 

algorithms. 

 

3.1.1 Pre-Processing Algorithms for KFE Algorithm 

 

1. Image Refinement using Frequency Selective Weighted Median 

Filter (FSWM) 
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The finest detail in the image only is visible if the image is sharply focused. An image is 

in focus when the maximum detail is visible, focus criteria are often based upon the 

assessment of the difference between the intensity of adjacent pixels. The image is in 

focus when each part of it reaches a local maximum or minimum in intensity. Born and 

Wolf (1980) show the distribution of energy around the focus and it is clear that the 

intensity is a maximum at the focus [8]. 

 

 
Figure 3.2: Sharpness function reaches its optimum at the in-focus image. The goal of the 

autofocus procedure is to find the value of the defocus [9]. 

 

In general focused images have high frequency components than defocused images of 

the scene. Goal of this preprocessing unit for KFE is to find out the high frequency 

components (focus value) of an image by adjusting the Defocus (focusing lens) of the 

camera. A relation between the focus value and the defocus is shown in the figure 3.2. 

 

Here Frequency Selective Weighted Median Filter (FSWM) based focus measure are 

used in the presence of Impulsive noise (IN) as impulsive noise produced by image 

sensors or communication channels, corrupts images in many practical applications. 

This noise may cause miscalculation of sharpness values which, in turn, introduce 

considerable errors in an image. Experimental results show that FSWM based focus 

measure can provide better performance than other focus measures [10]. 

This process necessitates an analytic focus measure which can be used to evaluate the 

sharpness of focus in a part of the image.  

 

A sharpness criterion should: 

 

 Respond to high-frequency variations in image intensity. 

 Be independent from the image content. 

 Be computationally efficient for the real-time implementations. 

 

1.1 Frequency selective weighted median filter (FSWM): 

 
The FSWM based focus measure not only responds to high frequency components of 

the images, but also eliminates the effects of impulsive noise. The high frequency 

content of an image can be measured by a gradient estimator because it is inherently a 

high-pass filter. Therefore, it can measure the sharpness of an image more precisely.  
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The characteristics of the high-pass filter can be improved by a nonlinear weighted 

median (WM) filter. The WM filter can be represented with <W; F>, where W = [w1, w2 

… wm] and F = [f1, f2… fm] are the weight vector and the discrete time continuous 

valued input vector of a WM filter respectively.   

 

The output of the WM filter is computed by repeating each sample fi to the number of 

the corresponding weight wi followed by sorting the resulting array. Then, the median 

value from the expanded vector is chosen. 

 

For example, median {f (i-3), 2 ◊ f (i-2), 3 ◊ f (i), 2 ◊ f (i+1), f (i+4)}, where ◊ is the 

duplicating operator and w ◊ f represents that f is repeated w times. WM filters can be 

linearly combined to form an FSWM filter that can be defined as: 

                           
i

iii FWaH ,    …………… (3.1) 

For getting good sharpness values following high pass filter can be applied using 

Median Filter:  
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 Here Hh and Hv, respectively be FSWM filtering results that are obtained by applying 

the filter using (3.2) to an image along the horizontal and vertical directions. The 

sharpness measure can be defined as: 

       

     
i i
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         ------------------ (3.3)  

 

1.2 Median Filter (MF) 

 
As we have seen from above section that FSWM filtering works in the presence of 

Impulsive noise (IP), so it uses a Median Filter to remove these noise components . A 

Median Filter is high pass filter used in equation (3.2) 

In  median  filtering,  the  neighboring  pixels  are  ranked  according  to  brightness 

(intensity) and the median value becomes the new value for the central pixel or for the 

pixel under evaluation. Median filters can do an excellent job of rejecting certain  types  

of  noise,  in  particular  “shot”  or  impulse  noise  in  which  some individual  pixels  

have  extreme  values.  The median filtering is more robust “average” than the mean, as 

it is not affected by extreme values. Since the output pixel  value  is  one  of  the  

neighboring  values  only,  “unrealistic”  values  are  not created  near  edges.  Since 

edges are minimally degraded, median filters can be applied repeatedly, if necessary. 
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Median filters offer three advantages as compare to the smoothing filters.  

 No  reduction  in  contrast  across  steps,  since  output  values  available  consist 

only of those present in the neighborhood (no averages).  

 Median filtering does not shift boundaries, as can happen with conventional 

smoothing filters (a contrast dependent problem).  

 Since the median is less sensitive than the mean to extreme values (outliers), 

those extreme values are more effectively removed.  

 

1.2.1 How it works  

 
A template of size 3x3, 5x5, 7x7… etc is applies to each pixel of the image. The values 

within this template are sorted and the middle of the sorted list is used to replace the 

templates central pixel: 

  

Figure 3.3: Median Filtering with template size 3x3  

 

(a)                                                          (b) 
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 Figure 3.4: Median Filtering Example (a) 

original image (b) corrupted with 60% noise (c) output from median filter  

2. Histogram Calculation for KFE Algorithm 

2.1 What are histograms? 

 Histograms are collected counts of data organized into a set of predefined bins. 

The Histogram of the image represents the distribution of the pixels in the image 

over the available gray level scale. When the gray level values of the pixels are 

too close together, modification of the image histogram enhances its contrast. 

 When we say data we are not restricting it to be intensity. The data collected can 

be whatever feature we find useful to describe our image. 

For an example, here is a Matrix that contains information of an image (i.e. intensity in 

the range 0- 255): 

 

Figure 3.5: An Image with its pixel values [11] 
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Since the range of information value for this case is 256 values, to count this 

information in an organized way, we can segment our range in subparts (called bins) 

like: 

[0; 255] = [0; 15] U [16; 31] U………………U [240; 255] 

Range = bin1 U bin2 U………………. U binn= 16 

Thus we can keep count of the number of pixels that fall in the range of each bini. By 

applying this to the example shown in above figure 3.5 we can get the image below 

(axis x represents the bins and axis y the number of pixels in each of them). 

 

 

Figure 3.6: Histogram of an Image  

This was just a simple example of how a histogram works and why it is useful. A 

histogram can keep count not only of color intensities, but of whatever image features 

that we want to measure (i.e. gradients, directions). 

Let‟s identify some parts of the histogram: 

1. Dims: The number of parameters you want to collect data of. In above example, dims 

= 1 because we are only counting the intensity values of each pixel (in a grey scale 

image). 

2. Bins: It is the number of subdivisions in each dim. In above example, no of bins = 16 

3. Range: The limits for the values to be measured. In this case: Range = [0,255] 

Histogram for counting two features in the image would be a 3D plot (in which x and y 

would be binx and biny for each feature and z would be the number of counts for each 

combination of (binx; biny). The same would apply for more features. 
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3.2 Introduction to Feature Point tracking  

 
The problem of computing the motion in an image is known as finding the optical flow 

of the image or feature tracking. A feature, or a point of interest, is a point or a set of 

points where an algorithm can look and follow the motion through frames. There are 

several ways to select the features: based on brightness and colors or based on corners 

and edges detection.  

 

To track features there are essentially two important steps. The first one is to decide 

which features to track, which is called by function the 

_KLTSelectGoodFeatures(), and the second one is the tracking in itself. There are 

a variety of well- under stood techniques for doing so, but the Kanade- Lucas- Tomasi 

method stands out for its simplicity and lack of assumptions about the under lying 

image.  

We are going to change the order in the explanation, and we start explaining how the 

tracking works using KLT Tracking, and afterwards how the features are selected, this 

is the main part of this thesis which we have done using FAST DETECTION 

ALGORITHM instead of KLT Detector we explain it in the section 3.3.1. 

 

The simplest algorithm for point feature tracking between two frames of video is as 

follows: 

 

 Choose a small window; say 5 pixels on a side, around a pixel of interest in 

Image A. This pixel of interest will be called pixel x. 

 Let this pixel x in image A moves somewhere in image B at pixel y  

 Finding this new position is called Feature Tracking. 

 y is the pixel of B that is the most “similar” to x, in a constraint neighborhood  

 Translation between x and y = Optical Flow 

 

 
Figure 3.7: Point of interest x in Image A moved to y in Image B 

 For each pixel near x  in Image B , call it pixel y, and perform the following: 

 

 Subtract the value of each pixel in the 5 by 5 region around  pixel 

x from each pixel in  the 5 by 5 region around  pixel y. Square the 

result  of the difference, and  sum these  25  values to produce  a 

„dissimilarity‟  for this choice of pixel y. 
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 The pixel y in image B with the smallest dissimilarity is considered to be 

the new location of pixel x in image A . 

 

 
Figure 3.8: Tracking of interest point using Window of size 5X 5 

3.2.1 Kanade-Lucas-Tomasi Feature Tracking 

 
The following derivation summarizes the iterative step of the Kanade-Lucas-Tomasi 

algorithm [12]. Consider two images, I and J;   here we want to track a feature of known 

location 
Tyxx ],[' in image I to image J, finding its displacement

T

yx ddd ],[ . 

We have window W over which dissimilarity ε between the new and old feature as:  
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To get value of d such that it minimizes we get following expression: 
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In order to solve for d, Taylor series expansion is used by neglecting second order or 

higher derivatives: 
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Equation (3.6) can be approximated as:  
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So above terms can we rearranged as follows:  
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Thus, the expression can be simplified to 2x2 matrix equation,  

  eZd  ,     

---------- (3.12)
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Where Z is a 2x2 matrix, 

    
W

T dxxgxgZ

    ---------- (3.13)

 

And e is a 2x1 vector, 

      dxxgxJxIe
W

  2

   ---------- (3.14)

 

Equation (3.12) allows solving for the approximate displacement of a feature, given 

its starting location and the two images. Since in  our case we are implement ing 

this  algori thm with C/C++ Programming  we consider  i t  with a discrete 

image composed of pixels, then above definitions for Z and e are computed with a 

summation over the window rather than an integral. The x and y image 

derivatives are approximated by convolving the images with a Sobel operator. 

 

Since the above computation for displacement is only an approximate method, it is 

useful to repeat the procedure for much iteration.  If the displacement does not 

converge towards zero after several iterations, the feature is considered lost. For 

features displaced by a large amount, the approximation also breaks down because 

the Taylor series approximation becomes less accurate.   To handle such a case, it 

is best to perform several iterations on versions of the images re-sampled to a 

coarser resolution, followed by several iterations on the full-resolution images. 

 

A final consideration for Kanade-Lucas-Tomasi algorithm is the choice of initial 

features.   It is wasteful to track all pixels of the first image to the second image. A 

more useful approach i s  to track only those pixels which represent sharp and wel l -

defined features [13].  

 

For Selecting Good Features to Track a function _KLTSelectGoodFeatures() is called 

which uses The Eigen values of Z to give us an indication of how successful the 

tracking will be for a given feature.  Large Eigen values indicate a feature that is 

more well-defined than the image noise and can thus be tracked reliably.  Thus, 

when choosing features to track, we sort the pixels in descending order of their 

minimum Eigen value and pick the first N from the list, where N is the number of 

features we wish to track. 

 

Above said method for Selecting Good Features to Track is a typical approach by 

KLT Detector. Here we have replaced this with FAST DETECTION whose 

description is given in the section 3.3.1. 

 

A simple example of this algorithm in operation is shown in Figure 3.9 
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Figure 3.9: An example of the Kanade-Lucas-Tomasi point tracking algorithm in 

operation. Features being tracked are shown as a green dot, with the inter-frame 

displacement shown as a green line. The length of the line is exaggerated to show 

motion.   

 

3.2.2 Difficulties with KLT Tracking Algorithm 

 
Although this algorithm would give us a new position and velocity for the feature 

represented by pixel A, it would suffer from several flaws.   

 

 It would be slow, requiring about a hundreds of  computation for each 

iteration and potentially hundreds of iterations depending on how far we 

want to search or on the image size.   

  The algorithm would only give us the position and velocity of the feature to 

the nearest whole pixel.   

 

The Kanade- Lucas-Tomasi algorithm alleviates these problems by using the 

image‟s gradients to predict the new location of the feature, iterating until the 

new location is converged upon.   

 

As we have discussed above that a small window centered on the desired pixel is 

selected for track the motion of the pixel in successive frames, the size of the window 

have some effects as follows: 
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 Accurate tracking can be done with a small window (small integration area) 

 But difficult to take large motions or strong difference into account 

 Robustness can be addressed with a large window 

 But smoothing effect too strong for accuracy 

 

Pyramidal approach can be used to found a balance between accuracy and robustness, 

between large and small window. So PKLT (Pyramidal Kanade – Lucas - Tomasi) 

algorithm is used instead of KLT. 

 

3.2.3 Pyramidal Kanade - Lucas - Tomasi (PKLT) Algorithm 

 
 An image pyramid is a collection of images - all arising from a single original 

image - that are successively down sampled until some desired stopping point is 

reached. 

 There is Gaussian pyramid is used to down sample images and get 

different level of pyramids. 

 In this algorithm different level of details are used for each image 

 Low detail levels: useful for robustness, large area of original image 

covered by window 

 High detail levels: bring back accuracy with small window relatively to 

image size 

 

 Cascade of filtered images 

 Level 0: original image 

 In practice, 2 to 4 level of details can be used, In our case level=2 is 

used 
 Level m: last level  

 

 Simple example of a Image Pyramid shown in Figure 3.10 
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Figure 3.10: Image Pyramid 

 

In PKLT algorithm original image is converted into pyramids of Level L.  If we define  

u
L
  =  [ux

L
    uy

L
]  as  the  coordinates  of  point  u  on  a first image A [2]. Following the 

equation can be used to define this coordinate as: 

      
L

u
u L 

   ---------- (3.15)

 

 

Thus, the algorithm works as it follows: 

1. The optical flow is computed at the deepest pyramid level Lm, using the classical 

Lucas Kanade optical flow algorithm. 

2. The result is propagated to the upper level Lm-1 in a form of an initial guess for the 

pixel displacement. 

3. The optical flow is computed for the pyramid level Lm-1. 

4. The same procedure until we reach the highest pyramidal level. 

   

3.3 Feature Detection 

A Feature refers to a small point of interest with variation in two dimensions. These 

points may arise from geometric discontinuities. A feature can be called as a corner. 

There are many corner detection algorithms like: 

 

 The Moravec corner detection algorithm [14] 

 The Harris & Stephens / Plessey / Shi-Tomasi corner detection algorithm [15] 

 The SUSAN corner detector [16] 
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 KLT feature detector [17] 

 AST based feature detectors [18] 

 

Here we will not go into the details of each algorithm, but we will consider only AST 

based feature detectors i.e. FAST detector and how it is useful for our work. 

 

3.3.1 FAST: Features from Accelerated Segment Test 

 
The FAST (Features from Accelerated Segment Test) algorithm is a interest point 

identification algorithm based on the work of Rosten and Drummond [19]. An interest 

point in an image is a pixel which has a well-defined position and can be robustly 

detected. Interest points have high local information content and they should be ideally 

repeatable between different images. Interest point detection has applications in image 

matching, object recognition, tracking etc. 

 

This is a corner detection algorithm based on segment test method. The Segment test 

algorithm works as follows: 

 

 The Segment test criterion operates by considering a circle (This is a Bresenham 

circle) of 16 pixels around the corner candidate P.  

 Let intensity of the point P is Ip. 

 There is a threshold intensity value say, T is set. (It may be 20% of pixel P). 

 The pixel P is said to be a corner if there exists a set of N contiguous pixels in 

the circle which are all brighter than the intensity of the candidate pixel Ip plus a 

threshold T, or all darker than Ip – T. 

These conditions can be written as: 

 

Condition 1: A set of N contiguous pixels S, 

   X Є S, Ix > Ip + T 

 

   Where Ix =Intensity of pixel X 

 

Condition 2: A set of N contiguous pixels S,  

   X Є S, Ix < Ip - T 

 

The value of N was originally [20] chosen to be twelve because it gives a high-speed 

test which can be used to exclude a very large number of non-corners.  

 

3.3.2 High Speed Test or Accelerated Segment Test 

 
To make the algorithm fast it performs following steps: 

 

 It takes 4 pixels of the circle as test pixels, namely pixel 1, 9, 5 and 13. 
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 Firstly it takes pixels 1 and 9. If both of these are within [Ip - T, Ip + T], then P 

cannot be a corner. If P can still be a corner, pixels 5 and 13 are examined. 

 

 At least three of these four pixels should satisfy the above two conditions so that 

the interest point will exist. 

 

 The full segment test criterion (above procedure) can then be applied to the 

remaining candidates by examining all pixels in the circle. 

 

The following figure 3.11 explains the algorithm: 

 

The green square is the pixel under consideration. The red squares which come on the 

circumference of the circle are the pixels which are compared with that of green pixel 

(P), the intensities are compared and then decide whether the pixel is the potential pixel 

or not. 

 
 

Figure 3.11: Corner detection using FAST 

This detector in itself exhibits high performance, but there is a problem with this 

approach is multiple features are detected adjacent to one another. This can be removed 

by Non Maximal Suppression method.  

 

3.3.3 Non Maximal Suppression for removing adjacent corners [21]  

 
Detection of multiple interest points adjacent to one another is can be dealt with by 

applying non maximal suppression after detecting the interest points. 

 

The algorithm is described below: 

1.  Compute a score function V for each of the detected points. The score function is 

defined as: “The sum of the absolute difference between the pixels in the contiguous arc 

and the centre pixel”. 
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2.  Consider two adjacent interest points, compare their V values. 

3.   Discard the one with the lower V value. 

 

The entire process can be summarized mathematically as follows: 

 

   

   













T

T
V

valuePif       ;       valuesPixelP

Pvalueif       ;      P valuesPixel
max

-------- (3.16)

 

Where, P is the centre pixel, T is the threshold for detection and pixel values correspond 

to the N contiguous pixels in the circle. 

 

The score function can be defined in alternate ways as “The key point here is to define a 

heuristic function which can compare two adjacent detected corners and eliminate the 

comparatively insignificant one”. 

 

 
 

Figure 3.12: An image with interest points detected. The green dots show the Non-

maximally suppressed corners.   
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3.3.4 WHY FAST?  
 

1. Repeatability: The Repeatability is computed as the number of corners per 

frame is varied. For example if every pixel is detected as a corner, then the 

repeatability is 100%. 

As the number of corners per frame is increased, all of the other detectors, at 

some point, suffer from decreasing repeatability. This effect is least pronounced 

with the FAST9 detector [19]. Here 9 represent the no of contiguous pixels to be 

tested. 

 

2. Numbers of Frames Processed Per Second: as the name suggest,  The 

numbers of frames processed per second in detection using FAST is far better 

than that of other detectors, which is the biggest advantage of this algorithm 

Therefore, we switched to FAST rather than using KLT in our project will be 

discussed in next section of our thesis. 
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Chapter-4  
METHODOLOGY USED FOR OPTIMIZATION 

 

To perform Optimization (Acceleration) of said algorithms first of all we need some 

hardware and software specification. Such specifications are listed below as. 

4.1 Development Platform  

4.1.1 Hardware Used 

 
CPU Used  :  Intel(R) Xeon(R) CPU E5504 @ 2.00GHz 

GPU Used  :  NVIDIA Quadro NVS 295 

  GPU Used  :  NVIDIA Quadro FX 4600 
 

4.1.2 Software Used 

 
Table 4.1: Software used 

 
Operating System  :         Ubuntu Linux version 2.6.38-8-generic  

Compiler   : Gcc 4.5.2                                           

Debugging Tool  : Gdb 7.2  

Profiling Tool   : Valgrind 3.6.1, gprof, Graphviz2.28.0 

NVIDIA OpenCL SDK : OpenCL Library  

Eclipse IDE   : Helios                                                 

Scripting Tool   : python 2.7.1 

 

 

4.2 Environment Setup 

 
The environment setup involved primarily of installing the following: 

 

 NVIDIA driver toolkit 

 NVIDIA CUDA SDK (which includes OpenCL library) 

 OpenCV 2.2.0 

 Eclipse IDE for source development 

 

Further for profiling the software we need: 

 Valgrind 

 Graphviz 
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4.3 Specifications 

 

4.3.1 CPU Specifications 
 

Code is implemented on an Intel Xeon Processor having 8 CPU cores, below 

specification are for 0
th

 core, for other cores of the processor specification are exactly 

same. 

 

Table 4.2: CPU Specifications 

 

Processor  : 0 

Vendor_id  : Genuine Intel 

CPU family       : 6 

model   : 26 

model name  : Intel Xeon CPU E5504 @ 2.00GHz 

stepping  : 5 

CPU MHz  : 1995.207 

cache size  : 4096 KB 

physical id  : 1 

siblings  : 4 

core id  : 0 

CPU cores  : 4 

  

 

4.3.2 GPU Specifications 

 

GPU that has been used for the development of the project is NVIDIA 

Graphics Processor named (Quadro NVS 295)   

 
Table 4.3: OpenCL Software information 

 
CL_PLATFORM_NAME  : NVIDIA CUDA 

CL_PLATFORM_VERSION  : OpenCL 1.0 CUDA 4.0.1 

OpenCL SDK Revision  : 5985201 
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Table 4.4: OpenCL Device information 

 

CL_DEVICE_NAME    : Quadro NVS 295 

CL_DEVICE_VENDOR   : NVIDIA Corporation 

CL_DEVICE_TYPE    :          CL_DEVICE_TYPE_GPU 

CL_DRIVER_VERSION     : 275.28 

CL_DEVICE_MAX_COMPUTE_UNITS   : 1 

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS : 3 

CL_DEVICE_MAX_WORK_ITEM_SIZES  : 512 / 512 / 64  

CL_DEVICE_MAX_WORK_GROUP_SIZE  : 512 

CL_DEVICE_MAX_CLOCK_FREQUENCY  : 1300 MHz 

CL_DEVICE_ADDRESS_BITS    : 32 

CL_DEVICE_MAX_MEM_ALLOC_SIZE   : 128 MB 

CL_DEVICE_GLOBAL_MEM_SIZE   : 255 MB 

CL_DEVICE_ERROR_CORRECTION_SUPPORT : no 

CL_DEVICE_LOCAL_MEM_TYPE   : local 

CL_DEVICE_LOCAL_MEM_SIZE   : 16 KB 

CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE : 64 KB 

CL_DEVICE_IMAGE_SUPPORT    : 1 

CL_DEVICE_MAX_READ_IMAGE_ARGS  : 128 

CL_DEVICE_MAX_WRITE_IMAGE_ARGS  : 8 

CL_DEVICE_COMPUTE_CAPABILITY_NV  : 1.1 

NUMBER OF MULTIPROCESSORS   : 1 

NUMBER OF CUDA CORES    : 8 

CL_DEVICE_REGISTERS_PER_BLOCK_NV  : 8192 

CL_DEVICE_WARP_SIZE_NV    : 32 

CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV  : CL_TRUE 

CL_DEVICE_INTEGRATED_MEMORY_NV  : CL_FALSE 

CL_DEVICE_PREFERRED_VECTOR_WIDTH_<t> : CHAR 1, SHORT 1, 

INT 1, LONG 1, FLOAT 1, DOUBLE 0 

 

 
After selecting the appropriate Platform for our work, first we have to find the parts of 

the algorithm that to be optimized. Parts of the algorithms which are most time 

consuming are selected for optimization or to port on GPU to take advantage of the 

GPGPU computing.  

 

4.4 Constraints in Optimization 
 

For optimization of the code using OpenCL there are certain constraints which we have 

to follow as: 
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 We can‟t switch the sequence of instructions in code 

 numerical exactness is the primary concern 

 Software to be implemented as a linkable library:  

 Modularity has to be preserved,  

 Each routine must serve as its stand alone service. 

 We can‟t port the entire code on GPU 

 contains chunks of sequential code which might slow down 

drastically on GPU  

 We can‟t depend on GPU local memory 

 OpenCL is a heterogeneous platform includes embedded GPUs 

which lack local memory 

 Comparison with highly optimized code 

 O3 compilation: This enables more than 60 optimization options [22] 

gcc compiler. 

 

4.5 Optimization Strategy  

 
 For optimization we need those functions in the code that are consuming larger 

computational time and to that part we apply optimizing strategies, we achieve 

this by the timing analysis of the code with help of Profiling.  

 

 Profiling code is a useful way to find frequently called routines in the 

application. In a lot of cases, it is possible to make applications run significantly 

faster, just by analyzing where the slowdowns are occurring and optimizing that 

code. 

 

 Testing of implementation is done on a GPU that has 8 cores only to ensure the 

robustness to hardware changes. 

 

4.6 Profiling Procedure 

 
For generating a profile data of the code we use both gprof as well as call grind tools. 

 

4.6.1 Profiling with gprof 
 

 First we compiled the source code with –pg. 

 When we execute the code, we get gmon.out that contains the information about 

the profiling data.   

 Then we need the gprof tool to read the gmon.out file using following command 

line: ( gprof  executable file  gmon.out)  

 Profiling output using gprof is in tabular form, in which most time consuming 

function is listed first then other functions are tabulated in decreasing order of 

their time consumption. This tabular output is called as Call Graph.  
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4.6.2 Profiling with Valgrind [23] 

 
 Valgrind provides a profiling tool called Callgrind. 

 It gives the Call graph & number of cycles spent in each function with number 

of times each function is called whereas gprof gave call graph + time spent in 

each function without the CPU cycles. 

 To generate a profile, execute the following command: 

 

valgrind –tool = callgrind Execution_command 

 The result will be stored in a callgrind.out.XXX file where XXX will be the 

process identifier.                                                                                    

 Another tool we have used, to visualize profiling data is the gprof2dot.py python 

script [24]. It can be used to visualize several different formats: "This is a 

Python script to convert the output from prof, gprof, oprofile, Shark, and python 

profilers into a dot graph.   

 We also use the graphviz [25] (reads dot format only) to get the image 

representation in order to view the callgraph. This is done with command line: 

 

python gprof2dot.py -f callgrind callgrind.out.xxx | ./dot -Tpng -o 

filename.png 

 

By the use of Valgrind and callgrind we get a graphical representation of the profiling 

data, so it makes easy to find the most time consuming routine easily.  

 

 
Figure4.1: Profiling Procedure
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4.7 Profiling Output of KFE Algorithm 

 

 

Figure 4.2 Profiling Output of KFE 
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4.8 Acceleration of KFE  
 

 To accelerate the KFE algorithm firstly we have profiled the code using above 

procedure. 

 After profiling, approx 97% of the execution time of the program was found to 

spent in the _KeyFrmExtr_Module as shown in figure 4.2.  

 In this module most computation intensive functions are: 

 Blurred_tag  

 getFSWM  

o get_focus  

 median 

 MonotoneFilter  

 _CalcHist_imgyuv  

o _CalcCumulHist  

 

Here application of routines FSWM, focus, median and Calchistogram are already 

discussed in chapter3. So here we will look at how these functions can we optimized 

using OpenCL. 

 

4.8.1 Optimization of get_focus routine 

 
For optimizing get_focus routine we wrote a kernel (example shown if figure 2.17) 

which is ported on GPU to get required speedup and we have followed following steps: 

 

 Whenever a routine is called the following process is be repeated 

 GPU is initialized (only for the first call) 

 Input data is transferred to the GPU 

 Kernel is executed for corresponding number of threads 

 Results are read back into RAM 

This procedure is same as given in figure 2.16 

 In the function, get-focus there is a for-loop to get focus value of each pixel in 

the image by using the median filtering. 

 We removed that for-loop in the GPU kernel and now numbers of threads 

running are equivalent to the number of pixels in the image i.e. each pixel is 

executed on each single thread. 

 All threads are independent; read inputs & write output to global memory; 

caching to local memory avoided for heterogeneity. 

 

4.8.2 Optimization of getFSWM routine 

 
After the previous step we get the focus value of each pixel in the image that is stored 

on GPUs global memory. Now we have to add all these value to get Sharpness values of 

complete image. If we done it on sequentially or using CPU, it takes time. So, we tried 
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different methods for the summation in the second kernel in order to maximize the 

speedup. There are two methods for this addition. 

a. Parallel Reduction  b. Vectorization 

 

1.  Parallel Reduction 

 
Parallel Reduction is the technique which reduces a set of numbers to a single value, 

e.g. find sum of all elements in an array. 

 

 
Figure 4.3 parallel reduction techniques 
 

 As shown in figure initially we have input array (of focus values) that is output 

of first Kernel saved on global memory of GPU. 

 This array is divided into no of workgroups. Firstly each element (work-item) in 

workgroup is saved on the local memory of GPU. 

 Then half no of elements in the workgroup is added to other half no of elements 

as shown in figure 4.3 

 Above divide and add procedure is carried on until we get final sum. 

 This sum is saved on global memory of GPU at workgroup id corresponding to 

particular workgroup. 

 Above procedure is executed for each workgroup in parallel and corresponding 

sum is saved at their workgroup id. 

 The final value can we get by adding all of the values saved on workgroup ids. 
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 Because in this method local memory is used that reduces the timing for data 

read and write on GPU it is a faster process with utilizing parallel execution for 

each workgroup. 

 

As we have seen that the parallel reduction technique is giving faster results, but we 

can‟t use this method because it has certain disadvantages as: 

   

  It uses local memory for speedup process which is not possible for us. As 

mentioned (section 4.4), there is certain constraints, so we can‟t use local 

memory. We have to use Global memory which is slower than local memory. 

 There must be a proper synchronization at each level of the reduction so that all 

the parallel threads can complete its work before going to next level of reduction 

as shown in figure 4.3. In standard format Local memory fencing (barrier) is 

used for this synchronization. But again due to constraint to use this code on 

Embedded Platform, we can‟t use local memory fencing. So we have used the 

Global memory fencing {barrier (CLK_LOCAL_MEM_FENCE)} which also 

reduces the speed of the reduction process.    

As we can‟t use local memory as well as local memory fencing parallel reduction with 

Global memory use can‟t give required speedup for getFSWM. So here we have used 

the Vectorization method of OpenCL. 

 

2. Vectorization 

 
Vectorization is the process of combining some scalar data types together as vector data 

types for computation in the kernel which speedup the execution of the kernel program. 

Built-in vector data types are supported by the OpenCL implementation. The vector 

data type is defined with the type name i.e. char, uchar, short, ushort, int, uint, float, 

long, ulong followed by a literal value n that defines the number of elements in the 

vector. Supported values of n are 2, 3, 4, 8, and 16 for all vector data types [7].  

 

Example1: char2, char4, float4, float8 etc. 

 

Example2:  

  float4  v, u;  

float   f;  

   

v = u + f;  

  This will be equivalent to  

  

v.x = u.x + f;  

v.y = u.y + f;  

v.z = u.z + f;  

v.w = u.w + f;  

And  

 float4  v, u, w;  
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w = v + u;  

 Will be equivalent to  

  

w.x = v.x + u.x;  

w.y = v.y + u.y;  

w.z = v.z + u.z;  

w.w = v.w + u.w;  

 

To utilize vector data types in the kernel Vector Data Load and Store Functions are 

used. These allow us to read and write vector types from a pointer to memory. 

Functions used for this are: 

vloadn   Read vectors from a pointer to memory. 

vstoren   Write a vector to a pointer to memory. 

 

 We took the advantage of the vector load (vload8) and store (vstore8) 

capabilities of the GPU.  

 In the second kernel for getting complete sharpness value of image we are 

reading the eight focus values together and summing them to one value in one 

GPU cycle. Similarly, reading another eight values in one GPU cycle. Then we 

add up these two values in one cycle. 

 In this way, we achieved the summation of sixteen values in 3 cycles instead of 

16 cycles, hence reducing computational time. 

 

By using Vectorization we achieved good results than Parallel reduction. 

 
4.8.3 Optimization of _CalcCummlHist routine 
 

 One kernel thread is executed for 240 pixel(= Image height). Each thread 

calculates the partial histogram of 240 pixel values.  

 OpenCL datatype float8 has been used  

 To take advantage of the vector load and store capabilities of the GPU. 

Thus, 8 values are loaded and divided in parallel to calculate histogram.  

 Then partial histograms of each thread are further accumulated at the CPU to get 

complete Histogram. 

 Although we didn‟t get the expected speedup because the partial histograms are 

inherently dependent on each other. 

4.9 Acceleration of KLT 

 To accelerate the KLT algorithm firstly we have profiled the code using above 

procedure given in section 4.6.2. 

http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/vloadn.html
http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/vstoren.html
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 Profiling output is shown in figure 4.4. 

 As we can see from the call graph, the majority of the computing time is taken 

up by the two functions KLTTrackFeatures() and KLTSelectGoodFeatures() 

( which is called by KLTReplaceLostFeatures() ) and _dodetection(). 

 

Figure 4.4: Profiling output of KLT  
 

 During tracking sometimes there is a loss of some features due to a large 

residue, drifting out of bounds or because the computation fails for some reason 

etc. If it is desired to always maintain a certain number of features, then the lost 

features can be replaced by calling KLTReplaceLostFeatures().This function 

calls the function KLTSelectGoodFeatures() to find the lost features in the 

image and place them accordingly in the feature list. Suppose, if k features have 

been lost, the k best features will replace them. 
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 Basically KLTSelectGoodFeature() function is a corner detector which is 

detecting new corners in the image so it can replace the lost one. 

 This function uses the KLT detection algorithm for new corner detection 

algorithm. 

 As seen by the profiling graph KLTSelectGoodFeature() is consuming the 25% 

of total tracking time, so it is not advisable to use such algorithm in Real time 

application which is consuming such time in only replacement of the lost 

feature. 

 As we have discussed about the detection process in last chapter, we know that 

there is a solution for this problem by using the FAST algorithm. 

 FAST algorithm can reduce the time needed for detection process very 

efficiently. 

 

For reduce the time taken for replacing lost features, we have replaced the 

KLTSelectGoodFeature() function with the FAST9() routine and made some changes 

the code required for it. Here 9 is represents the no of contiguous pixels on the 

Bresenham circle. This gives us very good results. 

 

Another problem related to this algorithm is no of feature lost are more than the 

reference code (OpenCV version of KLT, that requires extra time for computation of 

new feature (lost features) by calling detection routine which is not desired. 

 

 By understanding the code thoroughly we got that there can be several factors 

for these feature loss. These factors are as follows: 

 

1. KLT_SMALL_DET: indicates that the feature has been lost due to the 2 

by 2 gradient matrix (as discussed in chapter 3 equation no 3.13 )having a 

small determinant.  

2. KLT_MAX_ITERATIONS: means that the feature has been lost because 

the number of iterations exceeded the maximum allowable (as shown in 

example of KLT in chapter 3).  

3. KLT_OOB: means that the feature has been lost because it was out of 

bounds (i.e., it was too close to the image border).  

4. KLT_LARGE_RESIDUE: means that the feature has been lost because 

the residue between the two feature windows was too large. 

 
Here the tracking formula, Equation (3.12), is used to compute the displacement 

for many iterations of the algorithm. The origin of the starting image is then 

shifted by this displacement so that the tracking equation can be reapplied.  Once 

the displacement converges near zero, tracking is complete (as shown in figure 3.8).  

If it does not converge in a few iterations, the algorithm fails. 

 

The KLT algorithm has several numerical parameters that were chosen for this 

implementation.   The window size was selected to be 7 pixels by 7 pixels.   This 

parameter is the size of the region over which the summations in Equation (3.12) 
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are evaluated. Tracking iterations are carried out until a single iteration has a 

displacement less than 0.1 pixels (min displacement). If 10 iterations (Max Iterations) 

are completed without a displacement less than 0.1 pixels, the feature is discarded. 

 

After a feature is tracked, its residue is computed to determine if the image patch 

roughly matches the original feature. Residue is the absolute sum of the intensity 

difference between a feature x in Image I and the displaced feature in the Image J. 

Formula for residue calculation is 

 

   dxdxIxJ
W

 

   ---------- (3.17)

 

 

If the result divided by the area of the image is greater than 10.0 (max_residue), the 

feature is discarded. 

 

In our case features are lost mostly because of failure of two conditions 

 Max Iterations =10  (in reference code) 

 Max Residue  =10   (in reference code) 

 

By debugging the code and checking the output of the algorithm for different condition 

we analyzed that if we increase the both above conditions up to certain values than there 

is a significant improvement in performance of KLT tracking. 

  

So we have changed the values as: 

Max Iterations =20  

Max Residue  =30  

 

By selecting these values we have reduces the no of feature loss up to certain level so 

there is less no of calls for detection routine, results in reduction of time for tracking 

and detection as well. 

 

One more problem is with this code is no of calls for convolution function. Convolution 

function, which is necessary both to smooth the image and to compute its gradients, is 

called 15 x times per frame during tracking, which consumes lot of time. So another 

task is to reduce the no of calls for this convolution function. 

 

 As we have replaced the KLTSelectGoodFeature() with FAST9() algorithm 

there is a reduction in calls for convolution per frame. Because 

KLTSelectGoodFeature() function is using the convolution function many time 

for replace lost features. 

 

 Convolution is unnecessary when an image sequence is being processed, 

because each image is processed more than once. For example, the features are 

tracked between frames 0 and 1, then between frames 1 and 2, then between 
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frames 2 and 3, etc During each iteration the second image, after being 

processed, can be stored and recalled the next time as the first image. 

 

 The tracking context has a flag called sequentialMode which, when set to 

TRUE, causes KLTTrackFeatures() to store the gradients of the second image, 

along with its smoothed version, into the tracking context. When 

KLTTrackFeatures() is called, it ignores its second parameter and replaces it 

with the previously stored image (except for the first time the function is called, 

in which case it must use both images). The computation is identical, but the 

speed is improved and no of calls for convolution function is reduced 

significantly. 
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Chapter-5 
RESULTS ACHIEVED 

 

5.1 Results for KFE  
 

Table5.1:  KFE Results with 8 core GPU 

 

Kernel name CPU 

cycles 

GPU cycles Total CPU 

Time for 

kernel in 

reference 

code(uSec) 

Total GPU 

Kernel 

Execution 

time (usec) 

Speed up 

CPU/GPU 

(8 core 

GPU) 

Gpu_getFSWM 8.0025 

Mega 

4.3340 

Mega 

 

4000.1 3334.384 1.85 

Gpu_getFSWM_su

m 

1.2756 

Mega 

0.3868 

Mega 

637.8 297.568 3.30 

Gpu_hist_calc 0.8621 

Mega 

1.207 

Mega 

431.001 929.024 0.71 

 

 Here speedup is calculated as the ratio of CPU cycle to GPU cycle. 

 

Actual Speedup = CPU cycle / GPU cycle 

 

 Where GPU cycle = GPU clock frequency * Total GPU Kernel Execution time 

 And  CPU cycle = CPU clock frequency * Total CPU Time for kernel in 

reference code 

 

Note: Above results are obtained with following specifications: 

 Input video: 

  Format   :  YUV 

  Width   : 240 

  Height    : 320 

  FPS   : 15 

  No of frames  : 60 

 

 GPU      :  Quadro 295 (with 8 CUDA cores) 

 GPU clock frequency  : 1.3 GHz 

 CPU clock frequency  : 2.0 GHz 
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Table5.2:  KFE Results with 96 core GPU 

 

Kernel name CPU 

cycles 

GPU cycles Total CPU 

Time for 

kernel in 

reference 

code(uSec) 

Total GPU 

Kernel 

Execution 

time (usec) 

Speed up 

CPU/GPU 

(96 core 

GPU) 

Gpu_getFSWM 8.0025 

Mega 

0.6493 

Mega 

4000.1 541.184 12.38 

Gpu_getFSWM_su

m 

1.2756 

Mega 

0.07257 

Mega 

637.8 60.480 17.57 

Gpu_hist_calc 0.8621 

Mega 

0.92521 

Mega 

431.001 772.768 0.94 

 

 

Note: Above results are obtained with following specifications: 

 

GPU      :  Quadro Fx4600 (with 96 CUDA cores) 

GPU clock frequency  : 1.2 GHz 

CPU clock frequency  : 2.0 GHz 

 

 

5.2 Results for KLT Tracking 

 
As discussed in previous chapter we have replaced KLTSelectGoodFeature() routine 

with FAST9() routine to replace lost feature in frames , so we got following results. 

 

 Time for tracking of all the frames in the video with KLTSelectGoodFeature() = 

127.53 Sec. in reference GPU code. 

 

 Time for tracking of all the frames in the video with FAST9() = 94.43 Sec. 
 

 Thus we get the speedup of 1.35 get as compared to the reference GPU code. 
 

 We get this speedup because there is a reduction in no of calls for convolution 

function by 3 x time so total no of calls to convolution function is reduced to 12 

x from 15 x per frame. 
 

 By the use of Sequential Mode Flag we have used the stored gradients of the 

second image, along with its smoothed version, so there is significant reduction 

in the tracking process as well as reduction in no of calls for convolution 

function. 
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 Now the total tracking time is = 60.67 Sec. with speedup of 2.10 with respect to 

the GPU reference code. 
 

 Total no of convolution function calls reduced to 6 x times than 15 x per frame 

 

Note: Above results are obtained with following specifications: 

 Input video: 

  Format   :  YUV 

  Width   : 480 

  Height    : 640 

  FPS   : 12 

  No of frames  : 194 

 

 GPU     :  Quadro 295 (with 8 CUDA cores) 

 

 Total no of time detection is called in the for complete video in the reference 

GPU code = 159 

 By changing the conditions for maximum iteration (=20) and maximum residue 

(=30) we have reduced no of lost features per frame so there is no need for 

detection of features in most of the frames thus total no of time detection is 

called reduced to  55 , which is a good result compared to reference code. 
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Chapter-6 
CONCLUSION AND FUTURE SCOPE OF WORK 

 

6.1 Conclusion 

As we get the results listed in the table5.1 shows that significant speedup for both 

kernels Gpu_getFSWM and Gpu_getFSWM_sum achieved, by executing it on NVIDIA 

Quadro NVS 295 with 8 cores. 

This speed-up is improved with the increase in number of cores. As shown in table 5.2 

with use of NVIDIA GPU Fx4600 (have 96 cores) speedup is very good for both the 

functions as compared to CPU as well as 8 cores GPU. Further the speed-up shall 

increase with size of input data, more data implies more SIMD processing to be 

exploited.  

 

Most of the time wasted in transfer of input data from RAM to GPU, and reading the 

results back. The communication time is much high on the NVIDIA Quadro NVS 295. 

This is a fairly low-end GPU used with the intention to specially stress test the kernel. 

On high-end GPUs this time would decrease further because of better bandwidth.  

 

Moreover, the KFE algorithm targeted in this work uses the histogram calculation 

which is inherently sequential, thus much speed-up can not be expected. But we can see 

from the results for both GPUs that speedup is approaching nearly equal to 1. So we can 

expect that with further increase in no of core of the GPU will results in the improved 

speedup for histogram calculation too.  

 

From the results we got for KFE algorithm we can conclude that with use of GPGPU 

computing through OpenCL offers good performance improvement most of the time, 

and can we improve further with improvement of the GPU specifications. 
 

From the results of the KLT tracking we find that use of FAST algorithm for the 

detection purpose can improve the performance of the algorithm, timing of the tracking 

as well as reduce the no of calling for undesired convolution function.  

 

There is a significant improvement in the performance of KLT tracking with the change 

in conditions for max iteration and max residue. Thus reduction in no of feature lost in 

the consecutive frames. 

 

 

 



 

62 | P a g e  
 

6.2 Future Scope of Work 

 

With the rising importance of GPU computing, GPU hardware and software are 

changing at a remarkable pace. In the upcoming years, we expect to see several changes 

to allow more flexibility and performance from future GPU computing systems. AMD 

and NVIDIA introduced support for double-precision floating-point hardware. The 

addition of double-precision support removes one of the major obstacles for the 

adoption of the GPU in many scientific computing applications. 

 

In KFE algorithm, after extracting the key frame we have to retrieve the desired 

information from these frames. The method used for the information retrieval is called 

face detection module. So basically KFE is a algorithm used for detection of human 

motion in the sequence of video.  Human motion is detected by face detection in the key 

frame. Here by profiling of the code we get that face detection module is the highly 

time consuming routine of KFE algorithm. In the future face detection module 

(FD_Module) can be optimized with taking all the advantages of the GPGPU 

computing. 

 

In KLT there is large number of memory transfers from Host->GPU and from GPU-

>Host per frame. This is happening because the entire image is written to the GPU and 

the filtered image read out each time there is a filtering operation using the two 

convolution functions. Filtering operations are done for image smoothing and gradient 

calculation at each pyramid level. This could be optimized, for example, by calculating 

the entire pyramid in one launch of the kernel for smoothing and another for gradient 

computation. This needs to be done in future time for getting further optimization of 

KLT algorithm. 
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