

A

DISSERTATION

On

“Acceleration of Key Frame Extraction and Tracking Algorithms

through General Purpose GPU Computing Using OpenCL

Programming Framework”

Thesis submitted in partial fulfillment of the requirement for the degree of

MASTER OF TECHNOLOGY

IN

VLSI DESIGN AND EMBEDDED SYSTEM

Submitted By: -HITESH GARG

University Roll No: (03/VLS/2k10)

Under the Guidance of

Prof. ASOK BHATTACHARYYA

Department of Electronics & Communication Engineering

Delhi Technological University, Delhi.

&

Dr. KAUSHIK SAHA

Principal Member Technical Staff

STMicroelectronics Pvt. Ltd. Greater Noida, India

DEPARTMENT OF ELECTRONICS &COMMUNICATION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY, DELHI

(FORMERLY DELHI COLLEGE OF ENGINEERING)

2010 -2012

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGG

DELHI TECHNOLOGICAL UNIVERSITY, DELHI

(FORMERLY DELHI COLLEGE OF ENGINEERING)

CERTIFICATE

This is certified that the thesis work entitled “Acceleration of Key Frame Extraction

and Feature Tracking Algorithm Through General Purpose GPU Computing using

OpenCL Programming Framework ” is bonafide work carried by HITESH GARG (

Roll No: 03/VLS/2k10) in partial fulfillment for the award of degree of Master of

Technology in VLSI Design and Embedded System of the Delhi Technological

University, Delhi during the year 2010-2012. The project report has been approved as

it satisfied the academic requirements in respect of thesis work prescribed for the Master

of Technology Degree.

Prof. ASOK BHATTACHARYYA

Department of Electronics &

Communication Engineering

Delhi Technological University, Delhi.

Dr. KAUSHIK SAHA

Principal Member Technical Staff

STMicroelectronics Pvt. Ltd., Greater

Noida, India

I | P a g e

ACKNOWLEDEMENT

I would like to dedicate my work to my parents and my brothers, for their constant

prayers and encouragement throughout my life and showing me the silver lining in the

dark clouds.

It has been rightly said, “We are built on the shoulders of others”. For everything I have

achieved, the credit goes to my academic guide, Professor Asok Bhattacharyya,

Department of Electronics & Communication Engineering, Delhi Technological

University. His motivation, support and guidance during this thesis work have been

invaluable.

I would like to sincerely thank my supervisor from industry Dr. Kaushik Saha

(Principal Member Technical Staff, ST Microelectronics Pvt. Ltd. India) for providing

me the opportunity to work on the project providing the facilities at ST Microelectronics

Lab at Greater Noida, India. His constant guidance and invaluable suggestions

throughout the project, specially at critical junctures has led to the successful completion

of this project.

I am very thankful to Prof. Rajeev Kapoor (H.O.D. Department of Electronics &

Communication, Delhi Technological University) and to Prof. S. Maji (Dean IRD, Delhi

Technological University) who have allowed me to do project under the Guidance of

Professor Asok Bhattacharyya in collaboration with ST Microelectronics India.

I wish to express my heartfelt thanks to my colleagues and friends who supported

me in all endeavors I had during thesis work in ST Microelectronics. It has been very

enlightening and enjoyable experience to work with all of them.

Last but not the least I express my gratitude to the almighty for keeping me in good

health and spirits throughout my thesis work.

HITESH GARG

M.Tech (VLSI Design & Embedded System)

University Roll No: 03/VLS/2k10

II | P a g e

ABSTRACT

Modern processor architectures have embraced parallelism as an important pathway to

increased performance. Now, Central Processing Units (CPUs) improve performance

resulted by adding multiple cores. Graphics Processing Units (GPUs) have also evolved

from fixed function rendering devices into programmable parallel processors. As today’s

computer systems often include highly parallel CPUs, GPUs and other types of

processors, to take full advantage of these heterogeneous processing platforms, OpenCL

(Open Computing Language) provides the new way of computing. OpenCL plays a

significant role in emerging interactive graphics applications which integrates general

parallel computing algorithms with graphics rendering pipelines. Here GPU computing is

applied on General Purpose applications that are Key Frame Extraction and Tracking

Algorithms with the help of OpenCL.

In order to retrieve a particular piece of information in a video, of late, Video

summarization, aimed at reducing the amount of data that must be examined and that also

becomes an essential task in applications of video analysis and indexing. Generally, a

video summary is a sequence of still or moving images, with or without audio. Our work

is mainly based on acceleration of one such algorithm that utilizes visual summary using

still images, called key frames, extracted from the video. Here advantages of still images

is that it can summarize the video content in more rapid and compact way, so users can

grasp the overall content more quickly from key frames than by watching a set of video

sequences. In our case we optimized the pre-processing algorithms for image refinement

using Frequency Selective Weighted Median Filter (FSWM) and feature extraction using

histogram calculation to accelerate the Key Frame Extraction (KFE) algorithm. The

optimization is done through general purpose GPU computing using OpenCL

programming framework.

Other part of our work is related to the acceleration of the feature tracking algorithms. As

the ability to reliably detect and track human motion is a useful tool for higher-level

applications, such as image analyzer that rely on visual input, i nteracting with human

activities are at the core of many problems in intelligent systems, such as human-

computer interaction and robotics. Our work focuses on how to speed up the process of

KLT (Kanade-Lucas-Tomasi) tracking and how to utilize advantages of FAST (Features

from Accelerated Segmented Test) algorithm in the KLT tracking. The algorithm (FAST

and KLT) selects the features that are optimal for tracking and keeps the track of these

features.

III | P a g e

ABBREVIATIONS

GP General-Purpose

GPU Graphic Processing Unit

OpenCL Open Compute Language

CPU Central Processing Unit

CU Compute Unit

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

SPMD Single Process Multiple Data

SM Streaming Multiprocessor

PE Processing Element

SM Streaming Multiprocessor

API Application Program Interface

NDRange N- Dimensional Range

DSP Digital Signal Processors

KFE Key Frame Extraction

FSWM Frequency Selective Weighted Median Filter

KLT Kanade-Lucas-Tomasi

FAST Features from Accelerated Segmented Test

1 | P a g e

Contents

 Page

No

ACKNOWLEDGEMENT I

ABSTRACT II

ABBREVIATIONS III

LIST OF FIGURES 3

LIST OF TABLES 4

Chapter 1 INTRODUCTION 5

1.1 Objective 5

1.2 Video Summarization 5

1.3 Tracking Algorithm 5

1.4 Organization of Report 6

Chapter 2 PARALLELISM 7

2.1 Introduction to Parallel Computing 7

 2.1.1 Advantages of parallel computing 8

2.2 Parallelism through GPUs 8

2.2.1 Classification of Processor Architecture 8

2.2.2 GPU Computing 11

2.3 OpenCL – Portable Parallelism 13

2.3.1 Heterogeneous computing 13

2.3.2 The OpenCL Framework 14

2.3.3 The Thought behind OpenCL 14

2.3.4 Structure of OpenCL Programming 20

Chapter 3 PROJECT BACKGROUND 27

3.1 Key Frame Extraction 27

 3.1.1 Pre-Processing Algorithms for KFE Algorithm 27

1

Image Refinement using Frequency Selective Weighted Median

Filter (FSWM) 28

2 Histogram calculation for KFE Algorithm 31

3.2 Introduction to Feature Point tracking 33

3.2.1 Kanade-Lucas-Tomasi Feature Tracking 34

3.2.2 Difficulties with KLT Tracking Algorithm 37

2 | P a g e

 3.2.3 Pyramidal Kanade - Lucas - Tomasi (PKLT) Algorithm 38

3.3 Feature Detection 39

3.3.1 FAST: Features from Accelerated Segment Test 40

3.3.2 High Speed Test or Accelerated Segment Test 40

3.3.3 Non Maximal Suppression for removing adjacent corners 41

Chapter 4 METHODOLOGY USED FOR OPTIMIZATION 44

 4.1 Development Platform 44

4.1.1 Hardware used 44

4.1.2 Software used 44

4.2 Environment setup 44

4.3 Specifications 45

4.3.1 CPU Specifications 45

4.3.2 GPU Specifications 45

4.4 Constraints in Optimization 46

4.5 Optimization Strategy 47

4.6 Profiling procedure 47

4.6.1 Profiling with gprof 47

4.6.2 Profiling with Valgrind 48

4.7 Profiling Output of KFE Algorithm 49

4.8 Acceleration of KFE 50

4.8.1 Optimization of get_focus routine 50

4.8.2 Optimization of getFSWM routine 50

4.8.3 Optimization of _CalcCummlHist routine 53

4.9 Acceleration of KLT 54

 Chapter 5 RESULTS ACHIEVED 58

5.1 Results for KFE 58

5.2 Results for KLT Tracking 59

 Chapter 6 CONCLUSION AND FUTURE SCOPE 61

6.1 Conclusion 61

6.2 Future Scope of Work 62

REFERENCES 63

3 | P a g e

LIST OF FIGURES

Figure No Figure Title Page

No
Figure 2.1 Sequential execution of instruction on CPU 7
Figure 2.2 Parallel execution of instructions on CPUs 7
Figure 2.3 Classification of Processor Architecture 9
Figure 2.4 Example of SISD 9
Figure 2.5 Example of SIMD 10
Figure 2.6 Example of MISD 10
Figure 2.7 Example of MIMD 10
Figure 2.8 Heterogeneous computing through OpenCL 14
Figure 2.9 Platform Model 15
Figure 2.10 1D Index Space 16
Figure 2.11 2D Index Space 16
Figure 2.12 Identification of work group and work-item 17
Figure 2.13 2D view of NDRange showing work group and work-item IDs 17
Figure 2.14 3D view of NDRange showing work group and work-item 18
Figure 2.15 OpenCL Memory Model 19
Figure 2.16 OpenCL Host Program flow 21
Figure 2.17 Basic OpenCL Kernel 26
Figure 3.1 The basic KFE algorithm from MPEG video stream 27
Figure 3.2 Sharpness function graph 28
Figure 3.3 Median Filtering with template size 3x3 30
Figure 3.4 Median Filtering Example 31
Figure 3.5 An Image with its pixel values 31
Figure 3.6 Histogram of an Image 32
Figure 3.7 Point of interest x in Image A moved to y in Image B 33
Figure 3.8 Tracking of interest point using Window of size 5X 5 34
Figure 3.9 An example of the Kanade-Lucas-Tomasi point tracking

algorithm in operation.
37

Figure 3.10 Image Pyramid 39
Figure 3.11 Corner detection using FAST 41
Figure 3.12 An image with interest points detected. 42
Figure 4.1 Profiling Procedure 48
Figure 4.2 Profiling output of KFE 49
Figure 4.3 Parallel reduction technique 51
Figure 4.4 Profiling output of KLT 54

4 | P a g e

 LIST OF TABLES

Table No Table Title Page No
Table2.1 Differences between CUDA and OpenCL 13
Table4.1 Software used 44
Table4.2 CPU Specifications 45
Table4.3 OpenCL Software information 45
Table4.4 OpenCL Device information 46
Table5.1 KFE Results with 8 core GPU 58
Table5.2 KFE Results with 96 core GPU 59

5 | P a g e

Chapter-1
INTRODUCTION

1.1 Objective

This work is intended to improve the applicability of KFE and KLT algorithms to real

time scenarios using advantages of GPGPU computing. In this work we shall consider

parallelizing the iterative components in the implementation of these algorithms over

GPGPU. Real time applications are often served using embedded devices. The GPU

architecture - unlike multiprocessing systems is expected to serve as good candidate for

parallelization because of its availability in embedded devices.

1.2 Video Summarization

The growing interest of consumers in the acquisition of and access to visual information

has created a demand for new technologies to index and retrieve multimedia data. Very

large databases of images and videos require efficient algorithms that enable fast

browsing and provide access to the information. In the case of videos, in particular,

much of the visual data offered is simply redundant, and we must find a way to retain

only the information strictly needed for functional browsing and querying [1].

Video summarization, aimed at reducing the amount of data that must be examined in

order to retrieve a particular piece of information in a video, is an essential task in video

analysis and indexing applications. Video summary is basically a sequence of still

images (creation of the visual summary using still images, called key frames extracted

from the video) or moving images (when video summarization is achieved using

moving images usually called video skimming), with or without audio. Users can grasp

the overall content more quickly from key frames than by watching a set of video

sequences. In both the approaches images must preserve the overall contents of the

video with a minimum of data.

One improvement regards the possibility to quickly understand the content of the video

and select more efficiently what the user is seeking, without having the necessity of

looking all the content.

1.3 Tracking algorithm

In principle, the stream of images produced by a moving camera allows the recovery of

both the shape of the objects in the field of view, and the motion of the camera. The

problem of computing the motion in an image is known as finding the optical flow of

the image or feature tracking. A feature, or a point of interest, is a point or a set of

points where an algorithm can look and follow the motion through frames. There are

several ways to select the features: based on brightness and colors or based on corners

6 | P a g e

and edges detection [2]. Depending on the algorithm that we choose, it will determinate

in each way the features are selected.

To track features there are essentially two important steps. The first one is to decide

which features to track, and the second one is the tracking in itself. There are a variety

of well- under stood techniques for doing so, but the Kanade- Lucas- Tomasi method

stands out for its simplicity and lack of assumptions about the under lying image [3].

1.4 Organization of Report

 Chapter 2: provides the information regarding need of parallel computing as

well as use of GPGPU computing for Parallelism. This chapter also gives the

introduction to OpenCL, the language used to program the GPU for General

Purpose computing.

 Chapter 3: provides the basic theory required to understand the different

algorithms, which we have to optimize. Such algorithms are KFE, KLT and

FAST etc.

 Chapter 4: describes the methodology used for optimization of said algorithms.

It provides the information of the hardware and software used for our work. It

gives the information of profiling results applied to the code.

 Chapter 5: gives the results achieved during this work.

 Chapter 6: Concludes our work with the future scope of work that can be done

for further performance improvements.

7 | P a g e

Chapter-2

PARALLELISM

2.1 Introduction to Parallel Computing [4]

Traditionally, software has been written for serial computation:

 To be run on a single computer having a single Central Processing Unit

(CPU).

 A problem is broken into a discrete series of instructions.

 Instructions are executed one after another.

 Only one instruction may execute at any moment in time.

Figure 2.1: Sequential execution of instruction on CPU

In the simplest sense, Parallel Computing is the simultaneous use of multiple

compute resources to solve a computational problem:

 To be run using multiple CPUs

 A problem is broken into discrete parts that can be solved concurrently

 Each part is further broken down to a series of instructions

 Instructions from each part execute simultaneously on different CPUs

Figure 2.2: Parallel execution of instructions on CPUs

8 | P a g e

2.1.1 Advantages of parallel computing

 Save time and/or money: by using more resources at a task will shorten it‟s time to

completion, with potential cost savings. Parallel computers can be built from cheap,

commodity components.

 Solve larger problems: Many problems are so large and/or complex that it is

impractical or impossible to solve them on a single computer, especially given

limited computer memory.

 Provide concurrency: A single compute resource can only do one thing at a time.

Multiple computing resources can be doing many things simultaneously.

Current computer architectures are increasingly relying upon hardware level parallelism

to improve performance:

 Multiple execution units

 Pipelined instructions

 Multi-core

As we have seen that parallel computing is the present and future of computing. Future

microprocessor development efforts will continue to concentrate on adding cores rather

than increasing single-thread performance. So GPUs that are high performance multi-

core processors can be used to accelerate a wide variety of applications using parallel

computing, instead of CPUs.

2.2 Parallelism through GPUs

The highly parallel graphics processing unit (GPU) is rapidly gaining maturity as a

powerful engine for computationally demanding applications such as- Key Frame

Extraction, Feature Selection and Tracking Algorithms. The GPU‟s performance and

potential offer a great deal of promise for today‟s computing systems, because of its

different architecture and programming model than most other single-chip processors.

The GPU is designed for a particular class of applications with the following

characteristics-

• Computational requirements are large: - A real-time application requires billions of

pixels per second, and each pixel requires hundreds or more operations. GPUs must

deliver an enormous amount of compute performance to satisfy the demand of complex

real-time applications.

• Parallelism is substantial: - The graphics pipeline is well suited for parallelism.

2.2.1 Classification of Processor Architecture [4]

There are different ways to classify processor architecture. One of the more widely used

classifications, in use since 1966, is called Flynn's Taxonomy.

9 | P a g e

Flynn's taxonomy distinguishes multi-processor computer architectures according to

how they can be classified along the two independent dimensions of Instruction and

Data. Each of these dimensions can have only one of two possible states: Single or

Multiple.

The matrix below defines the 4 possible classifications according to Flynn:

Figure2.3: Classification of Processor Architecture

1. Single Instruction, Single Data (SISD):
A serial (non-parallel) computer, Single Instruction: Only one instruction stream is

being acted on by the CPU during any one clock cycle. Single Data: Only one data

stream is being used as input during any one clock cycle. It has Deterministic execution.

 Figure2.4: Example of SISD

This is the oldest and even today, the most common type of computers. Examples: older

generation mainframes, minicomputers and workstations; most modern day PCs.

2. Single Instruction, Multiple Data (SIMD):

A type of parallel computer Single Instruction: All processing units execute the same

instruction at any given clock cycle, Multiple Data: Each processing unit can operate

on a different data element.

It is best suited for specialized problems characterized by a high degree of regularity,

such as graphics/image processing. Most modern computers, particularly those with

graphics processor units (GPUs) employ SIMD instructions and execution units.

10 | P a g e

Figure2.5: Example of SIMD

3. Multiple Instruction, Single Data (MISD):

A type of parallel computer Multiple Instruction: Each processing unit operates on the

data independently via separate instruction streams. Single Data: A single data stream

is fed into multiple processing units.

Figure2.6: Example of MISD

4. Multiple Instruction, Multiple Data (MIMD):

A type of parallel computer Multiple Instruction: Every processor may be executing a

different instruction stream Multiple Data: Every processor may be working with a

different data stream.

Figure2.7: Example of MIMD

11 | P a g e

Execution can be synchronous or asynchronous, deterministic or non-deterministic.

Currently the most common type of parallel computer - most modern supercomputers

fall into this category.

Examples: most current supercomputers, networked parallel computer clusters and

"grids", multi-processor SMP computers, multi-core PCs.

Note: many MIMD architectures also include SIMD execution sub-components

2.2.2 GPU Computing [5]

Now that we have seen the hardware architecture of the GPU, we turn to its

programming model.

A. The GPU Programming Model

The programmable units of the GPU follow a single instruction multiple-data (SIMD)

programming model. For high performance, the GPU processes many elements

(threads) in parallel using the same program (as discussed in section 2.2.1). Each

element (threads) is independent from the other elements (threads), and elements cannot

communicate with each other. Each element can operate on 32-bit integer or floating-

point data with a reasonably complete general-purpose instruction set. Elements can

read data from a shared global memory and can write data to shared global memory.

Most of programming model is well suited to sequential programs, as many elements

can be processed sequential manner. Code written in this manner is single instruction,

single data (SISD). As for GPU programming model, programs have become more

complex, it allows different elements to take different paths through the same program,

leading to the more general SIMD model.

For development of GPU as a General-Purpose (GP) computing engine it is important,

the advancement of the programming model and programming tools. The perfect

balance between Low-level access to the hardware, for getting good performance and

High-level programming languages and tools, for flexibility and productivity is a big

challenge, for GPU vendors.

B. General-Purpose Computing on the GPU

General Purpose calculations on Graphics Processing Units (GPGPU) is a term that

refers to using the graphics processing unit (GPU) for general purpose calculations

instead of graphics rendering. Today GPUs are very powerful devices for faster

computations. The time has passed when they were only usable for graphics purposes.

Many efforts to use that calculation power are centered on the term “GPGPU” or “GPU

Computing”.

GPGPU computing applications are structured in the following way.

1. The programmer directly defines the computation domain of interest as a

structured grid of threads.

2. An SPMD (SIMD) general-purpose program computes the value of each thread.

12 | P a g e

3. The value for each thread is computed by a combination of different math

operations and both read accesses from and write accesses to global memory.

Here same buffer can be used for both reading and writing, to allow more

flexible algorithms.

4. The resulting buffer in global memory can then be used as an input in future

computation, which decreases the CPU-GPU memory transfer.

OpenCL and CUDA are the mostly used for writing general purpose programs that

execute on GPUs without the need to map their algorithms onto a 3D graphics API such

as OpenGL or DirectX.

We have used OpenCL for writing general purpose programs to port on GPUs OpenCL

is an open industry standard for programming a heterogeneous environment of CPUs,

GPUs and other computing devices organized into a single platform.

When Apple and Khronos Group made OpenCL as a multi platform standard they had

one very big and strong rival - CUDA from nVidia corp. Some differences between

CUDA and OpenCL are listed below.

Table2.1: Differences between CUDA and OpenCL [6]

1. Based on Terminology

OpenCL Terminology CUDA Terminology

Work-item Thread

Work-group Thread block

Local memory Shared memory

Private memory Local memory, Register

Compute Unit (CU) Streaming Multiprocessor (SM)

Processing Element (PE) Streaming Processor (SP)

barrier() __syncthreads()

cl_kernel CUfunction

cl_program CUmodule

13 | P a g e

2. Based on Features

Feature OpenCL CUDA

Compilation Method

Online + Offline

Offline only

Mathematical Precision

Well Defined

Undefined

Math Libraries

Defined Standard

Proprietary

CPU Support

OpenCL CPU Device

No CPU Support

Native Task Support Task parallel compute

model

No native thread

support

Extension Mechanism

Defined Mechanism

Proprietary

Vendor Support Industry- Wide support NVIDIA only

2.3 OpenCL – Portable Parallelism

The OpenCL is an open and royalty-free parallel computing API that allows GPU‟s and

other coprocessors to work with the CPUs to provide additional raw computing power.

Thus OpenCL is an open industry standard for programming a heterogeneous

environment of CPUs, GPUs and other computing devices organized into a single

platform. Due to its broad industry support, OpenCL has the potential to become the de

facto software for portable multi-core and many-threaded applications.

The OpenCL standard was suggested by Apple and created by non-commercial

Khronos Group, which has created own standards.

2.3.1 Heterogeneous computing

The use of various types of computational units is called heterogeneous computing. A

computational unit can be a CPU or a GPU or a special purpose processing unit (such as

DSPs). As given in the definition of OpenCL it provides heterogeneous environment.

14 | P a g e

Figure 2.8 Heterogeneous computing through OpenCL

2.3.2 The OpenCL Framework [7]

The OpenCL framework allows applications to use a host and one or more OpenCL

devices as a single heterogeneous parallel computer system.

The framework contains the following components:

 OpenCL Platform layer: The platform layer allows the host program to

discover OpenCL devices and their capabilities and to create contexts, through

device query.

 OpenCL Runtime: The runtime allows the host program to manipulate contexts

once they have been created.

 OpenCL Compiler: The OpenCL compiler creates program executables that

contain OpenCL kernels. The OpenCL C programming language implemented

by the compiler supports a subset of the ISO C99 language with extensions for

parallelism. OpenCL has well defined IEEE 754 numerical accuracy for all

floating point operations and a rich set of built-in functions.

2.3.3 The Thought behind OpenCL

The big idea behind OpenCL is a portable execution model that allows a kernel to

execute at each point in a problem domain. A kernel is a function or a part of the

program that runs on GPU. It is identified by the __kernel qualifier applied to any

function defined in a program. Kernels can operate in either a data-parallel or task-

parallel fashion.

To describe the core ideas behind OpenCL, we will use a hierarchy of models:

 Platform Model

http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Task_parallelism

15 | P a g e

 Memory Model

 Execution Model

 Programming Model

1. Platform Model

The Platform model for OpenCL shown in figure 2.9 consists of a host connected to one

or more OpenCL devices. An OpenCL device is a collection of one or more compute

units (CUs) which are further composed of one or more processing elements (PEs).

Computations on a device occur within the processing elements. The OpenCL

application submits commands from the host to execute computations on the processing

elements within a device. The processing elements within a compute unit execute a

single stream of instructions as SIMD units or as SPMD units. SPMD instructions are

mainly executed on CPUs while SIMD instructions executed on Vector processors such

as a GPU or vector unit in a CPU.

Figure 2.9 Platform Model

2. Execution Model
Execution of an OpenCL program occurs in two parts:

 kernels that execute on one or more OpenCL devices and

 A host program that executes on the host.

The OpenCL execution model is based on the parallel execution of a computational

kernel over a 1-D, 2-D, or 3-D grid, or NDRange (“N-Dimensional Range”).The host

program defines the context for the kernels and manages their execution.

Following are some core OpenCL terms:

Devices: OpenCL device to execute kernels

Work item: Kernel instances, called Work-Item. In CUDA these are known as threads.

This enables to parallelize the execution of the kernels.

16 | P a g e

Kernel: the code for a work item, that execute on one or more OpenCL devices.

Program: A collection of kernels and other functions.

Context: The environment within which work items executes, which includes devices

and their memories and command queues.

Work Group: Work items organized into work groups.

Figure2.10: 1D Index Space

The core of the OpenCL execution model is defined by how the kernels execute. When

a kernel is submitted for execution by the host, an index space is defined as shown in

figure 2.10. Work-item executes for each point in this index space (1-D or N-D as

shown in figure 2.11) and is identified by its point in the index space, which provides a

global ID for the work-item.

Figure2.11: 2D Index Space

Example: processing a 1024 x 1024 image:

Global Size (0) = Global Size (1) = 1024

1 kernel execution per pixel =>1,048,576 total kernel executions

17 | P a g e

Each work-item executes the same code but the specific execution pathway through the

code and the data can be different for each work-item. Work-items are organized into

work-groups. The work-items in a given work-group execute concurrently on the

processing elements of a single compute unit. The work-groups provide a more coarse-

grained decomposition of the index space. Work-groups are assigned a unique work-

group ID with the same dimensionality as the index space used for the work-items.

Work-items are assigned a unique local ID within a work-group so that a single work-

item can be uniquely identified by its global ID or by a combination of its local ID and

work-group ID.

Inside the kernel, global coordinates are found by calling get_global_id (index), where

index is 0, 1, or 2 depending on the dimensionality of the grid. Coordinates local to the

work-group are found via get_local_id (index). The number of dimensions in use is

found with get_work_dim ().

Figure2.12: Identification of work group and work-item

Figure2.13: 2D view of NDRange showing work group and work-item IDs

An NDRange is defined by an integer array of length N specifying the extent of the

index space in each dimension. Each work-item‟s global ID and local ID are N-

dimensional tuples. The global ID components are values in the range from zero to the

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/get_global_id.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/get_local_id.html
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/get_work_dim.html

18 | P a g e

number of elements in that dimension minus one. A complete 3D view of NDRange is

shown in figure 2.14

Figure2.14: 3D view of NDRange showing work group and work-item

3. Memory Model

Work-item(s) executing a kernel have access to four distinct memory regions:

Global Memory: Accessible to all work items and the host. This memory region

permits read/write access to all work-items in all work-groups. Work-items can read

from or write to any element of a memory object. Reads and writes to global memory

may be cached depending on the capabilities of the device.

Constant Memory: Visible to all workgroups, read-only. A region of global memory

that remains constant during the execution of a kernel. The host allocates and initializes

memory objects placed into constant memory.

Local Memory: A memory region local (shared) to a work-group. This memory region

can be used to allocate variables that are shared by all work-items in that work-group.

It may be implemented as dedicated regions of memory on the OpenCL device.

19 | P a g e

Private Memory: A region of memory private to a work-item. Variables defined in one

work-item‟s private memory are not visible to another work-item.

Host Memory: Host-accessible

Figure2.15: Memory Model of OpenCL

4. Programming Model

OpenCL supports data-parallel and task-parallel programming models, as well as

hybrids of these models. Of the two, the primary one is the data-parallel model.

1. Data-Parallel Programming Model

In the data parallel programming model, a computation is defined in terms of a

sequence of instructions that executes at each point in an N-dimensional index space. Or

can say same independent operations on lots of data. The OpenCL data-parallel

programming model is hierarchical. The hierarchical subdivision can be specified in

two ways:

• Explicitly - the developer defines the total number of work-items to execute in

parallel, as well as the division of work-items into specific work-groups.

• Implicitly - the developer specifies the total number of work-items to execute in

parallel, and OpenCL manages the division into work-groups.

20 | P a g e

Examples:

 Modify every pixel in an image with the same filters

 Update every point in a grid using the same formula

2. Task-Parallel Programming Model

In this model, independent threads can process separate functions. This is equivalent to

executing a kernel on a compute device with a work-group and NDRange containing a

single work-item. Parallelism is expressed using vector data types implemented by the

device, enqueuing multiple tasks, and/or enqueuing native kernels developed using a

programming model orthogonal to OpenCL.

2.3.4 Structure of OpenCL Programming [7]

A key point to note is that in OpenCL the compiler is built into the runtime, which

provides exceptional flexibility and portability as OpenCL applications can select and

use different OpenCL devices in the system at runtime. It is even possible to create

OpenCL application executables today that can use - without modification - devices that

have not even been invented yet! There is two part of OpenCL Programming:

1. OpenCL Host Program

2. OpenCL GPU Program (Kernel)

2.3.4.1 OpenCL Host Program Flow

Before, writing the kernel (i.e. the GPU code) we require writing the host program (i.e.

the CPU code) to use and control the GPU. Host program will initialize the GPU; it

will send data and the kernel code to the GPU. Afterwards it also instructs the

GPU to start execution and when the results are ready, it read back the results from the

GPU. OpenCL makes it easy for multiple implementations of OpenCL to co-exist on

the same machine.

21 | P a g e

Figure2.16: OpenCL Host Program flow

A Brief description of above process [7]

1. Platform IDs: (Platform layer) First Step in any OpenCL application

cl_int err = clGetPlatfromIDs(

1, // the number of entries that can added to platforms

&platforms, // list of OpenCL found

&num_platforms // the number of OpenCL platforms available

);

2. OpenCL Device: (Platform layer) Search for OpenCL compute devices in system

 cl_int err = clGetDeviceIDs(

 platform_id, // the platform_id retrieved from clGetPlatformIDs

22 | P a g e

 CL_DEVICE_TYPE_GPU, // the device type to search for

 1, // the number of ids to add to device_id list

 &device_id, // the list of device ids

 &num_of_devices // the number of compute devices found

);

3. Creating Context: Manage command queues, program objects, kernel objects,

memory object

 context = clCreateContext(

 properties, // list of context properties

 1, // num of devices in the device_id list

 &device_id, // the device id list

 NULL, // pointer to the error callback function (if required)

 NULL, // the argument data to pass to the callback function

 &err // the return code

);

4. Creating Command Queue: Allows kernel commands to be sent to

Compute devices

command_queue = clCreateCommandQueue(

 context, // a valid context

 device_id, // a valid device associated with the context

 0, // properties for the queue (not used here)

 &err // the return code

);

5. Create Program:

program = clCreateProgramWithSource(

context, // a valid context

23 | P a g e

1, // the number strings in the next parameter

(const char **) &ProgramSource, // the array of strings

NULL, // the length of each string or can be NULL terminated

&err // the error return code

);

6. Building Program Executables: (Compiler) Compile and link program object

created from step5.

err = clBuildProgram(

program, // a valid program object

0, // number of devices in the device list

NULL, // device list –NULL means for all devices

NULL, // a string of build options

NULL, // callback function when executable has been built

NULL // data arguments for the callback function

);

7. Creating Buffer: (Runtime layer)

 cl_mem input;

 input = clCreateBuffer(

 context, // a valid context

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, // bit- field flag to

specify the usage of memory

 sizeof(float) * DATA_SIZE, // size in bytes of the buffer to allocated

 inputsrc, // pointer to buffer data to be copied from host

 &err // returned error code

);

8. Reading/Writing Buffer Objects: (Runtime Layer)

24 | P a g e

 cl_int clEnqueueReadBuffer (

 command_queue, // valid command queue

 input, // memory buffer to write to

 CL_TRUE, // indicate blocking write

 0, // the offset in the buffer object to write from

sizeof(float) *DATA_SIZE, // size in bytes of data being read

host_ptr, // pointer to buffer in host mem to read data from

 0, // number of event in the event list

 NULL, // list of events that needs to complete before this executes

 NULL // event object to return on completion

);

Similarly we can use Writing buffer objects for Read back results.

9. Creating Kernel: Kernel object encapsulates specified __kernel function along

with the arguments. Kernel object is what get sent to command queue for

execution. (Runtime layer)

 cl_kernel kernel;

 kernel = clCreateKernel(

 program, // a valid program object that has been successfully built

 "program_name", // the name of the kernel declared with __kernel

 &err // error return code

);

10. Setting Kernel Arguments: Specify arguments that are associated with the

__kernel function. (Runtime layer)

 err = clSetKernelArg(

 kernel, // valid kernel object

 0, // the specific argument index of a kernel

 sizeof(cl_mem), // the size of the argument data

25 | P a g e

 &input_data // a pointer of data used as the argument

);

 Example Kernel function declaration

 __kernel Op_square (__global float *a, __global float *result)

11. Executing Kernel: (Runtime layer)

 err = clEnqueueNDRangeKernel(

 command_queue, // valid command queue

 kernel, // valid kernel object

 1, // the work problem dimensions

 NULL, // reserved for future revision - must be NULL

 &global, // work-items for each dimension

 NULL, // work-group size for each dimension

 0, // number of event in the event list

 NULL, // list of events that needs to complete before this executes

 NULL // event object to return on completion

);

12. Releasing Memory Objects

 clReleaseKernel(vector_add_k);

 clReleaseCommandQueue(queue);

 clReleaseContext(context);

 clReleaseMemObject(src_a_d);

2.3.4.2 OpenCL GPU(kernel) Program

Main Idea of OpenCL is to replace loops with data-parallel functions (kernels) that

execute at each point in a problem domain

26 | P a g e

Figure 2.17: Example of a Basic OpenCL Kernel

Code comparison - note differences

 Loop over N elements) N kernel instances execute in parallel

 Qualifiers: kernel, global

 Each kernel instance has a global identification number (gid)

 An argument with __global keyword defines the global memory element of

OpenCL.

27 | P a g e

Chapter-3

PROJECT BACKGROUND

3.1 Key Frame Extraction

In order to extract valid information from video, process video data efficiently, and

reduce the transfer stress of network, more and more attention is being paid to the video

processing technology. The amount of data in video processing is significantly reduced

by using video segmentation and key-frame extraction. Experimental results show that

the extracted key frames can summarize the salient content of the video and the method

is of good feasibility, high efficiency, and high robustness.

Key Frame Extraction is a technology that allows summarizing a video in the most

significant images, improving the organization and discovery of multimedia elements in

large repositories. The key frame is the frame which can represent the salient content

and information of the shot. The key frames extracted must summarize the

characteristics of the video, and the image characteristics of a video can be tracked by

all the key frames in time sequence. In recent years, many algorithms of key frame

extraction focused on original video stream. It can introduce processing inefficiency and

computational complexity when decompression is required before video processing.

Furthermore, the content of the video can be recognized. A basic rule of key frame

extraction is that key frame extraction would rather be wrong than not enough. So it is

necessary to discard the frames with repetitive or redundant information during the

extraction.

Figure 3.1: The basic KFE algorithm from MPEG video stream

The Key Frame Extraction analyzes the images of the video in order to extract

information about the most relevant images. The analysis is performed by complex

image analysis that could be improved through optimizations of the most intensive

algorithms.

3.1.1 Pre-Processing Algorithms for KFE Algorithm

1. Image Refinement using Frequency Selective Weighted Median

Filter (FSWM)

28 | P a g e

The finest detail in the image only is visible if the image is sharply focused. An image is

in focus when the maximum detail is visible, focus criteria are often based upon the

assessment of the difference between the intensity of adjacent pixels. The image is in

focus when each part of it reaches a local maximum or minimum in intensity. Born and

Wolf (1980) show the distribution of energy around the focus and it is clear that the

intensity is a maximum at the focus [8].

Figure 3.2: Sharpness function reaches its optimum at the in-focus image. The goal of the

autofocus procedure is to find the value of the defocus [9].

In general focused images have high frequency components than defocused images of

the scene. Goal of this preprocessing unit for KFE is to find out the high frequency

components (focus value) of an image by adjusting the Defocus (focusing lens) of the

camera. A relation between the focus value and the defocus is shown in the figure 3.2.

Here Frequency Selective Weighted Median Filter (FSWM) based focus measure are

used in the presence of Impulsive noise (IN) as impulsive noise produced by image

sensors or communication channels, corrupts images in many practical applications.

This noise may cause miscalculation of sharpness values which, in turn, introduce

considerable errors in an image. Experimental results show that FSWM based focus

measure can provide better performance than other focus measures [10].

This process necessitates an analytic focus measure which can be used to evaluate the

sharpness of focus in a part of the image.

A sharpness criterion should:

 Respond to high-frequency variations in image intensity.

 Be independent from the image content.

 Be computationally efficient for the real-time implementations.

1.1 Frequency selective weighted median filter (FSWM):

The FSWM based focus measure not only responds to high frequency components of

the images, but also eliminates the effects of impulsive noise. The high frequency

content of an image can be measured by a gradient estimator because it is inherently a

high-pass filter. Therefore, it can measure the sharpness of an image more precisely.

29 | P a g e

The characteristics of the high-pass filter can be improved by a nonlinear weighted

median (WM) filter. The WM filter can be represented with <W; F>, where W = [w1, w2

… wm] and F = [f1, f2… fm] are the weight vector and the discrete time continuous

valued input vector of a WM filter respectively.

The output of the WM filter is computed by repeating each sample fi to the number of

the corresponding weight wi followed by sorting the resulting array. Then, the median

value from the expanded vector is chosen.

For example, median {f (i-3), 2 ◊ f (i-2), 3 ◊ f (i), 2 ◊ f (i+1), f (i+4)}, where ◊ is the

duplicating operator and w ◊ f represents that f is repeated w times. WM filters can be

linearly combined to form an FSWM filter that can be defined as:

i

iii FWaH , …………… (3.1)

For getting good sharpness values following high pass filter can be applied using

Median Filter:

}3(),2(),1({
2

1

)}1(),2(),3({
2

1

)}1(),(),1({

nfnfnfmed

nfnfnfmed

nFnfnfmedH

 ------------- (3.2)

 Here Hh and Hv, respectively be FSWM filtering results that are obtained by applying

the filter using (3.2) to an image along the horizontal and vertical directions. The

sharpness measure can be defined as:

i i

vh HHFSWM 22
 ------------------ (3.3)

1.2 Median Filter (MF)

As we have seen from above section that FSWM filtering works in the presence of

Impulsive noise (IP), so it uses a Median Filter to remove these noise components . A

Median Filter is high pass filter used in equation (3.2)

In median filtering, the neighboring pixels are ranked according to brightness

(intensity) and the median value becomes the new value for the central pixel or for the

pixel under evaluation. Median filters can do an excellent job of rejecting certain types

of noise, in particular “shot” or impulse noise in which some individual pixels

have extreme values. The median filtering is more robust “average” than the mean, as

it is not affected by extreme values. Since the output pixel value is one of the

neighboring values only, “unrealistic” values are not created near edges. Since

edges are minimally degraded, median filters can be applied repeatedly, if necessary.

30 | P a g e

Median filters offer three advantages as compare to the smoothing filters.

 No reduction in contrast across steps, since output values available consist

only of those present in the neighborhood (no averages).

 Median filtering does not shift boundaries, as can happen with conventional

smoothing filters (a contrast dependent problem).

 Since the median is less sensitive than the mean to extreme values (outliers),

those extreme values are more effectively removed.

1.2.1 How it works

A template of size 3x3, 5x5, 7x7… etc is applies to each pixel of the image. The values

within this template are sorted and the middle of the sorted list is used to replace the

templates central pixel:

Figure 3.3: Median Filtering with template size 3x3

(a) (b)

31 | P a g e

 Figure 3.4: Median Filtering Example (a)

original image (b) corrupted with 60% noise (c) output from median filter

2. Histogram Calculation for KFE Algorithm

2.1 What are histograms?

 Histograms are collected counts of data organized into a set of predefined bins.

The Histogram of the image represents the distribution of the pixels in the image

over the available gray level scale. When the gray level values of the pixels are

too close together, modification of the image histogram enhances its contrast.

 When we say data we are not restricting it to be intensity. The data collected can

be whatever feature we find useful to describe our image.

For an example, here is a Matrix that contains information of an image (i.e. intensity in

the range 0- 255):

Figure 3.5: An Image with its pixel values [11]

32 | P a g e

Since the range of information value for this case is 256 values, to count this

information in an organized way, we can segment our range in subparts (called bins)

like:

[0; 255] = [0; 15] U [16; 31] U………………U [240; 255]

Range = bin1 U bin2 U………………. U binn= 16

Thus we can keep count of the number of pixels that fall in the range of each bini. By

applying this to the example shown in above figure 3.5 we can get the image below

(axis x represents the bins and axis y the number of pixels in each of them).

Figure 3.6: Histogram of an Image

This was just a simple example of how a histogram works and why it is useful. A

histogram can keep count not only of color intensities, but of whatever image features

that we want to measure (i.e. gradients, directions).

Let‟s identify some parts of the histogram:

1. Dims: The number of parameters you want to collect data of. In above example, dims

= 1 because we are only counting the intensity values of each pixel (in a grey scale

image).

2. Bins: It is the number of subdivisions in each dim. In above example, no of bins = 16

3. Range: The limits for the values to be measured. In this case: Range = [0,255]

Histogram for counting two features in the image would be a 3D plot (in which x and y

would be binx and biny for each feature and z would be the number of counts for each

combination of (binx; biny). The same would apply for more features.

33 | P a g e

3.2 Introduction to Feature Point tracking

The problem of computing the motion in an image is known as finding the optical flow

of the image or feature tracking. A feature, or a point of interest, is a point or a set of

points where an algorithm can look and follow the motion through frames. There are

several ways to select the features: based on brightness and colors or based on corners

and edges detection.

To track features there are essentially two important steps. The first one is to decide

which features to track, which is called by function the

_KLTSelectGoodFeatures(), and the second one is the tracking in itself. There are

a variety of well- under stood techniques for doing so, but the Kanade- Lucas- Tomasi

method stands out for its simplicity and lack of assumptions about the under lying

image.

We are going to change the order in the explanation, and we start explaining how the

tracking works using KLT Tracking, and afterwards how the features are selected, this

is the main part of this thesis which we have done using FAST DETECTION

ALGORITHM instead of KLT Detector we explain it in the section 3.3.1.

The simplest algorithm for point feature tracking between two frames of video is as

follows:

 Choose a small window; say 5 pixels on a side, around a pixel of interest in

Image A. This pixel of interest will be called pixel x.

 Let this pixel x in image A moves somewhere in image B at pixel y

 Finding this new position is called Feature Tracking.

 y is the pixel of B that is the most “similar” to x, in a constraint neighborhood

 Translation between x and y = Optical Flow

Figure 3.7: Point of interest x in Image A moved to y in Image B

 For each pixel near x in Image B , call it pixel y, and perform the following:

 Subtract the value of each pixel in the 5 by 5 region around pixel

x from each pixel in the 5 by 5 region around pixel y. Square the

result of the difference, and sum these 25 values to produce a

„dissimilarity‟ for this choice of pixel y.

34 | P a g e

 The pixel y in image B with the smallest dissimilarity is considered to be

the new location of pixel x in image A .

Figure 3.8: Tracking of interest point using Window of size 5X 5

3.2.1 Kanade-Lucas-Tomasi Feature Tracking

The following derivation summarizes the iterative step of the Kanade-Lucas-Tomasi

algorithm [12]. Consider two images, I and J; here we want to track a feature of known

location
Tyxx],[' in image I to image J, finding its displacement

T

yx ddd],[.

We have window W over which dissimilarity ε between the new and old feature as:

 '''
2
dxdxIxJ

W

 ---------- (3.4)

For making this relation symmetric substitute-:
2

'
d

xx

dx

d
xI

d
xJ

W

2

22

 --------- (3.5)

To get value of d such that it minimizes we get following expression:

dx
d

d
xI

d

d
xJ

d
xI

d
xJ

d
W

 22

22
20

-- (3.6)

In order to solve for d, Taylor series expansion is used by neglecting second order or

higher derivatives:

35 | P a g e

 x
y

Jd
x

x

Jd
xJ

d
xJ

yx

222
 ---------- (3.7)

And, x
y

Id
x

x

Id
xI

d
xI

yx

222
 ---------- (3.8)

Equation (3.6) can be approximated as:

 0
2

1

 dxxgdxgxIxJ

d
W

T

 ---------- (3.9)

Where

JI
y

JI
x

g

---------- (3.10)

So above terms can we rearranged as follows:

 0
2

1

 dxxgdxgxIxJ

W

T

 dxxdgxgdxxgxIxJ
W

T

W

2

1

 ddxxgxgdxxgxIxJ
W

T

W

 2

1

-- (3.11)

Thus, the expression can be simplified to 2x2 matrix equation,

 eZd ,

---------- (3.12)

36 | P a g e

Where Z is a 2x2 matrix,

W

T dxxgxgZ

 ---------- (3.13)

And e is a 2x1 vector,

 dxxgxJxIe
W

 2

 ---------- (3.14)

Equation (3.12) allows solving for the approximate displacement of a feature, given

its starting location and the two images. Since in our case we are implement ing

this algori thm with C/C++ Programming we consider i t with a discrete

image composed of pixels, then above definitions for Z and e are computed with a

summation over the window rather than an integral. The x and y image

derivatives are approximated by convolving the images with a Sobel operator.

Since the above computation for displacement is only an approximate method, it is

useful to repeat the procedure for much iteration. If the displacement does not

converge towards zero after several iterations, the feature is considered lost. For

features displaced by a large amount, the approximation also breaks down because

the Taylor series approximation becomes less accurate. To handle such a case, it

is best to perform several iterations on versions of the images re-sampled to a

coarser resolution, followed by several iterations on the full-resolution images.

A final consideration for Kanade-Lucas-Tomasi algorithm is the choice of initial

features. It is wasteful to track all pixels of the first image to the second image. A

more useful approach i s to track only those pixels which represent sharp and wel l -

defined features [13].

For Selecting Good Features to Track a function _KLTSelectGoodFeatures() is called

which uses The Eigen values of Z to give us an indication of how successful the

tracking will be for a given feature. Large Eigen values indicate a feature that is

more well-defined than the image noise and can thus be tracked reliably. Thus,

when choosing features to track, we sort the pixels in descending order of their

minimum Eigen value and pick the first N from the list, where N is the number of

features we wish to track.

Above said method for Selecting Good Features to Track is a typical approach by

KLT Detector. Here we have replaced this with FAST DETECTION whose

description is given in the section 3.3.1.

A simple example of this algorithm in operation is shown in Figure 3.9

37 | P a g e

Figure 3.9: An example of the Kanade-Lucas-Tomasi point tracking algorithm in

operation. Features being tracked are shown as a green dot, with the inter-frame

displacement shown as a green line. The length of the line is exaggerated to show

motion.

3.2.2 Difficulties with KLT Tracking Algorithm

Although this algorithm would give us a new position and velocity for the feature

represented by pixel A, it would suffer from several flaws.

 It would be slow, requiring about a hundreds of computation for each

iteration and potentially hundreds of iterations depending on how far we

want to search or on the image size.

 The algorithm would only give us the position and velocity of the feature to

the nearest whole pixel.

The Kanade- Lucas-Tomasi algorithm alleviates these problems by using the

image‟s gradients to predict the new location of the feature, iterating until the

new location is converged upon.

As we have discussed above that a small window centered on the desired pixel is

selected for track the motion of the pixel in successive frames, the size of the window

have some effects as follows:

38 | P a g e

 Accurate tracking can be done with a small window (small integration area)

 But difficult to take large motions or strong difference into account

 Robustness can be addressed with a large window

 But smoothing effect too strong for accuracy

Pyramidal approach can be used to found a balance between accuracy and robustness,

between large and small window. So PKLT (Pyramidal Kanade – Lucas - Tomasi)

algorithm is used instead of KLT.

3.2.3 Pyramidal Kanade - Lucas - Tomasi (PKLT) Algorithm

 An image pyramid is a collection of images - all arising from a single original

image - that are successively down sampled until some desired stopping point is

reached.

 There is Gaussian pyramid is used to down sample images and get

different level of pyramids.

 In this algorithm different level of details are used for each image

 Low detail levels: useful for robustness, large area of original image

covered by window

 High detail levels: bring back accuracy with small window relatively to

image size

 Cascade of filtered images

 Level 0: original image

 In practice, 2 to 4 level of details can be used, In our case level=2 is

used
 Level m: last level

 Simple example of a Image Pyramid shown in Figure 3.10

39 | P a g e

Figure 3.10: Image Pyramid

In PKLT algorithm original image is converted into pyramids of Level L. If we define

u
L
 = [ux

L
 uy

L
] as the coordinates of point u on a first image A [2]. Following the

equation can be used to define this coordinate as:

L

u
u L

 ---------- (3.15)

Thus, the algorithm works as it follows:

1. The optical flow is computed at the deepest pyramid level Lm, using the classical

Lucas Kanade optical flow algorithm.

2. The result is propagated to the upper level Lm-1 in a form of an initial guess for the

pixel displacement.

3. The optical flow is computed for the pyramid level Lm-1.

4. The same procedure until we reach the highest pyramidal level.

3.3 Feature Detection

A Feature refers to a small point of interest with variation in two dimensions. These

points may arise from geometric discontinuities. A feature can be called as a corner.

There are many corner detection algorithms like:

 The Moravec corner detection algorithm [14]

 The Harris & Stephens / Plessey / Shi-Tomasi corner detection algorithm [15]

 The SUSAN corner detector [16]

40 | P a g e

 KLT feature detector [17]

 AST based feature detectors [18]

Here we will not go into the details of each algorithm, but we will consider only AST

based feature detectors i.e. FAST detector and how it is useful for our work.

3.3.1 FAST: Features from Accelerated Segment Test

The FAST (Features from Accelerated Segment Test) algorithm is a interest point

identification algorithm based on the work of Rosten and Drummond [19]. An interest

point in an image is a pixel which has a well-defined position and can be robustly

detected. Interest points have high local information content and they should be ideally

repeatable between different images. Interest point detection has applications in image

matching, object recognition, tracking etc.

This is a corner detection algorithm based on segment test method. The Segment test

algorithm works as follows:

 The Segment test criterion operates by considering a circle (This is a Bresenham

circle) of 16 pixels around the corner candidate P.

 Let intensity of the point P is Ip.

 There is a threshold intensity value say, T is set. (It may be 20% of pixel P).

 The pixel P is said to be a corner if there exists a set of N contiguous pixels in

the circle which are all brighter than the intensity of the candidate pixel Ip plus a

threshold T, or all darker than Ip – T.

These conditions can be written as:

Condition 1: A set of N contiguous pixels S,

 X Є S, Ix > Ip + T

 Where Ix =Intensity of pixel X

Condition 2: A set of N contiguous pixels S,

 X Є S, Ix < Ip - T

The value of N was originally [20] chosen to be twelve because it gives a high-speed

test which can be used to exclude a very large number of non-corners.

3.3.2 High Speed Test or Accelerated Segment Test

To make the algorithm fast it performs following steps:

 It takes 4 pixels of the circle as test pixels, namely pixel 1, 9, 5 and 13.

41 | P a g e

 Firstly it takes pixels 1 and 9. If both of these are within [Ip - T, Ip + T], then P

cannot be a corner. If P can still be a corner, pixels 5 and 13 are examined.

 At least three of these four pixels should satisfy the above two conditions so that

the interest point will exist.

 The full segment test criterion (above procedure) can then be applied to the

remaining candidates by examining all pixels in the circle.

The following figure 3.11 explains the algorithm:

The green square is the pixel under consideration. The red squares which come on the

circumference of the circle are the pixels which are compared with that of green pixel

(P), the intensities are compared and then decide whether the pixel is the potential pixel

or not.

Figure 3.11: Corner detection using FAST

This detector in itself exhibits high performance, but there is a problem with this

approach is multiple features are detected adjacent to one another. This can be removed

by Non Maximal Suppression method.

3.3.3 Non Maximal Suppression for removing adjacent corners [21]

Detection of multiple interest points adjacent to one another is can be dealt with by

applying non maximal suppression after detecting the interest points.

The algorithm is described below:

1. Compute a score function V for each of the detected points. The score function is

defined as: “The sum of the absolute difference between the pixels in the contiguous arc

and the centre pixel”.

42 | P a g e

2. Consider two adjacent interest points, compare their V values.

3. Discard the one with the lower V value.

The entire process can be summarized mathematically as follows:

T

T
V

valuePif ; valuesPixelP

Pvalueif ; P valuesPixel
max

-------- (3.16)

Where, P is the centre pixel, T is the threshold for detection and pixel values correspond

to the N contiguous pixels in the circle.

The score function can be defined in alternate ways as “The key point here is to define a

heuristic function which can compare two adjacent detected corners and eliminate the

comparatively insignificant one”.

Figure 3.12: An image with interest points detected. The green dots show the Non-

maximally suppressed corners.

43 | P a g e

3.3.4 WHY FAST?

1. Repeatability: The Repeatability is computed as the number of corners per

frame is varied. For example if every pixel is detected as a corner, then the

repeatability is 100%.

As the number of corners per frame is increased, all of the other detectors, at

some point, suffer from decreasing repeatability. This effect is least pronounced

with the FAST9 detector [19]. Here 9 represent the no of contiguous pixels to be

tested.

2. Numbers of Frames Processed Per Second: as the name suggest, The

numbers of frames processed per second in detection using FAST is far better

than that of other detectors, which is the biggest advantage of this algorithm

Therefore, we switched to FAST rather than using KLT in our project will be

discussed in next section of our thesis.

44 | P a g e

Chapter-4
METHODOLOGY USED FOR OPTIMIZATION

To perform Optimization (Acceleration) of said algorithms first of all we need some

hardware and software specification. Such specifications are listed below as.

4.1 Development Platform

4.1.1 Hardware Used

CPU Used : Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

GPU Used : NVIDIA Quadro NVS 295

 GPU Used : NVIDIA Quadro FX 4600

4.1.2 Software Used

Table 4.1: Software used

Operating System : Ubuntu Linux version 2.6.38-8-generic

Compiler : Gcc 4.5.2

Debugging Tool : Gdb 7.2

Profiling Tool : Valgrind 3.6.1, gprof, Graphviz2.28.0

NVIDIA OpenCL SDK : OpenCL Library

Eclipse IDE : Helios

Scripting Tool : python 2.7.1

4.2 Environment Setup

The environment setup involved primarily of installing the following:

 NVIDIA driver toolkit

 NVIDIA CUDA SDK (which includes OpenCL library)

 OpenCV 2.2.0

 Eclipse IDE for source development

Further for profiling the software we need:

 Valgrind

 Graphviz

45 | P a g e

4.3 Specifications

4.3.1 CPU Specifications

Code is implemented on an Intel Xeon Processor having 8 CPU cores, below

specification are for 0
th

 core, for other cores of the processor specification are exactly

same.

Table 4.2: CPU Specifications

Processor : 0

Vendor_id : Genuine Intel

CPU family : 6

model : 26

model name : Intel Xeon CPU E5504 @ 2.00GHz

stepping : 5

CPU MHz : 1995.207

cache size : 4096 KB

physical id : 1

siblings : 4

core id : 0

CPU cores : 4

4.3.2 GPU Specifications

GPU that has been used for the development of the project is NVIDIA

Graphics Processor named (Quadro NVS 295)

Table 4.3: OpenCL Software information

CL_PLATFORM_NAME : NVIDIA CUDA

CL_PLATFORM_VERSION : OpenCL 1.0 CUDA 4.0.1

OpenCL SDK Revision : 5985201

46 | P a g e

Table 4.4: OpenCL Device information

CL_DEVICE_NAME : Quadro NVS 295

CL_DEVICE_VENDOR : NVIDIA Corporation

CL_DEVICE_TYPE : CL_DEVICE_TYPE_GPU

CL_DRIVER_VERSION : 275.28

CL_DEVICE_MAX_COMPUTE_UNITS : 1

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS : 3

CL_DEVICE_MAX_WORK_ITEM_SIZES : 512 / 512 / 64

CL_DEVICE_MAX_WORK_GROUP_SIZE : 512

CL_DEVICE_MAX_CLOCK_FREQUENCY : 1300 MHz

CL_DEVICE_ADDRESS_BITS : 32

CL_DEVICE_MAX_MEM_ALLOC_SIZE : 128 MB

CL_DEVICE_GLOBAL_MEM_SIZE : 255 MB

CL_DEVICE_ERROR_CORRECTION_SUPPORT : no

CL_DEVICE_LOCAL_MEM_TYPE : local

CL_DEVICE_LOCAL_MEM_SIZE : 16 KB

CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE : 64 KB

CL_DEVICE_IMAGE_SUPPORT : 1

CL_DEVICE_MAX_READ_IMAGE_ARGS : 128

CL_DEVICE_MAX_WRITE_IMAGE_ARGS : 8

CL_DEVICE_COMPUTE_CAPABILITY_NV : 1.1

NUMBER OF MULTIPROCESSORS : 1

NUMBER OF CUDA CORES : 8

CL_DEVICE_REGISTERS_PER_BLOCK_NV : 8192

CL_DEVICE_WARP_SIZE_NV : 32

CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV : CL_TRUE

CL_DEVICE_INTEGRATED_MEMORY_NV : CL_FALSE

CL_DEVICE_PREFERRED_VECTOR_WIDTH_<t> : CHAR 1, SHORT 1,

INT 1, LONG 1, FLOAT 1, DOUBLE 0

After selecting the appropriate Platform for our work, first we have to find the parts of

the algorithm that to be optimized. Parts of the algorithms which are most time

consuming are selected for optimization or to port on GPU to take advantage of the

GPGPU computing.

4.4 Constraints in Optimization

For optimization of the code using OpenCL there are certain constraints which we have

to follow as:

47 | P a g e

 We can‟t switch the sequence of instructions in code

 numerical exactness is the primary concern

 Software to be implemented as a linkable library:

 Modularity has to be preserved,

 Each routine must serve as its stand alone service.

 We can‟t port the entire code on GPU

 contains chunks of sequential code which might slow down

drastically on GPU

 We can‟t depend on GPU local memory

 OpenCL is a heterogeneous platform includes embedded GPUs

which lack local memory

 Comparison with highly optimized code

 O3 compilation: This enables more than 60 optimization options [22]

gcc compiler.

4.5 Optimization Strategy

 For optimization we need those functions in the code that are consuming larger

computational time and to that part we apply optimizing strategies, we achieve

this by the timing analysis of the code with help of Profiling.

 Profiling code is a useful way to find frequently called routines in the

application. In a lot of cases, it is possible to make applications run significantly

faster, just by analyzing where the slowdowns are occurring and optimizing that

code.

 Testing of implementation is done on a GPU that has 8 cores only to ensure the

robustness to hardware changes.

4.6 Profiling Procedure

For generating a profile data of the code we use both gprof as well as call grind tools.

4.6.1 Profiling with gprof

 First we compiled the source code with –pg.

 When we execute the code, we get gmon.out that contains the information about

the profiling data.

 Then we need the gprof tool to read the gmon.out file using following command

line: (gprof executable file gmon.out)

 Profiling output using gprof is in tabular form, in which most time consuming

function is listed first then other functions are tabulated in decreasing order of

their time consumption. This tabular output is called as Call Graph.

48 | P a g e

4.6.2 Profiling with Valgrind [23]

 Valgrind provides a profiling tool called Callgrind.

 It gives the Call graph & number of cycles spent in each function with number

of times each function is called whereas gprof gave call graph + time spent in

each function without the CPU cycles.

 To generate a profile, execute the following command:

valgrind –tool = callgrind Execution_command

 The result will be stored in a callgrind.out.XXX file where XXX will be the

process identifier.

 Another tool we have used, to visualize profiling data is the gprof2dot.py python

script [24]. It can be used to visualize several different formats: "This is a

Python script to convert the output from prof, gprof, oprofile, Shark, and python

profilers into a dot graph.

 We also use the graphviz [25] (reads dot format only) to get the image

representation in order to view the callgraph. This is done with command line:

python gprof2dot.py -f callgrind callgrind.out.xxx | ./dot -Tpng -o

filename.png

By the use of Valgrind and callgrind we get a graphical representation of the profiling

data, so it makes easy to find the most time consuming routine easily.

Figure4.1: Profiling Procedure

49 | P a g e

4.7 Profiling Output of KFE Algorithm

Figure 4.2 Profiling Output of KFE

50 | P a g e

4.8 Acceleration of KFE

 To accelerate the KFE algorithm firstly we have profiled the code using above

procedure.

 After profiling, approx 97% of the execution time of the program was found to

spent in the _KeyFrmExtr_Module as shown in figure 4.2.

 In this module most computation intensive functions are:

 Blurred_tag

 getFSWM

o get_focus

 median

 MonotoneFilter

 _CalcHist_imgyuv

o _CalcCumulHist

Here application of routines FSWM, focus, median and Calchistogram are already

discussed in chapter3. So here we will look at how these functions can we optimized

using OpenCL.

4.8.1 Optimization of get_focus routine

For optimizing get_focus routine we wrote a kernel (example shown if figure 2.17)

which is ported on GPU to get required speedup and we have followed following steps:

 Whenever a routine is called the following process is be repeated

 GPU is initialized (only for the first call)

 Input data is transferred to the GPU

 Kernel is executed for corresponding number of threads

 Results are read back into RAM

This procedure is same as given in figure 2.16

 In the function, get-focus there is a for-loop to get focus value of each pixel in

the image by using the median filtering.

 We removed that for-loop in the GPU kernel and now numbers of threads

running are equivalent to the number of pixels in the image i.e. each pixel is

executed on each single thread.

 All threads are independent; read inputs & write output to global memory;

caching to local memory avoided for heterogeneity.

4.8.2 Optimization of getFSWM routine

After the previous step we get the focus value of each pixel in the image that is stored

on GPUs global memory. Now we have to add all these value to get Sharpness values of

complete image. If we done it on sequentially or using CPU, it takes time. So, we tried

51 | P a g e

different methods for the summation in the second kernel in order to maximize the

speedup. There are two methods for this addition.

a. Parallel Reduction b. Vectorization

1. Parallel Reduction

Parallel Reduction is the technique which reduces a set of numbers to a single value,

e.g. find sum of all elements in an array.

Figure 4.3 parallel reduction techniques

 As shown in figure initially we have input array (of focus values) that is output

of first Kernel saved on global memory of GPU.

 This array is divided into no of workgroups. Firstly each element (work-item) in

workgroup is saved on the local memory of GPU.

 Then half no of elements in the workgroup is added to other half no of elements

as shown in figure 4.3

 Above divide and add procedure is carried on until we get final sum.

 This sum is saved on global memory of GPU at workgroup id corresponding to

particular workgroup.

 Above procedure is executed for each workgroup in parallel and corresponding

sum is saved at their workgroup id.

 The final value can we get by adding all of the values saved on workgroup ids.

52 | P a g e

 Because in this method local memory is used that reduces the timing for data

read and write on GPU it is a faster process with utilizing parallel execution for

each workgroup.

As we have seen that the parallel reduction technique is giving faster results, but we

can‟t use this method because it has certain disadvantages as:

 It uses local memory for speedup process which is not possible for us. As

mentioned (section 4.4), there is certain constraints, so we can‟t use local

memory. We have to use Global memory which is slower than local memory.

 There must be a proper synchronization at each level of the reduction so that all

the parallel threads can complete its work before going to next level of reduction

as shown in figure 4.3. In standard format Local memory fencing (barrier) is

used for this synchronization. But again due to constraint to use this code on

Embedded Platform, we can‟t use local memory fencing. So we have used the

Global memory fencing {barrier (CLK_LOCAL_MEM_FENCE)} which also

reduces the speed of the reduction process.

As we can‟t use local memory as well as local memory fencing parallel reduction with

Global memory use can‟t give required speedup for getFSWM. So here we have used

the Vectorization method of OpenCL.

2. Vectorization

Vectorization is the process of combining some scalar data types together as vector data

types for computation in the kernel which speedup the execution of the kernel program.

Built-in vector data types are supported by the OpenCL implementation. The vector

data type is defined with the type name i.e. char, uchar, short, ushort, int, uint, float,

long, ulong followed by a literal value n that defines the number of elements in the

vector. Supported values of n are 2, 3, 4, 8, and 16 for all vector data types [7].

Example1: char2, char4, float4, float8 etc.

Example2:

 float4 v, u;

float f;

v = u + f;

 This will be equivalent to

v.x = u.x + f;

v.y = u.y + f;

v.z = u.z + f;

v.w = u.w + f;

And

 float4 v, u, w;

53 | P a g e

w = v + u;

 Will be equivalent to

w.x = v.x + u.x;

w.y = v.y + u.y;

w.z = v.z + u.z;

w.w = v.w + u.w;

To utilize vector data types in the kernel Vector Data Load and Store Functions are

used. These allow us to read and write vector types from a pointer to memory.

Functions used for this are:

vloadn Read vectors from a pointer to memory.

vstoren Write a vector to a pointer to memory.

 We took the advantage of the vector load (vload8) and store (vstore8)

capabilities of the GPU.

 In the second kernel for getting complete sharpness value of image we are

reading the eight focus values together and summing them to one value in one

GPU cycle. Similarly, reading another eight values in one GPU cycle. Then we

add up these two values in one cycle.

 In this way, we achieved the summation of sixteen values in 3 cycles instead of

16 cycles, hence reducing computational time.

By using Vectorization we achieved good results than Parallel reduction.

4.8.3 Optimization of _CalcCummlHist routine

 One kernel thread is executed for 240 pixel(= Image height). Each thread

calculates the partial histogram of 240 pixel values.

 OpenCL datatype float8 has been used

 To take advantage of the vector load and store capabilities of the GPU.

Thus, 8 values are loaded and divided in parallel to calculate histogram.

 Then partial histograms of each thread are further accumulated at the CPU to get

complete Histogram.

 Although we didn‟t get the expected speedup because the partial histograms are

inherently dependent on each other.

4.9 Acceleration of KLT

 To accelerate the KLT algorithm firstly we have profiled the code using above

procedure given in section 4.6.2.

http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/vloadn.html
http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/vstoren.html

54 | P a g e

 Profiling output is shown in figure 4.4.

 As we can see from the call graph, the majority of the computing time is taken

up by the two functions KLTTrackFeatures() and KLTSelectGoodFeatures()

(which is called by KLTReplaceLostFeatures()) and _dodetection().

Figure 4.4: Profiling output of KLT

 During tracking sometimes there is a loss of some features due to a large

residue, drifting out of bounds or because the computation fails for some reason

etc. If it is desired to always maintain a certain number of features, then the lost

features can be replaced by calling KLTReplaceLostFeatures().This function

calls the function KLTSelectGoodFeatures() to find the lost features in the

image and place them accordingly in the feature list. Suppose, if k features have

been lost, the k best features will replace them.

55 | P a g e

 Basically KLTSelectGoodFeature() function is a corner detector which is

detecting new corners in the image so it can replace the lost one.

 This function uses the KLT detection algorithm for new corner detection

algorithm.

 As seen by the profiling graph KLTSelectGoodFeature() is consuming the 25%

of total tracking time, so it is not advisable to use such algorithm in Real time

application which is consuming such time in only replacement of the lost

feature.

 As we have discussed about the detection process in last chapter, we know that

there is a solution for this problem by using the FAST algorithm.

 FAST algorithm can reduce the time needed for detection process very

efficiently.

For reduce the time taken for replacing lost features, we have replaced the

KLTSelectGoodFeature() function with the FAST9() routine and made some changes

the code required for it. Here 9 is represents the no of contiguous pixels on the

Bresenham circle. This gives us very good results.

Another problem related to this algorithm is no of feature lost are more than the

reference code (OpenCV version of KLT, that requires extra time for computation of

new feature (lost features) by calling detection routine which is not desired.

 By understanding the code thoroughly we got that there can be several factors

for these feature loss. These factors are as follows:

1. KLT_SMALL_DET: indicates that the feature has been lost due to the 2

by 2 gradient matrix (as discussed in chapter 3 equation no 3.13)having a

small determinant.

2. KLT_MAX_ITERATIONS: means that the feature has been lost because

the number of iterations exceeded the maximum allowable (as shown in

example of KLT in chapter 3).

3. KLT_OOB: means that the feature has been lost because it was out of

bounds (i.e., it was too close to the image border).

4. KLT_LARGE_RESIDUE: means that the feature has been lost because

the residue between the two feature windows was too large.

Here the tracking formula, Equation (3.12), is used to compute the displacement

for many iterations of the algorithm. The origin of the starting image is then

shifted by this displacement so that the tracking equation can be reapplied. Once

the displacement converges near zero, tracking is complete (as shown in figure 3.8).

If it does not converge in a few iterations, the algorithm fails.

The KLT algorithm has several numerical parameters that were chosen for this

implementation. The window size was selected to be 7 pixels by 7 pixels. This

parameter is the size of the region over which the summations in Equation (3.12)

56 | P a g e

are evaluated. Tracking iterations are carried out until a single iteration has a

displacement less than 0.1 pixels (min displacement). If 10 iterations (Max Iterations)

are completed without a displacement less than 0.1 pixels, the feature is discarded.

After a feature is tracked, its residue is computed to determine if the image patch

roughly matches the original feature. Residue is the absolute sum of the intensity

difference between a feature x in Image I and the displaced feature in the Image J.

Formula for residue calculation is

 dxdxIxJ
W

 ---------- (3.17)

If the result divided by the area of the image is greater than 10.0 (max_residue), the

feature is discarded.

In our case features are lost mostly because of failure of two conditions

 Max Iterations =10 (in reference code)

 Max Residue =10 (in reference code)

By debugging the code and checking the output of the algorithm for different condition

we analyzed that if we increase the both above conditions up to certain values than there

is a significant improvement in performance of KLT tracking.

So we have changed the values as:

Max Iterations =20

Max Residue =30

By selecting these values we have reduces the no of feature loss up to certain level so

there is less no of calls for detection routine, results in reduction of time for tracking

and detection as well.

One more problem is with this code is no of calls for convolution function. Convolution

function, which is necessary both to smooth the image and to compute its gradients, is

called 15 x times per frame during tracking, which consumes lot of time. So another

task is to reduce the no of calls for this convolution function.

 As we have replaced the KLTSelectGoodFeature() with FAST9() algorithm

there is a reduction in calls for convolution per frame. Because

KLTSelectGoodFeature() function is using the convolution function many time

for replace lost features.

 Convolution is unnecessary when an image sequence is being processed,

because each image is processed more than once. For example, the features are

tracked between frames 0 and 1, then between frames 1 and 2, then between

57 | P a g e

frames 2 and 3, etc During each iteration the second image, after being

processed, can be stored and recalled the next time as the first image.

 The tracking context has a flag called sequentialMode which, when set to

TRUE, causes KLTTrackFeatures() to store the gradients of the second image,

along with its smoothed version, into the tracking context. When

KLTTrackFeatures() is called, it ignores its second parameter and replaces it

with the previously stored image (except for the first time the function is called,

in which case it must use both images). The computation is identical, but the

speed is improved and no of calls for convolution function is reduced

significantly.

58 | P a g e

Chapter-5
RESULTS ACHIEVED

5.1 Results for KFE

Table5.1: KFE Results with 8 core GPU

Kernel name CPU

cycles

GPU cycles Total CPU

Time for

kernel in

reference

code(uSec)

Total GPU

Kernel

Execution

time (usec)

Speed up

CPU/GPU

(8 core

GPU)

Gpu_getFSWM 8.0025

Mega

4.3340

Mega

4000.1 3334.384 1.85

Gpu_getFSWM_su

m

1.2756

Mega

0.3868

Mega

637.8 297.568 3.30

Gpu_hist_calc 0.8621

Mega

1.207

Mega

431.001 929.024 0.71

 Here speedup is calculated as the ratio of CPU cycle to GPU cycle.

Actual Speedup = CPU cycle / GPU cycle

 Where GPU cycle = GPU clock frequency * Total GPU Kernel Execution time

 And CPU cycle = CPU clock frequency * Total CPU Time for kernel in

reference code

Note: Above results are obtained with following specifications:

 Input video:

 Format : YUV

 Width : 240

 Height : 320

 FPS : 15

 No of frames : 60

 GPU : Quadro 295 (with 8 CUDA cores)

 GPU clock frequency : 1.3 GHz

 CPU clock frequency : 2.0 GHz

59 | P a g e

Table5.2: KFE Results with 96 core GPU

Kernel name CPU

cycles

GPU cycles Total CPU

Time for

kernel in

reference

code(uSec)

Total GPU

Kernel

Execution

time (usec)

Speed up

CPU/GPU

(96 core

GPU)

Gpu_getFSWM 8.0025

Mega

0.6493

Mega

4000.1 541.184 12.38

Gpu_getFSWM_su

m

1.2756

Mega

0.07257

Mega

637.8 60.480 17.57

Gpu_hist_calc 0.8621

Mega

0.92521

Mega

431.001 772.768 0.94

Note: Above results are obtained with following specifications:

GPU : Quadro Fx4600 (with 96 CUDA cores)

GPU clock frequency : 1.2 GHz

CPU clock frequency : 2.0 GHz

5.2 Results for KLT Tracking

As discussed in previous chapter we have replaced KLTSelectGoodFeature() routine

with FAST9() routine to replace lost feature in frames , so we got following results.

 Time for tracking of all the frames in the video with KLTSelectGoodFeature() =

127.53 Sec. in reference GPU code.

 Time for tracking of all the frames in the video with FAST9() = 94.43 Sec.

 Thus we get the speedup of 1.35 get as compared to the reference GPU code.

 We get this speedup because there is a reduction in no of calls for convolution

function by 3 x time so total no of calls to convolution function is reduced to 12

x from 15 x per frame.

 By the use of Sequential Mode Flag we have used the stored gradients of the

second image, along with its smoothed version, so there is significant reduction

in the tracking process as well as reduction in no of calls for convolution

function.

60 | P a g e

 Now the total tracking time is = 60.67 Sec. with speedup of 2.10 with respect to

the GPU reference code.

 Total no of convolution function calls reduced to 6 x times than 15 x per frame

Note: Above results are obtained with following specifications:

 Input video:

 Format : YUV

 Width : 480

 Height : 640

 FPS : 12

 No of frames : 194

 GPU : Quadro 295 (with 8 CUDA cores)

 Total no of time detection is called in the for complete video in the reference

GPU code = 159

 By changing the conditions for maximum iteration (=20) and maximum residue

(=30) we have reduced no of lost features per frame so there is no need for

detection of features in most of the frames thus total no of time detection is

called reduced to 55 , which is a good result compared to reference code.

61 | P a g e

Chapter-6
CONCLUSION AND FUTURE SCOPE OF WORK

6.1 Conclusion

As we get the results listed in the table5.1 shows that significant speedup for both

kernels Gpu_getFSWM and Gpu_getFSWM_sum achieved, by executing it on NVIDIA

Quadro NVS 295 with 8 cores.

This speed-up is improved with the increase in number of cores. As shown in table 5.2

with use of NVIDIA GPU Fx4600 (have 96 cores) speedup is very good for both the

functions as compared to CPU as well as 8 cores GPU. Further the speed-up shall

increase with size of input data, more data implies more SIMD processing to be

exploited.

Most of the time wasted in transfer of input data from RAM to GPU, and reading the

results back. The communication time is much high on the NVIDIA Quadro NVS 295.

This is a fairly low-end GPU used with the intention to specially stress test the kernel.

On high-end GPUs this time would decrease further because of better bandwidth.

Moreover, the KFE algorithm targeted in this work uses the histogram calculation

which is inherently sequential, thus much speed-up can not be expected. But we can see

from the results for both GPUs that speedup is approaching nearly equal to 1. So we can

expect that with further increase in no of core of the GPU will results in the improved

speedup for histogram calculation too.

From the results we got for KFE algorithm we can conclude that with use of GPGPU

computing through OpenCL offers good performance improvement most of the time,

and can we improve further with improvement of the GPU specifications.

From the results of the KLT tracking we find that use of FAST algorithm for the

detection purpose can improve the performance of the algorithm, timing of the tracking

as well as reduce the no of calling for undesired convolution function.

There is a significant improvement in the performance of KLT tracking with the change

in conditions for max iteration and max residue. Thus reduction in no of feature lost in

the consecutive frames.

62 | P a g e

6.2 Future Scope of Work

With the rising importance of GPU computing, GPU hardware and software are

changing at a remarkable pace. In the upcoming years, we expect to see several changes

to allow more flexibility and performance from future GPU computing systems. AMD

and NVIDIA introduced support for double-precision floating-point hardware. The

addition of double-precision support removes one of the major obstacles for the

adoption of the GPU in many scientific computing applications.

In KFE algorithm, after extracting the key frame we have to retrieve the desired

information from these frames. The method used for the information retrieval is called

face detection module. So basically KFE is a algorithm used for detection of human

motion in the sequence of video. Human motion is detected by face detection in the key

frame. Here by profiling of the code we get that face detection module is the highly

time consuming routine of KFE algorithm. In the future face detection module

(FD_Module) can be optimized with taking all the advantages of the GPGPU

computing.

In KLT there is large number of memory transfers from Host->GPU and from GPU-

>Host per frame. This is happening because the entire image is written to the GPU and

the filtered image read out each time there is a filtering operation using the two

convolution functions. Filtering operations are done for image smoothing and gradient

calculation at each pyramid level. This could be optimized, for example, by calculating

the entire pyramid in one launch of the kernel for smoothing and another for gradient

computation. This needs to be done in future time for getting further optimization of

KLT algorithm.

63 | P a g e

References

[1] G. Ciocca1 and R. Schettini, "An Innovative Algorithm for Key Frame Extraction in

Video Summarization", Journal Real Time Image Processing, pg no 69-88, 2006.

[2] Jean-Yves Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature

Tracker – Description of the algorithm”, Intel Corporation – Microprocessor Research

Labs, 2009.

[3] C. Tomasi and T. Kanade, “Detection and tracking of point features,” Tech. Rep.

CMU- CS-91-132, Carnegie Mellon University, 1991.

[4]“https://computing.llnl.gov/tutorials/parallel_comp/#Abstract”, Accessed June, 2012.

[5] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and

James C. Phillips “Graphics Processing Units powerful, programmable, and highly

parallel are increasingly targeting general-purpose computing applications.”

Proceedings of the IEEE Vol. 96, No. 5, May 2008.

[6] Kristen Boydstun, “Introduction OpenCL”, TAPIR, California Institute of

Technology, August 9, 2011.

[7] “http://khronos.org/registry/cl/specs/opencl-1.0.pdf”, Accessed June, 2012.

[8] M Born, E Wolf,”Principles of optics”, Pergamon Press, 435-42.1980.

[9] Maria Rudnaya, and Robert Ochshorn “Sharpness Functions for Computational

Aesthetics and Image Sublimation” IAENG International Journal of Computer Science,

38:4, IJCS_38_4_05 (Advance online publication: 12 November 2011).

[10]V. Aslantas, R. Kurban “A comparison of different focus measures for use in fusion

of multi-focus noisy images” The 4th International Conference on Information

Technology (ICIT 2009), Amman, Jordan, 2009.

[11] “http://docs.opencv.org/opencv_tutorials.pdf”, Accessed June, 2012.

[12] S. Birchfield, “Derivation of Kanade-Lucas-Tomasi tracking equation.”,

“http://robotics.stanford.edu/˜birch/klt/derivation.ps”, 1997. Accessed June, 2012.

[13] J. Shi and C. Tomasi. "Good Features to Track." Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. pp. 593–600, June 1994.

https://computing.llnl.gov/tutorials/parallel_comp/#Abstract
http://khronos.org/registry/cl/specs/opencl-1.0.pdf
http://docs.opencv.org/opencv_tutorials.pdf
http://robotics.stanford.edu/

64 | P a g e

[14]H. Moravec, "Obstacle Avoidance and Navigation in the Real World by a Seeing

Robot Rover". Tech Report CMU-RI-TR-3 Carnegie-Mellon University, Robotics

Institute, “http://www.ri.cmu.edu/pubs/pub_22.html”, Accessed June, 2012.

[15]C. Harris and M. Stephens, "A combined corner and edge detector", Proceedings of

the 4th Alvey Vision Conference. pp. 147–151. “http://www.bmva.org/bmvc/1988/avc-

88-023.pdf”, Accessed June, 2012.

[16]S. M. Smith and J. M. Brady, "SUSAN - a new approach to low level image

processing". International Journal of Computer Vision pg no. 45–78, May 1997.

[17]J. Shi and C. Tomasi, "Good Features to Track,". 9th IEEE Conference on

Computer Vision and Pattern Recognition. Springer.

http://citeseer.ist.psu.edu/shi94good.html. June 1994. Accessed June, 2012.

[18] M. Trajkovic and M. Hedley. "Fast corner detection". Image and Vision Computing

pg no 75–87, 1998.

[19] Edward Rosten, Reid Porter, and Tom Drummond, “Faster and Better: A Machine

Learning Approach t o Corner Detection” IEEE TRANSAC TIONS ON PATTERN

ANALYSI S AND MACHINE INTELLIGENCE, VOL. 32, NO. 1, pg no.105, Jan, 2010.

[20] E. Rosten and T. Drummond, “Fusing points and lines for high performance

tracking,” in 10th IEEE International Conference on ComputerVision, vol. 2, pp. 1508–

1515, 2005.

 [21]

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/AV1Featurefro

mAcceleratedSegmentTest.pdf, Accessed June, 2012.

[22]“http://sepwww.stanford.edu/public/docs/sep70/rub/paper_html/node2.html”,

Accessed June, 2012.

[23] “http://valgrind.org/docs/manual/QuickStart.html”, Accessed June, 2012.

[24] “http://code.google.com/p/jrfonseca/wiki/Gprof2Dot”, Accessed June, 2012.

[25] “http://www.graphviz.org/Documentation.php”, Accessed June, 2012.

http://www.ri.cmu.edu/pubs/pub_22.html
http://www.ri.cmu.edu/pubs/pub_22.html
http://www.ri.cmu.edu/pubs/pub_22.html
http://www.ri.cmu.edu/pubs/pub_22.html
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.2763
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.2763
http://citeseer.ist.psu.edu/shi94good.html
http://citeseer.ist.psu.edu/shi94good.html.%20June%201994
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/AV1FeaturefromAcceleratedSegmentTest.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/AV1FeaturefromAcceleratedSegmentTest.pdf
http://sepwww.stanford.edu/public/docs/sep70/rub/paper_html/node2.html
http://valgrind.org/docs/manual/QuickStart.html
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://www.graphviz.org/Documentation.php

	hitesh_thesis_front_page.pdf
	hitesh_thesis_abstract.pdf
	hitesh_thesis_final.pdf

