

 A

 Dissertation

 On

Reducing the Latency of Interaction with the Power

Servers

Submitted in partial Fulfillment of the requirement

For the award of the Degree of

Master of Technology

In

Computer Science & Engineering

Submitted By

Rishi Mathur

University Roll No. 2K11/CSE/11

Under the esteemed guidance of

Dr. Daya Gupta

Head of the Computer Engineering Department, DTU, Delhi

DELHI TECHNOLOGICAL UNIVERSITY

i

 DELHI TECHNOLOGICAL UNIVERSITY

 CERTIFICATE

This is to certify that the work contained in this dissertation entitled “REDUCING

THE LATENCY OF INTERACTION WITH THE POWER SERVERS” submitted in

the partial fulfillment, for the award for the degree of M.Tech in Computer Science

and Engineering at DELHI TECHNOLOGICAL UNIVERSITY by Rishi Mathur, Roll

No. 2k11/CSE/11, is carried out by him under my supervision. This matter embodied

in this project work has not been submitted earlier for the award of any degree or

diploma in any university/institution to the best of our knowledge and belief.

Date:

Dr.DAYA GUPTA

 PROJECT GUIDE and HOD, Computer Science

Dept. of Computer Engineering Dept. of Computer Engineering

ii

ACKNOWLEDGEMENT

I take this opportunity to express a deep sense of gratitude towards my guideDr. Daya

Gupta and my mentor at IBM, India Mr. HariganeshMuralidharan(HMC Development,

IBM) and Ms. RashmiNarasimhan (Architect-Service Processor Development, IBM),

for providing excellent guidance, encouragement and inspiration throughout the project

work. Without invaluable guidance of them, this work would never have been a

successful one.

I would like to thank Mr. Ajay K. Mahajan (Power Firmware Architecture and

Development, IBM) for guiding me throughout my tenure as an intern at IBM. I would

like to thank Ms. KiranmaiKuchibhotla (Manager – Power HMC Systems Director

Integration, IBM) for providing me a conducive atmosphere at IBM. I would also like to

thanks Mr. Ratan K. Gupta (Service Processor Development, IBM) to guide me and to

resolve any queries or doubts I had.

Rishi Mathur

College Roll no: 2K11/CSE/11

M.Tech (Computer Science and Engineering)

Department of Computer Engineering

Delhi Technological University

Delhi-11004

iii

ABSTRACT

Virtualization is one of the most important aspects of server industry today as it helps to

mask the limited amount of physical resources available. It also forms the basis of the

trending concept of cloud computing which speaks volumes of its significance. The

Power servers of IBM follow the classical architecture of Virtualization where the

virtual machine resides in the form of Logical Partitions (LPARs). Each active logical

partition has its own operating system running along with virtual device drivers to

interact with virtual devices. But for maintaining this virtual environment without much

overhead of indirection, a component called hypervisor provides many features. By the

virtue of these features, it is capable of virtualizing almost each aspect .The main

features of virtualization include – Virtualization of processors, Active Memory Sharing

(Virtualization of Memory) and virtualization of input/output operations. The creation

and management of these logical partitions is done using a Hardware Management

Console (HMC).Through HMC we can create or dynamically change profiles of Logical

Partitions where a profile denotes the amount of resources required and the capabilities

of the logical partitions. The management process is internally done by issuing of

commands from HMC. But these commands are not directly headed to the hypervisor.

Instead, the commands are headed to the Flexible Service Processor (FSP) which acts as

a processor of the power server and is responsible for booting up and maintenance of the

server. In the existing architecture of Power Servers, there is only single channel of

communication available and each command whether it is targeted to or not, is handled

by FSP only. This puts a significant amount of load on FSP. IBM proposes a

modification in the architecture in the process of off-loading FSP, whereby a new

channel of communication is introduced and the terminating point of this channel is not

FSP, but a special LPAR. This new channel not only requires the designing of a special

iv

LPAR but also modifications on the HMC side. In our work, we studied the existing

communication architecture with the prime focus on understanding of Hardware

Management Console and its modular functionalities. We then developed a mechanism

on the HMC side to interact with the special LPAR and modified the code base in a

manner such that, on the HMC side only a decision is taken on which communication

channel a command should use based on its target. A significant amount of

improvement was observed on a carefully put experimental setup which was inline with

the fact that two channels of communication allow simultaneous issuing of commands.

v

TABLE OF CONTENTS

CERTIFICATE ... i

ACKNOWLEDGEMENT ... ii

ABSTRACT .. iii

LIST OF FIGURES .. vii

1. INTRODUCTION ... 1

1.1 Motivation ... 3

1.2 Related Work ... 3

1.3 Problem Statement ... 5

1.4 Scope of Work ... 5

1.5 Organization of Thesis... 7

2. LITERATURE REVIEW ... 8

2.1 Virtualization ... 8

2.1.1 Benefits of Virtualization ... 9

2.1.2 Classification of Virtualization ... 11

2.1.3 Limitations of Virtualization .. 12

2.2 Introduction to Power Servers ... 13

2.2.1 Overview .. 13

2.2.2 Architecture of the Power Platform .. 13

2.3 Hardware Management Console (HMC) .. 15

2.3.1 Introduction.. 15

2.3.2 Basic Operations .. 15

2.3.3 Types of HMC ... 16

2.3.4 HMC Implementation .. 16

2.4 Flexible Service Processor (FSP) .. 18

2.5 Hypervisor (PHYP) ... 19

2.5.1 Classification... 19

2.5.2 Power Hypervisor (PHYP) .. 20

vi

2.5.3 PHYP Architecture .. 22

2.6 Virtualization of Memory (Active Memory Sharing) ... 24

2.6.1 Introduction to AMS .. 24

2.6.2 Active Memory Sharing Components .. 26

2.6.3 Active Memory Expansion ... 31

2.7 Virtualization of Processors (Micropartitioning) ... 33

2.7.1 Introduction.. 33

2.7.2 Methodology of Micropartitioning ... 34

2.8 Virtualization of Input/output .. 36

3. PROPOSED ARCHITECTURE .. 40

3.1 Existing Architecture ... 40

3.2 New Architecture .. 43

4. METHODOLOGY AND SYSTEM DESIGN .. 46

4.1 Interface Architecture of HMC .. 46

4.1.1 Basic Interface Architecture of HMC .. 46

4.1.2 New Interface Architecture to support special logical partition 48

4.2 Detailed Design to support special logical partition .. 50

4.3 Resource Constraints identification for special LPAR .. 56

5. EXPERIMENT AND RESULTS ... 58

6. CONCLUSION ... 61

REFERENCES .. 63

APPENDIX .. 68

vii

LIST OF FIGURES

FIGURE 1 VIRTUALIZATION CAPABILITIES (A) WORKLOAD ISOLATION (B) WORKLOAD CONSOLIDATION (C)

WORKLOAD MIGRATION [13] ... 9

FIGURE 2 ARCHITECTURE OF POWER SERVER [4]... 14

FIGURE 3 IMPLEMENTATION OF HMC[18] ... 16

FIGURE 4 TYPES OF HYPERVISORS [17] ... 20

FIGURE 5 : PHYP ARCHITECTURE [19] ... 23

FIGURE 6 CLASSICAL VIRTUAL MEMORY ... 25

FIGURE 7 ACTIVE MEMORY SHARING VIRTUAL MEMORY ... 25

FIGURE 8 ACTIVE MEMORY SHARING ARCHITECTURE [10] .. 27

FIGURE 9 PAGE LOANING [10] .. 29

FIGURE 10 ACTIVE MEMORY SHARING [10] ... 31

FIGURE 11 PAGE LOANING IN ACTIVE MEMORY SHARING [10] ... 32

FIGURE 12 DEDICATED AND SHARED PROCESSOR LPAR .. 33

FIGURE 13 PROCESSING AN I/O REQUEST FROM VIRTUAL MACHINE [21] .. 37

FIGURE 14 MODERN DEVICE SPLIT DEVICE VIRTUALIZATION [21] ... 38

FIGURE 15 VIOS OPERATION IN POWER SERVERS .. 39

FIGURE 16 EXISTING ARCHITECTURE OF POWER SERVERS .. 41

FIGURE 17 NEW ARCHITECTURE THAT SUPPORT NEW COMMUNICATION CHANNEL 44

FIGURE 18 HMC INTERFACE ARCHITECTURE ... 47

FIGURE 19 NEW INTERFACE ARCHITECTURE .. 49

FIGURE 20 CONNECTION ESTABLISHMENT BETWEEN HMC AND THE POWER SERVER 51

FIGURE 21 CHANGE OF STATE FROM POWER OFF TO POWER ON .. 52

FIGURE 22 ACTIVATION OF THE SPECIAL LOGICAL PARTITION ... 53

FIGURE 23 CONNECTION ESTABLISHMENT BETWEEN HMC AND THE SPECIAL LOGICAL PARTITION 54

FIGURE 24 HARDWARE SERVER TAKES A DECISION BASED ON THE TARGET OF THE COMMAND…………..56

FIGURE 25 INTERACTION LATENCY AS OBSERVED WITH PROPOSED SYSTEM AND EXISTING SYSTEM 59

1

Chapter 1

INTRODUCTION

The concept of virtualization dates back to 1960s when expensive mainframe

hardware and general computing was the domain of large. At this point of time, the

virtualization became popular as it provided a software abstraction layer for the

underlying hardware resources. But with the emergence of multitasking operating

systems and reduction in the cost of hardware resources in 1990s, the concept of

virtualization started fading. But as the limitations of hardware and operating systems

came into realization, the focus was shifted back to virtualization and it underpinned the

basis of companies like VMware Inc. As it turns out, in the new millennium

virtualization holds on a firm grip on current trends of market and it forms the

underlying base for fast emerging technologies like Cloud Computing [1].

 The process of virtualization basically involves the creation of Logical Partitions

(LPAR) or Virtual machines (VM). (We will be using the terms LPAR and Virtual

Machines interchangeably in the further sections).Virtual Machines are used in

disciplines that range from operating systems to processor architecture. The creation of

virtual machines which involves the virtualization of resources like processor

(Micropartitioning), memory (Active Memory Sharing) and input/output devices

liberates developers from traditional usage and resource constraints and thus enhances

system impregnability, software interoperability and platform versatility [2].

2

IBM was one of the first companies to work on the development of

Virtualization features and provided two kinds of server platforms – System i and

System p up till the early 1990s targeted for different market segments. Later it

consolidated its features of processor, server and software onto both the server platforms

and eventually came up with Powerhypervisor that provided a common virtualization

platform for both flavors of IBM servers and in 2008, System i and System p were

unified into a single POWER System Servers [3].

Specifically, a management console called Hardware Management

Console(HMC) is what a client uses to interact with the Power servers and in this

process of interaction , all the commands issued pass through a single communication

channel to a component called Flexible Service Processor (FSP) and this component

based on the target field of the command takes a decision on whether to forward this

command to the next component or not, since some of the commands are intended for

the flexible service processor only.

The whole process of virtualization is in the hands of a component called

hypervisor (PHYP or Virtual Machine Monitor). So, the Flexible Service Processor

forwards the commands that are meant for creation and management of LPARs to

hypervisor and hypervisor takes the appropriate action on the targeted virtual machine.

The commands that are forwarded to the hypervisor are the focus of our attention. We

try to reduce the effective amount of time it takes to interact with the server and thus

reduce the workload of Flexible Service Processor by introducing a special Logical

Partition. The special Logical partition will now interact with the target Logical

Partition and in turn will reduce the effective latency of the interaction with servers.

3

1.1 Motivation

The motivation for this work comes from the realization of the growing

importance of s virtualization technology which in turn also forms the basis of a

trending trade of current market, cloud computing. In the process of striving for

efficiency IBM took up the issue of interaction between clients and their

proprietaryPower servers.

In the existing Power Server systems, there is only a single channel of

communication present which puts a significant amount of load on a component called

Flexible Service Processor (FSP) as it‟s the first interaction point on the server site.

So, keeping the two important issues (that is of off-loading FSP and a single

channel of communication) in mind, IBM‟s STG Development team came up with an

idea of developing a new channel of communication whose end point is not the FSP but

a virtual machine itself.

1.2 Related Work

Virtualization has been widely studied over the years by the researchers and is

till date a popular topic of discussion. Goldberg et al. [11] gave the criteria which a

machine design should fulfill to be virtualizable and recursively virtualizable. The

criteria included system hygiene, software simplicity and system performance.

The Intel‟s X-86 architecture did not initially support Virtualization completely

as John Scott Robin found out [12] that seventeen of the then existing instructions did

4

not meet the virtualization requirement as they were sensitive and unprivileged. But

later both Intel [7] and AMD [8] introduced hardware support for virtualization.

In the process of thriving for efficiency more hardware based solutions were introduced

to tackle different kinds of problems. Yazou Dong et al. [5] implemented hardware

accelerations like Pause Loop Exit (PLE), ExtendedPage Table (EPT), and Single Root

I/O Virtualization(SR-IOV) on Xen Hypervisor and analyzed the performance. In the

series of hardware based solutions,Wing-Chi Poon and Aloysius K. Mok took up the

issue of recursive virtualization [6] and argued that pure software solution falls short

in improving the performance , thus they proposed a simple hardware extension for

X-86 architecture.

DulyawitPrangchumpol et al. [9] proposed a preliminary idea of improving the

performance of server virtualization by using data mining techniques to study the level

of user access in virtual machines with heterogeneous workloads.

 The above mentioned methodologies talk about performance improvement

taking server side into consideration. We in our work take client‟s side into the picture

and devise a strategy which provides a new channel of communication to interact with

the server. We also consider the state of the intermediate components of the server, as

the continuously increasing demands and modifications in the firmware put a significant

load on some components. The new channel of communication that is introduced has a

newly designed end point and more than command can be sent simultaneously.

5

1.3 Problem Statement

The Server virtualization forms an important aspect of the IT industry and it is

essential to thrive for efficiency in whatever form it comes in. In this project we try to

reduce the latency of the interaction with the servers and also try to balance the load of

intermediate component called Flexible Service Processor (FSP). Our contribution in

the project was to understand the interface architecture of the Hardware Management

Console and the functionality of the different modules developing appropriate

functionalities such that a communication path is established between the introduced

special logical partition and the HMC. Also, we modified the hardware server code in

order to make it capable of making a decision on which channel of communication to

use for the commands. Thus we define our problem statement as

“To modify Hardware server module to support new communication channel

thereby reducing the latency of interaction with the Power Servers”

1.4 Scope of Work

The project work is applicable to the areas of the technology which include the

creation and management of virtual machines. In this project, no new component is

introduced or platform specific modifications are done, only a dedicated virtual

machine is introduced to manage the interaction with the targeted Logical Partitions ,

thus this technique is useful for all systems that support the creation and management of

virtual machines.

6

In our work,we went through the process of understanding the architecture of the

Hardware Management Console and functionalities of individual modules of the IBM

Power Servers. We developed and modified Hardware Server module of HMC to enable

it establishing a connection with the newly introduced special logical partition and also

take a decision on which channel to use for the communication based on the target of

the command.

We thus contributed on following levels in the project.

1. Understanding the basic architecture of Power Servers as well as the new

architecture proposed by the IBM STG Development team.

2. Modify the Hardware Server module on HMC to support a new channel of

communication.

3. Making Hardware Server capable of taking a decision on which channel of

communication to use based on the TARGET of the command.

4. Establishing an experimental setup for the result analysis and selecting the best

possible source (Hardware Server Logs and CIM Server Logs) to measure the

improvements.

There are two advantages of the newly introduced channel –

 It helps in reducing load on Flexible service processor as it will have to deal

only with the commands intended for the maintenance and surveillance of

the server.

 It also allows more than command to be simultaneously issued from the

Hardware Management Console, thus reducing the latency of interaction

with the server.

7

1.5 Organization of Thesis

The rest of the thesis is organized as follows –

Chapter 2 discusses the concepts of Virtualization in detail where benefits and

limitations are also described. Along with this it describes the architecture of Power

Servers and discusses the role of important modules.

Chapter 3 details the existing architecture and the communication path followed by the

issued commands. It then discusses the proposed architecture and describes that how

proposed architecture reduces the latency of interaction with servers.

Chapter 4 describes our contribution in the project. It describes the modules we worked

upon and also discusses the reasons for the modifications performed.

Chapter 5 discusses the Experimental Setup that was used to analyze the efficiency of

the proposed architecture along with the result analysis.

Chapter 6 concludes the thesis and also provides a discussion on the future work.

8

Chapter 2

LITERATURE REVIEW

2.1 Virtualization

The computer systems, despite their complexity continue to evolve and the reasons

for this evolution are –

 Well defined interfaces [2]

 Separate levels of abstraction [2]

But the well defined interfaces also come with their limitations as components and

subsystems which are specific to a design will not work with the ones designed for

another. This confining lack of interoperability is solved by the concept of virtualization

[2].

 Virtualization at a given abstraction layer maps the resources and interfaces of a

component or a system onto a underlying real system. As a result, the real system

appears to be a different system which is in fact a virtual one [2]. Goldberg et al. called

it the simulation of one machine on a real machine and called the simulated machine as

a virtual machine [11].

The server computer machines that host applications need to perform

complicated tasks and thus need to utilize its resources well. A traditional approach used

9

by computer network administrators is to dedicate a server for each special task. But this

approach does not utilize the modern processing capabilities well. Underutilizing the

resources and processing capabilities would also result in wastage of power. The issues

of underutilization and wastage of power are well addressed by the concept of server

virtualization. In the process of server virtualization, using specially designed software,

one physical server can be utilized to run multiple virtual machines with each virtual

machine having its own operating system. Theoretically, virtualization of servers can

utilize all of the processing capabilities of the server [17][15][20].

In the coming sections we discuss the benefits of server virtualization, the

limitations of server virtualization as well as the number of ways in which server

virtualization can be done.

2.1.1 Benefits of Virtualization

Virtualization provides users with many benefits. Some of them are financially

motivated and some are for technical reasons [20]. Uhlig et al. [13] classify the

virtualization usages into three categories as shown in the Figure 1: -

Figure 1 Virtualization Capabilities (a) Workload Isolation (b) Workload Consolidation (c) Workload

Migration [13]

10

1. Workload Isolation

Virtualization provides isolation of applications. The special mechanisms

on the servers allow multiple applications to run simultaneously without

interrupting the other applications [20]. The isolation ensures security and

reliability for the virtual machines as intrusions would remain confined to that

very virtual machine that is being attacked [13].

2. Workload Consolidation

As mentioned before, the server virtualization serves to utilize the

processing capabilities of the server perhaps in the best possible manner. So, if

an application requires fewer amounts of resources, the resources can be

allocated to the other applications [20].This reduces the total cost of ownership

[13].

3. Migration of Virtual Machines

The server virtualization provides a mechanism in which, the virtual

machine can be shifted from one physical machine to another. The migration is

achieved by encapsulating the state of the guest within the virtual machine and

decoupling it from the hardware. The migration can also be automatically

triggered by the load balancing agents and failure prediction agents. This feature

reduces the total operation cost and also improves the quality of service [13].

One of the many scenarios in which migration is required is the

maintenance of physical servers [20].

11

2.1.2 Classification of Virtualization

There are three ways in which virtualization can be done.

1. Full Virtualization

2. Para – Virtualization

3. Operating System Level Virtualization

Full Virtualization

VMware was the first to introduce the concept of Full Virtualization [14]. In full

virtualization unprivileged instructions execute normally while a binary translator is

used to convert the privileged instructions into a block of unprivileged instructions. The

translated block can now execute directly on the CPU [16].

Paravirtualization

 The concept of paravirtualization was first introduced by Denali [18]. In

paravirtualization, hypervisor aware operating systems are present. The operating

systems use a hypervisor call known as hcallto perform logical operations like updating

the virtual page tables [4]. The Paravirtualization proves to more efficient than full

virtualization as it provides reduction in context-switching and parameter checking

overload [20] [2]. But paravirtualization comes with the demerit that operating systems

should be modified to be hypervisor aware [18].

Operating System Level Virtualization

The operating system level virtualization is completely different from the two

types of virtualizations described above as it doesn‟t use a hypervisor at all for the

12

virtualization. The host operating system itself is responsible for providing this

environment. But the biggest disadvantage of Operating System Level Virtualization is

that all the virtual machines should be running the same operating system [20].

A logical partition is assigned with non-overlapping set of resources which

includes virtual processors, regions of system memory and I/O adapter bus. In Power

Systems for instance, the resource configuration information is communicated to the

operating system by the platform firmware. Rest of the platform resources like memory

controllers, interrupt controllers and almost all of the I/O infrastructures are controlled

by the hypervisor. The operating system communicates with hypervisor using hcallto

access these resources.

2.1.3 Limitations of Virtualization

Despite looking like a flawless concept, like most technologies server virtualization

also comes with its limitations [20]. Some of those limitations are discussed below -

1. There are applications which require high processing power and performing

virtualization on the physical machines that run these critical applications, can

hamper the performance these critical applications .So, in such cases it's better to

provide dedicated servers to these tasks.

2. The more the virtual machines created on the physical server, lesser is the

amount of resources available to the virtual machines. So, running too many

virtual machines on the same physical server is also not always a good idea.

3. The migration support in which one virtual machine can be migrated to another

is possible between the physical machines running on the same processor.

13

2.2 Introduction to Power Servers

2.2.1 Overview

Power systems follow the classical server virtualization architecture in which

hypervisor acts as the controller between the virtual machine requests and the physical

available resources. The Power Servers allows the operating system to be hypervisor

aware that helps to improve the utilization of the system resources as the operating

system can now directly interact with the hypervisor. To give control to the hypervisor,

there is a special instruction called 'hcall' which is a context switching instruction to

give control to the hypervisor [4].

The Power implementation takes the approach of paravirtualization [4][16]. A

system is paravirtualized if it has got a hypervisor aware version of operating system

which utilizes 'hcall' to interact with hypervisor. A combination of hardware and

firmware design can prevent the operating system to access the resources from other

partitions or hypervisor. Paravirtualization acts a performance middle ground at the cost

of relatively few Operating System changes [4].

The Power processor provides the mechanism to instantaneously reassign an idle

processor to a LPAR that allows a LPAR to have more processors than there are

actually (physically) present.

2.2.2 Architecture of the Power Platform

Power Server is a system assembly that is created by interconnecting various

subsystems with each subsystem having its own resources [1]. The resources include

memory, CPU cycles and I/O capability .A uniform access time is provided by an

14

interconnect fabric which connects the subsystems. The three most important building

blocks of the Power Server architecture are as shown in the FIG 2 and they are -

A) Hardware Management Console (HMC)

B) Flexible Service Processor (FSP)

C) Hypervisor Layer

Hardware Management Console forms the Virtualization Control Point for the

users [4]. In other words, HMC is the console via which user can configure and control

the virtual machines (LPAR).

Figure 2 Architecture of Power Server [4]

15

The service processor is basically used for booting up and maintenance of the

power servers [4]. It is the first interaction point for the user as the user should interact

with the service processor in order to Power ON the system. The Hypervisor layer

ensures integrity and isolation of the Logical partitions by validating the instructions

issued by the operating system to utilize the resources [4]. The Hypervisor is the heart of

virtualization and it is responsible for sharing of the available resources among the

virtual machines. In the further sections, we will be discussing each of those 3

components in detail.

2.3 Hardware Management Console (HMC)

2.3.1 Introduction

HMC is a set of firmware tools that manages resources on the server via

messages to the hypervisor and the operating system on the partition that is used for

operational management of the platform [18]. The HMC is the control point for dynamic

reconfiguration of resources on the partition, platform hardware operations and deferred

and concurrent maintenance of both hardware and firmware [4]. The messages sent by

HMC to hypervisor are actually commands and the path these commands follow

depends on the OPCODE and TARGET specified in the command.

2.3.2 Basic Operations

The Hardware management console –

16

I. Creates initial configuration definition.

II. Controls boot and termination of partitions.

III. Provides Virtual Console Support.

2.3.3 Types of HMC

The HMC runs as an embedded OS on an Intel® based workstation that can be

Desktop or Rack Mounted [18]. The embedded OS and applications take over the whole

PC, and no other applications are allowed to be loaded. There are some models of HMC

that were available for pSeries. These models can be upgraded to run the HMC code and

manage System i5 systems. But they cannot manage both Power4 and System i5. The

upgrade is simply a scratch install of the System i5 HMC code level.

2.3.4 HMC Implementation

Figure 3 Implementation of HMC[18]

17

To provide flexibility and availability, HMC can be implemented as local and redundant

HMC

A) Local HMC

A local HMC is one that is located physically close to the system that it manage

and that is connected by either a private or public network [18]. An HMC in a private

network is a DHCP server for the service processors of the systems it manages.

An HMC can also manage a system over a public network where the managed

system's service processor IP address has been assigned manually using the Advanced

System Management Interface (ASMI) or assigned by a DHCP server on the public

network. For convenience of service personnel, an HMC is typically kept in close

proximity to the servers that it manages [18].

B) Redundant HMC

A redundant HMC manages a system that is already managed by another HMC.

When two HMCs manage one system, they are peers, and each can be used to control

the managed system [18]. If both HMCs are connected to the server using private

networks, each HMC must be a DHCP server set up to provide IP addresses on two

unique, non-routing IP ranges. For best redundancy, redundant HMCs is kept on

separate sub networks and attach to different server support network ports.

18

2.4 Flexible Service Processor (FSP)

Flexible Service Processor is not the main processor but a microprocessor within the

system with its own hardware and firmware. FSP is responsible for booting up the

system and providing various surveillance and monitoring functions.

The primary functions of FSP are –

1) POWER ON/OFF

FSP performs the booting operation for the system during which it loads the PHYP code

from Flash into the system memory and starts the system‟s main processors. During the

booting process, FSP also initializes various parameters that hold the state of the system.

2) Run time management

FSP recovers the system from recoverable errors and captures the failure state data in

case of unrecoverable errors.

3) Updation of Firmware

The firmware update on the system is done via FSP.

4) Interfacing point

FSP forms the first interaction point on the server side for the commands issued form

the HMC and in the existing architecture, all the commands issued from HMC pass

through FSP. Since the management commands are to be passed to the Hypervisor

(PHYP), FSP forms an interaction point with Hypervisor in the form of a mailbox. A

19

similar mailbox is present on the Hypervisor‟s side and the commands are passed

through communication between these two mailboxes.

As discussed above, Flexible Service processor is the component that takes the

responsibility of gathering all the commands that are issued from the Hardware

Management Console. Besides that also, it has numerable tasks to perform. One of the

primary aims of our work is to offload this component as we try to develop an

environment in which not all the commands would be passing through the FSP. We will

discuss this on detail in the coming chapters.

2.5 Hypervisor (PHYP)

A Hypervisor is the manager of the virtual machines running on a single system.

The hypervisor allows multiple operating systems to shard the available physical

resources among themselves. Each operating system thinks that it has a dedicated

memory, processor and input/output adapters available [17][7].

But, instead they are sharing the available physical resources and the hypervisor

manages these resources keeping a measure of the fact that one virtual machine does not

disrupt with another.

2.5.1 Classification

The hypervisors can be classified into two major categories -

1. Bare Metal Hypervisors

20

Bare metal hypervisors run directly on the hardware to manage the virtual

machines. No separate operating system is there for these hypervisors [17]. Thus

these types of hypervisors work on the level just below the guest operating

system and above the hardware.

Figure 4 Types of Hypervisors [17]

2. Hosted Hypervisors

The Hosted Hypervisors run on a separate operating system. So a hosted

hypervisor works on the third level not directly above the hardware but above an

operating system [17]. This is depicted in the figure shown above (FIG 3).

2.5.2 Power Hypervisor (PHYP)

Power hypervisor is the IBM version of the hypervisor that offers the

functionality, the modern virtualization demands [19]. Power hypervisor forms the basis

of virtualization by providing an environment via which the virtual machines (LPARS)

can share resources among themselves.

Through a combination of hardware and software, Power Systems prevent

hypervisor to access the resources of the other partitions. Without much hardware

21

support, hypervisors must emulate hardware of the guest operating system, this will

affect the performance. So, by the concept of paravirtualization hypervisor aware

operating systems are designed that use a Memory Management Unit (MMU) system

call hcall to interact with the hypervisor. The basic function of this system hcallis to

perform the entire logical operation of virtual address translation [4].

But the concept of paravirtualization comes with reduced portability as guest

operating system needs to be modified adequately. The Power architecture comes with 3

modes of privilege levels – User / Supervisor / Hypervisor mode. The guest operating

system on the Logical Partition runs in supervisor mode, giving it access to the

privileged instructions like system calls while the applications runs in user level mode.

And finally there is a hypervisor mode which provides universal access to the physical

resources [19][4].The hypervisor mode enables the access to the hypervisor to enable

the access to the hardware resources by the guest operating system in hypervisor

mediated fashion. So, when a guest operating system wants to perform a privileged

operation such as modification of TLB (Translation Look Aside Buffer) , the processor

is configured to trap this interrupt and direct it to the hypervisor which decides whether

to allow / disallow or abort the request.

Hypervisor can also control the interrupts it wants to bypass. For example, if a

guest operating system wants to access a dedicated I/O, it can allow the guest operating

system to interact with the dedicated resource [4]. On the other hand, if the guest

operating system on a shared LPAR wants to interact with a shared I/O, hypervisor must

intercept the interrupt and take control and based on the availability of the requested

resource, it takes the appropriate action. One of the major roles of PHYP is to manage

and protect virtual machines. The hypervisor must prevent unauthorized access to a

22

logical partition and also allows a Logical Partition to use its allocated amount of

resources [19].

2.5.3 PHYP Architecture

PHYP‟s architecture can be explained by dividing it to two main components

1. Platform Licensed Internal Code (PLIC)

2. Dispatchable PHYP

We now discuss each of these components

Platform Licensed Internal Code (PLIC)

PLIC is a non blocking interrupt driven layer which performs the time critical

operations required for virtualization. PLIC is responsible for maintaining hardware

page tables to translate an LPAR memory address into a physical address [7]. This

prevents one LPAR to access the memory of any other logical partition. Similarly, PLIC

maintains a Translation Control Entry (TCE) table and an I/O memory unit which is

used to translate the address generated by I/O devices to physical memory assigned to

the LPAR [7].

An ownership of physical I/O device must be assigned to a LPAR before a

LPAR is permitted to map a portion of its memory to TCE entry associated with device

[7].

23

Figure 5 : PHYP Architecture [19]

Dispatchable PHYP

Dispatchable PHYP executes as a hidden partition and provides the platform for

non-critical services. The HMC is the one that provides configuration data of the LPAR

to the Dispatchable PHYP [19]. So, Dispatchable PHYP is the one which is responsible

for maintaining and processing the configuration data. Even in the operations related to

the Dynamic Logical Partitions where the resources are allocated or deallocated for a

LPAR dynamically, Dispatchable PHYP updates the configuration data.

Dispatchable PHYP is also involved in activities related to start up and

termination of a logical partition. Besides that, it also mirrors processors which are used

to maintain LPAR state [19].

The design of PHYP follows an overriding design principle in which PLIC and

dispatchable PHYP are used to perform only those operations that cannot be performed

24

by any other component of the software stack (which includes application, Operating

System or VIOS) [19][4].

2.6 Virtualization of Memory (Active Memory Sharing)

2.6.1 Introduction to AMS

Memory Virtualization is an important feature of power systems. Power Servers

implement the memory virtualization using Active Memory Sharing (AMS). So, AMS

basically allows sharing of memory among the partitions and thus allowing many

partitions to be a part of a shared memory pool. The Active Memory Sharing (AMS) not

only allows more than one partition to be the part of shared memory pool but also

allows the flow of memory among those partitions.AMS helps in -

A) Dynamically allocating memory to the partitions based on the workload demands

B) Improving the memory utilization or in other words allows over commitment.

C) Allowing the contents of the memory to be extended to the paging device.

The comparison of classical virtual memory and Active memory sharing virtual

memory is depicted in the figures shown below.

25

Figure 6Classical Virtual Memory

Figure 7 Active Memory Sharing Virtual Memory

In the classical virtual memory scenario, there is only one level of paging done

via which the logical memory appears to be much more than the actual physical memory

available. The mapping of the logical memory is directly done to the physical memory.

While in the Active Memory Sharing scenario, two levels of paging are performed. Two

levels of paging are required as Virtualization allows multiple virtual machines to run

simultaneously [10]. Thus at the higher level, the operating system level paging is done.

The operating system level paging is done by operating system mainly to perform page

26

loaning while the paging at the Hypervisor level is done when page loaning is not

possible and a page fault has occurred. In case of a page fault, the hypervisor pages out

the contents of a page to the AMS paging device and utilizes this page.

2.6.2 Active Memory Sharing Components

1. Virtualization Control Point

Hardware Management Console (HMC) forms the virtualization control point

for the power servers. Through this management console, the shared memory pool can

be configured. Depending upon the number of partitions of the shared memory pool, the

size of shared memory pool can be changed. The job of modification of the size of the

pool is in the hands of system administrator. The system administrator determines the

amount of physical memory to be assigned to the shared memory pool and this physical

memory is assigned in the multiples of Logical Memory Blocks (LMB).Besides that, the

system administrator can also select the number of paging devices for the shared

memory pool [10].

The Management Console allows the user to select the desired and maximum shared

memory pool size, the VIOS servers to be used for paging and the number of paging

devices for shared memory pool.

2. Active Memory Sharing Manager (AMSM)

Active Memory Sharing Manager is a part of hypervisor responsible for managing

the shared memory pool and managing the memory of partitions that are the part of

shared memory pool. AMSM works on to keep pages needed by the workloads on the

partitions inside the shared memory pool [10]. Some of the operating systems have a

27

Collaborative Memory Manager (CMM) as shown in figure helps AMSM to free up the

partition pages upon request.

AMSM maintains a list of free physical pages. This list contains the free pages from

partitions .When a page fault occurs for a workload on the partition; AMSM uses a free

page to handle that page fault. This kind of handling keeps on happening until there is a

low point hit. After the occurrence of this low point, AMSM starts taking pages from

other partitions through page stealing. While doing page stealing, Hypervisor has to

keep following factors into consideration

A) The Hypervisor perception of the relative memory loads.

B) The partitions shared memory weight.

AMSM provides a guaranteed mechanism that the contents of stolen pages are

not reachable to any other partition by zeroing the contents of the page.

Figure 8 Active Memory Sharing Architecture [10]

28

3. Paging VIOS

The purpose of paging VIOS is to allow the hypervisor to back up the excess

pages onto the paging device. Single paging VIOS is associated with a shared

memory pool but through the management console, a redundant paging VIOS can

also provided to function in a redundant manner [10]. A VIOS can be dynamically

enabled to work as a paging VIOS and can also be disabled when not in use as a

paging VIOS through the management console.

4. PagingDevices

Before we discuss the role of paging devices in Active Memory Sharing

Architecture, it‟s important to discuss the concept of Page loaning as the major role

of operating system paging is to perform Page Loaning which in turn will reduce the

considerable amount of paging overhead [10].

Page Loaning

Page Loaning is the technique by which the operating system can loan special page

frames called “Loaned Page Frames”.

29

Figure 9 Page Loaning [10]

As shown in figure above, the operating system pages in the data of a

loaned page to the paging device and frees one of the loaned page frames, so that

the page frame can now be used by the hypervisor. When operating system

cannot loan pages to the hypervisor, the hypervisor has to use its paging devices

to get free pages for the partitions. There are two levels of paging done in

Active Memory Sharing, since AMS provides a dynamic memory management

among partitions. The two levels of paging are explained below –

A) Operating System Paging:

Operating System level paging is used in Active memory sharing to loan

(Page Loaning) pages from hypervisor. Operating System Level paging is

specific to an operating system .For instance, in IBMi the paging is not done on

a single paging device but is spread across all around the disk storage network

[10].

30

B) Hypervisor Paging Devices:

AMS ensures over commitment of memory to the shared partitions.

There can be two scenarios based on the fact whether loaning is enabled or not.

If we consider the scenario where loaning (Page Loaning) is disabled among

partitions, then there would be considerable amount of paging [10]. Since, in this

case the hypervisor would have to page in the contents of a page before it can

allocate that page to another partition. In case where 'loaning' of pages is

allowed, the paging overhead would be significantly decreased.

5. Virtual Asynchronous Service Interface(VASI)

VASI is a virtual device that allows paging VIOS to interact with the

hypervisor [10].

6. I/O Entitled Memory

I/O entitled memory is the minimum amount of memory required by the

Logical Partitions to perform I/O operations. The unavailability of physical

memory during I/O operations can lead to failure of I/O operations. For example,

network requires a minimum amount of physical memory for receiving packets.

If the required amount of physical memory is not available, it may lead to

latency or network time outs [10]. Similar is the case while doing a disk read

operation as a minimum amount of amount of memory is required to hold the

data that is to be read. So, for a partition a set of physical memory should remain

unmoved during these set of operations.

6. Collaborative Memory Manager (CMM)

31

The AMSM does not know about the active and aged pages of each

partition. The Hypervisor does not select the logical pages which are not a part

of working set of partition [10]. The job of CMM residing in the operating

System is to give hints to the hypervisor about what pages to select. This is

needed when the system is overcommitted.

2.6.3 Active Memory Expansion

Active Memory Expansion (AME) is a feature that allows partitions to expand

their memory by using in-memory data compression. Using Active Memory Sharing,

the amount of logical memory is defined. An 'AME factor' can be applied on the logical

amount to expand this memory. For example, as shown in figure two LPARs are shown

in the figure. The amount of memory assigned to each LPAR is 4 GB and the AME

factor is 2. Thus the logical memory of a LPAR is expandable up to 8 GB [10].

Figure 10 Active Memory Sharing [10]

32

The memory of 4 GB is provided by Active Memory Sharing which includes the

physical memory on the shared memory pool plus the memory on paging devices. The

extra 4 GB is provided through Active Memory Expansion by the virtue of which in

memory data compression done at operating system level.

The basic difference between AMS and AME are -

A) Without AME, page loaning to the hypervisors could be done by paging out the

contents of the page to be loaned to the paging devices.

B) With AME, page loaning would be done by first trying an in memory data

compression. When compression is not possible, then only the contents of the page

would be paged out.

This scenario is depicted in the figure shown below.

Figure 11 Page Loaning in Active Memory Sharing [10]

33

2.7 Virtualization of Processors (Micropartitioning)

2.7.1 Introduction

One of the most important features of Power virtualization is the virtualization of

the processors. The virtualization of processors, also called micropartitioningis possible

because of hypervisor as now a logical partition(if it is a part of shared processor pool)

thinks, it has dedicated processor available with it but internally the processor cycles are

being managed by the hypervisor.

The Virtualization of the Processors is depicted in the figure shown below –

Figure 12 Dedicated and Shared Processor LPAR

34

The Logical Partition can be configured to have a dedicated processor resource

(then it will be called as a shared partition) or it can be configured to have a shared

processor resource in which case it will be a part of a shared processor pool. (Shared

Logical Partition)

The shared logical partition can further be classified as capped or uncapped

partition. A logical partition is called an uncapped partition if it can receive more

processor cycles then its entitled capacity allows [4]. Here, the entitled capacity is the

amount of physical processor resources allocated to the shared partition .Using the

Hardware Management Console; we can define uncapped weight for a partition which is

the priority share of the unused capacity of the processor relative to the other partitions

sharing the same processor pool. Dynamic Logical Partitions (DLPAR) can have their

entitled capacity and uncapped weight of a partition dynamically changed.

When a shared partition is configured, it is given with a definite amount of share

of processor cycles. The logical partitions can be assigned with virtual CPU units that

range from 0.1 to 64 CPUs. We can assign 0.1 CPUs because the unit of measurement

for virtualization of processors is the number of processor cycles. Thus Virtualization of

Processors implies the amount of processor cycles a logical partition is assigned with

[4].

2.7.2 Methodology of Micropartitioning

The Hypervisor is equipped with special capabilities to ensure fine grain

micropartitioning for the shared partitions. One of those special capabilities is in the

form of Hypervisor Decrementor (HDECR). HDECR provides a guaranteed timer

35

interrupt regardless of the partition execution state. HDECR interrupt is directly routed

to the hypervisor and uses only hypervisor resources to capture the partition state [4].

Power servers also support Simultaneous Multithreading (SMT). Between SMT

and shared processor, a special register called PURR (Performance Utilization Resource

Register) is present to exactly count the number of processor cycles consumed by the

partition thread on the physical processor. Also there is concept of dormant

threadavailable[4]. A thread becomes dormant when it is not performing any job (idle),

in that case the partition can invoke an hcallto let the other active threads to use the

available processor cycles.

As an when an interrupt occurs to time out occurs for a dormant thread, the

hardware reactivates the thread and its state is restored and control returns to the

partition.

Similar to the operating system level optimization in Active Sharing Memory,

operating system level optimization is achieved in virtualization of the processors. The

operating system of a virtual machine registers an area called Virtual Processor Area

(VPA) for each of the virtual processors assigned by the hypervisor [4]. The Virtual

Processor Area consists of a field called idle flag. Whenever a virtual processor on the

virtual machine becomes idle, the operating system sets the idle flag and similarly when

there is work available for the virtual processor, the idle flag is reset again. In the idle

state of a virtual processor, the operating system can invoke a special instruction called

h_cede_hcall whichyields the physical processor to the hypervisor. After this operation,

the virtual processor remains in the blocking state and the physical processor associated

to it is dispatched to another virtual processor [4]. The blocking state of the virtual

processor is dissolved when there is an interrupt or that blocked virtual processor is

36

prodded by another virtual processor of the same partition by invoking another system

call h_prod_hcall. Now, this call enforces the hypervisor to change the state of the

virtual processor and this virtual processor is again available to the partition [4].

2.8 Virtualization of Input/output

The VIOS is another essential feature of Power VM virtualization. It is a LPAR with

AIX operating system. It facilitates physical I/O resources between the LPARs. VIOS

virtualizes physical storage and network adapters. At least two VIOS LPARS are there

in every environment [21]. The (normal) LPARs have virtual Ethernet adapters (VNICs)

and traffic passing through VNICs is passed to/from VIOS to/from physical adapters.

The software layer of Hypervisor (PHYP) provides a decoupling factor by the virtue

of which a level of indirection is introduced between the abstract (logical) and physical.

This decoupling is achieved via a virtual I/O server that resides on a Linux partition.

The basic idea of this decoupling is the time and space multiplexing of the available

resources [21]. There are number of benefits of using decoupling. Some of them are-

 It provides flexible mapping between physical and logical devices with assured

portability.

 It provides dynamic migration of the virtual machines from one place to another.

 Decoupling enables suspension and resumption of the virtual machine by saving

its state.

One of the main goals of I/O virtualization is achieving the above mentioned

benefits with minimum overhead. Number of software and hardware approaches like

37

paravirtualization and virtualization aware devices have been introduced to achieve high

level of indirection [21]. The scheduling and prioritization of resource becomes

important during the multiplexing the requests from different VMs onto limited number

of physical resources.

Figure 13 Processing an I/O request from Virtual Machine [21]

The figure shown above (FIG 13) explains the processing of an I/O request

raised by a virtual machine.When an application running on virtual machine raises an

I/O request (that is usually made by making a system call), it is initially processed by

I/O stack of the guest operating system. After that via device driver present on the

virtual machine, it tries to interact with a virtual device. Now this interaction request is

38

intercepted by the Hypervisor which in turn schedules requests from multiple VMs on

the physical device via another device driver managed by Hypervisor [21].

After that the two I/O stacks are again traversed in reverse order and finally the

physical device generates a completion interrupt. This interrupt is intercepted by the

Hypervisor .The Hypervisor intercepts again that to which VM the completion is

associated with and generates a virtual interrupt and issues it to virtual device driver of

VM.

Figure 14 Modern Device Split Device Virtualization [21]

The modern hypervisors use a split implementation where a virtual machine can

select among different virtual device interface emulation front-ends as well as multiple

different back-end implementations of the device as shown in figure above.

While the device emulation code is specific to the particular device being

emulated (e.g., an IDE disk), the semantics of the operations being performed are

general and frequently constructed so that the same device emulation can access

multiple different back-end implementations.

39

Figure 15 VIOS operation in Power Servers

If we talk specifically about Power Servers, the LPAR requesting a I/O operation

is known as a VIO client LPAR and the LPAR containing the I/O server is known as

VIOS(Virtual I/O server) .As explained already, the LPAR requesting I/O

operation(VIOC) sends a request through a virtual adapter to a virtual device getting

request from the virtual device driver operation.

The request for operation pertaining to the virtual device is intercepted by the

hypervisor which in turn sends this request to the virtual device on the VIOS. Now

VIOS performs the multiplexing of the different requests coming from different VMs

onto limited number of Physical devices via physical adapters. As shown in figure, in

most of the environments there are more than one Virtual I/O servers.

40

Chapter 3

PROPOSED ARCHITECTURE

In the previous chapter, we discussed the principle components of the Power

Server along with their functionalities. In this chapter, first we will discuss the existing

communication path that commands issued by the hardware management console

follow. After introducing the existing architecture, we will discuss the proposed

communication architecture and will discuss about how this communication path results

in reduction in the interaction latency and also reduces the load on the Flexible Service

Processor.

3.1 Existing Architecture

The client uses the Hardware Management Console (HMC) to issue the

commands through a graphical user interface. The Hardware Management Console is

itself a standalone system containing many components. The communication end point

of Hardware Management Console is the Hardware Server. Every command issued by

HMC, in the existing architecture is handled by the Flexible service processor (FSP) or

in other words, the FSP acts as the first interaction point on the server site for the

commands that are issued remotely from Hardware Management Console. The Existing

architecture is depicted in the figure shown below (FIG 16).

41

Figure 16 Existing Architecture of Power Servers

The communication takes place on a secured socket layer (SSL). For any

communication to take place between HMC and FSP, it is necessary that a SSL

connection is established .Once the SSL connection is established, the messages in the

form of packets can be transacted from one component to another.

There is a common message format for each of the message that is sent and

received known apriorito both HMC and FSP. The most important constituents of this

message format are OPCODE and TARGET. Although, the first interaction point on the

server is Flexible Service Processor, not all commands are meant for it. Only those

commands that are meant for booting up the server or maintenance of the server are

42

intended for the flexible service processor .Rest of the commands is the point of our

interest as these are the commands that are meant for creation and management of the

virtual machines.

The flexible service processor forwards these commands to the hypervisor and

hypervisor in turn takes the responsibility of forwarding these commands to the intended

virtual machines. So, the obvious question arises , how does FSP knows about which

commands to forward .The answer to this question is given by the TARGET field of the

message format. Similarly, the function to be performed by a command is determined

by the OPCODE field of the message format.

If the target of the command is a logical partition, then FSP sends this command

to the hypervisor (PHYP) in a manner of storing the received messages in a message

box and forwarding it to another message box and forwarding it to another message box

present on the hypervisor side. The communication between these two message boxes

takes place via IBM's proprietary component Interconnect link.

The hypervisor is now responsible for interacting with the operating systems on

the virtual machines (in case the task is of managing the Virtual Machines). Also, the

hypervisor is aware of the whole information about the available resources, so during

the creation of a logical partition, it can assign the desired amount of resources to the

virtual machine that is to be created.

In other words, the commands intended for creation and management of the

virtual machines are to be forwarded to the hypervisor because hypervisor is aware of

all the available and already resources. Now, it can be analyzed that the existing

architecture puts significant amount of load on Flexible Service Processor as all of the

43

commands now have to pass through FSP and then FSP has to decide on the intended

target and forward the commands on to hypervisor.

3.2 New Architecture

IBM Software Labs introduced a new architecture in the process of thriving for

efficiency of their proprietary Power Servers.In the proposed architecture, the focus is

not only to try and reduce the load on the flexible service processor but also try to

improve the performance by reducing the time it takes to interact with the servers. In the

new architecture, a special logical partition is introduced which will now hold the

responsibility of handling the commands intended for the hypervisor and the logical

partitions. The new architecture is depicted in the figure shown below. As mentioned

before, the hardware server forms the terminating communication point for HMC. So,

instead of sending all the commands to the Flexible Service Processor, a decision would

be taken on the hardware server itself based on the target and send it to the respective

path. The special logical partition would be running an application to handle the

commands that are being sent and this application is responsible for interacting with

hypervisor and rest of the logical partitions.

One of the most important challenges in the new architecture is the

communication between HMC and the newly introduced logical partition. The

interaction from HMC to the newly introduced logical partition happens in the same

way as the communication between HMC and FSP take place.

44

Figure 17New Architecture that support new communication channel

Similar to the existing architecture, a secured connection (SSL) is established

between HMC and this new LPAR and the application running on this LPAR is

designed to understand the message format of the packets that are being transacted.

The remote HMC communicates with FSP on a TCP/IP connection. Similarly, in

a virtual environment the new active partition would also be identified by its IP address

and similar set of formal commands would be sent from HMC to establish a connection

on a secured layer. The Ethernet adapter to this logical partition can be dedicated one or

it can be a shared one.

Now, in the next step a communication path is set between newly introduced

LPAR and the targeted virtual machines (or the hypervisor). The communication

45

process between the logical partitions happens through a Virtual LAN (VLAN) setup. In

this mechanism, the logical partitions acts as nodes on a local area network and the

message can be unicasted from one LPAR to another. Similarly, in our case the newly

introduced LPAR would be communicating with the targeted LPARS. The newly

introduced LPAR is an able communicator with PHYP also as the application running

would be over the top of a hypervisor aware operating system. So, it's possible for this

application to interact with the hypervisor. This is needed for instance, in case of

creation of new virtual machines.

Since, there are two channels of communication now; both of the intended

results are achieved. The commands intended solely for the FSP can be sent on the

existing channel while the commands meant for creation and management of the

Logical Partition would be sent via the proposed link as shown in the FIG 17.

46

Chapter 4

METHODOLOGY AND SYSTEM DESIGN

In the previous chapter, we discussed the architecture proposed by IBM .In this

chapter we detail our contribution in the project which was to develop and modify

hardware server to establish the connection with the special LPAR. We start with

explaining the interface architecture of HMC along with the functions of each

component and then discuss the algorithm and implementation details.

4.1 Interface Architecture of HMC

In this section, we first describe the functionality of each component in the

existing interface architecture of HMC. We go on to describe the explain the new

interface architecture of HMC along with the new functionalities

4.1.1 Basic Interface Architecture of HMC

The basic interface architecture of HMC with the Power Servers is shown below in

Figure 18.As depicted in the diagram, HMC provides both GUI and CLI interfaces to

issue commands. The core of HMC is formed by the CIM which describes the common

information model for the managed resources. The managed resources include network

system, applications, devices and communication equipment. The managed resources

are represented in the form of objects and these objects are stored in a repository in the

managed object format (.mof). CIM object management (CIMOM) includes

47

 CIM client

 CIM server

 CIM object manager

CIM client forms the management system where application logic is written to

manage the resources while CIM server, CIM object manager along with the repository

forms the part of the managed system.

Figu Figure 18HMC Interface Architecture

In the communication process, the CIM server which acts as a framework

supporting virtualization performs initialization operations where functionalities and

methods of a managed object are taken as properties of the object stored in the

repository. In the communication path, the next component is the hardware server.

Hardware server has many responsibilities which include –

48

 Management of the connection between FSP and HMC

 Transferring the command packet from HMC to FSP

 Opening of PHYP connection

 Management of “HMCNetConfig” file. The HMCNetConfig file stores the

configuration information of the servers that were connected previously from

the corresponding HMC or it creates a new entry for the new connection

From the hardware server, every command is forwarded to FSP.

4.1.2 New Interface Architecture to support special logical partition

As mentioned above, hardware server holds the responsibility of managing the

connection between HMC and FSP. Similarly, we added the functionality such that

now, hardware server would be able to establish the connection between HMC and the

special logical partition as shown in Figure 19. The establishment of connection

however should be possible once the Power Server is booted on and the special LPAR is

activated with the application to gather the commands running on it. So, we made the

hardware server to be aware of the fact that the special logical partition is up and

running with the application to gather the commands is running. As the server boots up,

we created a mechanism such that the id of the special LPAR would be exchanged and it

would updated in HMCNetConfig file. We modified the HMCNetConfig file such that

once the entry is made; the HMC would automatically try to establish the whole

connection process if a connection made is not a new one but an attempt has already

been made for the connection to this server. This process includes the booting of the

server and activation of the special logical partition. The connection between HMC and

the special LPAR was established on the lines of NETC_NETS and same common

message format was followed for the communication process.

49

The next task was to modify the hardware server code, so that on the client side, a

decision would be taken on which channel to use for the communication. This decision

is required to be taken because a new channel is now introduced. The existing channel

which leads to the Flexible Service Processor are now primarily is the carrier of only

those commands that are for maintenance of the server. While the proposed channel has

the primary task of carrying the commands that are issued in order to create new virtual

machines or to manage the already exist

.Figure 19 New Interface Architecture

We modified the hardware server code in such a way that it is now capable of

taking a decision of choosing the channel of communication based on the TARGET of

the command. The TARGET was the id of the special LPAR that was exchanged during

the connection establishment process. In the existing architecture, the commands that

meant for the creation and management of the virtual machines were forwarded to the

hypervisor via FSP which put a significant amount of load on FSP, but since we can

50

always differentiate between the two targets – PHYP and FSP. We made the hardware

server enable to choose the communication path of the command.

4.2 Detailed Design to support special logical partition

In this section we present the detailed design and algorithm that has been

implemented for –

(i) The Activation of the special logical partition

(ii) The connection establishment of HMC with the special logical partition.

(iii) The modifications in the hardware server module to take a decision based on

the target of the command

Before proceeding with the above tasks there are two prerequisites to follow –

 A connection should be established between the HMC and the Power server

(via FSP).

 The Power Server should be in the POWER ON state.

In the following phases we discusshow the HMC establishes the connection with

the new logical partition along with the implementation details.

1. Connection Establishment with the Server: In this step, the user has to establish a

connection to the server if it is not already connected as shown in Figure 20. The

commands issued by the user are always sent to the CIM object manager where

various parameters are initialized and validation of the commands is performed.

After the validation process, through hardware server, commands are forwarded to

51

the FSP. On a secured connection(SSL), exchange of messages takes place over

NETC_NETS protocol.

Figure 20 Connection Establishment between HMC and the Power Server

While connecting to a new server HMC checks for the interface capabilities of the

server and then decides whether or not it is eligible to make a connection. If a

connection is possible, HMC appends an entry into a file called “HMCNetConfig”

which holds the information about all the connected servers like IP address, machine

address and some parameter values. With modifications on the FSP site, we now had the

52

ID of the special LPAR also retrieved by the hardware server. We created a new entry

for the ID of this special LPAR in the HMCNetConfig file.

2. Changing the state to POWER ON:In the next step, the user issues the command

to POWER ON the server and this command is also handled by the FSP as shown in

Figure 21. In this step FSP opens up the connection to the PHYP.

Figure 21 Change of state from Power OFF to Power ON

3. Automation of the Activation process of special LPAR: As Hardware server has

the ID of the special logical partition, we automated a step in which an activation

command for the special LPAR is issued just after PHYP channel is opened up as

shown in Figure 22. For activation of a LPAR, ID of that LPAR is required and

Hardware server already got the ID of the special LPAR in the previous step. The

53

activation process also involves the initiation of the application that runs as a server

on the special LPAR. The task of managing and keeping the application running was

handled by the PHYP.

Figure 22 Activation of the Special Logical Partition

4. Connection Establishment with special LPAR: With activation of special LPAR

and the application in the form of server running, HMC can now attempt a secured

connection with the special LPAR as shown in Figure 23. We implemented a

mechanism on the hardware server to automatically send a “make connection” set of

commands to the special LPAR. Before issuing these commands are validated by

CIM object manager and then sent to the special LPAR. The implementation

wasdone on the lines of NETC_NETS keeping in mind that the connection was

54

being

Figure 23 Connection Establishment between HMC and the special Logical Partition

5. Channel Selection:We now have two channels of communication available. We

modified the code on the hardware server in a way that it could now take a decision

on which channel of communication to be used. On the hardware server, we created

a new target value that was based on the ID of the special LPAR. Hence Hardware

Server could dynamically a channel of communication for a command as shown in

Figure 24.

55

Figure 24 Hardware Server takes a decision based on the Target of the command

Besides, the modification and implementation on HMC side, we also established

an experimental setup for the result analysis. The main challenge for the experimental

setup was to choose the appropriate flavor of Power Server. By flavor we basically

mean the capabilities of a server. Since our main focus was to analyze the results on the

most complex commands, we chose the server with the most recent capability of

running application migration via which a server can transfer a virtual machine with a

running application from one server to another without the knowledge of the user. We

also made sure that the HMC used was compatible to the flavor of the server we chose.

The experimental

56

4.3 Resource Constraints identification for special LPAR

We basically worked on the HMC side; another big task of the project however was

the designing and implementation of the special Logical partition. We contributed in

that part by understanding some of the modules that were selected and implemented as

an application on the special logical partition and identified the resources needed for

that LPAR. The resources were selected keeping in mind the basic responsibility of the

virtual machine. The resource constraints were - .

1. Operating System

The operating system we used was AIX (Linux flavor of IBM). We could have

chosen any other operating system also; the major capability the operating system

required here was it to be hypervisor aware as the power servers use the concept of

paravirtualization.

2. Resources

The special logical partition was created as a dynamic logical partition (DLPAR)as

the capabilities and the functions of this partition are supposed to be increased in future.

Sufficient amount of primary memory, CPU cycles and I/O interaction devices were

assigned as a part of “profile” of the logical partition.

In this section, a special mention of the I/O adapter is necessary. The special logical

partition was made capable of interacting with the power server on the lines of

NETC_NETS. The NETC_NETS protocol works over a Secure Socket Layer (SSL)

with underlying protocol being TCP/IP. So, the NETC_NETS identifies the client and

server from their IP addresses.

57

This required the special LPAR to be assigned with a I/O adapter to interact with

the HMC. In our work, we assigned the special logical partition with a dedicated adapter

considering the importance of role of the partition.

58

Chapter 5

EXPERIMENT AND RESULTS

5.1 Experimental Setup

To simulate the proposed idea, one Hardware Management Console (HMC) was

used and two different Power systems (of the same series) were used. One of the Power

systems was employed with no change in architecture and another system was the

modified one on which we created the special LPAR.

To measure the latency, we used the hardware server (terminus of Hardware

Server) logs and CIM-server logs to check for the time taken to complete the variable

number of commands.

Some of the common functions involving maintenance and managerial tasks

were selected and these commands were issued to the two Power Servers via common

HMC.Various tasks involve multiple number of commands with some tasks like

handshaking between the HMC and the server involve the number of commands in the

order of hundreds while others like increasing the memory share of Dynamic Logical

Partitions(DLPAR) involve the commands in order of thousands.

59

5.2 Results

The same set of tasks was given to both the servers and an improvement was

noted in the proposed system which is in line with the expected results. The graph

drawn below illustrates the comparison of the same set of commands that were sent

from HMC to each of the servers in an independent experiment.

Figure 25 Interaction Latency as observed with proposed system and Existing system

The experimental set that was used contained 7 tasks. In the case of existing

system, there is only a single channel of communication, so only one command can be

60

issued while in the proposed system, there are two channels of communication, so two

commands can be sent simultaneously on two different targets.

On the Hardware Server, based on the target of the command a decision would

be taken and the command would be sent on one of the channels. Since, the proportion

of the commands that are sent for management of the virtual machines is much more as

compared to the proportion commands sent for maintenance, if both channels are free

both the channels would be used for carrying the commands of management of Virtual

Machines.

61

 Chapter 6

CONCLUSION

The server virtualization technology holds a firm grip on affecting the

performance of Power servers. So, it's necessary to try and reduce the latency of

interaction and balance the workload of components. The Hardware management

console (HMC) is what a client uses to interact with the power servers and in this

process of interaction, all the commands issued pass through a single communication

channel to a flexible service processor and FSP based on the command issued was for

itself or for PHYP. The commands issued and intended for PHYP forms the focus of our

attention.

We try to reduce the workload of FSP by directing these commands directly to a

newly introduced logical partition. On the HMC side, a decision would be taken based

on the target of the message, whether to send the message to the newly introduced

LPAR or to the FSP.

The function of this LPAR is to directly interact with the hypervisor and thus the

workload of FSP would be reduced as well as latency of interaction would be reduced.

In the current architecture, there is only one special logical partition available,

but one more redundant special partition can be introduced which will help in achieving

better communication as one more channel of communication would be introduced and

will also provide robustness as in case of failure of one of the partitions. The basic

62

overhead by introducing this redundant partition is the workload of maintaining the

same state on both the partitions as now the communication could be possible from any

of the available partitions.

In future, more workload of FSP would be shifted onto this special LPAR to

further improve the efficiency.

63

REFERENCES
`

[1]Mendel Rosenblum,TalGarfinkel “Virtual machine monitors: current technology and

future trends “ ,IEEE Computer Society,2005

[2]James E.Smith, Ravi Nair “The Architecture of Virtual Machines”,IEEE Computer

Society,2005

[3]An executive guide to IBM‟s strategy and roadmap for its integrated operating

environment for Power Systems, IBM White Paper, 2012.

[4]W. J. Armstrong, R. L. Arndt, D. C. Boutcher, R. G. Kovacs, D. Larson, K. A.

Lucke, N. Nayar, and R. W. Swanberg, „„Advanced Virtualization Capabilities of

POWER5 Systems,‟‟ IBM Journal of Research & Development 49, No. 4/5, 523–532

2005.

[5]Yaozu Dong*, XudongZheng*, Xiantao Zhang*, Jinquan Dai*, Jianhui Li*, Xin Li*,

Gang Zhai*,Haibing Guan “Improving Virtualization Performance and Scalability with

Advanced Hardware Accelerations”,IISWC,2010 .

[6]Wing-Chi Poon , Aloysius K. Mok”Improving the Latency of VMExit Forwarding in

RecursiveVirtualization for the x86 Architecture” ,Hawaii International Conference on

System Sciences, 2012 .

[7]“AMD64 Architecture Programmer‟s Manual, Volume 1, 2 and

3”,http://www.amd.com/ (Publication number 24592, 24593,24594; revision 3.15),

November 2009.

64

[8] “IA-32 Intel Architecture Software Developer‟s Manual, Volume1, 2A, 2B, 3A and

3B”, http://www.intel.com/ (Order number253665-025US, 253666-025US, 253667-

025US, 253668-025USand 253669-025), November 2007

[9]DulyawitPrangchumpol, Siripun Sanguansintukul1and PanjaiTantasanawong “Server

Virtualization by User Behaviour Model using a Data Mining Technique – A

Preliminary Study”Internet Technology and Secured Transactions, 2009.

[10]Allyson Brito,LoïcFura,Bartłomiej Grabowski “IBM PowerVM Virtualization

Active Memory Sharing”,IBMRedpaper

[11]G. J. Popek, R. P. Goldberg “Formal Requirements for Virtualizable Third

Generation Architectures”, Communications of ACM,July 1974, pp.412-421

[12]John Scott Robin “Analyzing the Intel Pentium‟s Capability toSupport a Secure

Virtual Machine Monitor”, Master‟s Thesis, Sep1999, Naval Postgraduate School,

Monterey, California, USA

[13]Rich Uhlig,GilNeiger,DionRodgers,Amy L.,Santoni, Fernando,C.M. Martins,

Andrew V., Anderson, Steven M..Bennett,AlainKägi, Felix H.,Leung. ,Larry Smith

“Intel Virtualization Technology”,IEEE Computer Society,

[14]“VirtualizationOverview”http://www.vmware.com/solutions/whitepapers/virtualizat

ion.html.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5393958

65

[15]Nicolas Guerin,JimiInge,NarutsuguIto,RobertMiciovici,RajendraPatel,ArthurTörök

“IBM PowerVM Virtualization Managing and Monitoring”, IBM redbooks

[16]Wei Chen, Hongyi Lu, Li Shen, Zhiying Wang, Nong Xiao, Dan Chen “A Novel

Hardware Assisted Full Virtualization Technique” , The 9th International Conference

for Young Computer Scientists , 2008.

[17]www. Wikipedia.org.

[18]StephenHochstetler,JunHeumMin,MattRobbins,NancyMilliner,NarendChand,Syam

sulHidayat “Hardware ManagementConsole V7 Handbook”,IBM Redbooks

[19]EnriquilloValdez ,ReinerSailer, Ronald Perez “Retrofitting the IBM POWER

Hypervisor to Support Mandatory Access Control”, 23rd Annual Computer Security

Applications Conference,2007

[20]www.howstuffworks.com

[21]Mendel Rosenblum, Carl Waldspurger, “Decoupling a logical device from its

physical implementation offers many compelling advantages.”,Acmqueue

[22]Ricardo Lent “Evaluating the Performance and Power Consumption of Systems

with Virtual Machines” Third IEEE International Conference on Coud Computing

Technology and Science, 2011

http://www.howstuffworks.com/

66

[23]David Watts,RandallDavis,RichardFrench,LuHan,DaveRidley,Cristian Rojas “IBM

PureFlex System and IBM Flex System Products and Technology” IBM Red Books

[24]W. J. Armstrong,R. L. Arndt,T. R. Marchini,N. Nayar,W. M. Sauer” IBM POWER6

partition mobility: Moving virtual servers seamlessly between physical systems

[25]G. T. McLaughlin ,L. Y. Liu,D. J. DeGroff,K. W. Fleck “IBM Power Systems

platform: Advancements in the state of the art in IT availability”,IBM Journal, 2008

[26] Paul Barham_, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauery, Ian Pratt, Andrew War_eld “Xen and the Art of

Virtualization”,ACM 2003

[27]“IBM PowerVM Virtualization Technology on IBM POWER7 Systems .A

Comparison of PowerVM and VMware vSphere (4.1 & 5.0) Virtualization

Performance”, White Paper, www.TheEdison.com.

[28]Allyson Brito,LoïcFura,Bartłomiej Grabowski “IBM PowerVM Virtualization

Active Memory Sharing”,IBMRedpaper

[29]”Under the Hood: POWER7 Logical Partitions”,April 2013,IBM

[30]KeigoMatsubara ,Matt Robbins ,Ron Barker,TheeraphongThitayanun “Effective

System Management Using the IBM Hardware Management Console for pSeries”, IBM

Redbooks

http://www.theedison.com/

67

[31]StuartDevenish,IngoDimmer,RafaelFolco,MarkRoy,StephaneSaleur,OliverStadler,

Naoya Takizawa “IBM PowerVM Virtualization Introduction and Configuration”,IBM

Redbooks

[32]Nicolas Guerin,JimiInge,NarutsuguIto,RobertMiciovici,RajendraPatel,ArthurTörök

“IBM PowerVM Virtualization Managing and Monitoring”, IBM redbooks

[33]ww.techtarget.com

http://www.techtarget.com/

68

APPENDIX

ABBREVIATIONS

HMC - Hardware Management Console

FSP- Flexible Service Processor

VM- Virtual Machine

LPAR- Logical Partition

DLPAR- Dynamic Logical Partition

SSL- Secure Socket Layer

PHYP-Power Hypervisor

VIOS- Virtual I/O server

VIOC- Virtual I/O client

VNIC-Virtual Network Interface card

HDECR-Hypervisor Decrementor

SMT- Simultaneous Multithreading

PURR- Performance Utilization Resource Register

AMS-Active Memory Sharing

AME-Active Memory Expansion

CMM – Collaborative Memory Manager

VASI - Virtual Asynchronous Service Interface

69

AMSM - Active Memory Sharing Manager

LMB - of Logical Memory Blocks

TCE- Translation Control Entry

PLIC - Platform Licensed Internal Code

TLB - Translation Look Aside Buffer

MMU - Memory Management Unit

DHCP – Dynamic Host Configuration Protocol

ASMI - Advanced System Management Interface

SCSI – Small Computer System Interface

