
An Efficient Method to Reduce Startup 

Time of Applications 

 

A Dissertation Submitted in Partial Fulfillment of the Requirement for the 

Award of Degree of 

MASTER OF TECHNOLOGY 

IN 

COMPUTER SCIENCE AND ENGINEERING 

 

Submitted By 

MOHIT KHANNA 

Roll No. – 2K11/CSE/07 

Under the Esteemed Guidance of 

Dr. KAPIL SHARMA 

 

Department of Computer Engineering 

Delhi Technological University, Delhi 

2012-2013 



Mohit Khanna: Computer Science and Engineering Dept. (DTU) i 

 

CERTIFICATE 

 

 

DELHI TECHNOLOGICAL UNIVERSITY 

BAWANA ROAD, DELHI – 110042 

 

Date: ___________ 

 

This is to certify that dissertation entitled “An Efficient Method to Reduce Startup Time 

of Applications” has been completed by Mohit Khanna in partial fulfillment of the 

requirement of major project of Master of Technology in Computer Science and 

Engineering 

This is a record of his work carried out by him under my supervision and support during 

the academic session 2012 -2013.  

 

 

(Dr. KAPIL SHARMA) 

RESEARCH GUIDE 

Dept. of Computer Engineering 

Delhi Technological University, Delhi 

  



Mohit Khanna: Computer Science and Engineering Dept. (DTU) ii 

 

ACKNOWLEDGEMENT 

 

It gives me a great sense of pleasure to present the Thesis on my Research Work, 

undertaken during the course of M.Tech. I owe special debt of gratitude to my Supervisor 

and Guide Dr. Kapil Sharma, Associate Professor, Department of Computer Science & 

Engineering, Delhi Technological University, for his continual support and guidance. His 

sincerity, thoroughness and perseverance have been a perpetual source of inspiration for 

completion of this research. It is because of his unflinching motivation and faith in my 

work and efforts that our endeavors have seen light of the day. 

I also take this opportunity to convey my deepest gratitude to Dr. Vijay Rao, Scientist ‘F’, 

Institute for Systems Studies & Analyses, DRDO, Delhi without whose guidance, support 

and efforts the simulation part of our Research could never have been possible; and 

without the initial simulation results, we could never have realized the deep potential 

that our concept discussed in this Thesis actually holds. 

I would also like to sincerely acknowledge the kind assistance and cooperation of Dr. 

Richa Mishra and Dr. Rajni Jindal who had been my initial guides during my M.Tech. 

Course and had always motivated me to strive forward and progress with this idea which 

is now presented in this Thesis. 

Last but not the least, I would like to thank God, my parents and friends for their 

blessings and best wishes which certainly seem to have worked in making this small seed 

of idea sowed a year and a half ago, into a strong tree with sweet fruits of appreciable 

results today. 

 

 

(MOHIT KHANNA) 

Master of Technology 

(Computer Science and Engineering) 

Department of Computer Engineering 

Delhi Technological University, Delhi 

  



Mohit Khanna: Computer Science and Engineering Dept. (DTU) iii 

 

ABSTRACT 

 

An application usually takes certain time for its loading during which the executable file 

and the other related files are brought to the main memory and necessary initializations 

routines are run. However, it has commonly been observed that in an actual use of an 

application by a general user, several of the loaded components are not essentially used 

during the lifetime of its execution. This results only in an increased space taken by them 

in the memory as well as an increased burden during their loading into the memory in 

terms of CPU cycles and memory wasted and time taken to load and initialize them, thus 

increasing the overall startup time of the software. In this Thesis, we propose a 

methodology by which we track the user’s usage pattern, and by allocating certain 

weights to some specific static and dynamic parameters of the software and its usage 

style, we selectively determine the potential components that are most likely to be used 

in the subsequent execution of that software and load only those necessary components 

at next startup. Thus, each time the user runs the software, he is presented with the set 

of components that he is most likely to use in that specific execution. We have done a 

simulation based on Monte Carlo approach and we have observed a reduction of around 

40-50% in software load time and an approximately 70-80% Hit Rate for the components 

requested by user against the actually loaded components. We then developed a test 

application and compared its startup times and memory requirements at startup, and 

found around 59% reduction in application startup time and 16% reduction in start time 

memory requirements when our proposed method is used.  



Mohit Khanna: Computer Science and Engineering Dept. (DTU) iv 

 

TABLE OF CONTENTS 

 

Certificate ................................................................................................ i 

Acknowledgement .................................................................................. ii 

Abstract ................................................................................................. iii 

Table of Contents................................................................................... iv 

List of Figures ......................................................................................... vi 

List of Tables ......................................................................................... vii 

I. Introduction ............................................................................... 1 
1.1 Motivation ............................................................................................................. 2 

1.2 Problem Statement ................................................................................................ 3 

1.3 Scope of Work ........................................................................................................ 4 

1.4 Organization of Thesis ........................................................................................... 5 

II. Literature ................................................................................... 7 
2.1 At Hardware Level ................................................................................................. 7 

2.2 At Network Level ................................................................................................. 10 

2.3 Linker Load Time Optimization Level ................................................................... 12 

2.4 At Application Level ............................................................................................. 14 

III. A Glimpse of Journey from Application Installation to 

Application Execution ............................................................... 17 
3.1 Backgrounds of Application Install Process ......................................................... 18 

3.2 Backgrounds of Application Execution Process ................................................... 19 

3.3 Ways to Improve Startup Speed of Application .................................................. 20 

3.3.1 A Yet Lesser Tapped Area - Partial Loading ................................................... 23 

3.3.2 Motivation Behind the Partial Loading Technique ........................................ 24 

3.3.3 Current Approaches Followed for Partial Loading ........................................ 26 



Mohit Khanna: Computer Science and Engineering Dept. (DTU) v 

 

IV. Our Idea for Improving Startup Times ....................................... 28 
4.1 Basic Idea – K-Method ......................................................................................... 29 

4.2 Need for Two Type of Executables ........................................................................ 5 

4.3 The Big Question- How Exactly to Choose the Components for Loading Next 

Time ..................................................................................................................... 32 

4.3.1 Computation of Load Influence Values by K-Formula ................................... 32 

4.3.2 Final Choice of Components to be Included in Feature Sets ........................ 35 

4.4 Simulation of Startup Under K-Method ............................................................... 37 

4.4.1 Factors Considered for Simulating User’s Component Selection Process

 ............................................................................................................................. 38 

4.4.2 Algorithm for Simulation ........................................................................ 41 

4.4.3 Results from Simulation .......................................................................... 42 

V. Test Application Based on K-Method–‘Advance Browser’ ......... 43 
5.1 Application Architecture ...................................................................................... 44 

5.2 Working of Application During Different Phases Under K-Method ..................... 46 

5.3 Simulation to Compute Configuration Parameters for K-Formula ...................... 48 

5.4 The Experiment .................................................................................................... 50 

5.4.1 CASE 1: Application Running Under K-Method ...................................... 51 

5.4.2 CASE 2: Application Running without K-Method (i.e. Conventional 

Manner)  ................................................................................................. 52 

5.4.3 Analytical Comparison of Results for Case 1 and Case 2 ........................ 53 

VI. Conclusion ................................................................................ 54 

VII. Future Work ............................................................................. 55 

VIII. References .............................................................................. 56 
 

 

  



Mohit Khanna: Computer Science and Engineering Dept. (DTU) vi 

 

LIST OF FIGURES 

 

Figure 1: Different Techniques for Speeding up Application Start-up .............................................. 7 

Figure 2: Steps in Application Install Process ................................................................................. 18 

Figure 3: Steps in General Application Execution ........................................................................... 19 

Figure 4: Steps in Application Execution for an Application with Dynamically Loadable Libraries 20 

Figure 5: IBM's Process Execution Hierarchy ................................................................................. 21 

Figure 6: Number of functions that are Used, Used only Regularly, and are Familiar to Users .... 24 

Figure 7: Comparision of Startup Time of Firefox Fresh vs Full at different stages ....................... 26 

Figure 8: Concept of using Two Adapted Executables ................................................................... 29 

Figure 9: Choosing the Correct Executable at Startup ................................................................... 30 

Figure 10: Alternative Approach for Loading Correct Set of Components at Startup .................... 31 

Figure 11: Graph showing variation of Average Numbers of Components Loaded,  HIT% against 

ProbJstPrevious .....................................................................................................................  42 

Figure 12: Snapshot of the Test Application - 'Advance Browser'.................................................. 43 

Figure 13: Plugins Associated with the Basic Application .............................................................. 44 

Figure 14: Flowchart of Our Application Working under K-Method .............................................. 46 

Figure 14: Startup Time for Test Application (under K-Method) in 20 Instances ........................... 51 

Figure 16: Memory Req. at Startup of Test Application (under K-Method) in 20 Instances .......... 51 

Figure 17: Startup Of Test Application (Without K-Method) for 20 Instances ............................... 52 

Figure 18: Memory Req. at Startup of Test Application (without K-Method) in 20 Instances ....... 52 

Figure 19: Comparision of Startup Times for Test Application With & Without K-Method ........... 53 

Figure 20: Comparision of Memory Req. for Test Application With & Without K-Method ........... 53 

 

  

file:///C:/Users/user/Desktop/Thesis%20Text/COMPLETE%20THESIS%20MATTER.docx%23_Toc359605425
file:///C:/Users/user/Desktop/Thesis%20Text/COMPLETE%20THESIS%20MATTER.docx%23_Toc359605429
file:///C:/Users/user/Desktop/Thesis%20Text/COMPLETE%20THESIS%20MATTER.docx%23_Toc359605432
file:///C:/Users/user/Desktop/Thesis%20Text/COMPLETE%20THESIS%20MATTER.docx%23_Toc359605432


Mohit Khanna: Computer Science and Engineering Dept. (DTU) vii 

 

LIST OF TABLES 

 

Table 1: Means and Ranges of Familiar and Used Functions (n=53) ............................................. 23 

Table 2: Perception of Number of Functions on the Interface (n=53) ............................................ 24 

Table 3: Components in Each Scenario .......................................................................................... 37 

Table 4: Final optimal configurations and Results Obtained After Simulation .............................. 38 

Table 5: Components Used in Different Scenarios for 'Advace Browser' ....................................... 47 

Table 6: Final Optimal Configuration Values Obtained After Simulation ...................................... 48 

 

 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 1 
 

I. INTRODUCTION 

 

Faster devices and faster applications have always been preferred by the people 

worldwide. Researchers have been trying hard since decades to develop techniques which 

assist in making the applications execute faster. One very important region in an 

application’s execution which gives the first impression of an application’s speed is the 

time it takes for its startup. The period of time between the command to initiate the 

program and the time at which the program commences processing to external events, 

depends upon both the time it takes to load the program into memory and the time that it 

takes to execute initialization code [1]. 

Appreciable work has been done at various levels to improve the startup times of 

applications. At hardware level, using hybrid drives or solid state drives has been one 

very effective method, but still developers have been struggling to improve the startup 

speed from their ends due to a never satisfying user expectation for faster applications. 

Although using optimized algorithms for the initialization routine in application code 

improves the performance appreciably, yet one lesser tapped area is to selectively load 

the application components. 

If the application is developed in form of dynamically loadable components, then it is 

possible to reduce the disc access time as well as the time consumed in initialization 

routine by loading only those components that the user is expected to use. This would 

result in much improved startup times. 

However, a big question arises that how to make this prediction before application startup 

that which components the user would use in that execution, so that only those 

components be loaded for that execution. We have proposed a methodology for that 

called K-Method which makes use of a formula that we have proposed called K-Formula 

that computes Load Influence Value for each component. Load Influence Value for a 

component determines the importance to be given to that particular component for being 

loaded at startup of the next execution.  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 2 
 

1.1 MOTIVATION 

 

Application startup time primarily involves two components – to bring the application 

code and related files into the memory which accounts to disk access time, and other 

being the time taken to execute the initialization routine.  

However, most of the features offered by the application are not used by a common user. 

At the same time, no distinct subset of features exist that all the users would use, and this 

small proportion of the features that users use include different features for different 

users. Thus, if we selectively load only those components that provide the features that 

user wants to use, then this can lead to improvement in startup times by reducing disk 

access time as well as time required to run initialization code for the features that a user 

does not uses. 

Currently, this selective component loading is being done manually, wherein the 

developer provides a particular set of components providing certain features as default, 

and the user can later change this list of features that he wants to be loaded in the 

application manually. 

This however includes a static factor into the selective loading in terms that for several 

application executions, the same set of components would be loaded that are manually 

defined as ‘can be used’ by the developer or user. This means that still several 

components are being loaded which might not actually be used during application startup. 

There is a need to automate this selective component loading technique so that the 

component set that has to be loaded get dynamically updated according to the pattern in 

which the user interacts with the application. 

To this effect, we have proposed our methodology which performs the above said 

automation. 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 3 
 

1.2  PROBLEM STATEMENT 

 

 

In our research work, we have focused to improve the startup times of component based 

applications. This we achieve by predicting and selectively loading the components that 

user is expected to use during the application execution. For this we developed an 

automation technique which helps in making a choice of whether to include or not 

include a particular component at application startup. 

 

The Problem Statement for our Thesis can be proposed as: 

“To Develop an Efficient Method to Reduce Startup Time of Applications” 

  

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 4 
 

1.3 SCOPE OF WORK 

 

Our research work revolves around creating a method for reducing startup time of 

applications. We do this by selectively loading the application components at startup. 

Making an efficient choice of components for loading selectively is very important so 

that most of the requests that user makes for features get satisfied by the components 

already loaded at startup.  

We have developed a new method (K-Method) which uses our proposed formula (K-

Formula) to compute the Load Influence Values for each component. Load Influence 

Value for any component relate to the importance which that component holds for being 

loaded at the application startup. K-Formula requires its three constants (collectively 

called Configuration Parameters) to be found optimally by simulation for each new 

application being developed. Simulation also shows us the expected proportion of 

components that will need to be loaded and the HIT% which indicates what proportion of 

user requests for different features are met by the components already loaded. 

We further develop a test application and test it for its startup speeds when run using K-

Method and when run in conventional manner, i.e. without using K-Method. The 

performance analyses support our concept and the results are very appreciable. 

 

Broadly, the scope of our work can be summarized as: 

 To develop a method for selectively loading of components with automation used 

for making a choice of which components to load. (K-Method) 

 To device a formula that determines how important a particular component is for 

loading at the next execution. (K-Formula) 

 To perform simulation for determining the optimal values of three of the constants 

used in K-Formula. 

 To use simulation to determine the improvement possible in startup time. 

 To develop a Test Application that works on K-Method 

 To do performance analyses for startup time and memory consumption at startup, 

for the Test Application when used with K-Method and when run without K-

Method. 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 5 
 

1.4 ORGANIZATION OF THE THESIS 

 

The remained of this Thesis is organized in form of the following chapters: 

 

Chapter 2: Literature 

This section gives an overview of the different techniques that have been used to improve 

startup times of the applications. These include the techniques used at the Hardware 

level, Network Level, Application Level, as well as Linker Load Time Optimization 

Level 

 

Chapter 3: A Glimpse of Journey from Application Installation to Application Execution 

This section briefly describes what all goes on in the background while an application is 

being installed and executed. This section further describes the different regions in the 

above tasks where optimizations can lead to improved startup time. Thereafter discussion 

is done of the yet lesser tapped area (selective loading of components) and insights are 

given for as to why this can be a good place to work for improving startup times.  

 

Chapter 4: Our Idea for Improving Startup Times 

In this section, we have described our proposed method (K-Method) and our proposed 

formula (K-Formula) which is used in the K-Method. Thereafter, simulation is performed 

and results of simulation are discussed. 

 

Chapter 5: Test Application Based on K-Method – ‘Advance Browser’ 

This section describes the Test Application that we have developed for testing our 

method on practical grounds. Performance Analyses is done on the Test Application for 

cases when it uses our proposed method and when it does not. Results suggest drastic 

improvement in startup time when our proposed method is used. 

 

Chapter 6: Conclusion  

The conclusion of our research work is presented in this section. 

 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 6 
 

Chapter 7: Future Work 

This section discusses about the other domains where the research presented in our 

Thesis can be expanded to. 

 

Chapter 8: References 

This section gives a list of citations used in our thesis and research work 

 

 

 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 7 
 

II. LITERATURE 

 

Researchers have been working since decades in an attempt to make programs start up 

faster. Various optimization techniques have been applied primarily at the Hardware 

Level, Network Level, Linker Level, as well as at the Application Level, as shown below 

in Figure 1: 

Figure 1: Different Techniques for Speeding up Application Startup 

2.1 AT HARDWARE LEVEL 

1. Rearranging Disk Data in Layout Similar to that produced during Program 

Execution 

I/O activities consume approximately 85% of the time during the loading of an 

application. According to Amdahl's Law [2] , the overall application load time is limited 

H
/W

 L
ev

el
 

Place data on disk in a layout similar to the layout produced by the program 
execution (1998) 

Use of Hybrid Disks (2009) 

Replace HDD with SSD (2011) 

N
/W

 L
ev

el
 Traditional Methods 

Code Restructuring between Compilation and  Loading for better Network 
Utilization(1999) 

Software Streaming via Block Streaming (2003) 

S/
W

 L
ev

el
 

Serialization of Application Objects (2009) 

Snapshot Boot Technique (2009) 

Detect Users’ Usage Pattern at Inter-Application Level(2012) 

Detect Users’ Usage Pattern at Intra-Application Level using K-Method 
(OUR PROPOSED) 

Li
n

ke
r 

Lo
a

d
 T

im
e 

O
p

ti
m

iz
a

ti
o

n
 

Le
ve

l Prelink (2004) 

Linker Hash Table Optimizations (2006) 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 8 
 

by the slow disk I/O activities. Yin proposed a method which increased speed of disk 

operations by reducing the seek time [3]. Other works [4], [5], [6] showed that it is 

possible to improve disk performance by reorganizing disk data, but they didn’t attempt 

to determine an optimal layout for a deterministic access pattern. They reorganized the 

disk based on the idea that a disk’s performance can be improved by clustering frequently 

accessed data. Yin suggested using simulated annealing, genetic algorithms and other 

algorithms to find a nearly optimal data placement which resulted in around 20-30% 

improvement in startup time of applications [3].  

On similar logic, Walsh described his patented method which makes use of ‘Sequence 

Lists’ to determine the order of files’ placements on disk during the installation time itself 

[7].   After build of a program is completed, the program is launched and the disk activity 

associated with disk-intensive operations is monitored to determine the order in which 

file portions are read from a disk during program or command launch. This data is used 

to create a load sequence list, which indicates the order in which various portions of the 

files are read during launch. The installation disks include the files and the load sequence 

list. During the installation process, the installation program reads the data from the load 

sequence list and writes the file portions so they are stored in the order prescribed by the 

load sequence list in contiguous clusters on the hard disk drive. The computer can then 

read launch-related data from the disk in the proper order from contiguous disk clusters, 

which minimizes or eliminates wasted time that would have resulted from disk accesses 

if the disk heads had to move between non-contiguous clusters in order to read the 

launch-related data. 

  

2. Use of Hybrid Disks 

We are aware that application launch times, which are important to users, are primarily 

bounded by disk seek times. A solid-state disk has a negligible seek time, but large solid-

state disks are not cost-effective. A hybrid disk, consisting of a large disk drive and a 

flash memory of smaller capacity, can provide a reasonable compromise [8]. 

SuperFetchTM is an advanced prefetching technique, supported by Windows Vista, that 

exploits the flash memory of the HHDDs or the free space in the main memory in 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 9 
 

absence of flash [9]. It analyzes the memory utilization patterns of a user and then 

prefetches the data from the HDDto the main memory, which will result in significant 

reduction in the launch time.  Flash memory cards or the flash memory in HHDDs are 

managed by Windows ReadyBoostTM and Windows ReadyDriveTM, respectively [9]. 

However, the performance of SuperFetchTM is critically dependent on its hit ratio, and 

thus it requires a flash memory which is at least as large as the main memory, and which 

may be two or three times as big, to achieve appreciable performance benefits. Such a 

large flash memory may significantly increase cost of a system. 

 Moreover, there is no systematic approach to the allocation of portions of launch 

sequences to solid-state memory to achieve the shortest application launch time.  As a 

solution, Joo showed how to reduce application launch times with a hybrid disk by 

pinning only a small portion of an application launch sequence into flash memory [8].  

He modeled the latency of a hybrid disk, analyzed the behavior of application launch 

sequences, and formulated the choice of the optimal pinned set as an integer linear 

programming (ILP) problem. Experiments showed that this approach reduced application 

launch times by 15% and 24% on average, while pinning between 5% and 10% of the 

application launch sequences into flash memory.  

 

3. Replacement of HDD with SSD 

 One of the most effective ways to improve application launch performance is to replace 

a hard disk drive (HDD) with a solid state drive (SSD), which has recently become 

affordable and popular. A SSD consists of a number of NAND flash memory modules, 

and does not use any mechanical parts, unlike disk heads and arms of a conventional 

HDD. While the HDD access latency—which is the sum of seek and rotational 

latencies—ranges up to a few tens of milliseconds (ms), depending on the seek distance, 

the SSD shows a rather uniform access latency of about a few hundred microseconds (us) 

[10]. 

Joo has proposed in his paper, a new application prefetching method, called the Fast 

Application STarter (FAST), to improve application launch time on SSDs [10]. The key 

idea of FAST is to overlap the computation (CPU) time with the SSD access (I/O) time 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 10 
 

during each application launch. To achieve this, the sequence of block requests in each 

application is monitored, and the application is simultaneously launched with a prefetcher 

that generates I/O requests according to the a priori monitored application’s I/O request 

sequence. FAST consists of a set of user-level components, a system-call wrapper, and 

system debugging tools provided by the Linux OS. FAST can be easily deployed in most 

recent Linux versions without kernel recompilation. FAST has been implemented and 

evaluated on a desktop PC with a SSD running Linux 2.6.32, demonstrating an average 

of 28% reduction of application launch time as compared to PC without a prefetcher.  

Apart from this, a technique called Application XIP was suggested in another paper 

which would by-pass the RAM itself [11]. When a program is executed, the kernel 

program loader maps the text segments for applications directly from the flash memory 

of the file system. This saves the time required to load these segments into system RAM.   

 

2.2 AT NETWORK LEVEL 

Systems based on mobile code, such as virtual machines like Java [12], Inferno [13] and 

OmniWare [14], and embedded object systems like ActiveX [15], inherently require that 

clients fetch applications over the network prior to their execution. Thus the startup time 

also includes the application transfer time. Several techniques have been given to reduce 

the application transfer time which are listed below: 

 

1. Traditional Methods 

Previous work on decreasing application transfer times broadly spans traditional compiler 

optimizations, code compression, overlapped I/O and lazy loading. Traditional compiler 

techniques for reducing the static size of applications have centered on instruction 

selection. Such optimizations often take place in the back end of a compiler, where the 

emitted instructions are selected to reduce the memory footprint of the instruction 

segment using standard techniques [16], [17].  Code compression is another field that 

examines the effective bandwidth of application transfers. Code compression relies on a 

post compilation step to represent applications using a space-efficient encoding. Krintz 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 11 
 

proposed modifying Java’s execution semantics in order to overlap code transmission 

with execution [18]. Such an approach offers increased application performance by 

allowing I/O operations of a thread to be scheduled concurrently with the computation of 

the same thread. The authors report through simulation results that this scheme can 

achieve 25-40% performance improvement. In another paper, Lee propose combining 

code reordering and demand paging to improve the startup of ActiveX applications [19]. 

He showed that code reordering via binary rewriting and demand fetching of pages 

through the memory fault handler can improve the startup times by up to 58%. 

 

2. Inserting a Separate Code Restructuring Step between Compilation and 

Loading to better Utilize Network Bandwidth and Improve startup time  

It can be observed that for network based applications, compliance with existing design 

and coding standards and minimizing the impact on the clients is crucial [20]. 

Fundamental problem for mobile code is that the units of code distribution in networked 

object systems, such as Java, are not suited for efficient utilization of network 

bottlenecks. To help solve these problems, Sirer proposed adding up a separate 

optimization step between compilation and loading, whereby application code is split up 

into smaller transfer units based on a profile to more effectively use the available network 

bandwidth for program download [20]. This approach uses binary rewriting to repartition 

application components at method granularity such that the frequently used related code 

units are grouped together, while less frequently used methods are factored out into 

chunks that can be transferred separately and independently. This repartitioning is 

performed late in the software distribution chain, after the code has been released but 

before it has been shipped to the users. The server uses profiling to discover common 

application paths, and repartitions the application through binary rewriting to make these 

paths execute faster. This approach provides a practical way for profiling and 

repartitioning in the context of the Java virtual machine that does not require any 

modifications to the clients, and yet achieves up to 30% reductions in startup time for 

interactive applications. 

 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 12 
 

3. Software Streaming via Block Streaming 

Software streaming allows the execution of stream enabled software on a device even 

while the transmission/ streaming may still be in progress. Thus, the software can be 

executed while it is being streamed instead of causing the user to wait for the completion 

of download, decompression, installation and reconfiguration. In his paper on this work, 

Kuacharoen proposes a streaming method called Blok Streaming which can reduce 

application load time as seen by the user since the application can start running as soon as 

the first executable unit is loaded into the memory [21]. 

However, the software to be streamed must be modified before it can be streamed over a 

transmission media.  After normal compilation, the software must be partitioned into 

parts for streaming through a process streaming software streaming code generation. 

After modification, the application is ready to be executed after the first executable 

software unit is loaded into the memory of the device. In contrast to downloading the 

whole program, software streaming can improve application load time. While the 

application is running, additional parts of the stream enabled software can be downloaded 

in the background or on-demand. If the needed part is not in the memory, the needed part 

must be transmitted in order to continue executing the application. The application load 

time can be adjusted by varying the size of the first block while considering the time for 

downloading the next block. This can potentially avoid the application suspension due to 

block misses. The predictability of the software execution once it starts can be improved 

by software profiling which determines the transmission order of the blocks. The 

application load time for the sample application improved by a factor of more than 10X 

when compared to downloading the entire application before running it.  

 

2.3 LINKER LOAD TIME OPTIMIZATION LEVEL 

1. Concept of Prelink 

Prelink is a popular tool used to decrease program load time, shorten system boot time 

and to make applications start faster. It relocates libraries on disk to save dynamic linking 

time [22]. 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 13 
 

When the dynamic linker loads a dynamically linked ELF binary, it has to also load and 

link all of the libraries before executing the program's entry point,  _main(). This process 

involves relocating libraries—changing all addresses referenced in the library to reflect 

the actual addresses in memory. Relocating libraries involve iterating through each 

address in the library and replacing it with the real address as determined by the library's 

location in the process's virtual address space. The relocation process will slow down an 

application's launch. In order to speed up the process, Prelink relocates the libraries ahead 

of time. This is done by scanning every executable to be prelinked, generating a graph of 

libraries that will be loaded at the same time as other libraries, and then calculating target 

addresses for each library such that it will never be loaded at the same address as other 

libraries. These offsets are then stored in the shared object files themselves, and the 

symbol tables and segment addresses are all adjusted to reflect addresses based on the 

chosen base address. This method led to a speedup of OpenOffice.org 1.1 by 1.8s from 

5.5s on 651MHz Pentium III [22]. 

 

2. Hash Table Modifications 

Reduction in dynamic linking time by linker hash table modifications has resulted 

substantial gains in application load time [23].  

In a typical operation, symbols are stored in hash tables in ELF binaries which are kept 

small, and symbols that hash to the same value are compared by a simple string 

comparison. However, symbols in the same bucket with the same prefix need a long 

string comparison which is a slow task. Drepper proposed to utilize a GNU linker 

optimization that focuses more on producing short hash chains than a small hash table 

size [24]. The shortened length of hash chains mean that symbol look-ups do not have to 

perform as many string comparisons. This linker optimization can be activated by 

passing -Wl,-O1 to gcc at link time. 

Meeks proposed that by passing -Bdirect at link time, the build process can cause many 

symbols to be directly linked allowing the dynamic linker to severely decrease the search 

space during lookup [25]. 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 14 
 

In another optimization step by Meeks, the dynsort keyword is added to the GNU linker. 

By passing -zdynsort at link time, the .dynsym and .dynstr sections as well as relocations 

are all sorted by ELF hash and by the position where they land in the hash bucket. When 

symbols are looked up in an ELF object, a hash table has to be searched. With dynsort, 

the symbols that have to be examined while walking a bucket in hash table are all 

adjacent to each other. This reduces the number of L1 and L2 cache misses, allowing the 

CPU to utilize its facilities much more efficiently during dynamic linking [25]. 

 

2.4 AT APPLICATION LEVEL 

 

1. Serialization of Application Objects 

The period of time between the command to initiate the program and the time at which 

the program commences processing to external events, depends upon both the time it 

takes to load the program into memory and the time that it takes to execute initialization 

code [1]. Any technique that reduces the amount of time spent executing initialization 

code will decrease the amount of time until the application process external events 

To this effect, Wolff has discussed his patented method wherein application speed is 

improved by providing a serialized representation of application objects to the runtime 

environment [1]. 

In one aspect, the invention is a method of developing a faster loading application. It 

includes steps of compiling first object code for an application; loading the application 

into a first runtime environment; creating a serialized representation of a memory space 

in said first runtime environment; building second object code using said serialized 

representation; and deploying said second object code 

In another embodiment the method may include the steps of compiling an application 

provided in a source language, initializing the application in a runtime environment, and 

creating a serialized representation of the application. Thus when the runtime finds the 

application objects present in a serialized fashion, then it leads to lesser cache miss and 

page faults and thus an increase in loading speed is observed. 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 15 
 

Jo improved the startup latency of a commercial digital TV by 35% by following a better 

initialization order and determining when and which data should be prefetched to the 

buffer cache [26].  

 

2. Snapshot Boot Technique 

Kaminaga proposed a snapshot boot mechanism to enhance the startup time of a 

commodity OS by using the suspend-resume technique [27]. The snapshot boot technique 

suspends the running kernel, and resumes with the suspend image instead of booting. To 

reduce resume time, it resumes the suspend image from a boot loader, and not the kernel 

as in general Suspend-Resume (Hibernate) technique. With the snapshot boot technique, 

he also applied other techniques such as XIP and pre-linking.  However the biggest 

problem with snapshot boot is that it takes a long time to create images and then save 

them to the storage device during the suspend process, because it targets every page. In 

addition, if the switch is turned off while creating an image, then the image is not created, 

and the resume process cannot be executed.  

Inwhee proposed a method to improve upon these problems [28]. With his method, the 

system does not generate a snapshot image at the end of the system process; rather, it 

generates one snapshot image for the first bootup so as to improve snapshot boot 

problems. The generated snapshot image is then used for every bootup to reduce the time 

needed for the existing snapshot boot. Thus overall boot performance improved even for 

cases where system fails to generate and save the snapshot image. This eventually led to 

an improvement in application startup time. 

 

3. Detect Users’ Usage Pattern for Different Applications 

Preload, proposed by Esfahbod, is an adaptive daemon that prefetches binaries and shared 

libraries from the hard disk to main memory on desktop computer systems by monitoring 

the applications that the user runs [29]. It is based on a Markov-based probabilistic model 

capturing the correlation between every two applications on the system. The model is 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Inwhee%20Joe.QT.&searchWithin=p_Author_Ids:37371466200&newsearch=true


On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 16 
 

then used to infer the probability with which each application may be started in the near 

future. These probabilities are used to choose binaries and dependencies to prefetch into 

the main memory. An improvement of around 25% has been observed for smaller 

desktop applications and around 50-55% for larger desktop applications.  

On similar grounds, Hokwon proposed a Usage Pattern-based Prefetching scheme, called 

UPP, which is suitable for mobile devices [30]. To inspect the usage patterns, the dataset 

of the application usage is collected and analyzed. Additionally, considering mobile 

devices which have relatively poor hardware resources, the lightweight prediction model 

is employed. Using UPP, the startup time got improved by about 5%, and the accuracy of 

the prediction got shown up to 59% for the practical dataset.  

However, both these methods work by tracking the pattern in which the user uses 

different available applications. Prediction is made for the next application that user can 

request and its related files are brought to the memory beforehand.  

However, in our research, rather than tracking pattern at in which use uses different 

applications (inter-application level), we track the pattern in which user requests for the 

different within a specific application (intra-application level). We then predict which 

components could be used in the next execution of the application and when the 

application is next started, we selectively load (or initialize) only the predicted 

components, making the application adaptable to user’s usage pattern over a period of 

time, resulting in appreciable improvement in application load time.  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 17 
 

III. A GLIMPSE OF JOURNEY FROM 

APPLICATION INSTALLATION TO APPLICATION 

EXECUTION 

 

A whole bunch of several activities run in the background when a user clicks on the 

application executable icon or gives a command manually to execute the application from 

terminal in Linux or command prompt in Windows. However, these background tasks 

consume considerable time and this appears as an unwanted delay in the application 

startup to the user. Our research focuses on reducing this delay that user experiences in 

starting up of an application. However, an understanding of the basic steps that occur 

during application installation and thereby its execution is crucial to determine what all 

possible measures can be taken to improve the startup speed. 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 18 
 

3.1 BACKGROUNDS OF APPLICATION INSTALL PROCESS 

A computer system contains several applications stored in its hard disks. Throughout its 

lifetime, the user installs and uninstalls many different applications at different times. 

During Installation several complex tasks occur in the background. Once the application 

package has been uncompressed, system requirements are checked to ensure whether the 

application can be safely installed or not. Existence of previous versions is checked to 

determine whether an upgrade is required or a clean install is required.  

Figure 2: Steps in Application Install Process 

Logical Directory Structure for the application is created at a dedicated or a user specified 

location and the relevant files are copied to the hard disk in an order and physical location 

as determined by the Operating System. An interesting fact here is that the different files 

of the same application may not necessarily be contagiously stored. Further, a large file 

may also be chunked and stored separately if so determined by the Operating System. 

Apart from physically writing the application files to the hard disk, configuration data 

such as configuration files, registries (for Windows OS) and environment variables are 

added as well.  Thereafter links, bookmarks, shortcuts on desktop, start menu entries, and 

other such accessibility options are created for the user to be able to run the application 

when desired.  

Make Software Accessible to User (desktop shortcuts, start menu entries) 

Add Configuration Data (Config Files, Windows Registries, Environment Variables) 

Copy the Files to the Hard Disk at Physical Locations determied by the OS 

Create Logical Directory Structure for the Application Folder 

Verify System Requirements and Check for Previous Versions 

Uncompression of  the Downloaded Software Package 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 19 
 

3.2 BACKGROUNDS OF APPLICATION EXECUTION PROCESS 

When a user clicks on the shortcut icon for executing the application, a command is sent 

to the Operating System which determines the physical location on the hard disk where 

the executable file of the particular application is actually stored. The executable file and 

other related files are then read and the code and the related data is brought into the main 

memory where the executable is prepared for running. This task is performed by an 

Operating System Routine called Loader. A Process is created in the Main Memory for 

the application and the Process Control Block (PCB) is created in the Operating System 

Kernel and associated with this newly created process. Once the process is ready, its PCB 

is allocated to the ready list to be picked up by the Dispatcher which allocates it to the 

Processor for the execution. This execution further leads to performing certain start time 

initializations of supporting components or features. It is after all these background steps 

that the user finally sees a useful screen at the application workspace and his wait for the 

application startup delay for the current execution gets over. 

 

 

 

 

Figure 3: Steps in General Application Execution 

  

  

•Shell informs kernel to run binary 

•Kernel allocates memory from the pool to fit the binary image into 

   
•Kernel loads binary into memory 

•Kernel jumps to specific memory address 

  
•Kernel starts processing the machine code located at this location 

User Requests to Run Application  

Application Ready to be used by User 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 20 
 

Loading of supporting libraries may also be done dynamically at Run Time with help of a 

dynamic loader. This mechanism allows the application to startup in the absence of these 

libraries, to discover available libraries, and to potentially gain additional functionality. 

[31] [32]. For example, in browsers like Mozilla Firefox, this includes initializations of 

several user specified extensions, plugins and add-ons. 

 

 

 

 

 

  

•Shell informs kernel to run binary 

  
•Kernel allocates memory from the pool to fit the binary image into 

   
•Kernel loads binary into memory and starts processing the machine code   

•Kernel Finds and Loads the binary of requested library into memory (dynamic loading) 

•Kernel pops current location into an execution stack 

•Kernel jumps out of current memory to dynamically loaded binary's memory location 

   
•Kernel executes code from this memory location 

   
•Kernel pops back the last memory location and jumps to that address 

User Requests to Run Application with Dynamic Loading 

Application Ready to be used by User; More Libraries can be Dynamically Loaded 

Figure 4: Steps in Application Execution for an Application with Dynamically Loadable Libraries 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 21 
 

3.3 WAYS TO IMPORVE STARTUP SPEED OF APPLICATIONS 

For examining the performance characteristics of a workload, IBM has proposed a 

dynamic model of program execution [33]. The same can be used for determining the 

locations where improvisations can lead to improved startup time. 

Program Execution Hierarchy. As shown is Figure 5, Process Execution Hierarchy can 

be shown as a triangle on its base. The left side represents hardware entities that are 

matched to the appropriate operating system entity on the right side. A program must go 

from the lowest level of being stored on disk, to the highest level being the processor 

running program instructions. For instance, from bottom to top, the disk hardware entity 

holds executable programs; real memory holds waiting operating system threads and 

interrupts handlers; the translation lookaside buffer holds dispatchable threads; cache 

contains the currently dispatched thread and the processor pipeline and registers contain 

the current instruction [33]. 

 

Figure 5: IBM's Process Execution Hierarchy [33] 

To run, a program must make its way up both the hardware and operating-system 

hierarchies in parallel. Each element in the hardware hierarchy is more scarce and more 

expensive than the element below it. Not only does the program have to contend with 

other programs for each resource, the transition from one level to the next takes 

time. Thus, the startup time gets limited by the transition time required for moving from 

one level to another. 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 22 
 

Starting from the base of hierarchy, the time required for bringing the program code from 

the hard disk to the main memory is the largest. This is due to the fact that this involves 

physical movements of the disk (rotation) and the disk head (seeking). Thus an 

improvement in the binary access time would lead to improvement in overall application 

startup time. This can be done in several ways. One obvious way is to make use of faster 

hard disks with more rotation and seek speed, or to use disks with multiple read write 

head and platters. Another technique makes use of the fact that data for the same 

application is stored in a scattered manner across the disk. A reordering is done of the 

files on the hard disk in such a manner that all the files required during application startup 

come together in the same or adjacent sectors in an order similar to that in which they 

would be required during startup. This drastically improves the startup speed as now a 

much lesser head movement would be required. Another method is to make use of solid 

state drives instead of the hard disk drives. Since solid state drives require no physical 

movements, hence they have a much faster data access rate than hard disk drives.  

Further in the hierarchy, when some required file is not found in main memory it leads to 

a miss and the file is fetched from the hard disk leading to a considerable delay in form of 

the disk access time. So, one intuitive way to improve startup time is to increase the main 

memory of the system and hence the page table size which would lead to reduction in the 

number of miss. Another method is to apply techniques to increase the probability of 

finding the required file in the main memory. This is done by techniques like preloading 

and snapshot booting. In preloading the applications to be loaded in near future are 

predicted and then their corresponding files are brought into the main memory even 

before any command for its execution is fired. By the time user executes the application, 

the required files are already in the main memory, and thus the penalty on retrieving data 

from hard disk is prevented. In snapshot boot technique, the state of the executing 

processes is stored and saved onto hard disk. The next time system in switched on, the 

stored snapshot image is transferred back to the main memory. Another method is to 

observe which all applications a user would execute next, but monitoring his usage 

pattern over a period of time. At cache level, using larger cache size will improve the 

startup speed. At linker level, improvisations can be made by linking the libraries ahead 

of time and thus saving the linking time during program startup.  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 23 
 

3.3.1 A YET LESSER TAPPED AREA – PARTIAL LOADING 

Although appreciable improvements have been achieved in startup times by the 

techniques discussed earlier, however the human nature to have faster loading and 

executing applications leaves the software companies in putting in huge investments in 

terms of cost and money to optimize their applications to make startup faster.  This can 

be understood by analyzing the very common fact that a high competition has always 

prevailed among the browsers like Internet Explorer, Mozilla Firefox, Google Chrome 

and Opera for improving user experience by starting up the browser application faster 

and loading the homepage quicker.  

Though techniques like using prefetching, or using optimized algorithms in code do help, 

but one intuitive but yet less tapped technique is to load the application only partially. 

Instead of bringing the entire application and its dependencies into the memory all 

together, it would be much better to predict what features the user would be using and 

then bring only that part of the application to the main memory, and execute. This 

selective feature loading and runtime binary linking requires that the application be 

developed in a plugin or component based architecture. The different features or 

components that the user can use, should be available separately in form of add-ons, 

extensions or plugins and dynamic loader should be able to link the dynamic components 

at run time when requested.  

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 24 
 

3.3.2 MOTIVATION BEHIND THE PARTIAL LOADING TECHNIQUE 

A research in year 2000 was done to analyze how many features of a Bloated Application 

are familiar to a general user and with how much frequency are they used. On surveying 

53 participants for their use of Office 97 comprising 265 features, following results were 

observed [34]: 

Figure 6: Number of functions that are used, used regularly, and are familiar to users [34] 

Figure 6 shows a clear indication of the fact that most of the users are familiar with a very 

small subset of the total features offered by the application, and a general user uses even 

much lesser number of features than what he is familiar with.  Further, looking at the 

relationship between familiarity and use from the perspective of the individual user it can 

be that a relatively low percentage of the functions are actually used; on average 

participants are familiar with 51%, and use 27% of the functions. [34] 

 First-level functions 

Average # of functions familiar to participants 135    (51%) 

Average # of functions used by participants 

Average # used regularly 

Average # used irregularly 

72      (27%) 

40      (15%) 

32      (12%) 

Maximum # familiar to any participant 245    (92%) 

Minimum # familiar to any participant 24      (9%) 

Maximum # used by any participant 119    (45%) 

Minimum # used by any participant 8        (3%) 

Table 1: Means and Ranges of Familiar and Used Functions (n=53) [34] 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 25 
 

These results are in acceptance with the 90/10 rule which states that an average user 

spends 90% of his time in using just 10% of the product. [35] 

The results show a possibility of improvement of startup speed by having only the 

features that the user uses. This means having a smaller installation package, lesser 

installation time, lesser number of files required to be brought to the main memory during 

startup and hence a faster startup. However, a different subset of features is used by most 

of the users which depends upon the type of work they do on the application and the style 

in which they do that. Further, research shows only 13 (25%) want to have unused 

functions removed entirely but 24 (45%) would prefer to have unused functions tucked 

away [34]. 

 Agree No Opinion Disagree 

I am overwhelmed by how much “stuff” there is. 14 20 17 

I want only the functions I use. 13 5 35 

I prefer to have unused functions tucked away. 24 8 21 

Table 2: Perception of Number of Functions on the Interface (n=53) [34] 

This suggests for a need to allow the features to exist in the package but allow the user to 

choose which features he wants to install and also to choose which features he would like 

to have loaded on application startup. 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 26 
 

3.3.3 CURRENT APPROACHES FOLLOWED FOR PARTIAL LOADING 

In highly bloated applications like the Microsoft Visual Studio user is presented with 

dialog box to choose which features/ plugins/ components to leave out from the 

installation process [36]. This leads to user customized installation of the application with 

user selected features only. Once installed, some applications like Code::Blocks allow 

user to choose one among the several ‘Perspectives’ for that application usage. By 

choosing the default Perspective, a predefined set of features specific to that perspective 

only are loaded at application startup [37]. In applications like Mozilla Firefox and 

Google Chrome user has an option to manually disable the extensions, add-ons and 

plugins that he feels he won’t require in near future [38] [39]. Mozilla Firefox also allows 

the users to make ‘Profiles’ which indicate the individual settings for each user [38]. A 

user profile having 20 add-ons and 5 open home tabs will have a much higher startup 

time than a user profile with 5 add-ons and 1 open home tab. Some applications like 

Microsoft Word and PowerPoint allow the user to customize the add-ons and modify the 

default ribbon views and functionality [40]. All these different techniques allow the 

applications to become more user specific and enhance user experience. Additionally, the 

number of features required to be loaded at start time is much lesser than the complete 

feature set. Hence, startup time reduces appreciably as well much lesser memory is 

required for the application’s execution. 

 

Figure 7: Comparison of Startup Time of Firefox Fresh v/s Full at Different Stages [41] 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 27 
 

As evident from the above graphical results in Figure 7, given by a Mozilla Intern [41], 

time taken for a full feature startup (standard set of plugins; 50 bookmarks; 5 tabs in the 

session; 2 common add-ons) is much more than the time taken for a fresh feature startup 

(brand new profile; standard set of plugins enabled)  

However, in all the techniques described above, the feature set selected to be loaded is 

either predefined by the developer, or manually customized by the user. To our 

knowledge, at present, no software makes use of a user pattern based dynamic choice in 

selecting the features to be loaded in next execution of an application with an intention to 

improve startup time. Our research focuses on developing a methodology by which the 

application usage pattern can be tracked and analyzed and then the components or 

features to be loaded for the next execution instance are determined.  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 28 
 

IV OUR IDEA FOR IMPROVING STARTUP TIMES 

 

4.1 BASIC IDEA – K-METHOD  

Our idea, K-Method (Khanna-Method), for improving the startup speed of applications, 

involves monitoring the user’s application usage pattern over time, finding out using K-

Formula (Khanna-Formula) what all components are most commonly used by the user 

and loading only these useful components during startup. As discussed in previous 

section, most of the features of an application are not even known to the user and a much 

lesser proportion of the known features is actually used by the user. By monitoring the 

application usage pattern and hence on knowing which all features a user usually uses, 

we can find the feature set comprising of the most useful features from the entire set of 

all the features. On the subsequent application startups, our partially loaded application 

would load components or plugins for only these user specific features, thus drastically 

improving upon the startup time. As discussed earlier, the partial loading technique for 

almost all of the large applications involve loading of the feature set that was either 

predefined by the developer, or chosen by the user. However, these techniques suffer a 

major drawback that such feature sets are static in nature until manually changed next 

time by the user. Our idea overcomes this problem as our technique involves adaption of 

the feature set according to the application usage pattern of the user over a period of time. 

Thus, with time our application becomes more user-specific and more accurate in 

providing the user with only those features that he really needs and hence saving up 

memory as well as improving startup time which together makes the application 

execution appear faster. In case the user wants to use a feature that was not loaded during 

application startup, then the component/plugin providing that feature can always be 

loaded dynamically. 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 29 
 

4.2 NEED FOR TWO TYPE OF EXECUTABLES 

We have focused on identifying the components that may be required by the user in his 

next run of the software. However, we identify these components for two cases: 

CASE 1: The software is being used after a considerably long time gap from its previous 

execution like more than 30 days or some other developer specific time constraint 

CASE 2: The software is being used after a very short time gap from its previous 

execution. 

For each case, we compute a ‘Load Influence’ (L.I.) value for each component which 

determines the influence or importance that the component holds for being loaded the 

next time. Only the components having their Load Influence value higher than a 

dynamically computed threshold will be considered as having a high usage probability in 

subsequent run. 

In Case 1, the components that are more generally used by the user will be loaded (i.e.) If 

the user is using the software after a long period of time, we expect that he would be 

doing the work that he has mostly being doing.  For example, in spread sheet software, he 

might always have been using spread sheets only to record basic data and seldom uses the 

‘Create Formula’, ‘Compute Function’ options, etc. So, these seldom used components 

Figure 8: Concept of using Two Adapted Executables 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 30 
 

will be assigned lesser preference. However, if he requests for one of these component 

that was not initially loaded, then it would be loaded dynamically.  

In Case 2, the most recently used components are given a higher preference. This will be 

required in a scenario when a user is working on a project and may restart the software 

several times in short durations until his project gets completed.  For example, Taking 

short breaks in between the project or continuing the same work over a period of several 

days.  

In each instance, he would be requiring mostly the same set of components that are 

specific to that project. For instance, for the above same user, the subsequent run of the 

spread sheet software will this time also include the ‘Create Formula’ and ‘Compute 

Function’ components. This is because we can safely assume that if the same user is 

returning to the software within a very short span of time, then he is continuing with his 

previous work and would need the components requested earlier.  

 

Figure 9: Choosing the Correct Executable at Startup 

Once the components to be loaded the next time have been identified, we create two 

adapted executable files, one for each case and associate a timestamp with both of them.  

For running the software, the user activates a ‘proxy executable’ which, based upon the 

difference between current time and the timestamp associated with executable, 

determines which the correct executable to be activated is. 

 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 31 
 

An Alternative Approach 

Figure 10: Alternative Approach for Loading Correct Set of Components at Startup 

As an alternative to creating two separate executable, another approach is to write at time 

of software termination a simple file containing which components are required in each 

of the two executables. When a user activates the executable file during next run, only the 

components mentioned in the file are dynamically loaded based on time gap. So, 

effectively only one executable will be required and the time required to create two 

separate executables at program termination would be replaced by time required to create 

a simple text file which will be a considerable improvement 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 32 
 

4.3 THE BIG QUESTION- HOW EXACTLY TO CHOOSE THE 

COMPONENTS FOR LOADING NEXT TIME 

In this section we will be discussing the K-Formula which has been designed to compute 

the Load Influence (LI) of a particular component. Load Influence determines the 

importance that a component holds to be loaded in the next instance run. Higher the value 

of Load Influence for a particular component more is its probability to be loaded during 

the next instance of application startup. 

4.3.1 Computation of Load Influence Values by K-Formula 

Let there be a total of ‘n’ number of components from n1, n2, n3 ... nn. Amongst these, a 

subset of components is required to be determined which are most likely to be used in the 

next execution of the software. Whether or not a particular component would be used, 

and hence the Load Influence that each component would hold would be dependent upon 

the following application design time based and application execution time based factors: 

Design Time Parameters 

1.Alpha (αi) - This is an importance factor given by the developer during the design time 

to component Ci. This may vary between 1 to 10. This is important to increase the 

probability of loading of those components which may explicitly be used less by user, 

but are otherwise important for the efficient functioning of the application, like a spell-

check component. If there is no such specific importance to be given then keep alpha as 

zero. 

i.e.                           LIi  αi 

2.Ni - Number of components linking to the current component Ci.  

i.e.                           LIi Ni 

3.Ki - Number of components linking from the current component Ci. 

i.e.                           LIi Ki 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 33 
 

More the value of Ni and Ki, more is the coupling associated with the component, and 

hence more is the importance associated with the module to be loaded 

Thus, based on the coupling associated with a component, its load influence can be 

shown as: 

LI  total incoming and outgoing links for that component/ total incoming and outgoing 

links for each component 

i.e.    LIi (
(     )

∑    
        
   

  ∑   
        
   

 
) 

Further, adding up the developer specific importance factor Alpha, we get: 

LIi (   
(     )

∑    
        
   

  ∑   
        
   

 
) 

This part of the equation defines the importance that a component would hold due to its 

design time factors. Hence this can be considered as the Staticness in a Component’s 

Load Time Influence. 

Thus the Load Influence due to Static Propoerties of the Software can be shown as: 

LIi (static)    (   
(     )

∑    
        
   

  ∑   
        
   

 
) 

Or,    LIi (static) = δ  (   
(     )

∑    
        
   

  ∑   
        
   

 
) 

where, δ is a constant described ahead in this section. 

Usage Pattern Based Parameters 

1.Fi – Determines the frequency of use of component Ci in the current run of the 

software. If a component has been very frequently used in the current execution, then 

there is a high probability for it to be used in subsequent execution. 

(i.e.)   LIi Fi 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 34 
 

2.Ui – Number of times a component Ci has been loaded in different instances during 

software startup. If a component has been loaded in more number of instances, then 

there is a higher probability that it would be used in the next execution too. 

(i.e.)   LIi Ui  

3.Ti – Number of times component Ci was not loaded during software startup. Initial 

value of Ti is set to be 1. If a component has not been loaded in more number of 

instances, then there is a lesser probability for it to be loaded the next time too 

(i.e.)   LIi 1/Ti 

Thus, based on the historic load information for a particular component (i.e. Ui and Ti), 

the Load Influence can be shown to be dependent as: 

LIi  Probability of component being loaded historically 

(i.e.)   LIi  
  

     
 

We associate a constant γ which limits the importance to be given to this factor of a 

component’s startup time load history 

Thus, we have: 

      LIi    
  

     
 

Adding up the importance given due to the frequency of component’s current instance 

usage (limited by constant  ), we have: 

LIi (       
  

     
 ) 

Thus, the Load Influence for a particular component due to dynamism in use of that 

software can be given as: 

LIi(Dynamic) (       
  

     
 ) 

Or,    LIi(Dynamic) = (   ) (       
  

     
 ) 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 35 
 

Combining the Static and Dynamic Factors of the Load Influence, we get: 

LIi (Total) = LIi(Static) + LIi(Dynamic) 

(i.e.)     (     )       (   
(     )

∑    
        
   

  ∑   
        
   

 
)  (   ) (       

  

     
 ) 

Where,  

 δ is a constant determining the weight to be given to the ‘staticness’ of the software, i.e. 

the design time fixed parameters (i.e.   , Ni and Ki). 

 Equivalently, (1- δ) determines the weight to be given to the ‘dynamism’ of the 

software, i.e. the usage pattern based dynamic parameters (i.e. Fi, Ui and Ti). 

 β and γ are the constants denoting importance to be given to the just previous run and to 

a cumulative history of component’s loading. 

 A lower β and higher γ implies a higher importance given to historic load data than 

current data and is useful for finding components in case 1 described earlier. 

 A higher β and smaller γ implies a higher importance to be given to the current 

frequency of use of component Ci. This is useful in the case 2 described earlier. 

We compute two     values – one using lower β and higher γ to resemble the case 1 and 

other using higher β and smaller γ to resemble the case 2. 

Values for these constants β, γ, δ (together called Configuration Parameters), would be 

computed by Simulation which is explained in the next section. Based on the K-Formula 

described above, we compute Load Influence values for each component for both the 

cases – History Based Execution as well as Previous Instance Based Execution.  

 

4.3.2 Final Choice of Components to be Included in the Feature-Sets 

Once we have both the Load Influence values for each of the components, we compute 

threshold value for both the cases– Historic Based Execution and Previous Instance 

Based Execution. Components having higher Load Influence Value than Threshold in 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 36 
 

each case are selected to be included in the next application startup based on whether it’s 

a historic based startup or a previous instance based startup. 

For Previous Instance Based Case, default threshold is computed by taking mean of all 

the Load Influence Values computed for this case. And for Historic Based Case, default 

threshold is computed by taking the half of the mean of all the Load Influence Values for 

this case. 

Apart from this the default computed choice of final components to be loaded can 

optionally be over ridden by letting the user explicitly mask some particular components 

that he wants to be loaded or not loaded irrespective of whether or not he uses that 

component.  

Another approach could be to let user define the sensitivity with which to finalize the 

components. This can be done in form of letting the user move a slider to adjust the 

sensitivity value which proportionally adjusts the default computed threshold value, thus 

modifying the threshold, and hence the final count of components that would be loaded. 

A higher threshold would mean lesser number of components that would be loaded, 

where as a smaller threshold means a large number of components that will be loaded in 

the next application startup.  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 37 
 

4.4 SIMULATION OF STARTUP UNDER K-METHOD 

Simulation is required for two purposes 

 To compute the values of the constants used in the K-Formula 

 To predict the effective application load time improvement possible by using the 

K-Method 

The values for the constants will be highly specific depending upon following key 

factors: 

 The software itself. (Constants will be different for each software). 

 The different usage scenarios possible. (discussed below) 

 The probability by which the user returns in a short span of time to complete the 

task being done in previous instance.  

For the simulation we need to simulate running several execution instances predicting the 

components that would be used in the next instance. In each instance we need to 

randomly request for certain components based on different factors like currently active 

scenario, wether the user returns to complete previous task or intends to start a new task, 

and total number of times that the user is requesting for any component. Based on the 

components selected for loading at software startup, and the actual components requested 

by the user once the software is run, we calculate the HIT% (HIT%: Number of times the 

requested component is among the loaded components) and Average components loaded 

for each instance, and then for the 500 runs for any configuration (Configuration: a 

particular combination of β, γ, and δ values). A configuration having higher HIT% and 

lower number of Average components loaded, will be our required optimal configuration 

for the particular probJstPrevious Value (described below). So, a configuration with 

higher (HIT% - AvgCompLoaded) value will be highly desirable. 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 38 
 

4.4.1 Factors Considered for Simulating User’s Component Selection Process 

To imitate a user’s component selection process, we have considered the following 

factors: 

Scenario: A scenario can be considered as a particular usage style of an application 

leading to a useful and purposeful result.  

For Example, A Word Processing Software may involve several scenarios like: 

 Usage of spell check, font, colour, workspace components for a usual text editing task, 

 Usage of clipart, shapes, image, colour, workspace, page layout, style components for a 

designer text editing task. 

 Usage of workspace, spell check, mail merge component for an email related text 

editing task 

 

Table 3: Components in Each Scenario 

 

We have considered six scenarios as described in Table 3. For simulation purpose, we 

have assumed that the user is free to work on any of the scenarios with equal probability. 

Thus uniformly distributed random numbers have been used for choosing an active 

scenario. 

ProbJustPrevious: (Probability of Just Previous Instance) It defines the probability of 

the user to re-execute the application to complete the task that he has been doing in the 

just previous execution of the application. A higher value indicates that the user is 

continuing the previous task, and a lower value indicates that the user is starting a new 

task. We have run the simulation for the value of ProbJustPrevious ranging from 0 to 1 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 39 
 

in steps of 0.1 For each of its values, our aim has been to find the best values of constants 

β , γ and δ which would give optimal results in terms of getting maximum number of 

user’s requested components from amongst the loaded components. Before the actual 

deployment of an application employing K-Method Approach, developer is required to 

set the values of the constants for the K-Formula (discussed above) according to the 

ProbJustPrevious value which best identifies with his software. Alternatively, initial 

value of ProbJustPrevious may be set as 0.5 and a separate module may be included with 

the software to compute the actual value based on the relative time gaps between 

consecutive runs of the software over a period of time. Thus, as time would proceed, the 

ProbJustPrevious value would dynamically be computed, and the corresponding 

configuration (β , γ and δ values) would be used for computation of Load Influence 

Values through K-Formula. 

#Times Components are to be selected: This refers to the number of times that the user 

will select/use/request components in the particular run of software. Eg: If a user selects 

component 1 three times, component 5 two times, and component 6 three times, then 

value for this variable will be 3+2+3=8. This has been simulated through normal 

distribution of random numbers with mean of 0.5. 

Table 4: Final Optimal Configurations and Results Obtained After Simulation 

Getting a Requested Component: This refers to a particular component that has been 

requested by the user in a particular instance of software run. Most of the times this will 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 40 
 

be one of the components from the active scenario, but occasionally it can also be some 

other component not present in the active scenario. For this we have used Normal 

Distribution considering that 80% of the time component chosen will be from the active 

scenario (an Interior Component), and 20% of time it could be any other component( an 

Exterior Component). If a component is being chosen from amongst the active scenario 

components, then it could be any of those components, so uniformly distributed random 

numbers have been used for making the final choice of the component from within the 

active scenario. Alternativly, when not being chosen from the active scenario, component 

may be chosen from the set of remaining components with uniform probability as well. 

In Nutshell, to simulate the above mentioned concept, we have used Monte Carlo 

Simulation and obtained the results considering the following real world factors: 

 Different Scenarios are possible for the user to use. 

 If a user returns to application in a short span of time then in most of the cases, he can 

be expected to be performing his previous task. We have considered that if a user 

returns in a short span of time, then 80% of the times he would be using the features 

he used in previous instance; (i.e.) he will be in the same scenario. 

 In case he returns to application after a long gap of time, or in the 20% cases of 

returning in short span of time, a new scenario would be used by him. In that case, he 

can choose any of the scenarios with equal probability. 

 The amount of time gap between consecutive runs of the software can be variable.  

 A user may select the same component multiple number of times in the same instance 

run. Usually a particular set of components is expected to be used more number of 

times in the same instance (like a text formatting component) and we have used 

Normal Distribution with mean 0.5 in Simulation to reflect this. 

 A user may select a component from among the components that generally define the 

selected scenario (interior components), or can even choose some other from outside 

the scenario (exterior components). We have used Normal Distribution with 

assumption that 80% of the times user will select an interior component and 20% of 

the times an exterior component will be chosen.  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 41 
 

4.4.2 Algorithm for Simulation 

Note: Values of simulation parameters will be specific from application to application. 

For probJustPrev = 0 to 1 in Steps of 0.1 

{ 

 For Beta = 0  to 1 in Steps of 0.1 

{ 

  For Gamma = 0 to 1 in Steps of 0.1 

{ 

   For Delta = 0 to 1 in Steps of 0.1 

   { 

For k= 0 to 500 //Simulate user’s application usage for 

500 executions(should be high) 

    {  
 Determine whether current execution is to be  

historic based or previous instance based execution 

 
 Get the list of components available at startup,  

and U & T values for all components  

 
 Set Active Scenario for Current Execution 

o If this is a Previous Instance Based Startup, current 

Active Scenerio for Application use would be 80% of 

time the previous Active Scenario, and 20% of the 

time a new scenario. 

o In case of New Scenario, choose the new scenario 

using Uniform Distribution from the list of existing 

scenarios and set it as Active Scenario 

 
 Simulate User’s Requests for Components 

o Determine whether user is using an interior 

component (component already laoded) or an 

exterior component (component not yet loaded). 

80% of times an interior component to the active 

scenario shall be requested. 

  
o For each component, determine how many times the 

component would be requested by the user in this 

instance of application run and update the 

Frequency Value 

 

o Compute Load Influence Value for Each Component 

using K-Formula. 

 
o Compute Thresholds and list of Loadable 

Components for Next Instance Run in the two 

possiblecases – Historic Based Execution and 

Previous Instance Based Instance 

}  

 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 42 
 

 Update the Average HIT% (i.e.) Average Number of Times Component 

requested was actually already loaded at startup in the 500 instances of 

execution 

 

 Update the AvgCompLoaded Value which determines the average number of 

components loaded at application startup 

 

   } 

  } 

} 

} 

 

4.4.3 Results from Simulation 

The results shown in Table 4 can be used in fixing the Configuration Parameter values 

(beta, gamma and delta) for the known probJstPrevious value. On using the obtained 

values shown in Table 4, optimal choice can be made regarding which components to be 

loaded for the subsequent execution. Example, from the Table 4, for the probJstPrevious 

(i.e. probability of user returning for completing the task being done in just previous 

instance) value being 0.6, the value of beta, gamma and delta would be 0.1, 0.5 and 0.3 

respectively. On choosing these values, we would need to load just 54% of the 

components, thus reducing load time by 46% (assuming that all components take equal 

time to load), HIT% would be 86.49 (i.e. 86.49% of the times, a component requested by 

the user shall be already available amongst the already predicted and loaded 

components). The remaining 17.51% of the components will need to be dynamically 

loaded and should be an acceptable trade-off against the benefit obtained from almost 

50% reduction in load time.  

Figure 11: Graph showing variation of Average Numbers of Components Loaded,  

HIT% against ProbJstPrevious 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 43 
 

V. TEST APPLICATION BASED ON K-METHOD – 

‘ADVANCE BROWSER’ 

 

To prove the efficiency of the K-Method in an actual application, we have developed a 

Browser Application and named it ‘Advance Browser’. Our aim has been to have an 

application with basic navigation functionalities and to have some external components 

providing additional functionalities which can be attached to the main browser 

application in form of plugins. During development time, we needed to run a simulation 

to determine the configuration parameters (beta, gamma, delta) to be used in the K-

Formula for choosing the components to be loaded at startup. 

For better understanding of K-Method in execution, we have provided an ‘Illustration 

Window’ which displays the Load Influence Values being computed for each component 

as the user interacts with the application. It also displays the startup time for that 

particular instance as well as the average startup time since the application install. 

Further, it displays a dynamic list of components that shall be loaded in the next startup; 

the list would change as the user uses the application based on which components he is 

currently using and how much he uses them. 

 

Figure 12: Snapshot of the Test Application - 'Advance Browser'  

Illustration 

Window 
Loaded 

Plugins 

List of Loadable 

Plugins 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 44 
 

5.1 APPLICATION ARCHITECTURE 

Our Test Application, developed in VB .NET 2010, consists of a basic browser module 

which acts like a host module and 10 plugins which add up to functionality of the 

browser by providing different features. 

A particular set of plugins is loaded at application startup and in case the user wishes to 

use some feature provided by a plugin not yet loaded, then it can be dynamically loaded. 

Figure 13: Plugins Associated with the Basic Application 

The 10 plugins developed for our application are described below: 

Recent News Plugin: This fetches the top news stories from the internet . 

Email Plugin: This fetches the unread emails from a previously registered mail account. 

If there is no unread mails, then it fetches the 5 most recent mails. 

Horoscope Plugin: This fetches the current day’s horoscope for all the zodiac signs 

Today’s Article Plugin: This plugin fires request to Wikipedia and retrieves a random 

article from it. 

Today’s Word Plugin: This plugin displays a random word of the day and its meaning 

BASIC 
BROWSER 

NEWS 
PLUGIN 

EMAIL 
PLUGIN 

HORO-
SCOPE 

PLUGIN 

TODAY’S 
ARTICLE 

TODAY’S 
WORD 

PING 
PLUGIN 

WHO-IS 
PLUGIN 

HEALTH 
PLUGIN 

TODAY’S 
QUOTE 
PLUGIN 

WEATHER 
PLUGIN 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 45 
 

Today’s Quote Plugin: This plugin displays a random quote of the day 

Ping plugin: This can be used to issue ping commands directly. It is set as default to ping 

our college homepage  http://www.dce.edu/ 

WhoIs plugin: This can be directly used to issue WhoIs command for a website. It is set 

as default to enquire about https://www.google.com 

Health Plugin: This fetches the top health related bulleton and displays to the user 

Weather Plugin: This displays the current day weather conditions for a city. By default 

it is set to show weather conditions of New Delhi, India. 

These plugins exists as DLL files and can be dynamically and selectively loaded either at 

application startup or during program run time. 

Baisc Features of our Host Application are: 

 Basic browsing functionality including an Address Bar and Bookmarks 

 Illustrator Window: To illustrate functioning of the K-Formula computations and 

to show the choices being made for loading components during next startup  

 Plugin Display Pannel: To display the results from the operation of different 

plugins 

 Buttons to Hide the Illustrator Window and the Plugin Display Pannel for 

performing normal browsing task 

An important factor in our application is that the user’s application usage pattern is 

continuously monitored. For each interaction of user with any component, the frequency 

of use for that component is increased accordingly. Load Influences and Threshold 

Values are re-computed, and the list of components to be loaded in subsequent startup is 

updated as well. 

An XML File is used to keep track of the Alpha, N, K, U, T and Frequency values for 

each component. The same file stores Boolean values for whether component needs to be 

loaded or not in next instance for the two cases – Historic Based and Previous Instance 

Based.  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 46 
 

5.2 WORKING OF APPLICATION DURING DIFFERENT PHASES 

UNDER K-METHOD 

Activities of our Browser Application for different phases under K-Method can be 

understood from the below flowchart: 

Figure 14: Flowchart of Our Application Working under K-Method 

Browser Application Startup Phase: When the user clicks on the executable, the 

browser load time initialization routine is called which determines the current timestamp, 

and retrieves the timestamp of the browser’s previous use from the configuration settings. 

It computes the time gap and in case it is less than 2 hours (modifiable value from 

developer’s end), then the components specified in the Previous Instance Based 

Component List are loaded. On the other hand, if the time gap was larger, then the 

components specified in the Historic Based Component List are loaded. For all the 

components (loaded or not loaded), the value of U and T are updated. As discussed in 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 47 
 

earlier section, U defines the number of instances in which a component was loaded since 

application install, and T defines the number of instances in which a component was not 

loaded since application install. Thereafter, value for probJustPrev is computed which is 

a ratio that shows that since the time application has been installed how much proportion 

of times has the application been loaded in a short span of time from its previous 

termination leading to application being started in a previous instance based case. Based 

on the value obtained for probJustPrev, the configuration parameters of K-Formula are 

given corresponding values obtained from simulation during development time. 

Browser Application Execution Phase: Once the browser is loaded, the user continues 

to use the browser and associated plugins as per his requirements. His interactions with 

the features provided by the plugins are monitored continuously and each time he uses a 

particular plugin, the value of frequency of use for that particular plugin is incremented. 

It should be noted that initially, at application startup, value of frequency of use for each 

plugin is set to zero and this continues to increase as the user uses the application. In case 

the user wishes to use a feature provided by a plugin not yet loaded, then it would be 

dynamically loaded and the U and T values for it will be updated accordingly. 

Browser Application Termination Phase: When the user closes the browser, then two 

main things happen. Firstly, the current timestamp value is noted and saved in the field 

for browser’s previous use timestamp value in the configuration file. Secondly, the list of 

components to be loaded at next startup, for the two cases (Historic Based and Previous 

Instance Based), is committed to the permanent storage in the XML File. 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 48 
 

5.3 SIMULATION TO COMPUTE CONFIGURATION 

PARAMETERS FOR K-FORMULA 

For using the K-Formula, we need to first find out the Configuration Parameters (beta, 

gamma, delta) which would be used with it. Values of these parameters would be 

different for different values of probJustPrev. Using Simulation, we would find out the 

values that give us the most optimal results. i.e. simulation of application usage scenarios 

under optimal parameters should result in a case where most of the user requests for 

features are from the set of components offering those features and already loaded during 

startup. 

Factors Considered for Simulation of our Browser Application 

Scenarios: We have considered 6 different scenarios for usage of our test application. 

These are described as below: 

COMPONENTS Email Horoscope News Health Quote Article Word Ping Weather Whois 

Scenario 1   
 

  
    

  
 

  

Scenario 2 
 

  
  

      
   

Scenario 3       
     

  
 

Scenario 4 
  

  
 

     1 
   

Scenario 5   
 

   1   
   

  
 

Scenario 6       
 

  
     

Table 5: Components Used in Different Scenarios for 'Advance Browser' 

Scenario 1: This describes expected usual usage by a Computer Savvy User. We have 

assumed that among the available plugins, an average computer programmer would most 

of the times would be using features of Gmail, news, ping and whois. 

Scenario 2: This describes expected usual usage by a Literature Loving User. We have 

considered features of quote of the day, word of the day, article of the day and horoscope 

for such a user. 

Scenario 3: This describes expected usual usage by some user in case of an event like a 

Natural Calamity in town. A user in this case might be expected to use his Email to 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 49 
 

communicate and at the same time he can be expected to check News and Weather 

Reports very frequently and also occasionally check his horoscope. 

Scenario 4: This describes expected usual usage by a user preparing for delivering some 

speech or debate. We have included features of news, quote, word and article of the day 

in this scenario. 

Scenario 5: This describes expected usual usage by a doctor. We have included features 

of Health, Email, News, Quote of the Day, and Weather in this scenario. 

Scenario 6: This describes executed usual usage by an aspiring politician. He would 

check his mails and news regularly. He would also be interested in quotes that he can use 

in his speech. At same time he can be expected to check his horoscope on regular basis.  

NOTE: The scenarios mentioned above should ideally be found after a decent survey 

involving recording of features that the users usually use and what kind of tasks they 

usually do in similar applications while using those features.  

On competition of Simulation we have obtained the following optimal parameters for 

probJustPrev values ranging between 0 and 1 at steps of 0.1: 

ProbJstPrev BETA GAMMA DELTA HIT% AvgCompLoaded 
HIT%-

AvgCompLoaded 

0 0.1 0.7 0.3 0.88 0.54 0.34 

0.1 0.1 0.5 0.2 0.87 0.54 0.33 

0.2 0.1 1 0.2 0.87 0.55 0.32 

0.3 0.1 1 0.4 0.86 0.50 0.35 

0.4 0.2 0.8 0.1 0.85 0.50 0.35 

0.5 0.4 1 0.1 0.88 0.52 0.36 

0.6 0.1 0.6 0.2 0.88 0.50 0.37 

0.7 0.2 0.8 0.1 0.85 0.48 0.37 

0.8 0.8 0.9 0.4 0.86 0.52 0.34 

0.9 0.5 1 0.2 0.86 0.49 0.37 

1 0.6 0.4 0.8 0.85 0.45 0.40 

Table 6: Final Optimal Configuration Values Obtained After Simulation 

The simulation also suggests that on an average, 51% of the components shall be loaded 

and 86% of the times user would use a component already loaded during startup.  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 50 
 

5.4 THE EXPERIMENT 

To verify the simulation results and hence correctness of our methodology, we have 

performed a simple experiment on our test application. 

In First Case we have executed our application under K-Method 20 times and noted the 

StartUp time, and the Memory Consumed. 

In Second Case we have executed our application under “Full Execution Mode” which 

loads all the components at application startup. This is equivalent to our application 

running without K-Method. 

We have then computed the average startup time and average memory requirements for 

our application running under K-Method. We have also computed the average startup 

time and average memory requirements for our application when run without K-Method. 

For computing the startup time, we have placed timestamps within the application code at 

point where the application first loads and at point where the startup time specified 

components have been loaded and initialized. 

For knowing the memory requirements, we have checked the memory consumed by our 

process in Windows Task Manager 

The above experiments have been performed on a Dell Laptop running 64 bit Windows 7 

Home Premium OS, and having I5 2.40GHz Processor, 4GB RAM and 500GB Hard 

Disk Drive 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 51 
 

5.4.1 CASE 1: Application Running Under K-Method 

Figure 15: Startup Time for Test Application (under K-Method) in 20 Instances 

As shown in Figure 15, startup time has varied from a minimum of 3.3 seconds to a 

maximum of 9.69 seconds. The graph is uneven because the startup time would depend 

upon the number of components being loaded at startup which would vary depending 

upon the user’s usage pattern. Moreover different components would require different 

times for their initializations, so startup time would not only depend upon the number of 

components being loaded, but also on the time required for initialization code by a 

particular component being loaded. Thus, it is possible that one larger component 

consumes more time than three smaller components put together. Average Startup time is 

5.50 seconds. 

Figure 16: Memory Req. at Startup of Test Application (under K-Method) in 20 Instances 

Similarly, in Figure 16, we can see that memory is varying from a minimum of 3329 KB 

to a maximum of 4735 KB. The variation of memory consumption can be accounted to 

the variation in memory requirements of individual components being loaded. Average 

Memory Requirement is 38430 KB.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6.67 3.7 3.18 3.89 9.69 4.8 3.46 8.4 5.54 6.78 3.92 3.83 4.45 4.59 3.88 9.64 3.3 7.48 4.98 7.86

0

2

4

6

8

10

12
Ti

m
e 

in
 S

ec
o

n
d

s 

Startup Times for 20 Executions 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Memory Consumed 43404 32384 33608 33688 47356 33348 33864 45000 42672 44964 33292 34372 43356 33320 33508 46768 33516 43176 33600 43404

0

10000

20000

30000

40000

50000

M
e

m
o

ry
 in

 K
B

 

Memory Consumption for 20 Executions 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 52 
 

5.4.2 CASE 2: Application Running without K-Method (i.e. Conventional Manner) 

Figure 17: Startup Of Test Application (Without K-Method) for 20 Instances 

From Figure 17 we see that minimum startup time is 10.84 seconds and maximum startup 

time is 18.1 seconds and average time is 13.44 seconds. Since all the components are 

being loaded in all the instances yet there is variation in startup time. This, we assume, is 

occurring due to the caching being done by the OS and browser in the background. Some 

components used in our application make use of network connection during the 

initialization process. This can lead to different time requirements in different instances 

due to presence or absence of data in the OS level or the browser level cache. 

Figure 18: Memory Req. at Startup of Test Application (without K-Method) in 20 Instances 

From Figure 18 it can be seen that minimum memory consumed is 44208 KB and 

maximum memory consumed is 49620 KB at average of 45956.6KB. Ideally no variation 

should have been there since all the components are being loaded in all the instances. 

However, variation can be attributed to the fact that the memory under consideration is 

the Private Working Set Memory. If a component is currently holding some sharable 

memory, then only it would be reflected in the private working set of our application and 

not if some other process is holding that part of memory.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

18.1 12.6 12.16 16.11 15.72 11.39 16.02 13.39 15.17 12.08 16.87 12 12.05 13.46 11.01 11.09 14.27 11.65 12.93 10.84

0

5

10

15

20
Ti

m
e 

in
 S

ec
o

n
d

s 

Startup Times for 20 Instances 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Memory Consumed 46192 44712 44656 48884 47004 45356 46524 45536 45480 45168 49620 44468 45108 46024 44208 45056 46984 44720 48344 45088

40000

42000

44000

46000

48000

50000

52000

M
em

o
ry

 in
 K

B
 

Memory Consumption for 20 Executions 



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 53 
 

5.4.3 Analytical Comparison of Results for Case 1 and Case 2 

Below we have compared the results of startup times and memory consumption for test 

application when running under K-Method and when running without K-Method.

Figure 19: Comparison of Startup Times for Test Application With & Without K-Method 

As evident from the graph, on using K-Method, startup time has improved by about 

59.07% by dropping in average from 13.44 seconds to 5.50 seconds. This is in agreement 

with the results found in simulation, where it was found that on using the suggested 

configuration parameter values, about 51% of the components will need to be loaded and 

approximately 86% of the times, user would request from the already loaded components.  

Figure 20: Comparison of Memory Req. for Test Application With & Without K-Method 

We can see that K-Method not only assists in improving startup time of an application 

but it also assists in memory consumption of an application during application startup. On 

using K-Method an improvement of 16.37 % in memory requirement was obtained with 

memory consumption dropping to average of 38430 KB from 45956.6 KB when K-

Method was not used. This can be attributed to not loading the components that user is 

not expected to use.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Under K-Method 6.67 3.7 3.18 3.89 9.69 4.8 3.46 8.4 5.54 6.78 3.92 3.83 4.45 4.59 3.88 9.64 3.3 7.48 4.98 7.86

Without K-Method 18.1 12.6 12.16 16.11 15.72 11.39 16.02 13.39 15.17 12.08 16.87 12 12.05 13.46 11.01 11.09 14.27 11.65 12.93 10.84

0

5

10

15

20

Ti
m

e 
in

 S
ec

o
n

d
s 

Comparision of Startup Times for Executions With and Without K-Method Use 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Under K-Method 43404 32384 33608 33688 47356 33348 33864 45000 42672 44964 33292 34372 43356 33320 33508 46768 33516 43176 33600 43404

Without K-Method 46192 44712 44656 48884 47004 45356 46524 45536 45480 45168 49620 44468 45108 46024 44208 45056 46984 44720 48344 45088

0

10000

20000

30000

40000

50000

60000

M
em

o
ry

 in
 K

B
 

Comparision of Startup Times for Executions With and Without K-Method Use 

Without K-Method, Average Startup Time: 13.44 seconds 

Under K-Method, Average Startup Time: 5.50 seconds 

Without K-Method, Average Startup Memory Req.: 45956.6 KB 

Under K-Method, Average Startup Memory Req.: 38430 KB  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 54 
 

VI. CONCLUSION 

 

Improving startup times of applications is a problem that has interested researchers since 

a long time. Faster processor and faster secondary storage media has led to an overall 

improvement in user experience over the decades. From the end of the software 

developers also efforts have been made to optimize the codes to take lesser resources of 

space and time. However, not much had yet been done with respect to observing user’s 

application usage pattern and then determining the components that user is expected to 

use in the next execution. A very simple intuitive idea suggests that if we load lesser 

components during startup, then lesser time would be taken for application to startup and 

also smaller memory would be consumed by application. However, making this correct 

prediction of the components expected to be used in next execution is a very important as 

well as a limiting factor. We have given a concept called K-Method using which makes 

use of K-Formula to make this decision of whether or not to load a particular component 

at startup. We have performed simulation and results suggested us a possibility of 

improving load time by at least 46%. We then developed a test application called 

‘Advance Browser’ which is a browser with basic navigation functionality and other 

advanced functionalities provided by separate plugins. Our experiments with our test 

application showed about 59% improvement in startup time and about 16% improvement 

in memory consumed at application startup. 

Based on the results, it is highly recommended that large softwares should be developed 

while making use of this approach for reducing the startup time. Use of this approach is a 

onetime investment of time. This one time investment by the developers will lead to 

tremendous reduction in software load time which will be highly beneficial for any 

potential user and hence also will add creditability to the development team for having 

developed ‘faster’ software. 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 55 
 

VII. FUTURE WORK 

 

Our proposed method can also be used in other domains where the system is composed of 

components and the components can be selectively loaded or initiated. One such domain 

is embedded systems where resources like memory and battery life are very constrained 

and limited. K-Method can be used to predict which components user is expected to 

utilize in next execution. Software components would lead to saving up on memory 

requirements and hardware components would lead to saving up of battery life when 

these are selectively powered on. This can potentially be a very efficient technique to 

save battery life in this smartphone era. 

When applied to selectively load components that communicate over the network, our 

method can also result in saving considerable bandwidth. This is especially true in case of 

browsers where user installs several add-ons but seldom uses them all. During browser 

startup, these add-ons not only consume time and memory, but also considerable 

bandwidth which our method can considerable reduce by not loading the components that 

are not expected to be used. 

  



On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 56 
 

VIII. REFERENCES 

[1]  Oliver W. Steele, David T. Temkin, P. Tucker Withington Adam G. Wolff, "System for optimizing 

application start-up. ," 10/720,726, 2009. 

[2] Andrew W. Wilson and W. David Schwaderer, "Understanding I/O subsystem," Adaptec Press, pp. 

47-80, 1996. 

[3] Flanagan J. K Yin N., "Reducing application load time by rearranging disk data," 1998. 

[4] Paul Vongsathorn and Scott D. Carson, "A System for Adaptive Disk Rearrangement," Software---

Practice and Experience, 1990. 

[5] Sedat Akyuerek and Kenneth Salem, "Adaptive Block Rearrangement Under UNIX," Software---

Practice and Experience, 1997. 

[6] Xiao-Hong Tu and Niki C. Thornock and J.Kelly Flanagan, "A Stochastic Disk I/O Simulation 

Technique," in Proceedings of the 1997 Winter Simulation Conference, 1997, pp. 1079-1086. 

[7] Benjamin Aaron Rudiak-Gould James Edward Walsh, "System and Method for Improved Program 

Launch Time," US 6202121 B1, 2001. 

[8] Youngjin Cho, Kyungsoo Lee, and Naehyuck Chang Yongsoo Joo, "Improving Application Launch 

Times with Hybrid Disks," in CODES+ISSS’09, 2009. 

[9] (2006) [Online]. http://www.microsoft.com/whdc/system/sysperf/ 

[10] Junhee Ryu, Sangsoo Park, and Kang G. Shin Yongsoo Joo, "FAST: Quick Application Launch on 

Solid-State Drives," in 9th USENIX Conference on File and Storage Technologies., 2011. 

[11] Tim R. Bird, "Methods to Improve Bootup Time in Linux," in Linux Symposium, 2004, pp. 79-88. 

[12] Tim, and Frank Yellin. Java virtual machine specification. Addison-Wesley Longman Publishing 

Co., Inc., 1999. Lindholm,.: Lindholm, Tim, and Frank Yellin. Java virtual machine specification. 

Addison-Wesley Longman Publishing Co., Inc, 1999. 

[13] Lucent Technologies. Inferno. [Online]. http://inferno.bell-labs.com/inferno/ 

[14] A., Langdale, G., Lucco, S. and Wahbe, R Adl-Tabatabai, "Efficient and Language Independent 

Mobile Programs.," in Conference on Programming Language Design and, 1996. 

[15] Brockschmidt, "Inside OLE. ," 1994. 

[16] A., Sethi, R. and Ullman, J. Aho,. New York: Addison-Wesley, 1986. 

[17] E. and Graham, S. L. Pelegri-Llopart, "Code Generation for Expression Trees: AnApplication of 

BURS Theory.," in 15th ACM SIGACT/SIGPLAN Symp. on Principles of Programming Languages, 

San Diego, CA, 1988, pp. 294-308. 

[18] C., Calder, B., Lee, H. P. and Zorn B. G. Krintz, "Overlapping Execution with Transfer Using Non-

Strict Execution for Mobile Programs," in Architectural Support for Programming Languages and 

Operating Systems, 1998. 

[19] D., Baer, J. L., Bershad, B. N. and Anderson, T. Lee, "Reducing Startup Latency in Web and Desktop 

Applications," , 1999. 

[20] E., Arthur J. Gregory, and Brian N. Bershad Sirer, "A practical approach for improving startup 

latency in Java applications. ," , 1999. 

http://www.microsoft.com/whdc/system/sysperf/
http://inferno.bell-labs.com/inferno/


On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 57 
 

[21] Pramote, Vincent J. Mooney, and Vijay K. Madisetti Kuacharoen, "Software Streaming via Block 

Streaming," in Design, Automation and Test , 2003. 

[22] Jelinek, Jakub, "Prelink," 2004. [Online].  

[23] John Richard Moser. (2006) [Online]. http://lwn.net/Articles/192624/ 

[24] Ulrich Drepper, "How to write shared libraries.," 2006. 

[25] Michael Meeks. (2006) Speeding up the dynamic linker. 

[26] Heeseung, Hwanju Kim, Jinkyu Jeong, Joonwon Lee, and Seungryoul Maeng Jo, "Optimizing the 

startup time of embedded systems: A case study of digital TV," in Consumer Electronics, IEEE 

Transactions on 54, no. 4, 2009, pp. 2242-2247. 

[27] Hiroki Kaminaga, "Improving Linux Startup Time Using Software Resume (and other techniques)," 

Linux Symposium, p. 17, 2006. 

[28] Inwhee Joe and Sang Cheol Lee, "Bootup time improvement for embedded Linux using snapshot 

images created on boot time," in Next Generation Information Technology (ICNIT), The 2nd 

International Conference on, 2011, pp. 193-196. 

[29] B. Esfahbod, "Preload—An adaptive prefetching daemon ," University of Toronto, Doctoral 

dissertation 2006. 

[30] Changwoo Min, Jeehong Kim, Young Ik Eom Hokwon Song, "Usage Pattern-Based Prefetching: 

Quick Application Launch on Mobile Devices," in Computational Science and Its Applications – 

ICCSA, vol. 7335, 2012, pp. 227-237. 

[31] Gary V. Vaughan. (2006) Autoconf, Automake, and Libtool.  

[Online]. http://sourceware.org/autobook/autobook/autobook_158.html 

[32] J.H.M.Dassen. (1995) LinuxU.  

[Online]. http://linux4u.jinr.ru/usoft/WWW/www_debian.org/Documentation/elf/node7.html 

[33] IBM. (2012) Program execution model.  

[Online].http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.prftungd%2Fd

oc%2Fprftungd%2Fperf_overview.htm 

[34] Joanna McGrenere, "“Bloat”: The Objective and Subject Dimensions," in CHI'00 extended abstracts 

on Human factors in computing systems, 2000, pp. 337-338. 

[35] Vince Baskerville. (2011) Build a product. Not Features.  

[Online]. http://vincentjordan.com/2011/06/build-a-product-not-features/ 

[36] Microsoft Corporation. (2012) Installing Visual Studio 2012.  

[Online]. http://msdn.microsoft.com/en-us/library/vstudio/e2h7fzkw.aspx 

[37] CodeBlocks, CodeBlocks Manual., 2010. 

[38] Mozilla. (2010) Mozilla Plugin Support on Microsoft Windows.  

[Online]. http://plugindoc.mozdev.org/ 

[39] Matt Smith. (2011) [Online]. http://www.digitaltrends.com/computing/a-beginners-guide-to-google-

chrome-why-its-time-to-ditch-internet-explorer/ 

[40] Microsoft Corporation. (2007) Enable or disable add-ins in Office programs.  

http://lwn.net/Articles/192624/
http://sourceware.org/autobook/autobook/autobook_158.html
http://linux4u.jinr.ru/usoft/WWW/www_debian.org/Documentation/elf/node7.html
http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.prftungd%2Fdoc%2Fprftungd%2Fperf_overview.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.prftungd%2Fdoc%2Fprftungd%2Fperf_overview.htm
http://vincentjordan.com/2011/06/build-a-product-not-features/
http://msdn.microsoft.com/en-us/library/vstudio/e2h7fzkw.aspx
http://plugindoc.mozdev.org/
http://www.digitaltrends.com/computing/a-beginners-guide-to-google-chrome-why-its-time-to-ditch-internet-explorer/
http://www.digitaltrends.com/computing/a-beginners-guide-to-google-chrome-why-its-time-to-ditch-internet-explorer/


On Improving Startup Time of Applications 2013 
 

Mohit Khanna: Computer Science and Engineering Dept. (DTU) Page 58 
 

[Online].http://office.microsoft.com/en-in/help/enable-or-disable-add-ins-in-office-programs-

HA010034127.aspx 

[41] John Wayne Hill. (2010) Perceived Speed Performace.  

[Online]. http://www.johnwaynehill.com/blog/2010/06/16/perceived-speed-performace/ 

[42] Amit Agarwal. (2008) Installing Software? Know What Happens Behind The Scene.  

[Online].http://www.labnol.org/software/tutorials/fix-install-errors-troubleshoot-software-

installation-problems/2841/ 

[43] codecoffee. Understanding software Installation.  

[Online]. http://www.codecoffee.com/tipsforlinux/articles/27.html 

[44] MozillaSupport. (2012) Find and install add-ons to add features to Firefox.  

[Online]. http://support.mozilla.org/en-US/kb/find-and-install-add-ons-add-features-to-firefox 

[45] Paul Placido Giangarra, Ravindranath Kasinath Manikundalam, Donald Robert Padgett, James 

Michael Phelan James Wendell Arendt, "System and method for lazy loading of shared libraries," US 

5708811 A. 

[46] StackOverflow. (2009) What happens when you run a program?  

[Online]. http://stackoverflow.com/questions/1204078/what-happens-when-you-run-a-program 

[47] NovelSupport. (2002) What happens when an application is launched?  

[Online]. http://support.novell.com/docs/Tids/Solutions/10022703.html 

[48] Michael Muchmore. (2013) Which is the Fastest Browser.  

[Online]. http://www.itproportal.com/2013/01/04/which-is-the-fastest-browser/ 

[49] Whitson Gordon. (2013) Browser Speed Tests. [Online]. http://lifehacker.com/5976082/browser-

speed-tests-chrome-24-firefox-18-internet-explorer-10-and-opera-1212 

[50] newrelicblog. (2012) Which Browsers are the Fastest? [Real User Performance Data].  

[Online]. http://blog.newrelic.com/2012/04/05/fastest-browsers/ 

[51] MozillaZine. (2007) Increasing startup speed. 

[52] Mozilla. (2011) All about Performance. [Online]. http://blog.mozilla.org/tglek/2011/05/13/firefox-

telemetry/ 

 

 

 

http://office.microsoft.com/en-in/help/enable-or-disable-add-ins-in-office-programs-HA010034127.aspx
http://office.microsoft.com/en-in/help/enable-or-disable-add-ins-in-office-programs-HA010034127.aspx
http://www.johnwaynehill.com/blog/2010/06/16/perceived-speed-performace/
http://www.labnol.org/software/tutorials/fix-install-errors-troubleshoot-software-installation-problems/2841/
http://www.labnol.org/software/tutorials/fix-install-errors-troubleshoot-software-installation-problems/2841/
http://www.codecoffee.com/tipsforlinux/articles/27.html
http://support.mozilla.org/en-US/kb/find-and-install-add-ons-add-features-to-firefox
http://stackoverflow.com/questions/1204078/what-happens-when-you-run-a-program
http://support.novell.com/docs/Tids/Solutions/10022703.html
http://www.itproportal.com/2013/01/04/which-is-the-fastest-browser/
http://lifehacker.com/5976082/browser-speed-tests-chrome-24-firefox-18-internet-explorer-10-and-opera-1212
http://lifehacker.com/5976082/browser-speed-tests-chrome-24-firefox-18-internet-explorer-10-and-opera-1212
http://blog.newrelic.com/2012/04/05/fastest-browsers/
http://blog.mozilla.org/tglek/2011/05/13/firefox-telemetry/
http://blog.mozilla.org/tglek/2011/05/13/firefox-telemetry/

