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                                             Chapter 1 

                                                    Introduction

1.1  Image Fusion

Image Fusion refers to extraction of complementary information and removal of redundancy 

from multimodal images to obtain all relevant information in a single (hybrid) image [1]. The 

motivation is to obtain information of higher quality. Image fusion improves data 

interpretation and recognition by making use of multimodal image observations. Fused image 

has further applications of feature extraction , statistical calculation, object identification etc. 

Feature level image fusion requires identification and extraction of salient information of 

input images and its transfer into the output fused image. As most of signal information is 

carried by irregular structures and transient phenomena,fusion of edges is an important part of 

medical image processing. Various methods of image fusion are available using wavelet 

transform technique . Lifting wavelet transform domain, which is a multiresolution  analysis 

enables to identify and fuse image features. It produces large coefficients near edges, thus 

revealing salient information. Image fusion can be performed at different levels- signal level, 

pixel level, feature level and decision level [1].

1.1.1 Types of Fusion

1. Signal level fusion: This is low level image fusion. At this level of fusion raw images 

obtained from multimodal imaging systems are fused. The greatest accuracy and information 

is achieved at this level of fusion. The disadvantage is that it requires transfer of all signals to 

a central processor which is difficult. 

2. Pixel level fusion: In this level of fusion information contained associated with each pixel 

in an image is enhanced through multiple image combination. Fusion at this level can be 

performed either in spatial domain or in frequency domain.

3.Feature level Fusion: This is an intermediate level image fusion. This level can be used as 

a means of creating additional composite features. Features can be pixel intensities or edge 

and texture features. At first, relevant features are abstracted from input images and then 

fused. For this raw data is transformed and represented as feature vector sets. Various kind of 

features, such as signal  amplitude or shape, length or image segments, are considered 

depending on the nature of images and the application of the fused image. The fused data can 
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also be used for classification or detection based on the fused feature set. Fusion at this level 

has an added advantage that standardized reconstruction procedure is not required[1].

4. Decision level Fusion: This is a high level fusion in which decisions coming from various 

fusion experts are fused. Different methods of decision fusion are voting methods, fuzzy 

logic based methods, statistical methods. There are various techniques of  image fusion. They 

are roughly divided into two groups-multiscale decomposition based(MBD) fusion methods 

and non multiscale decomposition based (NMDB) fusion methods. Typical MDB fusion 

methods include pyramid based methods, discrete wavelet transform based methods. Typical 

NMDB fusion methods include adaptive weight averaging methods, neural network based 

methods, Markov random field based methods and estimation theory based methods. The

proposed method is based on lifting wavelet transform based method which belongs to MDB 

category [1].

1.1.2 Applications

1. Image fusion  is  used  in Medical Imaging Techniques ,for example to clear a tumor 

image.

2. Image fusion is used in  Remote Sensing areas for making pictures more informative 

and Clear around boundaries and corners.

1.2 Wavelet transform

Multiresolution analysis has  become one of the most promising  methods in image 

processing. This  makes wavelet transform a very useful tool for image fusion.  It has been 

found that wavelet based fusion techniques out perform the standard fusion technique in 

spatial and spectral quality. The wavelet transform  is of  two  types  : Continuous Wavelet 

transform (CWT) and  Discrete Wavelet transform (DWT)[2][3].

Continuous wavelet transform : X(t) is the input signal, then CWT of  X(t) is defined as

                                            Xw(a,b)=1/√ܾ ∫ ∞−∞+(ݐ)ܺ ߰(
௧−௔

௕ )dt                                           (1.1)

where  location factor a can be any real number, and scaling factor b can be positive real 

number. The mother wavelet ߰ (t) is a well-designed function so that the CWT has low 

computation complexity and is reversible. It is obvious that as b is larger, ߰((t−a) / b) is more 

like a high-frequency signal, and thus output Xw(a, b) would represent the high-frequency 
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component of x(t) after inner product with ߰((t−a) / b). Also, larger b implies the window 

size of   ߰((t−a) / b) is smaller; that is, the time resolution is smaller [2].

Discrete Coefficients Continuous wavelet transform

Although the CWT performs well in mathematics, it is hard to implement. Thus, it is not 

useful in practical. As we restrict the values of parameters a and b as

a = n2-m and b = 2-m, the CWT can be rewritten as

                                    Xw(n,m)=2m/ଶ ∫ ∞−∞+(ݐ)ܺ ߰ (2௠ ݐ െ ݊)dt                                          (1.2)  

this special case  is called CWT with discrete coefficients  . The main reason of this setting is 

easy in implementation[2]. As the mother wavelet ߰ (t) satisfies 

߰ (t)= 2∑ ℎ௞ ௞ φ(ݐ)(ݐ2 െ (ݐ)∅ ݀݊ܽ  (݇ =  2 ∑ ℎ௞ ௞ φ(ݐ)(ݐ2 െ ݇)                                      (1.3)

Xw(n, m) can  be  computed from  Xw (n, m−1) by digital convolution,

                                         ܺ௪(݊, ݉) = 2భమ  ∑ gkXw(2n ൅ �, � ൅ 1)k                                       (1.4)                                  

                                               

                                       ܺ௪(݊, ݉) =  2భమ  ∑ ℎ௞ܺ௪(2݊ ൅ ݇, ݉ ൅ 1)௞                                   (1.5)

The φ(t), called scaling function, can be deemed as a low-pass filter compared to the high-

pass filter ߰ (t). Although the setting of a = n2-m and b = 2-m, we can only obtain some 

coefficients in the particular positions of the time-frequency distribution,  However, these 

coefficients are enough for image processing[2].

       

Discrete Wavelet Transforms (DWT)

The DWT is similar to the DC-CWT except that the input signal is discrete. Therefore, the 

design rules for ψ(t), φ(t), g[k] and h[k] are similar as in the DC-CWT.2-D DWT is very 

useful for image processing because the image data are discrete and the spatial-spectral 

resolution is dependent on the frequency.  The DWT has the property that the spatial 

resolution   is small in low-frequency bands but  large in high-frequency bands[2]. 
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1.3 Lifting wavelet transform

Lifting wavelet transform is a multi resolution analysis used for the construction of the 

second generation wavelets. It is an efficient implementation of the wavelet transform 

algorithm. The discrete wavelet transform (DWT) can be viewed as a predictor-error 

decomposition. The scaling coefficients at a given scale (j) are “predictors” for the data at the 

next higher resolution or scale (j-1). The wavelet Coefficients are simply the “prediction 

errors” between the scaling coefficients and the higher resolution data that they are 

attempting to predict. This  interpretation has  led to a  new framework  for  DWT  known as 

the lifting scheme. It lifts the wavelet transform to a more sophisticated level and is 

implemented by factoring the wavelet transforms into lifting steps. The lifting scheme 

consists of the iteration of the following three steps[1][4].

(i)Lazy wavelet transform: This step divides the original data (x[n]) ∈ R,n ∈ Z) into its even 

and odd polyphase  components   xe[n] and  xo[n]  respectively where

                                                  xe[n] = x[2n]                                                                     (1.6)          

                                             xo[n] =x[2n+1]                                                                 (1.7)                 

(ii) Predict: This is also called as dual lifting. In this step the odd poly phase coefficients are 

predicted from the  neighbouring even  coefficients using a predictor P and the wavelet 

coefficients (high pass) or details are generated as the error in predicting the odd samples 

from the even using prediction operator[1].

                                                     d = xo - P (xe)                                                                 (1.8)        

using these details one can recover the odd components as

                                                   xo = P (xe) + d                                                                (1.9)                 

iii)Update:This is also termed as primal lifting.This step updates the even set using the 

wavelet coefficients to compute the scaling function coefficients (low pass).It applies an 

update operator  U to detail coefficients obtained in previous step [1].

                                                  S = xe +U(d)                                                               (1.10)                           

This step is also invertible and reproduces xe as 

                                                   Xe = s- U(d)                                                                (1.11)                                
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Lifting scheme has the advantage of fast implementation of wavelet transform as it makes use 

of similarities between high pass and low pass filters.  It provide perfect reconstruction of 

original signal which is not possible by standard implementation even though they are 

lossless in principle. It helps in saving auxiliary memory as the original signal is gradually 

replaced by its transform. Lifting scheme has further advantage of simplicity of inverse 

transform as  the inverse transform is obtained by reverting the order of  operations and 

inverting the signs in forward lifting steps. It also reduces the computational complexity by a 

factor of two as compared to non-lifting wavelet transform. It also provides flexibility as 

compared to classical wavelets[1][4].
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                                       Chapter 2

                                 Wavelet Transform

2.1  Fourier Transform: An Overview

The Fourier transform is a frequency domain representation of a function. This transform 
contains exactly the same information as that of the original function; they differ only in the 
manner of presentation of the information[8].

Fourier transform is given by

Forward FT:                                       X(f)=∫ ∞−∞ ௝ଶగ௙௧−݁(ݐ)ݔ (2.1)                                          ݐ݀ 

Inverse FT:                                         X(t)= ∫ ܺ(݂)݁+௝ଶగ௙௧ ∞−∞  ݂݀                                      (2.2)

X(t) is the continuous function in time and X(f) is its corresponding Fourier transform, 

which is a continuous function in frequency. This formula is mainly applied to the functions 

with bounded energy i.e X(t) should be an energy signal satisfying the following bound.

                                                            ∫ ∞−∞|(ݐ)ݔ|
ଶ ݐ݀ < ∞                                                   (2.3)

This Fourier transform is mainly used for the theoretical analysis and design of continuous

signals and systems. In case of continuous periodic functions, the functions does not have a 

finite energy. If X(t) is periodic with a period of T and fundamental frequency of 

fo =1/T,  x(t) = x (t+T) for all t’s, and if it has a finite power, the periodic function can then be 

expressed as a linear combination of harmonically related sinusoidal functions. The pair of 

equations, which defines the Fourier series(FS) of a periodic function, is stated by

Forward FS:                                         Ck =  1/T ∫ ೅మ–೅మݔ
ݐ௝ଶగ௞௙0݀−݁(ݐ)                                  (2.4)

Inverse FS:                                         (ݐ)ݔ =  ∑ ܿ௞   ݁+௝ଶగ௞௙0∞௞ୀ−∞   

where ܿ௞   ‘s are fourier coefficient of (ݐ)ݔ. The condition of having finite power for the 

periodic function x(t) is stated by the following bound.

                                                           1/ܶ ∫ ଶT/ଶ−T/ଶ|(ݐ)ݔ| dt < ∞                                            (2.5)
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This transform converts a continuous periodic function to a sequence of complex numbers. In 

general, this sequence is infinite.  In most practical cases, only finite number of ck 's have 

significant values[8]. This transformation is also used in many areas of applied mathematics 

like solving  partial differential equations. Advances in computers and digital technology 

resulted in design of discrete signals and systems and modifications in the Fourier transform. 

The Fourier transform that is applied to discrete sequences and referred to as discrete 

time Fourier transform (DTFT) is defined by the following pair of equations.

Forward DTFT:                               ܺ൫݁௝ଶగ௙൯ = ∑ ∞−௝ଶగ௡௙∞௡ୀ−݁[݊]ݔ                                 (2.6)

Inverse DTFT:                                 ݔ[݊] = ∫ ܺ(݁௝ଶగ௙గ−గ )݁+௝ଶగ௡௙݂݀                                (2.7) 

Where  ݔ[݊]  is the  discrete function and  ܺ(݁௝ଶగ௙) is its  corresponding Fourier transform. 

The transform function is continuous and periodic in the frequency domain, with the period 

of 2ߨ . In this formulation, the frequency variable, F , is normalized by the sampling 

frequency Fs . In other words, if Fa is the actual frequency in Hz, F =Fa/ Fs is the 

normalized frequency . This transformation is commonly used for analysis of discrete signals 

and systems[8].

Calculation of DTFT by computer can only be carried out for finite sequences and for 

discrete samples of X (݁௝ଶగ௙) in frequency domain. These requirements and constraints result 

in another formulation of the Fourier transform that is defined for periodic discrete functions. 

Let x[n] be a periodic sequence with a period of N ; i.e., x[n] =x[n +N] for all n 's, the pair of 

the Fourier transform relations, referred to as discrete Fourier transform (DFT), for x[n] , is 

defined by

Forward DFT:                            X [k] =   ∑ e−jଶπ୬k/Nே−ଵ௡ୀ଴[݊]ݔ    for k= 0,1,2,... ,N -1         (2.8)

Inverse DFT:                              x[n] =1/N ∑ ܺ[݇]݁+௝ଶగ௡௞/ேே−ଵ௡ୀ଴   for n= 0,1,2, .., N-1       (2.9)

Where  x[n] and its DFT, X[k ] , are periodic with the same period N . Although different 

formulations of the Fourier transform have real application in analyzing signals and systems
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but only the  DFT relations  is practically used in real world computations. Some of the 

applications of DFT in signal processing are spectrum estimation, feature extraction, and 

frequency domain filtering. Due to advances in fast computation algorithms for DFT, known 

as Fast Fourier Transform (FFT), and high-speed hardware implementation, this approach is 

used for real-time digital signal processing (DSP). But DFT has performance limitations for 

various applications. Let x[n] for n =0,1,2,....,N -1, be the sequence of real numbers obtained 

from sampling an analog temporal signal with sampling period of T seconds. The actual 

duration of this signal is therefore equal to T0=NT seconds. When calculating the DFT of this

sequence, the resultant sequence, X[k ] , is in general a complex sequence in frequency 

domain. The actual distance between frequencies associated to the two consecutive samples 

of X[k ] is 1/ NT Hertz (Hz). Due to the symmetry properties of X[k ] and sampling 

constraints, center of X[k ] sequence corresponds to the maximum frequency of the signal.

This frequency is Fmax = ቀN
ଶቁ . ቀ ଵ

NTቁ = 1/2� Hz, which is determined by the sampling period 

T. Resolution of DFT is fixed at ∆F =1/NT =1/T0 Hz and is depended on the duration of the 

original analog signal. Increasing number of samples by reducing the sampling period does 

not change the overall resolution.One main assumption in using DFT for calculation of the 

spectrum of a discrete signal is that the observed  signal is stationary during the observation 

time T0 . For most practical signals, this assumption is not valid. In this case and other 

similar cases, the Fourier transform is modified such that a two-dimensional time-frequency 

representation of the signal is obtained. The modified Fourier transform referred to as short-

time or time-dependent Fourier transform, depends on a window function. For the discrete

signals, this transformation, referred to as discrete short timeFourier transform (DSTFT) is 
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obtained by using a window function, g[l] , where
                                                  g[l] ≠ Ͳ  ݂ݎ݋  Ͳ ≤ ݈ ≤ ܮ െ 1                                            (2.10)

                                                  g[l] = Ͳ  ݂ݎ݋  ݈ < Ͳ ݎ݋  ݈ ≥ (2.11)                                         ܮ

The resultant forward Fourier transform in this case provides estimates of the instantaneous 

frequency spectrum of the signal at any desired time. The window g[l] has a stationary origin, 

and as n changes, the signal slides past the window so that, at each value of n , a different 

portion of the signal is viewed[8]. 

The main purpose of the window in the time-dependent Fourier transform is to limit the 

extent of the transformed sequence so that the spectral characteristics are reasonably 

stationary over the duration of the window function. The more rapidly the signal 

characteristics change, the shorter the window should be. Resolution in frequency depends on 

the duration of the window function. In the discrete case and for the uniform window, the 

actual frequency resolution, in terms of the sampling period T , equals to   ∆݂ =1/ LT which 

is the inverse of the actual size of the window. In general the resolution of the DSTFT can be 

related to the bandwidth of the window sequence[8] . Using RMS (Root-Mean Square) as a 

measure of bandwidth, the   resolution is

                                              ∆݂ = (∑ ݇ଶ|ܩ[݇]|ଶே−ଵ௞ୀ଴ / ∑ ଶே−ଵ௞ୀ଴|[݇]|ܩ )1/2                                  (2.12)

Where ܩ[݇] is obtained by calculating DFT of the window sequence as follows.

                                            G[k]=∑ ݃[݊]݁−ೕమഏ೙ೖಿ   ;௡ for k=0,1,2,.....,N-1                         (2.13)

In this approach, two sinusoids will be discriminated only if they are more than ∆݂ apart. 
Similarly, the spread in time is given by ∆t as

                                             ∆t=(∑ ݊ଶ|݃[݊]|ଶ௡ / ∑ |݃[݊]|ଶ௡ )1/2                                         (2.14)

This parameter indicates resolution in time. In other words, two pulses in time can be 

discriminated only if they are more than ∆t apart. As the window becomes shorter, frequency 

resolution decreases. On the other hand, as the window length decreases, the ability to resolve 

changes with time increases. Consequently, the choice of window length becomes a trade-off 

between frequency resolution and time resolution. Resolution in time and frequency cannot 

be arbitrarily small, because their product is lower bounded [8].
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Time-Bandwidth  Product ,                  ∆ݐ ∆݂ ≥ ߨ1/4                                                    (2.15)

This is referred to as the uncertainty principle, or Heisenberg inequality. In general, for 

DSTFT, after deciding about the window function, the frequency and time resolutions are 

fixed for all frequencies and all times respectively.This approach does not allow any variation 

in resolutions in terms of time or frequency[8].

2.1.1 Wavelet Transform
Wavelet transform can be defined for different class of functions. The intention in this 

transformation is to address some of the shortcomings of the STFT. Instead of fixing the time 

and the frequency resolutions ∆t and ∆f, one can let both resolutions vary in time-frequency 

plane in order to obtain a multiresolution analysis[7][8]. This variation can be carried out 

without violating the Heisenberg inequality . In this case, the time resolution must increase as 

frequency increases and the frequency resolution must increase as frequency decreases. This 

can be obtained by fixing the ratio of ∆ f over f  to be equal to a constant c [8] i.e ∆f/f = c .

2.1.2 Merits of wavelet Transform over Fourier Transform
The Fourier transform has its limitations. For example, this transformation cannot be applied 

to non stationary signals. Although, the modified version of the Fourier transform, reffered to 

as short time (or variable time) Fourier transform can resolve some of the problems 

associated with the non stationary signals, but does not address all the issues of concern.The 

wavelet transform is applied to non stationary signals for the analysis and processing and 

provides an alternative to the short-time Fourier transform (STFT). In contrast to STFT, 

which uses a single analysis window, the wavelet transform uses short windows at high 

frequencies and long windows at low frequencies [8].

2.2 Continuous wavelet Transform(CWT)
The  CWT or continuous-time wavelet transform of f(t)  with respect to a wavelet ߰(t) is 

defined as

                                              W(a,b)=∫ (ݐ)݂ ଵ
ඥ|௔|

+∞−∞ ߰ *(
௧−௕

௔ )dt                                         (2.16)

Where a  and  b  are  real  and  ∗ denotes complex conjugation.Thus ,the wavelet transform is 

a function of  two variables. The  a  is called  dilation  variable  while  b is  called  translation 

variable .
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The mother wavelet should posses following properties[3].

1. The function integrates to zero.

                                          ∫   (t)dt+∞−∞  = 0                                                                (2.17)

 
2. It  is  square integrable or equivalently has  finite energy.

                                          ∫  |+∞−∞   (t)|2 dt  <  ∞                                                          (2.18)

2.3 Discrete Wavelet Transform (DWT)        

This is a  type of  non redundant  wavelet  representation[3]. 

                                      f(t) =∑ ∑ ݀(݇, ݈)2−௞/ଶ∞௟ୀ−∞∞௞ୀ−∞ ߰ (2-k t- ݈ )                          (2.19)

  Equation ( 2.19) uses discrete values for dilation and translation parameters. The 

dilation takes values of the form a = 2k where k  is  an integer. At any dilation 2k,  the 

translation parameter takes values of the form 2k ݈ where  ݈  is  again  an integer. The  

values  d(k, ݈) are related to values of the wavelet transform W(a,b) = W[f(t)] at a = 2k

and  b = 2k ݈ .This  corresponding  to  sampling  the coordinates (a,b)  on  a  grid. The 

two-dimentional  sequence  d(k, ݈) is  referred to  as  the  discrete  wavelet  transform  

(DWT) of  f(t) [3].

The general block scheme of a wavelet or subband transform is shown below [3]. The 

forward transform uses two analysis filters  ℎ෩ (low pass) and  ෥݃ (band pass) followed by 

subsampling,while the inverse transform first upsamples and then uses two synthesis filters 

ℎ(݈ݏݏܽ݌ ݓ݋) and ݃ (high-pass) [5].
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                                                                     BP

                                            

                                                Fig 1: Discrete wavelet Transform

All these filters are considered as FIR filters. The condition for perfect reconstruction are 
given by

                                                          ℎ(ݖ)ℎ෨(ݖ−ଵ) + ݃(ݖ) ෤݃(ݖ−ଵ)     =   2                                  (2.20)

                                                   ℎ(ݖ)ℎ෨(െݖ−ଵ) +݃(ݖ) ෤݃(െݖ−ଵ) =  0                                  (2.21)

The modulation matrix M(z)  is defined as below

                                                 M(z) = ൤ℎ(ݖ) ℎ(െݖ)݃(ݖ) ݃(െݖ)൨                                                     (2.22)

Similarly the dual modulation matrix ܯ෩(z) can be defined.The perfect reconstruction 
condition can now be written as

2I                                                       (2.23)=(ݖ)ܯt(ଵ−ݖ)෩ܯ                                            

Where I  is the 2x2 identity matrix

The polyphase representation of a filter h is given by

                                                      ℎ(ݖ) = ℎ௘(ݖଶ) ൅ (2.24)                                        (ଶݖ)ଵℎ௢−ݖ

where he contains the even coefficients and ho contains the odd coefficients

                                                        ℎ௘(ݖ) = ∑ ℎଶ௞௞ (ݖ)௞  and  ℎ௢−ݖ = ∑ ℎଶ௞+ଵݖ−௞௞             (2.25)

                                                       ℎ௘(ݖଶ) = ௛(௭)+௛(−௭)
ଶ   and   ℎ଴(ݖଶ) = ௛(௭)−௛(−௭)

ଶ௭షభ                  (2.26)

Assemble the polyphase matrix as

 ℎ෩ (z-1)

 ෥݃ (z-1)

   2

   2

ℎ(ݖ)

(ݖ)݃
(ݖ)݃

   2

   2
+
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                                                   P(z)=൤ℎ௘(ݖ) ݃௘(ݖ)ℎ଴(ݖ) ݃௢(ݖ)൨                                                     (2.27)

                                                   P(ݖଶ)t  =1/2 M(z) ቂ1 1ݖ െݖቃ                                            (2.28)

The  perfect reconstruction property is given by

                                                   P(z) ෨ܲ(ݖ−ଵ)t = I                                                               (2.29)

The wavelet transform does subsampling  even and odd samples. This transform is called 

polyphase transform but in the context of lifting it is often reffered to as the lazy wavelet 

transform[5].

2.4 Wavelet Families

There are many members in the wavelet family, a few of them that are generally found to be 

more useful. Haar wavelet is one of the oldest and simplest wavelet. Therefore, any 

discussion of wavelets starts with the Haar wavelet. Daubechies wavelets are the most 

popular wavelets. They represent the foundations of wavelet signal processing and are used in 

numerous applications. The Haar, Daubechies, Symlets and Coiflets are compactly supported 

orthogonal wavelets. These wavelets along with Meyer wavelets are capable of perfect 

reconstruction. The Meyer, Morlet and Mexican Hat wavelets are symmetric in shape. The 

wavelets are chosen based on their shape and their ability to analyze the signal in a particular 

application. Haar wavelet is discontinuous, and resembles a step function[3][9].

2.4.1 Haar Wavelet

The Haar wavelet is a certain sequence of functions. It is now recognised as the first known 

wavelet. Haar used these functions to give an example of a countable orthonormal system for 

the space of square integrable functions on the real line. The study of wavelets, and even the 

term "wavelet", did not come until much later[3]. 

The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the 

Haar wavelet is that it is not continous , and therefore not differentiable[9].
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                                                                            Fig 2. Haar wavelet

The Haar wavelet's mother wavelet function ψ(t) can be described as

                                                                                  (2.30)

and its scaling function  φ(ݐ) can be described as

                                                                                       (2.31)

wavelets are mathematical functions that were developed by scientists working in several 

different fields for the purpose of sorting data by frequency. Translated data can then be 

sorted at a resolution which matches its scale [10].

The Haar wavelet operates on data by calculating the sums and differences of adjacent 
elements. The Haar transform is computed using:

                                                                                                                       (2.32)

2.4.2  Daubechies wavelets

Daubechies are compactly supported orthonormal wavelets and found application in DWT. 

Its family has got nine members in it [3][7].



                              

2.5  Multiresolution Analysis

A multiresolution analysis decomposes a signal into a smoothed version of the original signal 

and a set of detail information at different scales

easily Understand by thinking of a picture (which is a two dimensional signal). We remove

from the picture information that distinguishes

is slightly blurred. This blurred version of the original picture is a rendering at a
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information and a more and more blurred (or smoothed) version of the

Removal of the detail information corresponds to a bandpass filtering,and generation of 

smoothed image corresponds to a lowpass filtering. Given the

reconstruct the original image. Once we have decomposed a signal this way, we may analyze 

the behavior of the detail information across the different scales. We can extr

regularity of a singularity,which characterizes the signal's behavior at that point. This 

provides an effective meansof edge detection. Furthermore, noise has a specific behavior 

across scales, and hence,in many cases we can separate the signal fro

Reconstruction then yields a relatively accurate noise free approximation of the

signal[9][10].

The wavelet transform specifies a multiresolution decomposition, with the wavelet

the bandpass filter that determines the detail 

smoothing function, which defines the complementary lowpass filter.

described later ensure that the set consisting of the detail information

smoothed version of the original signal contains no redundant

wavelet transform's ability to localize in time and its ability to specify

analysis, many potential application areas have been identified. These

Fig 3: Daubechies wavelets

Multiresolution Analysis

analysis decomposes a signal into a smoothed version of the original signal 

set of detail information at different scales[3]. This type of decomposition is most 

of a picture (which is a two dimensional signal). We remove

from the picture information that distinguishes the sharpest edges, leaving a new picture

is slightly blurred. This blurred version of the original picture is a rendering at a

r scale. We then recursively repeat the procedure. Each time we obtain

information and a more and more blurred (or smoothed) version of the original image. 

Removal of the detail information corresponds to a bandpass filtering,and generation of 

smoothed image corresponds to a lowpass filtering. Given the decomposition, we can 

reconstruct the original image. Once we have decomposed a signal this way, we may analyze 

the behavior of the detail information across the different scales. We can extr

regularity of a singularity,which characterizes the signal's behavior at that point. This 

provides an effective meansof edge detection. Furthermore, noise has a specific behavior 

across scales, and hence,in many cases we can separate the signal from the noise. 

a relatively accurate noise free approximation of the

The wavelet transform specifies a multiresolution decomposition, with the wavelet

the bandpass filter that determines the detail information. Associated with the wavelet is a 

smoothing function, which defines the complementary lowpass filter. Conditions to be 

described later ensure that the set consisting of the detail information at all scales and the 

al signal contains no redundant information. In lieu of the 

wavelet transform's ability to localize in time and its ability to specify a multiresolution 

analysis, many potential application areas have been identified. These include edge 
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analysis decomposes a signal into a smoothed version of the original signal 

This type of decomposition is most 

of a picture (which is a two dimensional signal). We remove

the sharpest edges, leaving a new picture that 

is slightly blurred. This blurred version of the original picture is a rendering at a slightly 

r scale. We then recursively repeat the procedure. Each time we obtain some detail 

original image. 

Removal of the detail information corresponds to a bandpass filtering,and generation of the 

decomposition, we can 

reconstruct the original image. Once we have decomposed a signal this way, we may analyze 

the behavior of the detail information across the different scales. We can extract the 

regularity of a singularity,which characterizes the signal's behavior at that point. This 

provides an effective meansof edge detection. Furthermore, noise has a specific behavior 

m the noise. 

a relatively accurate noise free approximation of the original 

The wavelet transform specifies a multiresolution decomposition, with the wavelet defining 

the wavelet is a 

Conditions to be 

at all scales and the 

lieu of the 

a multiresolution 

include edge 
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characterization, noise reduction, data compression, and sub-band coding. In order to analyze 

a nonstationary signal, we need to determine its behavior at any individual event. 

Multiresolution analysis provides one means to do this.

Multiresolution Analysis analyzes the signal at different frequencies with different 

resolutions. But every spectral component is not resolved equally as was the case in the 

STFT. MRA gives good time resolution and poor frequency resolution at high frequencies 

and good frequency resolution and poor time resolution at low frequencies. This approach is 

helpful when the signal at hand has high frequency components for short durations and low 

frequency components for long durations[9].           

  Decompose a given signal in a nested subspace structure, the question of relation between 

scaling and wavelet function with their filter coefficients remains to be resolved. To resolve 

this question, It need to solve refinement ( dilation) equations as given by 

                                    


 )2(2)( 2/1 kxhx k                                          (2.33)      

                                                                                                             

                                 


 )2(2)( 2/1 kxgx k 

                                        (2.34)

It is able to use FIR filter bank structure to identify the relation between filter coefficients and 

scaling function (father wavelet) where  Fourier Transform of the filter coefficients are used.

Both scaling and wavelet functions, can be constructed from Fourier transform of the low 

pass analysis filter in the filter bank using refinement (dilation) equations as given by 

                                


 )2(2)( 2/1 kxhx k                                            (2.35)

                             


 )2(2)( 2/1 kxgx k                                           (2.36)

There are two approaches, both use successive approximation as follows.



17

1. The first approach (backward approach) is as follows. Assume that a scaling 

function is given, i.e.  start with a scaling function )(x ,

2. Use refinement equation in which the scaling function )(x is written as a 

function of its translates at the resolution twice as fine i.e. )2( x as given 
below.

                                      


 )2(2)( 2/1 kxhx k                                   (2.37)

                      

  )(x =  S( )2( x )                                                    (2.38)

Where S(.) is an operator.

3. Now provided there is a solution for refinement equation, scaling function )(x

may be determined from above by iteration of a linear transformation S( )(x ) 

and successive approximation. 

No closed form solution exits for )(x , it can be solved by successive 

approximation. At each stage, a set of finite number of points may be obtained and 

used to derive additional points of the continuous function )(x until sufficient 

number of points are obtained.  Iterative process converges to a unique )(x . Often 

for )(x of simple form such as unit pulse or triangular function, it is possible to 

solve for )(x by identifying coefficients h(k) of the translates )2( kx  and 

)(x can be constructed[10].
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                   Fig 4:  Image fusion using multiresolution analysis.

2.5.1 Signal Decomposition and  Reconstruction

Decomposition Process

The image is high and low-pass filtered along the rows. Results of each filter are down-

sampled by two. The two sub-signals correspond to the high and low frequency components 

along the rows, each having a size N by N/2. Each of the sub-signals is then again high 

and low-pass filtered, but now along the column data and the results are again down-sampled 

by two[9].

Fig.5 Signal Decomposition

Hence, the original data is split into four sub-images each of size N/2 by N/2 and contains 

information from different frequency components. Figure 3.15 shows the block wise 

representation of decomposition step.
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Fig.6: One DWT decomposition step

The LL subband obtained by low-pass filtering both the rows and columns, contains a rough 

description of the image and hence called the approximation subband. The HH Subband, 

high-pass filtered in both directions, contains the high-frequency components along the 

diagonals. The HL and LH images result from low-pass filtering in one direction and high-

pass filtering in the other direction. LH contains mostly the vertical detail information, which 

corresponds to horizontal edges. HL represents the horizontal detail information from the 

vertical edges. The subbands HL, LH and HH are called the detail subbands since they add 

the high-frequency detail to the approximation image[7][9].

Reconstruction Process

The four sub-images are up-sampled and then filtered with the corresponding inverse filters 

along the columns.The result of the last step is added together and we have the original image 

again, with no information loss[7][9].

Fig.7 One Recostruction step of the four sub images
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2.6 Wavelet Properties

        Various properties of wavelet transforms is described below: 

1) Regularity

2) The window for a function is the smallest space-set (or time-set) outside which 

function is identically zero.

3) The order of the polynomial that can be approximated is determined by number of 

vanishing moments of wavelets and is useful for compression purposes. 

4) The symmetry of the filters is given by wavelet symmetry. It helps to avoid de 

phasing in image processing. The Haar wavelet is the only symmetric wavelet among 

orthogonals. For biorthogonal wavelets both wavelet functions and scaling functions 

that are either symmetric or antisymmetric can be synthesized.

5) Orthogonality: This property of wavelet transform implies that the inverse wavelet 

transform is the adjoint of forward wavelet transform. The necessary condition for the

orthogonality of the wavelets is that the scaling sequence is orthogonal to any shifts of 

it by an even number of coefficients [7]. 

                                                                  

6) Filter length: Shorter synthesis basis functions are desired for minimizing distortion 

that affects the subjective quality of the image. Longer filters (that correspond to 

longer basis functions) are responsible for ringing noise in the reconstructed image at 

low bit rates[9].

7) Vanishing order is a measure of the compaction property of the wavelets. The 

synthesis wavelet, when orthogonal to the analysis scaling functions, is said to have p 

vanishing moments. In the case of orthogonal wavelets, the analysis wavelet function 

is same as the synthesis wavelet function. Thus, the synthesis as well as the analysis 

wavelets has the same vanishing moment. However, for biorthogonal wavelets, the 

analysis wavelet function )(t is different from the synthesis wavelet )(t [9].

                           

    A higher vanishing moment corresponds to better accuracy of approximation at a 

particular resolution. Thus, the lowest frequency subband captures the input signal more 

accurately by concentrating a larger percentage of the image's energy in the LL subband[9].
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                                             Chapter 3

                                 Lifting wavelet Transform

Any  discrete  wavelet transform or  two band  subband filtering with finite filters  can  be 

decomposed  into a finite sequence of simple filtering steps, which we call lifting steps but 

that are also known as ladder structures. This decomposition corresponds to a factorization of 

the polyphase matrix of the wavelet or subband filters into elementary matrices. Here, 

building the decomposition from basic wavelet filtering. This factorization provides an 

alternative for  the lattice factorization, with the advantage that it can also be used in  the  

biorthogonal,i.e, non-unitary case. Like the lattice factorization, the decomposition presented 

here  asymptotically reduces the  computational complexity of the transform by a factor 

two.It has other applications, such as  the possibility of defining a wavelet –like transform 

that maps integers  to integers. Various techniques to construct wavelet bases or to factor  

existing wavelet filters into basic building blocks are known.One of these is lifting. The 

original motivation for developing lifting was to build second generation wavelet i.e wavelets  

adapted to  situations that do not allow translation  and  dilation like  non-Euclidean spaces. 

First  generation wavelets are all  translates and dilates of one or a few basic shapes; the  

fourier transform is then the crucial tool for wavelet construction. A construction using  

lifting,on the contrary, is entirely spatial and therefore ideally suited for building second 

generation wavelets when fourier techniques are no longer available. 

Consider a  signal  X with  ݔ௞  ∈ R.    

                                                             X ௞∈௭ (௞ݔ) =                                                             (3.1)

splited it into two disjoint sets which are called the polyphase components :the even indexed 

samples  and odd indexed samples

                                            Even =    Xe ௞∈௭(ଶ௞ݔ) =                                                          (3.2)

                                            Odd  =     Xo ௞∈௭                                                               (3.3)(ଶ௞+ଵݔ) =

Typically these  two sets are closely correlated.Thus it is possible one can build a good 

predictor P for the other set,e.g., the even

                                                           d = X0 - P(Xe)                                                             (3.4)

Given the detail  d  and  the  odd,we can immediately recover the odd as
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                                                          X0 = P(Xe)+d                                                              (3.5)

If  P  is  a  good  predictor, then  d  approximately  will be a sparse set; in other words it is 

expected that the first order  entropy to be  smaller for d  than for  X0. An  easy predictor for 

an odd sample  x2k+1 is simply  the average of its two even neighbours; the detail coefficient 

then is 

                                                        dk=x2k+1-(x2k+x2k+2)/2                                             (3.6)

From this it can be see that if the original  signal is locally linear,the detail coefficient is 

zero.The operation of computing a prediction and recording the detail we will call a lifting 

step. This idea connects naturally with wavelets as follows. The prediction steps can take care 

of some of the spatial correlation ,but now we have a transform  from (xe,x0) to (xe,d ). The 

frequency separation is poor since xe is obtained by simply subsampling so that serious 

aliasing occurs.To correct this, it is being proposed  a second lifting step,which replaces the 

evens with smoothed values  S   with  the  use  of  an  update operator  U apllied to the details 

:

                                                        S  = Xe + U(d)                                                             (3.7)

Again this step is trivially invertible : given (S ,d ) , Xe  can be recovered as

                                                       Xe = S - U(d)                                                                  (3.8)

And  then  X0 can  be recovered  as  explained  earlier .This illustrates one of the built-in 

features of lifting .No  matter how  P  and  U  are  chosen ,the  scheme is always invertible 

and thus leads to critically sampled perfect reconstruction filter banks.
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                                          XO                                                            d

X

                                      xe                                                                                                                                                                                               S                                                                                                                                                

                                      

                                          Fig.8  Block diagram of predict and update lifting steps

Every  FIR  wavelet or filter bank can be decomposed into lifting steps .This can be seen  by 

writing the transform in  the polyphase form .Statements concerning perfect reconstruction or 

lifting can  then be made using matrices with polynomials or Laurent polynomial entries. A 

lifting step then becomes a so- called elementary matrix, that is, a triangular matrix (lower or 

upper)with all diagonal entries equal to one .Any matrix with polynomial entries and 

determinant one can be factored into such elementary matrices.

3.1 Filters and Laurent Polynomials

A  filter  ℎ  is a linear time invariant operator and is completely determined by its impulse 

response :{ ℎ k ߳ R |k ߳ ݖ }. The  z-transform of  a FIR filter  ℎ is  a  Laurent polynomial ℎ (z) 

given by[5]

                                                ℎ (z) =  ∑ ℎ௞ݖ−௞௄௘௞ୀ௞௕                                              (3.9)

A  2x2 matrix  of  Laurent polynomials is

                                                 M(z) = ൤ܽ(ݖ) (ݖ)ܿ(ݖ)ܾ ൨                                                        (3.10)(ݖ)݀

This matrices also form  a  ring,which is denoted by M(2;R[z,z-1]).   

                                                                       

split

   +

-P     U

   +
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3.2 The lifting scheme

The lifting scheme is an easy relationship between perfect reconstruction filter pair (ℎ, ݃) that 

have the same low-pass or high-pass filter.One can then start from the Lazy wavelet and use 

lifting to gradually build one’s way up to a multiresolution analysis with particular 

properties[5] .

A  filter pair (ℎ, ݃) is  complementary in case the corresponding polyphase matrix P(z)  has  
determinant 1.

If (ℎ, ݃) is complementary, so  is (ℎ,෩ ෤݃ ).This states the lifting scheme .

3.2.1 Lifting Theorem

Let (ℎ, ݃) be  complementary . Then any other finite  filter ℎ new complementary to  ℎ is of 
the form:        

                                                   ݃ new(z) = ݃(z)  +  ℎ (z)  s(z2)                                          (3.11)   

where  s(z)  is a Laurent polynomial. Conversely any filter of this form is complementary to ℎ.

                                         LP             

                                                                                  

                                                                  BP                                   

                                          

                                                         Fig.9: Lifting Scheme
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3.2.1 Dual liftingTheorem

   Let (ℎ, ݃)  be  complementary. Then  any other  finite  filter  ℎ new complementary to  ݃  is       
of  the  form [5]:

                                                ℎ new(z)= ℎ (z)+ ݃ (z) t (z2)                                                  (3.12)

where  t(z)  is  a  Laurent  polynomial. Conversely  any  filter  of  this  form  is  
complementary  to  ݃  .

After dual  lifting  the  new  polyphase  matrix  is  given by 

                                             Pnew(z) =P(z)   ൤ 1 Ͳ(ݖ)ݐ 1൨                                                            (3.13)

Dual  lifting  creates  a  new  ෤݃  given  by  

                                                               ෤݃ new(z) = ෤݃(z) - ℎ෨(z) t(z-2)                                                      (3.14)

Lifting  and dual lifting  are used  to  build  Wavelet  transforms starting  from  the  lazy 

wavelet. There a  whole  family of  wavelet  is  constructed  from  the  lazy  followed  by  one  

dual  lifting  and primal  lifting  step.  All  the filters  h constructed this way are half band and 

the corresponding scaling functions are interpolating. Because of  the many  advantages of 

lifting,it is natural to try to build other wavelets as well,perhaps using multiple lifting steps.

                                    LP                      

                                                                                 BP 

                                                                    BP                                   

                                                                  Fig.10: Dual Lifting

h(z)   2 

2
2ℎ෨(z-1)

     t(z)
  +
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26

3.3 The Euclidean algorithm

The Euclidean algorithm was  originally developed to find the greatest common divisor of 

two natural numbers, but it can be extended to find the greatest common divisor of to 

polynomials[5]. Here it need to find common factors of Laurent polynomials. The main 

difference with the polynomial case is again that the solution is not unique. Indeed the gcd of 

two Laurent polynomials is defined only up to a factor  zp .  (This is similar to saying that the 

gcd of two polynomials is  defined up to a  constant.)Two Laurent polynomials are relatively 

prime in case their gcd  has degree zero. Note that they can share roots at zero and infinity[5].

3.3.1 Laurent polynomial Theorem

Take two   Laurent polynomials a(z) and b(z) ≠ 0 with |a(z)| ≥ |b(z)| . Let a0(z) = a(z) and 

b0(z) = b(z) and iterate the following steps starting from  i = 0

                                                  ai+1(z) = bi (z)                                                                    (3.15)

                                                  bi+1(z) = ai (z) % bi(z)                                                        (3.16)

Then  an(z) = gcd (a(z), b(z)), where n  is the  smallest  number  for  which  bn(z) = 0

Given  that  |bi+1(z)|< |bi(z)| ,  There is  an m so that |bm(z)| = 0.The  algorithm then  finishes 
for   n = m+1. The number of steps  thus  is  bounded  by n  ≤ |b(z)| + 1.  If we let 
qi+1(z)=ai(z)/bi(z),

We have that

                                                      ቂ�୬(z)Ͳ ቃ =  ∏ ൤Ͳ 11 െ(ݖ)݅ݍ൨ଵ௜ୀ௡ ൤ܽ(ݖ)ܾ(ݖ)൨                                       (3.17)

consequently

                                                  ൤�(z)ܾ(ݖ)൨=∏ ቂ(ݖ)݅ݍ 11 Ͳቃଵ௜ୀ௡ ቂܽ݊(ݖ)Ͳ ቃ                                         (3.18)

and  thus  an(z) divides both  a(z) and  b(z). If  an(z)  is  a  monomial,then      a(z)  and  b(z)  
are   relatively   prime[5] .

3.4  THE FACTORING ALGORITHM

This section explains how any pair of complementary filters (h,g) can be factored into lifting 

steps. First note that he(z) and ho(z)    have to be relatively prime because any common 

factor would also divide det P(z) and we already know that det P(z) is 1. We can thus run 

the Euclidean algorithm starting from he(z) and ho(z) and the gcd will be a monomial. 
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Given the non-uniqueness of the division we can  always choose the quotients so that the gcd 

is a constant. Let  constant  be K. We thus have that

                                                      ൤he(z)ℎ(ݖ)݋൨=∏ ቂ(ݖ)݅ݍ 11 Ͳቃଵ௜ୀ௡ ቂܭͲቃ                                                        (3.19)

Note that in  case |ho(z)| > he(z), the first quotient  q1(z) is zero. We can always assume that 

n is even. Indeed if n is odd, we can multiply the h(z) filter with z and g(z) with –z-1. This 

does not change the determinant of the polyphase matrix. It flips (up to a monomial) the 

polyphase components of h and thus makes  n even again. Given a filter h we can always find 

a complementary filter g0 by letting

                                                  P
o(z) =  ൤ℎ௘(ݖ) ݃௘଴(ݖ)ℎ௢(ݖ) ݃௢଴(ݖ)൨  =  ∏  ቂݍ௜(ݖ) 11 Ͳቃ௡௜ୀଵ ൤ܭ ͲͲ ൨                 (3.20)ܭ/1

     

Here the final diagonal matrix follows from the fact that the determinant of a polyphase 

matrix i one and n is even. Let us slightly rewrite the last equation. First observe that

                                                      ቂݍ௜(ݖ) 11 Ͳቃ =  ቂ1 Ͳ(ݖ)௜ݍ 1 ቃ   ቂͲ 11 Ͳቃ =  ቂͲ 11 Ͳቃ ൤ 1 Ͳݍ௜(ݖ) 1൨                   (3.21)

Using the first equation of (3.21) in case i is odd and the second in case i is even yields:

                                      Po(z)  = ∏ ቂ1 Ͳ(ݖ)ଶ௜−ଵݍ 1 ቃ  ൤ 1 Ͳݍଶ௜(ݖ) 1൨  ೙మ௜ୀଵ  ൤ܭ ͲͲ ൨ܭ/1                     (3.22)

finally, the original filter g  can  be  recovered  by  applying  theorem (3.15) now it is found 
that the filter  ݃  can  always  be  obtained  from  ݃଴  with one lifting 

                                                P(z) = P0(z) ቂ1 Ͳ(ݖ)ݏ 1 ቃ                                                                                   (3.23)

3.4.1  Factoring Theorem. 

Given  a  complementary filter pair ( ℎ, ݃), then there always exist Laurent polynomials si(z) 

and ti (z) for 1 ≤ ݅ ≤ ݉   and  a  non  zero constant K  so  that
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                                       P (z) = ∏ ቂ1 Ͳ(ݖ)௜ݏ 1 ቃ    ൤ 1 Ͳݐ௜(ݖ) 1൨        ௠௜ୀଵ  ൤ܭ ͲͲ ൨                  (3.24)ܭ/1

     The proof follows from combining (3.22)  and  (3.23) ,setting   m = n/2 + 0 = (ݖ)௠ݐ  ,1

and  ݏ௠(ݖ)= K2 s(z). In other words every finite filter wavelet transform can be obtained by 

starting with the lazy wavelet followed by m lifting and dual lifting steps followed with a 

scaling.

The dual polyphase matrix is given by

                                  ෨ܲ(z)   = ∏ ൤ 1 Ͳെݏ௜(ݖ−ଵ ) 1൨     ൤1 െݐ௜(ݖ−ଵ)Ͳ 1 ൨    ௠  ௜ୀଵ  ቂ1/ܭ ͲͲ ቃܭ       (3.25)

from this we see that in the orthogonal case ( P (z) = ෨ܲ(z)) we  immediately have two 

different factorizations.

3.5 Haar Lifting wavelet Transform

For  a  unnormalized haar wavelet,

ℎ(ݖ) = 1 ൅ ,ଵ−ݖ (ݖ)݃ = െ ଵ
ଶ ൅ ଵ

ଶ௭షభ , ℎ ෩ (ݖ)  = ଵ
ଶ ൅ ଵ

ଶ௭షభ   ܽ݊݀  ݃ ෥ (ݖ) = െ1 ൅ ଵ                           (3.26)−ݖ1

using the Euclidean algorithm polyphase matrix can be written as

቎1 =(ݖ)ܲ                                          െ ଵ
ଶ1     ଵଶ቏ =   ቂͲ 11 Ͳቃ ቈ1 െ ଵ

ଶͲ 1 ቉                                                                                (3.27)

Thus on the analysis side we have

ଵ−(ݖ)ܲ                                             =  ෨ܲ ቀଵ
௭ቁ =  ቈ1 ଵ

ଶͲ 1቉ ቂ   1 Ͳെ1 1ቃ                                                                     (3.28)

This corresponds to the following implementation of the forward transform

௟(଴)ݏ = ଶ௟ݔ                                                                                                                                                                                                             (3.29)

݀௟(଴) = ଶ௟+ଵ                                                                                                                                    (3.30)ݔ
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      ݀௟ = ݀௟(଴) െ ௟(଴)                                                                                                                            (3.31)ݏ

௟ݏ     = ௟(଴)ݏ ൅ 1/2 (݀௟)                                                                                                                       (3.32)

While the inverse transform is given by

௟(଴)ݏ = ௟ݏ െ 1/2( ݀௟)                                                                                                                                                                                 (3.33)

   ݀௟(଴) =  ݀௟ ൅ ௟(଴)                                                                                                                              (3.34)ݏ

ଶ௟+ଵݔ            = ݀௟(଴)                                                                                                                                (3.35)

ଶ௟ݔ               = ௟(଴)                                                                                                                                               (3.36)ݏ

The intermediate values computed during lifting are denoted with sequences ݏ(௜)  ܽ݊݀  ݀(௜)
where as  ݔ  is  the basic  sequence of  elements ,i.e  ݔ = ݈ |௟ݔ} ∈ ܼ} .

3.6 Computational Complexity  of  Lifting wavelet Transform                                                                       

The cost of  applying  a  filter  ℎ  is  | ℎ |+1 multiplications  and | ℎ | additions. The cost of 

the standard algorithm thus is 2( | ℎ |+| ݃ | ) + 2 . If the filter is symmetric and | ℎ | is even, 

the cost is  3| ℎ | /2+1. Let us consider a general case not involving symmetry.

Take  | ℎ | = 2N, | ݃ | = 2M, and assume M≥ ܰ. The cost of the standard algorithm now is 

4(N+M)+2. Without loss of generality we can assume that | ℎ e| = N, | ℎ o| = N-1, | ݃ e| = M 

and | ݃ o| = M-1. In general the Euclidean algorithm started from the (ℎ e,ho) pair now needs 

N steps with the degree of each quotient equal to one (|qi| = 1 for 1 ≤ ݅ ≤ ܰ). 
To get the (݃ e, ݃ o) pair, one extra lifting step is needed with |s| = M - N. The total cost of 

the lifting algorithm is:

Scaling                                      2

N lifting  steps :                      4N

Final lifting step:                       2 (M- N +1)

Total                                          2 (N+ M+2)
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3.5  Advantages of  Lifting  implementation

1. Lifting leads to a speedup when compared  to the standard implementation[5].

2. Lifting allows for an in-place implementation of the fast wavelet transform,a feature 
similar to the fast Fourier transform. This means the wavelet transform can be 
calculated without allocating auxiliary memory[5].

3. All operations within one lifting step can be done entirely parallel while the only 

sequential part is the order of the lifting operations[5].

4. Using lifting it is particularly easy to build non linear wavelet transforms. A typical 

example are wavelet transforms that map integers to integers. Such transforms are 

important for hardware implementation and for lossless image coding[5].

5. Using lifting and integer to integer transforms, it is possible to combine biorthogonal 

wavelets with scalar quantization and still keep cubic quantization cells which are 

optimal like in the biorthogonal case.In a multiple description setting, it has been 

shown that this generalization to biorthogonality allows for substantial 

improvements[5].

6. Lifting allows for adaptive wavelet transforms. This means one can start the analysis 

of a function from the coarsest levels and then built the finer levels by refining only in 

the areas of interest[5].
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                                   Chapter4

                    Wavelet Transform Modulus Maxima

Points of sharp variations are the most important feature for analyzing the properties of 

transient signals or images. we concentrate on the canny edge detector which is equivalent to 

finding the local maxima of a wavelet transform modulus. There are many different types of 

sharp variation points in images. Edges created by occlusions, shadows, highlights, roofs, 

textures, etc. Have very different local intensity profiles. To label more precisely an image 

that has been detected, it is necessary to analyze its local properties. In mathematics 

singularities are generally characterized by their lipschitz exponents. The wavelet theory 

proves that these lipschitz  exponents can be computed from the evolution across scales of the 

wavelet transform modulus maxima[6].

4.1 Lipschitz Regularity

Different types of singularities can be discriminated by measuring their local Lipschitz 
regularity[4].
Let Ͳ < ߙ < 1.  A   function  ݂(x,y) is uniformly Lipschitz ߙ over an open set  Ω of R2 if 
and only  if there exists a constant K such that for all (ݔ଴, ,଴ݔ) ଴) andݕ .଴) in  Ωݕ

,଴ݔ)݂| (଴ݕ െ ଵݔ)݂ െ |(ଵݕ ≤ ଴ݔ)|ܭ െ ଵ)ଶݔ ൅ ଴ݕ) െ ଵ)ଶ|ఈ/ଶ                               (4.1)ݕ

4.2 Wavelet Transform Modulus Maxima Method

Suppose  that  wavelets  Ψଵ and     Ψଶ  have exactly one vanishing moments and  a compact 

support such that

Ψଵ = - ∂θ/∂x,   Ψଶ = - ∂θ/∂y  and  



dtt)( ≠ 0                                                  (4.2)

θ   is  a  smoothing  function. Thus wavelet transform of  ݂ can be written as a multiscale 

differential operator

ቆܹଵ ,ݔ)݂ ,ݕ 2௝ )ܹଶ ,ݔ)݂ ,ݕ 2௝) ቇ  = ቆ݂ ∗ ത߰ଵ  2௝ (ݔ, ∗ ݂(ݕ ത߰ଶ2௝(ݔ, ( ݕ ቇ                                                       (4.3)

=2j ∇ഥ , ݔ)(  ଶണതതതതߠ  ∗ ݂)  (4.4)                                                                                        (ݕ

   where * denotes the convolution operator and  
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                                                       ത߰ଵ  2௝ (ݔ, ,ݔ)ത߰ଶ 2௝  =  (ݕ (4.5)                                  ( ݕ

  Practically this transform is computed by iterative filtering with a set of low pass filters  h 

and high pass filters  g associated with the wavelets ߰ 1 and ߰ଶ [1].W1f and W2f are detail 

images, since they contain horizontal and vertical details of  f. The modulus of  this gradient 

vector is proportional to the wavelet transform modulus

M ݂ (x, y, 2j) =ඥ|ܹଵ݂(ݔ, ,ݕ 2௝) ൅ |ܹଶ݂(ݔ, ,ݕ 2௝)|                                              (4.6)

And its angle

A ݂ (x, y, 2j) = ߙ  W1 (x, y, 2j) ≥  0                                                                         (4.7)

ߨ െ ,ݔ ) ଵܹ  ߙ ,ݕ 2௝  ) < 0                                                                                         (4.8)

Where

ߙ =  t�n−ଵ ൬ௐమ௙൫௫,௬,ଶೕ൯
ௐభ௙൫௫,௬,ଶೕ൯൰  ,when  ܹଵ݂൫ݔ, ,ݕ 2௝൯  ≠ 0                                               (4.9)

= ± గ
ଶ  ,  otherwise                                                                                                    (4.10)

Then the local maxima of the wavelet transform modulus

M ݂ (x,y,2j)  at a  point  (x0, y0 )  can  be  calculated  by  solving 

,ݔ൫݂ ܯ ߲                                                  ,ݕ 2௝  ൯ = 0                                            (4.11)

4.2.1 Properties of  Wavelet Modulus Maxima 

Any point (ݏ଴, (଴ݔ such that หܹ݂(ݏ଴,ݔ)ห  <  หܹ݂(ݏ଴,ݔ଴)ห when  ݔ belongs to either a  right  

or the left  neighbourhood  of  ݔ଴ and  หܹ݂(ݏ଴,ݔ)ห  ≤  หܹ݂(ݏ଴,ݔ଴)ห  when  ݔ  belongs to the 

other side of the neighbourhood  of  ݔ଴ .
A maxima line is any connected curve in the scale space (s, ݔ) along which all points are 

modulus maxima .A  modulus maxima (ݏ଴,ݔ଴) of the wavelet transform is a strict local 

maximum of the modulus either on the right or the left side of the ݔ଴.If the wavelet transform 

has no modulus maximum at fine scales in a given interval,then the function is uniformly 

Lipschitz ߙ for ߙ < ݊  .
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4.3 Detection and Measurement of Singularities

There is an approach to detect singularities, with a wavelet which is a Hardy function[4]. A

Hardy function g(x) is a complex function whose Fourier transform satisfies

                                                       ො݃ for w < 0 .                                          (4.12) , 0 = (ݓ)

Let ݂(ݔ) ∈ (ܴ)ଶܮ and W f(s, x) be the complex wavelet transform built with a Hardy 
wavelet.

A  smoothing function is any real function (ݔ)ߠ such that

(ݔ)ߠ                                                             = O( 1/(1+ݔଶ))                                                (4.13)

and whose integral is nonzero. A smoothing function can be viewed as the impulse response 
of a low-pass filter[4].

                                                   Let ߠ௦(ݔ) = ቀଵ
௦ቁ ߠ ቀ௫

௦ቁ                                                        (4.14)

Let  f(x) be a real function in L2(R). Edges at the scale  s  are defined as local sharp variation 

points of  f(x) smoothed by  ߠ௦(ݔ).
4.4 Edge detection by wavelet transform

Let ߰ଵ(ݔ) ܽ݊݀  ߰ଶ(ݔ) ܾ݁ the  two  wavelets defined by

߰ଵ(ݔ) = ௗఏ(௫)
ௗ௫  ܽ݊݀   ߰ଶ(ݔ) = ௗమఏ(௫)

ௗ௫మ                                                                               (4.15)

The wavelet transforms defined with respect to each of these wavelets are given by

ܹଵ݂(ݏ, (ݔ = ݂ ∗ ߰௦ଵ(ݔ)  ܽ݊݀ ܹଶ݂(ݏ, (ݔ = ݂ ∗ ߰௦ଶ(ݔ)                                                         (4.16)

ܹଵ݂(ݏ, (ݔ = ݂ ∗ ቀݏ ௗఏೞௗ௫ ቁ (ݔ) = ݏ ௗ
ௗ௫ (݂ ∗ (4.17)                                                                      (ݔ)(௦ߠ

And

ܹଶ݂(ݏ, (ݔ = ݂ ∗ ቀݏଶ ௗమఏೞௗ௫మ ቁ (ݔ) = ଶݏ ௗమ
ௗ௫మ (݂ ∗ (4.18)                                                        (ݔ)(௦ߠ

For a fixed scale  s , the  local extrema of   ܹଵ݂(ݏ, ݔ  along the  (ݔ variable,correspond to the 

zero-crossings of  ܹଶ݂(ݏ, (ݔ and to the inflection points of  ݂ ∗ .(ݔ)௦ߠ 
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4.5 Multiscale Edge Detection

Multiscale edge detectors smooth the signal at various scales and detect sharp variation 

points from their first or second order derivative [6].The extrema of the first derivative 

correspond to the zero crossings of the second derivative and to the inflection points of the 

smoothed signal. A smoothing  function is any function θ (ݔ) whose integral is equal  to  1  

and  that  converges to 0  at  infinity[6]. For example one can choose θ(ݔ) equal to a 

Gaussian. Suppose  that  θ(ݔ) is twice differential and define respectively ψ௔(ݔ) and ψ௕(ݔ) as 

the  first  and  second order derivative  of  θ(ݔ) .

                                 ψ௔ =  (ݔ)
ௗఏ(௫)

ௗ௫     and        ψ௕ (ݔ) = ୢమఏ(௫) 
ୢ௫మ                                      (4.19)

By definition, the functions ψ a(x) and ψ b(x)  can be considered to be wavelets because 
their integral is equal to  0

                               ∫ ψ௔(ݔ)dݔ+∞−∞ =0   and      ∫ ψ௕(ݔ)dݔ+∞−∞ = 0                                     (4.20)    

   Now dilation of  any function (ݔ)ߦ by  a  scaling factor  s  is denoted by

௫)ߦ s/1 =(ݔ) ௦ߦ                                                          
௦)                                                      (4.21)

A  wavelet transform is  computed  by convolving the signal with a dilated wavelet. The 

wavelet transform of  ݂(ݔ) at   the   scale  s  and  position ݔ, computed with respect  to  the  

wavelet  ψ௔ (x), is defined by 

                                                       ௦ܹ  ௔݂(ݔ) = ݂ ∗ ψ௦௔ (4.22)                                               (ݔ)

The  wavelet  transform of ݂(ݔ) with respect to ψ௕  is  (ݔ)

                                                      ௦ܹ  ௕ ݂(ݔ) = ݂ ∗ ψ௦௕                 (4.23)                                                (ݔ)

We derive that 

                                        ௦ܹ  ௔ ݂ (ݔ) = ݂ ∗ (s
ௗఏೞௗ௫ (ݔ)( = s

ௗ  
ௗ௫(݂ ∗θs)( ݔ) and                         (4.24)

                                        ௦ܹ  ௕ ݂ ∗ ݂=(ݔ) ଶݏ)  ௗమఏೞௗ௫మ ଶݏ=(ݔ)( ௗమ  
ௗ௫మ(݂ ∗ θs) ( ݔ)                        (4.25)   
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The wavelet transforms ௦ܹ  ௔ ݂(ݔ)  and ௦ܹ  ௕ ݂(ݔ)  are  respectively, the first  and second 

derivative  of  the  signal  smoothed  at  the  scale  s . The  local  extrema of   ௦ܹ  ௔ ݂(ݔ)  thus  

correspond to the zero  crossings of  ௦ܹ  ௕ ݂(ݔ) and to the inflection  points of  ݂ ∗ θs(ݔ) .

In  the particular case where  θ(ݔ) is a Gaussian ,the zero-crossing  detection is  equivalent to 

a Marr-Hildreth edge detection, whereas the  extrema  detection  corresponds  to a canny 

edge detection. When the scale s is large, the convolution  with θs(ݔ)   removes  small signal 

fluctuations. Therefore only the sharp variations of large structures can be detected. Detecting  

zero crossings or local extrema are similar procedures ,but the local extrema  approach has 

some important advantages. An inflection point of  ݂ ∗θs(ݔ) can  either be a maximum or a 

minimum of the absolute value of its first derivative. The maxima  of the absolute value of 

the  first derivative are sharp variation points of  ݂ ∗θs(ݔ), whereas the minima correspond to 

slow Variations. With a second derivative operator, it is difficult to distinguish these two 

types of zero crossings. On the contrary, with a first order derivative, we easily select the 

sharp variation points by  detecting only the local maxima of  | ௦ܹ  ௔ ݂  In addition, zero.|(ݔ)

crossings give position  information  but do not differentiate small amplitude fluctuations 

from  important discontinuities.When detecting local  maxima,we can also record the values 

of ௦ܹ  ௔ ݂ .at the maxima locations, which measures the derivative at the inflection points (ݔ)

The canny edge detector is easily extended in two dimensions .We denote by

,ݔ)isݔ                                                        y)=1/s2 ߦ(௫
௦ , ௬

௦)                                                  (4.26)

the dilation by s of any 2-D function ݔ)ߦ,  we use the term  2-D smoothing function to.(ݕ

describe any  function  θ(ݔ,y) whose integral over x and y is equal to 1 and converges to 0 at  

infinity.The image  ݂ (x,y) is smoothed at different scales s by a  convolution  with  

θs(ݔ,y).We then compute the gradient vector ∇ሬሬ⃗ ( ݂ ∗ θs)( ݔ,y).The direction of the gradient 

vector at a point (x0,y0) indicates the direction in the image plane (ݔ ,y) along which the 

directional derivative of  ݂  has the largest  absolute value.Edges are defined as points (y,ݔ)

(x0,y0) where the modulus of the gradient vector is maximum in the direction towards which 

the gradient vector points in the image plane.

Edge Points are inflection points of the surface  ݂ ∗ θs(ݔ,y).Let us relate this edge detection to 

a 2-D wavelet transform.We define two wavelet functions ߰ଵ(x,y) and  ߰ଶ (x,y) such that
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                                                       ߰ଵ (y,ݔ) =  డఏ(௫,௬)
డ௫      and     ߰ଶ (y,ݔ) =  డఏ(௫,௬)

డ௬             (4.27)

                                   Let          ߰௦ଵ(ݔ,y) = ଵ
௦మ  ߰ 1 (

௫
௦ , ௬

௦)  and                                         (4.28)   

                                                 ߰௦ ଶ(ݔ,y) = ଵ
௦మ ߰ଶ (௫

௦ , ௬
௦).                                               (4.29)

Let  ݂ ߳(y,ݔ) L2(R2). The wavelet transform of ݂ (x,y) at the scale  s  has  two  components  

defined  by  

                                  ௦ܹଵ ݂ ,ݔ) y)=  ݂ ∗ ߰௦ଵ(ݔ, ݂ and    ௦ܹଶ  (ݕ ݂  =(y,ݔ) ∗ ߰௦ଶ(ݔ,       (4.30)       (ݕ

Similarly  to  (4),one  can  easily  prove  that

                                ൬ ௦ܹଵ݂(ݔ, (ݕ
௦ܹଶ݂(ݔ, ൰  =   s ቌ(ݕ

డ(௙∗θ౩)(x,y)
డ௫డ(௙∗θ౩)(x,y)
డ௬

ቍ =s ∇ሬሬ⃗ (݂ ∗ θs)( ݔ,y)                   (4.31)

Hence, edge points can  be  located  from  the  two  components ௦ܹଵ ݂ ݂ and  ௦ܹଶ  (y,ݔ)   (y,ݔ)
of  the  wavelet  transform[6].           

4.6 Wavelet Transform of  Image

Multiscale sharp variation points can be obtained from a dyadic wavelet transform if  

                                                     ߰ଵ(ݔ, (ݕ = డఏ(௫,௬)
డ௫ and  ߰ଶ(ݔ, (ݕ = డఏ(௫,௬)

డ௬                     (4.32)

Wavelet transform can be rewritten

                                               ൬ ௦ܹଵ݂(ݔ, (ݕ
௦ܹଶ݂(ݔ, ൰(ݕ = 2௝ ቌ

డ
డ௫ ൫݂ ∗ ,ݔ)ଶೕ൯ߠ (ݕ
డ

డ௫ ൫݂ ∗ ,ݔ)ଶೕ൯ߠ ቍ                          (4.33)(ݕ

                                                                      =2௝∇ሬሬ⃗ ൫݂ ∗ ,ݔ)ଶೕ൯ߠ (ݕ                               (4.34)

The two components of the wavelet transform are proportional to the two components of the 

gradient vector ∇ሬሬ⃗ ൫݂ ∗ ,ݔ)ଶೕ൯ߠ ,At each scale 2௝.(ݕ the modulus of the gradient vector is 

proportional to

,ݔ)݂ ଶೕܯ                                                 |ට=(ݕ ଶܹೕଵ ,ݔ)݂ ଶ|(ݕ ൅ | ଶܹೕଶ ,ݔ)݂ ଶ                    (4.35)|(ݕ

The angle of the gradient vector with the horizontal direction is given by

,ݔ)݂ ଶೕܣ                                   (ݕ = )ݐ݊݁݉ݑ݃ݎܽ ଶܹೕଵ ,ݔ)݂ +(ݕ i ଶܹೕଶ ,ݔ)݂ (4.36)                ((ݕ
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Like in the canny algorithm, the sharp variation points of  ݂ ∗ ,ݔ)ଶೕߠ  (ݕ are the points (ݔ, ,(ݕ
where the modulus ܯଶೕ ݂(ݔ, (ݕ has a local maxima in the direction of the gradient given by 

,ݔ)݂ ଶೕܣ  The position of each of these modulus maxima as well the values of the modulus.(ݕ

,ݔ)݂ ଶೕܯ (ݕ and the angle ܣଶೕ ݂(ݔ, (ݕ at the corresponding locations are recorded.
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                                                  Chapter 5                        

                                                 Implementation

The term image refers to a two-dimensional light intensity ݂(ݔ,  where x and y denote ,(ݕ

spatial coordinates and the value of ݂ at any point (ݔ, is proportional (ݕ to the brightness (or 

gray level) of the image at that point [10] .

5.1 Digital Image

The term digital image refers to an image  ݂(ݔ, (ݕ that has been discretised both in spatial 

coordinates and brightness[10]. A digital image can be considered a matrix whose row and 

column indices identify a point in the image and the corresponding matrix element value 

identifies the gray level at that point. The elements of such a digital array are called picels 

(picture elements), or more commonly pixels. Images are built up of pixels that contain color 

information and are aligned with the Cartesian coordinate system.. The image’s width is 

represented by the variable N the image’s height with the variable M as shown below:

                                                 (5.1)

5.2 Implemented algorithm

     The implemented algorithm consists of the following steps:

1. Decomposition of input images using lifting wavelet transform.

2. Calculation of modulus of gradient of lifting wavelet transform.

3. Fusion based on threholded value of gradient of wavelet coefficients.

4. Inverse lifting wavelet transform of fused image.

5. Evaluation of image fusion performance parameters

The two preregistered images A(x, y) and B(x, y) are decomposed into the subband images 

using the lifting scheme of wavelet transform. Suppose that the low frequency subimages of 

A and B are represented by LAJ(x,y) and LBJ(x,y) respectively and high frequency
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subimages are represented by HAJ
K(x,y) and HBJ

K(x,y) respectively (J is the  parameter of  

resolution). The modulus of the gradient of the wavelet coefficients generated from 

HAJ
K(x,y) and HBJ

K(x,y) are represented by GAJ
K(x,y) and GBJ

K(x,y) (for every J,K=1,2,3 

corresponding to horizontal, vertical and diagonal directions respectively). Then exchange of 

the high frequency components takes place according to the following rule:

If  GAJ
K(x,y) - GBJ

k(x,y) > ߜ௄  ට1
�  ∑ ((�i-�)ഥ 2�i=1                                                   (5.2)

HFJ
K(x,y) = HAJ

K(x,y)                                                                                             (5.3)

if  GBJ
K(x,y) - GAJ

K(x,y) ≥ ௄                                                                               (5.4)ߜ

HFJ
K(x,y) = HBJ

K(x,y)                                                                                              (5.5)

Where  ߜ௄ is the threshold value and HFJ
K(x,y) is the high frequency component of the fused 

image. Finally the resultant image is obtained using  the inverse lifting wavelet transform.In 

this method the high frequency  subimage fusion is performed using the modulus maxima 

criterion .As the  modulus maxima criterion of the gradient of the wavelet coefficients in a  

multiresolution framework  extract  singularities and edges, this method improves the edge 

and boundary information in the fused image. The insignificant edges are eliminated by 

taking into account only the pixels with modulus superior to a threshold value.    
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                               Fig.11. Diagram of  Proposed  Algorithm      

5.3  Image Fusion Performance Assessment

The Parameters like standard deviation, entropy and average gradient are calculated for   

evaluation of  image fusion performance[12]. 

Standard Deviation (SD)

The standard deviation () which is the square root of variance reflects the distribution or 

spread in the data. The standard deviation measures the contrast in an image. Thus a high 

contrast image will have large variance and low contrast image will have a low variance. It 

indicates the closeness of the sharpened image to the original multispectral image at pixel 

level. The standard deviation measures the contrast in an image[12].

                          

ߪ = ටଵ
ே ∑ ே௜ୀଵݔ) െ ଶ                                                                                        (5.6)(ݔ̅

Image Decomposition 
using Lifting wavelet 

Fusion  at  Feature level

Inverse Lifting wavelet    
Transform

    Feature Extraction

Fused 
Image

Medical      
Image 
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ݔ̅ = ଵ
ே ∑ ௜ே௜ୀଵݔ                                                                                                 (5.7)

Where ݔ௜   is  the data vector and ݔ  is the mean value

Standard deviation also reflects the detail information of an image. The bigger the standard

deviation is, the richer the detail of the image is[12].

Entropy

Entropy measures information content in an image[12].

ܪ =  െ ∑ ௜݈ܲ݃݋ଶ௅−ଵ௜ୀ଴ ௜ܲ                                                                        (5.8)

Where L is the number of gray levels and

௜ܲ =  
Numbୣr of P୧xୣls D୧  of ୣac୦ ୥ray lୣvୣl ୧

Numbୣr of P୧xୣls D ୧୬ ୲୦ୣ ୧ma୥ୣ

Gradient
Gradient has been used as a measure of image sharpness. The gradient at any pixel is the 

derivative of the difference values of neighboring pixels. Generally sharper image have 

higher gradient values. Thus any image sharpening method should result in increased 

gradient values because this process makes the images sharper compare to the low-resolution 

image. The gradient defines the contrast between details variation of pattern on the image and 

the clarity of the image. G is the index to reflect the expression ability of the little detail 

contrast and texture of the image[12]. It can be given by

                                                                                                                                      (5.9)       
  

                                                                                                                                       (5.10)

                                                                                                                                       (5.11)
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                                    Chapter 6
                              Result and Discussion

This thesis presents feature level image fusion using Haar lifting wavelet transform.Feature

fused is edge and boundary information, which is obtained using wavelet transform modulus 

maxima criteria. Simulation results show the superiority of the result as entropy, gradient,

standard deviation are increased for fused image as compared to input images. The proposed 

methods have the advantages of simplicity of implementation, fast algorithm, perfect

reconstruction and reduced computational complexity.  Computational cost of Haar wavelet

is very small as compared to other lifting wavelets.

We used T1 and T2 weighted MRI images as input and extracted the edges using modulus 

of wavelet transform function. Edges are fused using threshold  value of modulus of 

wavelet transform function. Table I gives the values of entropy, gradient and standard  

deviation for input and output images. Then one of the input image is blurred and fusion is

performed. The values show that these parameters are increased in case of fused image. Also, 

visually good image is obtained when one of the input image is blurred.

6.1 Figure of  Results

                                                         

                                     

                                                Fig12 : T1 weighted image
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                                                                             (b)           

                                                                                  

                                             Fig13: T2  weighted  image

                                                 

                                           Fig14:T1 Blurred weighted image

                                                    

                                                     
                                Fig15:Fusion result of  T2 and blurred T1 weighted image
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                                                       Fig16: Blurred T2 weighted image

                                          

                                                  

                            Fig17: Fusion result of  T1  and  blurred  T2 weighted image

6.2 Fusion Performance Evaluation

S. No Parameters Source images Fused Image
1 Average gradient 0.2891,0.3163 0.3221
2 Standard deviation 159.8302 161.2191
3 Entropy 3.6786 4.8183

        Table 1: Performance Evaluation For  T2  weighted and Blurred T1 weighted Images

S. No Parameters Source images Fused Image
1 Average gradient 0.2887,0.3163 0.3212
2 Standard deviation 160.0630 161.2013
3 Entropy 4.6311 4.8191

                  
        Table 2 : Performance Evaluation For Unblurred T1 weighted  and  T2  weighted Images   
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6.3 Future work

     In  Future we can put our implementation on Colour Medical Images and can perform 
wavelet Decomposition at different Scales .   
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