Α

Major Project Report

On

Wavelet Based Image Fusion

Submitted in Partial fulfilment of the requirement

For the award of the degree of

MASTER OF TECHNOLOGY

In

(Signal Processing and Digital Design)

Submitted by

JAYANT BHARDWAJ

Roll No. 2K10/SPD/09

Under the Guidance of

Dr. SUDIPTA MAJUMDAR

(Assistant Professor)

Department of Electronics and Communication Engineering

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY BAWANA ROAD, DELHI- 110042 June 2013

DECLARATION BY THE CANDIDATE

Date:					

I hereby declare that the work presented in this dissertation entitled "Wavelet Based Image Fusion" has been carried out by me under the guidance of Dr. Sudipta Majumdar, Assistant Professor, Department of Electronics & Communication Engineering, Delhi Technological University, Delhi and hereby submitted for the partial fulfillment for the award of degree of Master of Technology in Signal Processing & Digital Design at Electronics & Communication Department, Delhi Technological University, Delhi.

Jayant Bhardwaj

2K10/SPD/09

M.Tech (SPDD)

CERTIFICATE

It is to certify that the above statement made by the candidate is true to the best of my knowledge and belief.

Dr. Sudipta Majumdar (Project Guide)

Assistant Professor
Department Of Electronics & Communication Engineering
(Delhi Technological University)

Prof. Rajeev Kapoor

Head Of Department
Department Of Electronics & Communication Engineering
(Delhi Technological University)

Acknowledgement

I would like to thank the people that helped me producing this dissertation. First, I thank **Prof. Rajiv Kapoor,**, Head of Department (Electronics and Communication Engineering, DTU), and **Dr. Sudipta Majumdar**, Project Guide for giving me the opportunity to write this dissertation and supporting me along the way. Next, I would like to say thanks to all my seniors and friends for their goodwill and support that helped me a lot in successful completion of this dissertation.

Jayant Bhardwaj

2K10/SPD/09

M.Tech (SPDD)

<u>Abstract</u>

A method for feature level image fusion for multimodal images in second generation wavelet domain, that is lifting wavelet transform domain is proposed. The features fused are edge and boundary information of input images that is extracted using wavelet transform modulus maxima criterion. The image Fusion performance is evaluated by standard deviation, entropy and gradient parameters. Results shows that the purposed method gives better results for image fusion as image contrast, average information content and detail information of fused image are increased. This method has advantages of flexibility, saving of auxiliary memory, property of perfect reconstruction and simplicity.

Contents

Chapters	Page no
Acknowledgement	
Abstract	
Chapter 1 :Introduction	1-5
1.1 Image Fusion 1.1.1 Types	1
1.1.2 Application	
1.2 Wavelet Transform	2
1.3 Lifting wavelet Transform	4
Chapter 2: Wavelet Transform	6-20
2.1 Fourier Transform: An Overview	6
2.1.1 wavelet Transform	
2.1.2 Merits of wavelet over Fourier	
2.2 Continuous wavelet Transform	10
2.3 Discrete wavelet Transform	11
2.4 Wavelet Families	13
2.4.1 Haar wavelet	
2.4. 2 Daubechies wavelet	
2.5 Multiresolution Analysis	15
2.5.1 Signal Decomposition and Reconstruction	
2.6 Wavelet Properties	20
Chapter 3: Lifting Wavelet Transform	23-30
3.1 Filters and Laurent Polynomials	23
3.2 The Lifting Scheme	24
3.2.1 Lifting Theorem	

3.2.2 Dual Lifting Theorem	
3.3 The Euclidean Algorithm	26
3.4 The Factoring Algorithm	26
3.4.1 Factoring Theorem	
3.5 Haar Lifting Implementation	28
3.6 Computational Complexity of Lifting wavelet	29
3.7 Advantages of Lifting Implementation	30
Chapter4: Wavelet Transform Modulus Maxima	31-37
4.1 Lipschitz Regularity	31
4.2 Wavelet Transform Modulus Maxima Method	31
4.3 Detection and measurement of Singularities	32
4.4 Edge Detection by Wavelet Transform	33
4.5 Multiscale Edge Detection	34
4.6 Wavelet Transform of Images	36
Chapter 5 : Implementation	38-41
5.1 Digital Image	38
5.2 Implemented Algorithm	38
5.3 Image Fusion Performance Assessment	40
Chapter 6: Results and Discussion	42-45
6.1 Figures of Result	42
6.2 Fusion Performance Evaluation	44
6.3 Future Work	45
References	46
List of Figures & Tables	47