
1

Chapter 1

Introduction

It is never possible to construct a strong house without a strong foundation and a good

architect. Similarly, in order to design and develop a reliable and usable software product that

meets all the requirements of the stakeholders; a suitable development lifecycle is necessary.

Selection of appropriate software development lifecycle is very essential for failure free

development of software projects. It is very difficult to backtrack and start with new lifecycle

especially, if the methodology chosen for the project is not appropriate. The selection of

lifecycle is very involved task. It is not easy to select a software development lifecycle for a

project on the basis of few characteristics. So, a large number of metrics are considered and

each metric is assigned an appropriate weight. On the basis of these weighted metrics and the

value of metrics for desired project, we are able to identify the appropriate methodology for

the project to be developed.

Various lifecycle methodologies has been proposed such as traditional methodology, object

oriented methodology and agile methodology. Some of the traditional methodology includes

waterfall model, spiral model, prototype model and many more. The major problem with the

waterfall model is its inflexibility, which makes it difficult to respond to changing customer

requirements. Therefore, the waterfall model should only be used when the requirements are

well understood and unlikely to change during development. Spiral model has gained

popularity over other traditional approach. The popularity of spiral model is due to its high

sensitivity to risk at each stage of development, wide range of options to accommodate the

good features of other lifecycle models. Spiral model is appropriate for large-scale enterprise

systems. Several object-oriented design methods have been proposed (Coad and Yourdon,

2

1990; Robinson, 1992; Jacobson, et al., 1993; Graham, 1994; Booch, 1994).The UML

(Rumbaugh, et al., 1999) is a unification of the notations used in these methods.

The RUP recognizes that conventional process models present a single view of the

process[15].

RUP is described from three perspectives:-

1. A dynamic perspective that shows that phases of the model over time.

2. A static perspective that shows the process activities that are enacted.

3. A practice perspective that suggests good practices to be used during the process.

These approaches involve a significant overhead in planning, designing and documenting the

system. When this heavyweight, plan-based development approach was applied to small and

medium-sized business systems, the overhead involved was so large that it sometimes

dominated the software development process. More time was spent on how the system should

be developed than on program development [15]. Dissatisfaction with these heavyweight

approaches led a number of software developers in 1990s to propose new agile methods.

These allowed the development team to focus on the software itself rather than on its

design and documentation. Agile methods are intended to deliver working software

quickly to customers and allow changes in requirements to be included in later iteration

of the system.

Well known agile approaches include Extreme Programming, Scrum, Crystal, Adaptive

Software development, DSDM and Feature Driven Development. Extreme Programming

(XP) is perhaps the best known and most widely used of the agile methods. This approach

was developed by pushing recognized good practice, such as iterative development, and

customer involvement to „extreme‟ levels [15].

3

1.1 Motivation

A large number of projects fail during their development phases due to inappropriate

lifecycle selection. It is not feasible to start with a randomly chosen software development

lifecycle methodology. For successful completion of project in budget and target time,

methodology plays an important role.

Today‟s market is global market. That is, business area is not limited to a state or country but

it operates over the world. Therefore, businesses have to respond to new opportunities and

markets, changing economic conditions and the emergence of competing products and

services. Software is involved in almost all business operations so, its development should be

fast enough to take advantage of new opportunities and to respond to competitive pressure.

Therefore, the most critical requirement for software system is rapid development and

delivery. In fact, at initial stages, many businesses compromise on software quality and

requirements against rapid software delivery. Because of the challenging and volatile market

it is practically impossible to derive a complete set of requirements. The real requirements

become clear only after a system has been delivered and user gain experience with it.

Software development process that are based on completely specifying the requirements then

designing, building and testing the system are not suitable for rapid software development.

As the requirements change or as requirements problems are discovered, the system design or

implementation has to be reworked and retested. As a consequence, a conventional waterfall

or specification-based process is usually prolonged and the final software is delivered to the

customer long after it was originally specified.

In a fast-moving business environment, this can cause real problems. By the time the

software is available for use, the original reason for its procurement may have changed so

radically that the software is effectively useless. Therefore, for business systems in particular,

development processes that focus on rapid software development and delivery are essential.

4

All methods have limits, and agile methods are only suitable for some types of system

development. They are best suited to the development of small or medium-sized business

system and personal computer products. They are not well suited to large-scale systems

development with the development teams in different places and where there may be

complex interactions with other hardware and software systems. Nor should agile methods be

used for critical systems development where a detailed analysis of all of the system

requirements is necessary to understand their safety or security implications.

Therefore, selection of methodology should be supported by a framework which will guide

you to select an essential project specific methodology.

Software development lifecycle selection depends on multiple factors of the project. We

have discussed the lifecycle selection based on requirements, development team, users,

project type and associated risk.

1.2 Related work

Methods make the software development task easy, efficient, systematic and resourceful. But

it is fact that there is no universal method that can be applied to all projects since different

projects have different characteristics and situations. This requirement creates home ground

for Method Engineering (ME). Method Engineering has gained popularity with the first

widely accepted definition by Brinkkemper. He has defined ME as a “discipline to design,

construct and adapt methods, techniques and tools for an Information System Domain (ISD)

project” [3].

There are number of proposals for developing project specific methods. They can be broadly

divided into two classes: (i) method assembly which relies on method base which stores the

method component, an atomic element of a method. From this method base method

components are retrieved as per the project requirements .The retrieved components are then

assembled to form situation specific method [23]. Some important proposals are Fragment

5

base approach [9, 10], GOPRR approach [19] and Contextual approach [28]. (ii) Instantiation

approach where project specific method is built from scratch Building the method from

scratch. All these approaches require instantiation of a Meta-model where; the concepts of a

method are made instances of meta-model concepts. Since instantiation is a tedious and time-

consuming task, Gupta [8] had proposed a method requirement specification language rooted

in a simple meta-model i.e. Method View Model (MVM) having only limited concepts,

mitigated the problem of instantiation to a great extent. All these approaches were supported

by computer based tool support.

The task of method engineers is complex in nature. In order to facilitate them there are

proposals to provide a rich set of rules and guidelines to form a coherent method[15] .These

proposal are analogous to architectural- based software engineering domain proposals. They

provide for the task to be performed in a more disciplined and cohesive way. The major ones

are Method Intension Architecture (MIA) and Architectural Centric Method Engineering

(ArCME). In these approaches there are problems like suitable style selection and further

composition of these selected styles. OPF [32] solves these issues due to their flexible nature

but fails to address a wide variety of concepts like branching, situation cataloguing and

evolution tracing [6].

Major limitations with these approaches are that they are centered around traditional method.

Coherence of method is supported by meta model which can only model traditional method

and not agile method. The field of method configuration is gaining popularity where new

method is configured from the base method according to the requirement. The task of

configurability is to first create a new model called a configurable model followed by

selecting those parts of the configurable model that are relevant to the user‟s requirement.

Configurable models use notions of commonality and variability[34]. Coplien et al [12]

define commonality as an assumption held uniformly across a given set of objects whereas

6

variability is an assumption that is true for only some elements of the set. In [33] we have

the definition of variability as “an assumption about how members of a family may differ

from one another”. A configurable model identifies commonality and variability that can be

exploited in developing a new system from the configurable model.

1.3 Problem statement

Recent trend has changed and agile methodologies are gaining popularity due to its

significance like customer involvement, early software release, less documentation required

and customer satisfaction. Lifecycle selection depends on various characteristics of the

project under consideration such as, complexity, risk involved, Programmer's Capability,

Clarity and completeness of requirements, Business Risk, and many more. There are project

like development of air traffic controller, missiles and safety system software where agile

methodology is not suitable. Since the selection of methodology is to be done prior to

development of the project, we must evaluate project characteristics like complexity,

modularization of task, business risk, technical risk, and programmer's capability to decide

whether to use agile or traditional methodology. Weight assigned to these project

characteristics play a major role in this decision. Hence problem of the thesis is:

Framework for selection of suitable methodology based on evaluation of project

characteristics.

1.4 Scope of Work

We experiment our proposal for four projects. These are mobile app development, air traffic

controller, ERP implementation for SMEs and software for banking system. The first step

should be identification of project characteristics. Some of the characteristics have more

impact on lifecycle selection and some of them having less impact. So, the next step should

be distribution of weight to the identified project characteristics. Initially, the weight has been

distributed manually and result has been obtained for the example project. Since this process

7

is complex and lot of calculation is required. So, we need to apply the AI approach for

calculation. Further, weight has been adjusted using neural network. The accuracy of our

implementation mainly depends on the correctness of the data set.

Broadly, the scope of this work can be summarized as:

i. Identification of project characteristics for lifecycle selection.

ii. Finding impact of each of the above identified characteristics on the

lifecycle selection.

iii. Assigning weight to each of the characteristics based on their impact.

iv. Run the framework for example project and observe the output.

v. Apply neural network for selection of software development lifecycle.

Initially for mobile domain we had taken 14 project characteristics to decide the suitable

lifecycle. Further we have included 8 more characteristics and input range is also modified.

Instead of three input ranges low, medium and high, we have used five input category very

low, low, medium, high and very high. The insertion of more project metrics and

enhancement in input ranges makes our decision support system more robust. In our previous

work we have not applied any machine learning technique. This time we have used neural

network for weight adjustment of each identified project characteristics.

8

1.5 Organization of the Thesis

Chapter 1 begins with introduction and further it discusses motivation of undertaking this

research work, related work, problem statement, scope of work as well as organization of

this dissertation.

Chapter 2 provides literature survey. The concept of traditional and agile software

development lifecycle is described in this section. Various challenges associated with

traditional and agile software development lifecycle is also discussed. We have discussed the

lifecycle selection based on requirements, development team, users, project type and

associated risk. Neural Network concept is also discussed in this section.

 Chapter 3 begins with description of our research work. It describes the framework of our

approach. We have explained various steps involved in our approach in detail with some

examples. Here we have shown the outcomes of the experiments with the help of graphs for

different examples. We have calculated sum of product of all the factors for each example. In

the end output for all the examples are compared with the help of a graph.

Chapter 4 maps the model with neural network model. It provides the training details of the

neural network and also provides outcome of neural network.

Chapter 5 gives the final findings and outcomes of the research. It lists the problems that we

have solved and those that still remain to be tackled. It also lays the ground to the future work

in this direction.

Chapter 6 gives the details of our accepted paper titled “Domain specific priority based

implementation of mobile services- an agile way” in International Conference on Software

Engineering and Research Practices (SERP-12), Las Vegas, USA.

9

Chapter 2

Literature Review

The objectives of this chapter are to introduce various software development lifecycle

methodologies and to provide a framework for understanding the rest of the work.

What is software development lifecycle?

The IEEE standard glossary of software engineering defines software development lifecycle

as “the period of time that starts when a software product is conceived and ends when the

product is no longer available for use”. The software life cycle typically includes a

requirement phase, design phase, implementation phase, test phase, installation and check out

phase, operation and maintenance phase, and sometimes retirement phase.

There are various lifecycle model exists that are used for the development of project. On a

broad scale we divide these models in three categories that are:-

 Conventional Methodology

 Object Oriented Methodology

 Agile Methodology

Basically conventional methodology considers a systematic way of software development

and prepares a huge list of documents that reflects the functionalities of the product and

shows the procedure to be used for development. Agile methodology believes in little

documentation and quick delivery of the most prioritized task to the customer based on their

choice[2].

10

2.1 Well known conventional Software Development Lifecycle Models

1. Rapid application development model

This model was developed by IBM in 1980s. In this model user involvement is essential from

requirement phase to delivery of the product. The process is started with building a rapid

prototype and is given to user for evaluation. The user feedback is obtained and prototype is

refined. The process continues, till the requirements are finalised.

Advantages of the Rapid application development model

 Quick initial views of the product are possible due to delivery of rapid prototype.

 Development time of the product may be reduced due to use of powerful development

tools like CASE tools.

 Involvement of user may increase the acceptability of the product.

Disadvantages of the Rapid application development model

 Not an appropriate model in the absence of user throughout the lifecycle.

 Development time may not be reduced, if reusable components are not available.

 Highly specialized & skilled developers are required and such developers are not

easily available.

2. Spiral model

Important software projects have failed because project risks were neglected and nobody was

prepared when something unforeseen happened. Barry Boehm recognized this and tried to

incorporate the project risk factor into a lifecycle model, which results in spiral model. The

radial dimension of the model represents the cumulative costs. Each path around the spiral is

indicative of increased costs. The angular dimension represents the progress made in

completing each cycle. Each loop of the spiral from X-axis clockwise through 360 degree

represents one phase.

11

One phase is split roughly into four sectors of major activities.

Planning: Objectives are determined, planned and documented.

Risk Analysis: Analyse the risks and find alternatives and attempts to resolve the risks.

Development: Product development and testing product.

Assessment: Customer evaluation.

Advantages of the spiral model include the following:-

 Appropriateness for large-scale enterprise systems.

 Flexibility in terms of its sensitivity to the dynamic nature of the software industry.

 High sensitivity to risk at each stage of development.

 Wide range of options to accommodate the good features of other lifecycle models.

Fig. 1: Spiral Model

12

Disadvantages of the spiral model include the following:-

 Complex nature makes it difficult for customers to grasp.

 Requires extensive information regarding risk assessment.

 Undetected risks can be problematic.

3. Rational Unified Process model

The unified process is developed by I. Jaccobson, G. Booch and J. Rumbaugh. It is an

iterative process model where project is developed through a series of short, fixed length

mini projects called iterations. The outcome of each iteration is a tested, integrated and

executable system[1]. Each iteration has its own requirement analysis, design,

implementation and testing activities. Hence, the system continues to enlarge and refine with

every iteration and thus grows incrementally over time[14].

There are four phases in the unified process that is shown in figure.

Inception Elaboration Construction Transition

Time

Definition of

objectives of the

project

Planning and

architecture of the

project

Initial operational

capability

Release of the

product

Version 1

Fig.2:- Rational Unified Process Model

i. Inception: In this phase we define scope of the project.

ii. Elaboration: Here following things are explored about the project:-

 How do we plan & design the project?

 What resources are required?

 What type of architecture may be suitable?

iii. Construction: In this phase objectives are translated in design and architecture

documents.

13

iv. Transition: Many activities takes place in this phase like delivering, training,

supporting, and maintaining the product.

The RUP recognises that conventional process models present a single view of the

process[15].

RUP is described from three perspectives:-

1. A dynamic perspective that shows that phases of the model over time.

2. A static perspective that shows the process activities that are enacted.

3. A practice perspective that suggests good practices to be used during the process.

Iterations and workflow of Rational Unified Process model:-

Fig.3:- Phase wise workflow of Rational Unified Process Model[14]

Advantages of Rational Unified Process model:-

 Changes can be accommodated in later stage of development.

 Risks can be minimised.

 We can reuse some version of the product because of iterative release.

 Multiple testing improves the quality of testing.

14

2.2 Well-known agile software development lifecycle models

In February 2001, 17 software developers published the Manifesto for Agile Software

Development to define the approach now known as agile software development. Agile

Manifesto reads, in its entirety, as follows:-

Individuals and interactions over processes and tools:- in agile development, self-

organization and motivation are important, as are interactions like co-location and pair

programming[30].

Working software over comprehensive documentation:- working software will be more

useful and welcome than just presenting documents to clients in meetings[30].

Customer collaboration over contract negotiation:- requirements cannot be fully collected at

the beginning of the software development cycle, therefore continuous customer or

stakeholder involvement is very important[30].

Responding to change over following a plan:- agile development is focused on quick

responses to change and continuous development. That is, while there is value in the items on

the right, we value the items on the left more[30].

Agile Principles

Twelve principles underlie the Agile Manifesto, described below[31]:-

1. Highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

2. Welcome changing requirements, even late in development.

3. Deliver working software frequently, from a couple of weeks to a couple of months.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

15

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation (co-location).

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity, the art of maximizing the amount of work not done, is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behaviour accordingly.

Agile methodology includes:-

 Scrum.

 Extreme Programming (XP).

 Feature Driven Development (FDD).

 Dynamic Systems Development Method (DSDM).

 Kanban.

 Lean Development.

Scrum

The scrum method is a general agile method that focuses on managing iterative development

and does not adapt specific agile practices. It has three phases, they are discussed below:-

1. Outline planning phase for designing software architecture derived from general

objective of the project. This is the management phase where first general objectives

are elicited and these are then used to design software architecture.

16

2. Sprint cycle consisting of a product backlog which is converted into sprint backlog

from where product is developed and delivered in increment. The cycle is repeated

until the backlog is emptied.

3. Project closure phase which terminates the project and prepares the termination report

and user manual.

Fig.4 Understanding Scrum lifecycle model[39]

Once a shippable module is delivered, the product backlog is analyzed for the next priority

module. Module reprioritization can also be done if required.

17

Example of Medical Diagnosis Software development using Scrum

Regular Services

1. Patient Registration(Details)

2. Search Appropriate Doctor on the basis of:-

 Disease Type

 Specialization of doctor

 Experience of Doctor

3. Check Availability of Slot

4. Take appointment

5. Verify your Prescription(Valid dose etc)

6. Cancel appointment

Emergency Services

1. Check for availability of ICU wards

2. Register case

3. Admit Patient(allot ward, assign doctor)

4. Search Blood Bank

5. Check for availability of Blood

6. Order Blood

18

Table1:- Example of medical diagnosis software development using scrum

Extreme-Programming (XP)

Extreme Programming (XP) is very famous agile methodologies. It takes extreme approach

to iterative development and delivers working software frequently.

In this, involvement of customer during development is very essential. The development team

works in very close environment in presence of customer. There are six phases in XP that are

discussed below.

1. Requirement Phase: - In this phase users give requirements as stories that are recorded

on story cards then these story cards are prioritized.

2. Task gathering: - Here stories are broken into tasks.

3. Plan release phase: - In this phase the most prioritized stories are selected and planned

for early release.

19

4. Development Phase: - The design of the only most prioritized task, which is to be

developed, is done in this phase.

5. Release Phase: - The above designed task is developed and released for the use.

6. Evaluation of the system: - working of the released system is evaluated and the next

cycle is started.

Example of user story for Medical Diagnosis Software

Fig.5:- Example showing user story for medical diagnosis software

StoryCard

Fig.6:- Story card for the user story

20

Feature-Driven Development (FDD)

FDD is model driven methodology that releases software in form of features in short

iterations. It is suitable for large team and consists of very short phases and delivers specific

features in each phase.

Some of the Feature Sets for our project are "Incoming Call," "Outgoing Call," "Messaging,"

and this comes under "Basic Services" Subject Area. In FDD, we do planning, designing and

building of a feature under consideration. It consists of five specific processes in specified

order, which is discussed below.

1. Develop an overall model: - Requirements are gathered in top down approach where all

subject areas are designed. Subject areas are aggregation of feature set. Feature set are

combination of feature. Each feature is task to be performed.

2. Build a list of feature: - Features gathered are compiled to form feature list.

3. Plan by feature: - Planning is done to build a feature.

4. Design by feature: - Proper designing is done for the planned feature.

5. Build by feature: - Actual implementation of the feature is done.

Lean Development

Lean is very similar to Scrum in the sense that we focus on features as opposed to groups of

features – however Lean takes this one step further again. In Lean Development, we select,

plan develop, test and deploy one feature (in its simplest form) before we select, plan,

develop, test and deploy the next feature. By doing this, we further isolate risk to a feature-

level. In these environments, we aim to eliminate „waste‟ wherever possible – we therefore

do nothing until we know it‟s necessary or relevant.

21

2.3 Comparative Study of Traditional and Agile Methods

Different project requires different lifecycle models based on their characteristics. To decide,

which lifecycle model is suitable for which type of project, it is essentially important to

provide comparative study of both the models.

2.3.1 Waterfall

Waterfall model is a sequential approach to software development. A sequential approach

means a stage by stage approach for software development. For example:-

 Analysis of business requirement by the project team is to be done in requirement

analysis phase.

 Now the design of requirement collected are done, and a decision taken about which

programming technique i.e. Java , Dot Net, etc. is to be used.

 After the design process, code implementation takes place.

 The testing of code is done in the next phase. That is the phase next to the coding

phase is testing phase.

 Evaluation and maintenance of the product is done in the last phase, which ensures

that everything runs smoothly.

Problems with waterfall model

 Difficulty in defining all requirements at the beginning of a project.

 Do not accommodate any changes at later stages.

 Working of the software is not visible until late in the project‟s life.

 This model is not appropriate for large projects.

 Real projects are rarely sequential.

22

2.3.2 Agile Development

It is a low over-head method that emphasizes values and principles rather than

processes. Working in cycles i.e. a week, a month, etc., project priorities are re-evaluated

and at the end of each cycle. Four principles that constitute Agile methods are:

1. Individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. And again, responding to change over plan follow-throughs.

The discussion below shows the reason for choosing Agile methodology over the Waterfall

method.

1. Once a stage is completed in the Waterfall method, there is no going back, since most

software designed and implemented under the waterfall method is difficult to change

according to time and user needs. The problem can only be fixed by going back and

designing an entirely new system, a very costly and inefficient method. Whereas, agile

methods adapt to change, as at the end of each stage, the logical program, designed to cope

and adapt to new ideas from the outset, allows changes to be made easily. With Agile,

changes can be made if necessary without getting the entire program rewritten. This approach

not only reduces overheads, it also helps in the upgrading of programs.

2. Another Agile method advantage is one has a launchable product at the end of each

tested stage. This ensures bugs are caught and eliminated in the development cycle, and the

product is double tested again after the first bug elimination. This is not possible for

the Waterfall method, since the product is tested only at the very end, which means any bugs

found results in the entire program having to be re-written.

23

3. Agile‟s modular nature means employing better suited object-oriented designs and

programs, which means one always has a working model for timely release even when it does

not always entirely match customer specifications. Whereas, there is only one main release

in the waterfall method and any problems or delays mean highly dissatisfied customers.

4. Agile methods allow for specification changes as per end-user‟s requirements, spelling

customer satisfaction. As already mentioned, this is not possible when the waterfall method

is employed, since any changes to be made means the project has to be started all over again.

5. However, both methods do allow for a sort of departmentalization e.g. in waterfall

departmentalization is done at each stage. As for Agile, each coding module can be

delegated to separate groups. This allows for several parts of the project to be done at the

same time, though departmentalization is more effectively used in agile methodologies.

In conclusion, though on the plus side, waterfall‟s defined stages allow for thorough

planning, especially for logical design, implementation and deployment, agile methodology

is a sound choice for development of the product having volatile requirement and web design

projects. More and more firms are becoming Agile.

Table 2:- Table showing difference between traditional and agile methodology

 Traditional View Agile Perspective

Design Process

Deliberate and formal, linear sequence

of steps, separate formulation and

implementation, rule driven

Emergent, iterative and

exploratory, knowing and action

inseparable, beyond formal rules

Goal Optimization
Adaptation, flexibility,

responsiveness

Problem Solving

Process

Selection of the best means to

accomplish a given end through well-

planned, formalized activities

Learning through experimentation

and introspection, constantly

reframing the problem and its

solution

View of the

Environment
Stable, predictable

Turbulent, difficult to predict,

Adaptable

24

Key

characteristics

 Control and direction

 Avoids conflict

 Formalizes innovation

 Manager is controller

 Design precedes

implementation

 Collaboration and

communication; integrates

different worldviews

 Encourages exploration

and creativity; opportunistic

 Manager is facilitator

 Design and

implementation are inseparable

and evolve iteratively

Limitations of Agile Methods

Some important points highlighted by Nielsen[7] and Dias[11] about agile development are:

 The communication complexity grows proportionally to the size of the development

team;

 Minimum documentation makes difficult the reuse of a particular artifact which, in

addition, is not developed as a generic and reusable code;

 Assumption that customers are always available to: schedule meetings, participating,

solving questions and making decisions together with the development team, is not

always feasible in practice;

 Many issues arise during the implementation of interaction detailed design.

Developers may not solve these issues in order to save time during development.

 Product development is divided into smaller steps that are accomplished one at a time.

Users do not have the experience of integrating different features and therefore it may

be impossible for them to work with this lack of integration.

2.4 Selection of a Life Cycle Model based on some important project characteristics

Software development lifecycle selection depends on multiple factors of the project. In this

section we have discussed the lifecycle selection based on following factors[15] :-

 Requirements.

 Development team.

25

 Users.

 Project type and associated risk.

Based on characteristics of requirements:-

Selection of software development lifecycle is highly dependent on the characteristics of the

requirements. For some project, requirements are volatile or difficult to understand or initially

not complete. So, on the basis of these characteristics of requirement we have tabularized the

suitability of lifecycle.

Table 3: Selection of a model based on characteristics of the requirements

Requirements Waterfall Prototype
Iterative

Enhancement

Evolutionary

development
Spiral RAD Agile

Are

requirements

easily

understandable

and defined?

Yes No No No No Yes No

Do we change

requirements

quite often?

No Yes No No Yes No Yes

Can we define

requirements

early in the

cycle?

Yes No Yes Yes No Yes Yes

Requirements

are indicating a

complex system

to be built

No Yes Yes Yes Yes No No

Based on status of development team:-

Lifecycle selection does not fully dependent on project characteristics but it depends on the

characteristics of the development team also. Some of the team members have less

experience, some of them having experienced but little domain knowledge, some of them

having no experience on tools being used in the project. The table below shows the lifecycle

suitability based on these characteristics.

26

Table 4: Selection of a model based on status of development team

Development

Team
Waterfall Prototype

Iterative

Enhancement

Evolutionary

development
Spiral RAD Agile

Less

Experience

on similar

projects

No Yes No No Yes No No

Less domain

knowledge

(new to

technology)

Yes No Yes Yes Yes No No

Less

experience

on tools to

be used

Yes No No No Yes No No

Availability

of training, if

required

No No Yes Yes No Yes No

Based on user’s participation:-

Selection of software development lifecycle also depends on user‟s involvement during the

software development. The table below shows the lifecycle suitability based on the user‟s

involvement during different lifecycle phases.

Table 5: Selection of lifecycle based on user‟s participation

Involvement

of users
Waterfall Prototype

Iterative

Enhancement

Evolutionary

development
Spiral RAD Agile

User

Involvement

in all phases

No Yes No No No Yes Yes

Limited user

participation
Yes No Yes Yes Yes No No

User have no

previous

experience

of

participation

in similar

projects

No Yes Yes Yes Yes No No

Users are

experts of

problem

domain

No Yes Yes Yes No Yes Yes

27

Based on type of project with associated risk:-

Lifecycle selection is highly dependent on the type of the project and risk associated with the

project. For some project funding is stable, for some project we have to follow deadline

strictly, and some project should be highly reliable. Based on these characteristics, we have

tabularized the lifecycle suitability for a project.

Table 6: Lifecycle selection based on type of project with associated risk

Project type and

risk
Waterfall Prototype

Iterative

Enhancement

Evolutionary

development
Spiral RAD Agile

Project is the

enhancement of

the existing

system

No No Yes Yes No Yes Yes

Funding is

stable for the

project

Yes Yes No No No Yes Yes

High reliability

requirements
No No Yes Yes Yes No No

Tight project

schedule
No Yes Yes Yes Yes Yes Yes

Use of reusable

components
No Yes No No Yes Yes Yes

Are resources

(time, money,

people) scarce?

No Yes No No Yes No No

2.5 Neural Networks

A neural network is a set of connected input/output units in which each connection has a

weight associated with it. During the learning phase, the network learns by adjusting the

weights so as to be able to predict the correct class label of the input tuples. Neural network

learning is also referred to as connectionist learning due to the connections between units.

Neural networks involve long training times and are therefore more suitable for applications

where this is feasible. They require a number of parameters that are typically best determined

empirically, such as the network topology or “structure.” Neural networks have been

28

criticized for their poor interpretability. For example, it is difficult for humans to interpret the

symbolic meaning behind the learned weights and of “hidden units” in the network.

Advantages of neural networks, however, include their high tolerance of noisy data as well as

their ability to classify patterns on which they have not been trained. They can be used when

you may have little knowledge of the relationships between attributes and classes. Neural

network algorithms are inherently parallel; parallelization techniques can be used to speed up

the computation process.

Adaptation of neural network for our problem

An artificial neural network is composed of computational processing elements with

weighted connections. We used feed forward multilayer perceptron network and the back

propagation training algorithm (hence referred as Back Propagation Neural Network – BPN).

The neural network architecture is designed using Matlab neural network tool box. The input

layer has one neuron for each of the input variable (domain measures – Dj, j = 1,. . .,22). We

used one hidden layer. There is one neuron in the output layer. The network learns by finding

a vector of connection weights and minimizes the sum of squared errors on the training data

set. One pass through all of the training observations (Training Phase) is called an epoch. The

network is trained with a continuous back propagation learning algorithm; the weights are

adjusted after each observation is fed forward. Various neural network architectures are

tested. The number of units in the hidden layer, learning rate and momentum rate are adjusted

to find a preferred combination. The activation function used is „tansig‟. Activation function

is the logistic function, with a gain parameter that controls how sharply the function changes

from zero to one. We trained the network, where the weights are adjusted after each epoch.

Various values for the number of neurons are tested to find the final value. After training, the

network is simulated for the validation data set (Testing Phase) and the classification outputs

are obtained.

29

What is back propagation?

Backpropagation learns by iteratively processing a data set of training tuples, comparing the

network‟s prediction for each tuple with the actual known target value. The target value may

be the known class label of the training tuple (for classification problems) or a continuous

value (for prediction). For each training tuple, the weights are modified so as to minimize the

mean squared error between the network‟s prediction and the actual target value. These

modifications are made in the “backwards” direction, that is, from the output layer, through

each hidden layer down to the first hidden layer (hence the name backpropagation). Although

it is not guaranteed, in general the weights will eventually converge, and the learning process

stops. The backpropagation algorithm performs learning on a multilayer feed-forward neural

network. It iteratively learns a set of weights for prediction of the class label of tuples.

What is feed-forward neural network?

A multilayer feed-forward neural network consists of an input layer, one or more hidden

layers, and an output layer. An example of a multilayer feed-forward network is shown

in Figure. Each layer is made up of units. The inputs to the network correspond to the

attributes measured for each training tuple. The inputs are fed simultaneously into the units

making up the input layer. These inputs pass through the input layer and are then weighted

and fed simultaneously to a second layer of “neuronlike” units, known as a hidden layer. The

outputs of the hidden layer units can be input to another hidden layer, and so on. The number

of hidden layers is arbitrary, although in practice, usually only one is used.

The weighted outputs of the last hidden layer are input to units making up the output layer,

which emits the network‟s prediction for given tuples. The units in the input layer are called

input units. The units in the hidden layers and output layer are sometimes referred to as

neurodes, due to their symbolic biological basis, or as output units.

30

we say that it is a two-layer neural network. (The input layer is not counted because it serves

only to pass the input values to the next layer.) Similarly, a network containing two hidden

layers is called a three-layer neural network, and so on. The network is feed-forward in that

none of the weights cycles back to an input unit or to an output unit of a previous layer. It is

fully connected in that each unit provides input to each unit in the next forward layer. Each

output unit takes, as input, a weighted sum of the outputs from units in the previous layer. It

applies a nonlinear (activation) function to the weighted input. Multilayer feed-forward

networks, given enough hidden units and enough training samples, can closely approximate

any function.

Fig.7: Layered architecture of neural network

31

Chapter 3

Research Work

In this chapter, we propose a methodology for the selection of suitable lifecyle for a software

project. Here we have identified the various important project and process metrics. We have

assigned some weight to all of these metrics based on their impact on software development

lifecycle selection. We have considered some sample project and identified the value of input

for all of these metrics and then identified best suitable software development lifecycle for

the project.

3.1 Framework for identification of factors leading to selection of software lifecycle

model:-

Process Projects
Project

Situation

Selection of
Process

Methodology

Baseline of
process

Methodology

Base of
development

situation

Base of weighted
factors

Identifying
development

situation

Weight of
Factors for

Current Project

Matching the
Characteristics
to Processes

Identify
Factors

Identifying
Project

Characteristics

Project
Experience

Realization of
Project

Run the DSS for
suitability of a lifecycle

for the project

Fig. 8:- Framework for selection of software development lifecycle model

32

Description of the lifecycle selection framework:-

This picture is complete framework which depicts the sequence of operations of the project.

There are three parts process, projects and project situation. There are three data storage

classes that are used for storage of useful project characteristics and results, for future

reference.

i. Base of development situation: - For large number of already developed projects, we

will identify development situation and store it in the “Base of development situation”

database.

ii. Baseline of process methodology: - It stores the process methodology to be followed

for the current process, that is obtained by consulting base of development situation

and the process under consideration.

iii. Base of weighted factors:- It stores the weighted factors of the project and provides

these factors as input to the decision support system at runtime.

For a new project to be developed, we identify the project situation then identify project

characteristics by consulting base of development situation. Now we will match these

characteristics to processes by consulting baseline of process methodology. Now run the

decision support system (DSS) for the current project and find the result.

At this stage we will have realization of project and project experience, which will be

preserved for the future reference.

3.2 Description of weight distribution to different metrics:-

Decision support system is based on the weight and input values of a large number of

identified metrics. Input parameters are divided in five categories. Table below describes the

numerical equivalent value for different categories.

33

Table 7:- Numeric values for different input category

Category Very Low Low Medium High Very High

Value 1 2 3 5 8

We have assigned weight to all the identified metrics with respect to the selection of an

appropriate development lifecycle for the project. The numerical value assigned to weight is

normalised with values ranging from 0.0 to 1.0. Weights are assigned in such manner so that

the metrics having more support for traditional has been given more weight and the metrics

having more support for agile has been given less weight. For different projects, different

metric are important. Therefore, we have chosen the weights of the metrics depending upon

the role of these metrics on the lifecycle development.

3.2.1 Weight distribution parameter:-

Weights are assigned in such manner so that the metrics having more support for traditional

has been given more weight and the metrics having more support for agile has been given

less weight.

1. Volatility of requirements:-

This software metric signifies the frequency of changing of requirement. For a given project

if requirement changes very frequently then the value of this metric will be high and value

will be very low if requirement will be stable.

The more value of this metric strongly supports agile development, so we have chosen very

less (0.02) value as weight for this metric.

34

2. Complexity:-The project having large size and which require more effort is

considered to be complex project. That is, the development process for those projects will be

very complex and it requires a detailed analysis and a systematic way of development.

More value of this metric strongly supports traditional methodology to follow, so we have

assigned very high (0.1) value as weight for this metric.

3. Business Risk:-

This metric is related to return on investment and customer satisfaction. For example,

suppose customer is unsatisfied with the product after release and hence it has no market

value then organization should be able to release new version but it will be very time

consuming and costly for organization. In this case risk is high and organization will suffer

heavy loss.

More value of business risk supports for agile development because in agile development

customer is always available during development and product is released in increments not in

the end, so any deficiency can be detected early.

4. Technical Risk:-

Technical risk involves the non-availability of developer, non-availability of technology that

is tools etc. during development. It may occur due to failure of tool during development or

leaving of developer before completion of task.

5. Operational Risk:-

This is the risk involved due to failure of some functionality of the project. If the impact of

such failure is very high then we will say that operational risk is high.

35

For example, suppose in some safety system if any functionality fails then their impact will

be very high so, operational risk is high.

More value of this metric supports traditional methodology because these types of systems

should be designed is a systematic and properly defined way. So, we have assigned very high

(0.1) value as weight for this metric.

6. Flexibility:-

Modifying the source code is very easy, but it is very difficult to manage the impact of

changes on the other parts of the source code. Flexibility is the ease with which an

operational program can be modified.

Agile methodology is best suited for the project having more flexibility because it will be

easy to develop and deliver software in increments.

So, we have chosen less weight for this metric.

7. Modularization of Task:-

Modularization is very important for quick and easy software development. If tasks are

divided in modules then it will be very easy to develop the modules in parallel for quick

release. Agile methodology is more suitable for development, if tasks can be divided in

modules. So, less weight assigned to this metric.

8. Time to Market:-

This metric signifies the time (in months) before which at least first phase (least

functionality) of the product must be released. If the value of this metric is less for a project,

then agile methodology is suitable for the development. So, the weight assigned is less.

36

9. Amount of requirement known initially:-

It is not possible to know all the requirements initially for several projects. Some

requirements are visible only after using the minimum workable (first release) of software.

If less number of requirements is known initially then we should follow agile methodology

because customer is always involved and they can add requirements at later stages when they

realize the requirement. So, less weight is given to this metric.

10. Clarity and Completeness of requirement:-

If the requirement is very well defined, clearly visible and does not require any further

analysis then we will say that it is clear and complete.

11. Expandability: - The ease with which changes can be made to the software at later

stages. The more value of this metric has more support for agile methodology.

12. Coupling: - The degree of interdependence between classes. Coupling increases

complexity and hence more value of this metric has more support for traditional

methodology.

13. Tool Experience: - How much year of work experience the developer has on the tool

to be used?

14. Platform volatility: - How frequently the platform (Operating system for which

product is being developed) is changing. For example, if we are developing windows based

project then it require frequent modification because Microsoft releases new version of

windows frequently.

15. Application Experience: - what is the work experience of the developer on the

desired application (application may be java or c etc.).

37

16. Programmer’s capability: - How much capable the programmer is; for development

of the project?

17. Add-on Function:- How much percent of functions to be developed are Add-on

functions. Add-on functions are fancy functions.

18. Necessary Functions:- These are essential functions which should be developed in a

defined manner.

19. Reuse of existing code:- In the development of current project, the amount of code

taken from existing code.

20. Develop for reuse:- If a project is to be developed as a base project then it should be

developed in a defined way and should be well documented. Quality of such product should

be very high.

21. Platform experience:- How much work experience developers have on the platform

to be used for current project

22. Tool experience:- How much work experience developers have on the tools being

used for current project? Tool may be Net beans, eclipse, meta-edit, rational rose.

3.3 Criteria for selection of input category for a metrics for project under

consideration out of five possible categories:-

We cannot measure all the metrics on the same scale. There should be different measurement

scale for different metrics on the basis of their characteristics. For example, we cannot

measure length, area and volume on the same scale.

38

Measurement parameter for identification of values of different metrics:-

1. Volatility of Requirement:-

Table 8:- Table showing criteria for selection of values for “volatility of requirement”

How much percent of known requirements are volatile Category

Less than 10 % Very Low

10-19 % Low

20-29 % Medium

30-39 % High

Greater than 39 % Very High

2. Complexity:-

This metric can be measured by object-oriented metrics given by chidamber and kemerer[4].

There are three metrics which is useful for measurement of Complexity. These are WMC,

NOC and DIT.

WMC:- Weighted Methods Per Class(Method Count for a class)

WMC = Number of methods defined in a class.

It is difficult to reuse classes with many methods. WMC is useful to predict the time and

effort required to develop and maintain the class.

Table 9:- Values for complexity based on WMC

How much percent of class has more than 24 methods Category

Less than 10 % Very Low

10-14 % Low

39

15-19 % Medium

20-24 % High

Greater than 24 % Very High

DIT:- Depth of Inheritance Tree

DIT= Maximum inheritance path from the class to the root class.

The deeper a class is in hierarchy, the more methods & variables it is likely to inherit, making

it more complex.

A recommended DIT is 5 or less. Excessively deep class hierarchies are complex to develop.

Table 10:- Values for complexity based on DIT

DIT Complexity

1, 2 Very Low

2, 3 Low

4, 5 Medium

6, 7 High

Greater than 7 Very High

3. Business Risk:-

Risk that has direct impact on business value of the product comes under business risk such

as unexpected changes in revenue, unexpected changes in costs from those budgeted, the unit

sales that are less than forecast and unexpected development costs. Business risk is

influenced by numerous factors, including sales volume, per-unit price, input costs,

40

competition, and overall economic climate and government regulations. So, the value of this

metric should be chosen by considering all the above said factors.

4. Technical Risk:-

Technical risks are ranging from software glitches to power outages to viruses that can

completely shut down a firm‟s operations. These are serious risks that a firm must plan to

face. Risk involved with installing new system also comes under technical risk. When a firm

switches over to a new system without proper integration, the new system is unable to

perform all that was promised and sometimes even performs worse than the system it was

replacing. New system often requires employees to operate according to new processes.

These may be difficult to learn, take training to execute correctly, or may even be outright

resisted by employees who prefer the old way of doing business. So, the value of this metric

should be chosen by considering all the above said factors.

5. Operational Risk:-

Operational risk is the risk of loss resulting from inadequate or failed internal processes,

people and systems, or from external events. Causes of operational risks include failure to

address priority conflicts, failure to resolve the responsibilities, insufficient resources, no

proper subject training, no resource planning and lack of communication in team. So, the

value of this metric should be chosen by considering all the above said factors.

41

6. Add-on Function:-

Table 11:- Criteria for selection of values for “add-on function”

How much percent of functions to be developed

are Add-on functions

Category

Less than 20 % Very Low

20-39 % Low

40-59 % Medium

60-79 % High

Greater than 79 % Very High

7. Necessary Function:-

Table 12:- Criteria for selection of values for “necessary function”

How much percent of functions to be developed are

Necessary functions

Category

Less than 20 % Very Low

20-39 % Low

40-59 % Medium

60-79 % High

Greater than 79 % Very High

42

8. Flexibility:-

Modifying the source code is very easy, but it is very difficult to manage the impact of

changes on the other parts of the source code. Flexibility is the effort required to modify an

operational program.

Table 13:- Table showing criteria for selection of values for “flexibility”

Percentage change required in source code due to

addition of new functions (on an average)

Category

Less than 5 % Very High

5-9 % High

10-14 % Medium

15-19 % Low

Greater than 20 % Very Low

9. Modularization of Task:-

This metric can be measured by object-oriented metrics given by chidamber and kemerer.

The CBO(Coupling Between Object) is useful for measurement of this metric.

CBO=Number of classes to which a class is coupled.

Two classes are coupled when methods declared in one class uses methods or instance

variables defined by the other class. Modularization of task is not possible if coupling

between object classes are excessive. CBO greater than 14 is too high.

43

Table 14:- Criteria for selection of values for “modularization of task”

Value of CBO Modularization of Task

Less than 2 Very High

2, 3 High

4, 5 Medium

6,7 Low

Greater than 7 Very Low

10. Time to Market:-

Table 15:- Table showing criteria for selection of values for “time to market"

Time (in month) before which minimum

workable product must be released

Time to Market

2 Month Very High

4 Month High

6 Month Medium

8 Month Low

Greater than 8 Months Very Low

11. Amount of requirement known initially:-

Table 16:- Criteria for selection of values for “amount of requirement known initially”

Amount of requirement known initially

(Percentage)

Category

Less than 20 % Very Low

20-39 % Low

40-59 % Medium

60-79 % High

Greater than 79 % Very High

44

12. Clarity and Completeness of requirements:-

If the requirement is very well defined, clearly visible and does not require any further

analysis then we will say that it is clear and complete.

Table 17:- Criteria for selection of values for “clarity and completeness of requirements”

How much amount of known requirements are

clear and complete (Percentage)

Category

Less than 20 % Very Low

20-39 % Low

40-59 % Medium

60-79 % High

Greater than 79 % Very High

13. Expandability:- The effort required in addition of new functionality to the already

working software. The value of this metric can be selected based on the effort estimation for

addition of new functionality

14. Coupling:- The CBO(Coupling Between Object) is useful for measurement of this

metric.

CBO=Number of classes to which a class is coupled.

Two classes are coupled when methods declared in one class uses methods or instance

variables defined by the other class. The value of CBO greater than 14 is too high. So,

coupling will be very high for CBO greater than 14.

45

Table 18:- Table showing criteria for selection of values for “coupling”

Value of CBO Coupling

Less than 2 Very Low

2, 3 Low

4, 5 Medium

6,7 High

Greater than 7 Very High

15. Programmer Capability:-We cannot define any specific range for this metric. It will

depend on the capability of the development team and can be categorized on the basis of

current situation.

16. Application Experience:-How much experience developers have on the desired

application? Application may be different programming language like c, c++, java.

Table 19:- criteria for selection of values for “application experience”

Time (in month) Application Experience

Less than 12 Month Very Low

12 Month – 24 Month Low

24 Month- 30 Month Medium

30 Month- 36 Month High

Greater than 36 Months Very High

46

17. Reuse of existing code:- In the development of current project, the amount of code

taken from existing code.

Table 20:- criteria for selection of values for “reuse of existing code”

How much amount of code taken from existing code

(Percentage)

Category

Less than 20 % Very Low

20-39 % Low

40-59 % Medium

60-79 % High

Greater than 79 % Very High

18. Develop for reuse:- Is this project is developed as a base project? If a project is to be

developed as a base project then it should be developed in a defined way and should be well

documented. Quality of such product should be very high.

Table 21:- criteria for selection of values for “develop for reuse”

Purpose of the project Develop for

reuse

Developed as a base project (that is, developed only for

reuse)

Very High

Probability of being used in other project is very high High

It may require addition of some functionality at later

stages

Medium

At this point, there is no visible project which will

require code of this project

Low

It can never be reused Very Low

47

19. Platform Volatility:- How frequently the platform (Operating system for which

product is being developed) is changing. For example, if we are developing windows based

project then it require frequent modification because Microsoft releases new version of

windows frequently.

Table 22:- criteria for selection of values for platform volatility

Type of changes in platform Platform

volatility

Likely to change from one platform to another having different

architecture (windows to linux)

Very High

Likely to change from one platform to another having same

architecture (windows xp to windows 7) or (red hat to Ubuntu)

High

Likely to change from one platform to another having different

version only (windows xp service pack 2 to windows xp

service pack 3) or (Ubuntu 10 to Ubuntu 11)

Medium

At this point, there is no visible change but it might change at

later stages

Low

It will never change Very Low

20. Platform Experience:- How much work experience developers have on the

platform to be used for current project?

Table 23:- criteria for selection of values for platform experience

Developers work experience on the platform to be used for

current project? Time (in month)

Platform

Experience

Less than 6 Month Very Low

6 Month – 12 Month Low

12 Month- 18 Month Medium

18 Month- 24 Month High

Greater than 24 Months Very High

48

21. Tool Experience:-

How much work experience developers have on the tools being used for current project? Tool

may be Net beans, eclipse, meta-edit, rational rose.

Table24:- criteria for selection of values for tool experience

Developers work experience on the tool to be used

for current project? Time (in month)

Tool Experience

Less than 6 Month Very Low

6 Month – 12 Month Low

12 Month- 18 Month Medium

18 Month- 24 Month High

Greater than 24 Months Very High

22. Team Cohesion:- Ease of communication and interaction among team members is

known as team cohesion. The value for this metric can be chosen on the basis of current

situation of the organization and team members.

49

Tea
m

 c
oh

es
io
n

Too
l E

xp
er

ie
nc

e

Pl
at
fo

rm
 e
xp

er
ie
nc

e

Pl
at
fo

rm
 v
ol
at
i lit

y

de
ve

lo
p

fo
r
re

us
e

Re
us

e
of

 e
xis

tin
g

co
de

Ap
pl
ic
at
io
n

Ex
pe

rie
nc

e

Pr
og

ra
m
m

er
's
 C

ap
ab

il it
y

Ope
ra

tio
na

l R
isk

Tec
hn

ica
l R

isk

Bu
si
ne

ss
 R

isk

Cou
pl
in
g

Ex
pa

nd
ab

ilit
y

Cl
ar

ity
 a

nd
 c
om

pl
et

en
es

s
of

 re
qu

ire
m

en
ts

Am
ou

nt
 o

f R
eq

ui
re

m
en

t K
no

w
n

In
iti
al
ly

Tim
e
to

 M
ar

ke
t

M
od

ul
ar

iz
at

io
n
of

 ta
sk

Fl
ex

ib
ilit

y

Nec
es

sa
ry

 F
un

ct
io
n

Add
on

 F
un

ct
io
n

Com
pl
ex

ity

Vol
at
i lit

y
of

 re
qu

ire
m

en
t

0.10

0.08

0.06

0.04

0.02

0.00

Metrics

W
e

ig
h

t
Chart of Weight

Fig.9:- Graph showing weight distribution to different metrics

3.4 Proposed Algorithm :-

Step 1:- Assign input values to each metric for a given project from the five possible values.

Category Very Low Low Medium High Very High

Value 1 2 3 5 8

Step 2:- Calculate S = i

i

i pw

22

1

 .

Where iw is the weight assigned to the i
th

 metrics which is fixed (constant).

And ip is the input values chosen for i
th

metrics which is variable (project specific).

Step 3:- Select best suitable methodology for the given project on the basis of the value of S

in step2.

50

If the value is between1 to 4 then we will follow agile software development lifecycle. If the

value is 5 to 8 then we will follow traditional methodology. If value comes between 4 and 5

then we can choose any methodology or hybrid methodology.

3.5 Demonstration of algorithm using example projects

We have considered four example projects to demonstrate the working of decision support

system.

1. Mobile App. Development (MAD).

2. Air Traffic Controller (ATC).

3. ERP implementation for small and medium enterprises (SME‟s).

4. Banking application development.

1. Mobile Application Development:- Input values are assigned to each of the metric and

then the product of each input with their respective weight is calculated. Further, the sum

of all these products is calculated and this sum will be the parameter for decision making.

Now our output will range from 1 to 8. If the value is between1 to 4 then we will follow

Agile Software development lifecycle. If the value is 5 to 8 then we will follow

traditional methodology.

Table 25:- Weight distribution, input values, their product and total sum for mobile

application development

S.

no.
Metrics Weight

Input Values

(Mobile App.

Development)

Product of weight & Input

values for Mobile App.

Development

1. Volatility of

requirement
0.02 Medium(3) 0.06

2. Complexity 0.1 Very Low(1) 0.1

3. Add-on Function 0.02 Medium(3) 0.06

4. Necessary Function 0.09 Medium(3) 0.27

5. Flexibility 0.02 High(5) 0.1

6. Modularization of task 0.02 High(5) 0.1

7. Time to Market 0.02 High(5) 0.1

51

8. Amount of

Requirement Known

Initially

0.05 Medium(3) 0.15

9. Clarity and

completeness of

requirements

0.05 High(5) 0.25

10. Expandability 0.02 High(5) 0.1

11. Coupling 0.09 Very Low(1) 0.09

12. Business Risk 0.03 Very High(8) 0.24

13. Technical Risk 0.08 Very Low(1) 0.08

14. Operational Risk 0.1 Low(2) 0.2

15. Programmer's

Capability
0.03 Medium(3) 0.09

16. Application Experience 0.02 Medium(3) 0.06

17. Reuse of existing code 0.03 Medium(3) 0.09

18. develop for reuse 0.07 Medium(3) 0.21

19. Platform volatility 0.02 Low(2) 0.04

20. Platform experience 0.04 Low(2) 0.08

21. Tool Experience 0.03 Medium(3) 0.09

22. Team cohesion 0.05 Medium(3) 0.15

Total(Sum of product)

2.71

0 1 2 3 4 5 6 7 8

Agile Traditional

H
Y
B
R
I
D

Mobile
App.

Fig.10:- Scale showing the output of mobile application development

Here for mobile application development the output is 2.71, so it indicates that agile

methodology is best suited for their development.

52

Te
am

 c
oh

es
io
n

To
ol
 E
xp

er
ie
nc

e

Pl
at
fo
rm

 e
xp

er
ie
nc

e

Pl
at
fo
rm

 v
ol
at
i lit

y

de
ve

lo
p
fo
r
re
us

e

Re
us

e
of
 e
xis

tin
g
co

de

Ap
pl
ic
at
io
n
Ex

pe
rie

nc
e

Pr
og

ra
m
m
er

's
 C

ap
ab

il it
y

Op
er

at
io
na

l R
isk

Te
ch

ni
ca

l R
isk

Bu
si
ne

ss
 R
isk

Co
up

lin
g

Ex
pa

nd
ab

ilit
y

Cl
ar
ity

 a
nd

 c
om

pl
et
en

es
s
of
 re

qu
ire

m
en

ts

Am
ou

nt
 o
f R

eq
ui
re
m
en

t K
no

w
n
In
iti
al
ly

Ti
m
e
to
 M

ar
ke

t

M
od

ul
ar
iz
at
io
n
of
 ta

sk

Fl
ex

ib
ilit

y

Ne
ce

ss
ar

y
Fu

nc
tio

n

Ad
do

n
Fu

nc
tio

n

Co
m
pl
ex

ity

Vo
la
ti l
ity

 o
f r

eq
ui
re
m
en

t

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Metrics

W
e

ig
h

te
d

 I
n

p
u

t
fo

r
M

o
b

ile
 a

p
p

.
Chart of Weighted Input for Mobile app.

Fig.11:- Graph showing weighted input for mobile app. development

53

2. Air Traffic Controller (ATC)

Table 26:- Weight distribution, input values, their product and total sum for ATC

S.

no.
Metrics Weight

Input Values (Air

Traffic Controller)

Product of

weight & Input

values for ATC

1. Volatility of requirement 0.02 Very Low(1) 0.02

2. Complexity 0.1 Very High(8) 0.8

3. Add-on Function 0.02 Low(2) 0.04

4. Necessary Function 0.09 Very High(8) 0.72

5. Flexibility 0.02 Low(2) 0.04

6. Modularization of task 0.02 Very Low(1) 0.02

7. Time to Market 0.02 Low(2) 0.04

8. Amount of Requirement

Known Initially
0.05 Very High(8) 0.4

9. Clarity and completeness

of requirements
0.05 Very High(8) 0.4

10. Expandability 0.02 Low(2) 0.04

11. Coupling 0.09 High(5) 0.45

12. Business Risk 0.03 Low(2) 0.06

13. Technical Risk 0.08 Very High(8) 0.64

14. Operational Risk 0.1 Very High(8) 0.8

15. Programmer's Capability 0.03 Very High(8) 0.24

16. Application Experience 0.02 Low(2) 0.04

17. Reuse of existing code 0.03 Very Low(1) 0.03

18. develop for reuse 0.07 High(5) 0.35

19. Platform volatility 0.02 Low(2) 0.04

20. Platform experience 0.04 Very High(8) 0.32

21. Tool Experience 0.03 Very High(8) 0.24

22. Team cohesion 0.05 Very High(8) 0.4

Total(Sum of product)

6.13

0 1 2 3 4 5 6 7 8

Agile Traditional

H
Y
B
R
I
D

ATC

Fig.12:- Scale showing the output of ATC development

54

The output for air traffic controller is 6.13, which indicates that traditional methodology is

best suited for their development.

Te
am

 c
oh

es
io
n

To
ol
 E
xp

er
ie
nc

e

Pl
at
fo
rm

 e
xp

er
ie
nc

e

Pl
at
fo
rm

 v
ol
at
i lit

y

de
ve

lo
p
fo
r
re
us

e

Re
us

e
of
 e
xis

tin
g
co

de

Ap
pl
ic
at
io
n
Ex

pe
rie

nc
e

Pr
og

ra
m
m
er

's
 C

ap
ab

il it
y

Op
er

at
io
na

l R
isk

Te
ch

ni
ca

l R
isk

Bu
si
ne

ss
 R
isk

Co
up

lin
g

Ex
pa

nd
ab

ilit
y

Cl
ar
ity

 a
nd

 c
om

pl
et
en

es
s
of
 re

qu
ire

m
en

ts

Am
ou

nt
 o
f R

eq
ui
re
m
en

t K
no

w
n
In
iti
al
ly

Ti
m
e
to
 M

ar
ke

t

M
od

ul
ar
iz
at
io
n
of
 ta

sk

Fl
ex

ib
ilit

y

Ne
ce

ss
ar

y
Fu

nc
tio

n

Ad
do

n
Fu

nc
tio

n

Co
m
pl
ex

ity

Vo
la
ti l
ity

 o
f r

eq
ui
re
m
en

t

0.9

0.8
0.7
0.6
0.5

0.4
0.3
0.2
0.1

0.0

Metrics

W
e

ig
h

te
d

 i
n

p
u

t
fo

r
A

T
C Chart of Weighted input for ATC

3. ERP implementation for small and medium enterprises (SME’s):- Selection of

lifecycle methodology for example projects ERP implementation in small and medium

enterprises (SME‟s).

Table 27:- Weight distribution, input values, their product and total sum for ERP

S.

no.
Metrics Weight Input Values (ERP)

Product of

weight & Input

values for ERP

1. Volatility of requirement 0.02 Low(2) 0.04

2. Complexity 0.1 High(5) 0.5

3. Add-on Function 0.02 Low(2) 0.04

4. Necessary Function 0.09 Very High(8) 0.72

5. Flexibility 0.02 Medium(3) 0.06

6. Modularization of task 0.02 High(5) 0.1

Fig. 13:- Graph showing weighted input for ATC

55

7. Time to Market 0.02 High(5) 0.1

8. Amount of Requirement

Known Initially
0.05 High(5) 0.25

9. Clarity and completeness

of requirements
0.05 Medium(3) 0.15

10. Expandability 0.02 Medium(3) 0.06

11. Coupling 0.09 Low(2) 0.18

12. Business Risk 0.03 Very High(8) 0.24

13. Technical Risk 0.08 Medium(3) 0.24

14. Operational Risk 0.1 High(5) 0.5

15. Programmer's Capability 0.03 High(5) 0.15

16. Application Experience 0.02 Low(2) 0.04

17. Reuse of existing code 0.03 Medium(3) 0.09

18. develop for reuse 0.07 Medium(3) 0.21

19. Platform volatility 0.02 Low(2) 0.04

20. Platform experience 0.04 Medium(3) 0.12

21. Tool Experience 0.03 Medium(3) 0.09

22. Team cohesion 0.05 High(5) 0.25

Total(Sum of product)

4.17

0 1 2 3 4 5 6 7 8

Agile Traditional

H
Y
B
R
I
D

ERP

Fig.14:- Scale showing the output of ERP development

Here for ERP implementation in small and medium enterprises (SME‟s) the output is 4.17, so

it indicates that hybrid methodology is best suitable for their development.

56

Te
am

 c
oh

es
io
n

To
ol
 E
xp

er
ie
nc

e

Pl
at
fo
rm

 e
xp

er
ie
nc

e

Pl
at
fo
rm

 v
ol
at
i lit

y

de
ve

lo
p
fo
r
re
us

e

Re
us

e
of
 e
xis

tin
g
co

de

Ap
pl
ic
at
io
n
Ex

pe
rie

nc
e

Pr
og

ra
m
m
er

's
 C

ap
ab

il it
y

Op
er

at
io
na

l R
isk

Te
ch

ni
ca

l R
isk

Bu
si
ne

ss
 R
isk

Co
up

lin
g

Ex
pa

nd
ab

ilit
y

Cl
ar
ity

 a
nd

 c
om

pl
et
en

es
s
of
 re

qu
ire

m
en

ts

Am
ou

nt
 o
f R

eq
ui
re
m
en

t K
no

w
n
In
iti
al
ly

Ti
m
e
to
 M

ar
ke

t

M
od

ul
ar
iz
at
io
n
of
 ta

sk

Fl
ex

ib
ilit

y

Ne
ce

ss
ar

y
Fu

nc
tio

n

Ad
do

n
Fu

nc
tio

n

Co
m
pl
ex

ity

Vo
la
ti l
ity

 o
f r

eq
ui
re
m
en

t

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Metrics

W
e

ig
h

te
d

 i
n

p
u

t
fo

r
E
R

P Chart of Weighted input for ERP

4. Banking application development

Table 28:- Weight distribution, input values, their product and total sum for banking

application development

S.

no.
Metrics Weight

Input Values

(Banking

application)

Product of weight &

Input values for

Banking application

1. Volatility of requirement 0.02 Very Low(1) 0.02

2. Complexity 0.1 Medium(3) 0.3

3. Add-on Function 0.02 Very Low(1) 0.02

4. Necessary Function 0.09 Very High(8) 0.72

5. Flexibility 0.02 Low(2) 0.04

6. Modularization of task 0.02 Medium(3) 0.06

7. Time to Market 0.02 High(5) 0.1

8. Amount of Requirement

Known Initially
0.05 High(5) 0.25

9. Clarity and completeness

of requirements
0.05 High(5) 0.25

10. Expandability 0.02 High(5) 0.1

11. Coupling 0.09 High(5) 0.45

Fig. 15:- Graph showing weighted input for ERP

57

12. Business Risk 0.03 Very High(8) 0.24

13. Technical Risk 0.08 High(5) 0.4

14. Operational Risk 0.1 High(5) 0.5

15. Programmer's Capability 0.03 Very High(8) 0.24

16. Application Experience 0.02 Low(2) 0.04

17. Reuse of existing code 0.03 Very Low(1) 0.03

18. develop for reuse 0.07 Medium(3) 0.21

19. Platform volatility 0.02 Very Low(1) 0.02

20. Platform experience 0.04 Low(2) 0.08

21. Tool Experience 0.03 Medium(3) 0.09

22. Team cohesion 0.05 High(5) 0.25

Total(Sum of product)

4.41

0 1 2 3 4 5 6 7 8

Agile Traditional

H
Y
B
R
I
D

Banking
app.

 Fig.16:- Scale showing the output of banking application development

The output for banking application development is 4.41, so for this project hybrid

methodology is best suitable methodology.

58

Te
am

 c
oh

es
io
n

To
ol
 E
xp

er
ie
nc

e

Pl
at
fo
rm

 e
xp

er
ie
nc

e

Pl
at
fo
rm

 v
ol
at
i lit

y

de
ve

lo
p
fo
r
re
us

e

Re
us

e
of
 e
xis

tin
g
co

de

Ap
pl
ic
at
io
n
Ex

pe
rie

nc
e

Pr
og

ra
m
m
er

's
 C

ap
ab

il it
y

Op
er

at
io
na

l R
isk

Te
ch

ni
ca

l R
isk

Bu
si
ne

ss
 R
isk

Co
up

lin
g

Ex
pa

nd
ab

ilit
y

Cl
ar
ity

 a
nd

 c
om

pl
et
en

es
s
of
 re

qu
ire

m
en

ts

Am
ou

nt
 o
f R

eq
ui
re
m
en

t K
no

w
n
In
iti
al
ly

Ti
m
e
to
 M

ar
ke

t

M
od

ul
ar
iz
at
io
n
of
 ta

sk

Fl
ex

ib
ilit

y

Ne
ce

ss
ar

y
Fu

nc
tio

n

Ad
do

n
Fu

nc
tio

n

Co
m
pl
ex

ity

Vo
la
ti l
ity

 o
f r

eq
ui
re
m
en

t

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Metrics

W
e

ig
h

te
d

 i
n

p
u

t
fo

r
B

a
n

k
in

g Chart of Weighted input for Banking

 Fig. 17:- Graph showing weighted input for banking application development

59

Graph showing the comparison of weighted input among mobile app., ATC, ERP

implementation and banking application:-

Fig. 18:- Comparison of weighted inputs between mobile app., ATC, ERP and banking

application development

60

Fig. 19:- A more clear picture of comparison of weighted inputs between mobile app., ATC,

ERP and banking application development

61

Chapter 4

A Neural Network approach for Estimating the Software Project Parameters and

Identifying a Suitable Development Lifecycle

In this chapter, we have mapped the proposed method for lifecycle selection in chapter 3 with

the neural network. We have used neural network tool available in Matlab to create, train and

simulate the network.

Why use neural network

Neural network is used to simplify the complex problem like pattern recognition, trend

analysis, and classification that are difficult tasks for humans. The beauty of neural network

lies in its ability to learn from training samples and experience, self-organizing capability,

real time operation, and its fault tolerance capability.

4.1 Problem mapped as neural network

The decision support system is simulated by three layer feed-forward back propagation neural

network having input, hidden and output layer. Neural network tool available in Matlab is

used for training and simulation. Network consists of twenty two neurons at input layer

(number of inputs), three neurons at hidden layer and one neuron at output layer.

Fig. 20: Problem mapped as neural network

62

Output is divided into three categories 1, 2 and 3.Here we have mapped our previous output

range as, the output range 1 to 4 is mapped as output 1, output range 4 to 5 is mapped as

output 2 and output range 4 to 8 is mapped as output 3. If the output of network is 1 then it

indicates that agile methodology is best suitable methodology for given input, output 2

indicates that both agile and traditional suites the given problem and output 3 indicates that

traditional methodology is the best suitable methodology for the given problem.

4.2 Implementation of neural network

It has been implemented with the help of neural network tool available in neural network tool

section in Matlab.

How to use neural network tool:-

To get started on a new problem, do the following:-

1. Import Input and Target data from the workspace with [IMPORT].

 2. Create a new Network with [NEW].

 3. Select the network in the Network list and click [OPEN]

 4. Select the training tab in the Network Window.

 5. Select training input and target data, and click [TRAIN].

 6. You can also use the Network Window to simulate the network, or

 perform other tasks such as reinitialization and editing of weights.

 Here are descriptions of each button:-

 [IMPORT] - Imports data and networks from the workspace or a file.

 [NEW] - Allows you to create a network or data.

 [OPEN] - Opens the selected data or network for viewing and editing.

 [EXPORT] - Exports data and networks to the workspace or a file.

 [DELETE] - Removes the selected data or network.

63

The various steps involved in the training process is:-

1. Create Network:- For creation of new network, we have to choose network

type, number of input neuron, number of hidden layer , number of output layer, input data,

target data and transfer function. Our problem consists of 22 input therefore we have chosen

22 neurons at input layer, two neurons at hidden layer and one neuron at output layer.

Fig. 21: Creation of network

Input and target data sample is generated from the four example projects discussed in chapter

3. Transfer function used is tangent sigmoid function. The equation for this function is

tansig(n) = 2/(1+exp(-2*n))-1.

64

Fig. 22: Network Created

2. Train Network:- For training, we have to provide large number of input and

their corresponding target, which we have generated from the four projects discussed in

chapter 3 that is, mobile app. development, air traffic controller, ERP implementation in

SMEs and banking system. The epoch chosen is 1000, it is the maximum number of

iterations that the network has to perform during training.

Fig. 23: Training of network

65

Final weight of the network after training:-

Table 29:-Final weight adjusted by neural network

S.

no.
Metrics

Weight for

input to hidden

neuron 1

Weight for

input to hidden

neuron 2

Weight for

input to hidden

neuron 3

1. Volatility of requirement 0.19376 0.89165 -0.40272

2. Complexity 0.51028 -0.030383 -0.68257

3. Add-on Function -0.29233 -0.099261 0.067508

4. Necessary Function 0.58891 -1.0546 0.41018

5. Flexibility 0.30301 0.29065 0.3696

6. Modularization of task -0.48088 -0.042034 0.42978

7. Time to Market 0.17812 0.41011 0.44175

8.
Amount of Requirement Known

Initially
-0.3488 0.21002 0.30634

9.
Clarity and completeness of

requirements
0.29833 0.4106 0.2556

10. Expandability -0.14357 0.27188 0.1635

11. Coupling 0.33175 -0.90402 -0.070217

12. Business Risk -0.57239 -0.60949 0.597

13. Technical Risk 0.31599 -0.38916 0.38757

14. Operational Risk -0.34957 -0.35567 -0.29739

15. Programmer's Capability 0.3903 -0.11019 -0.20646

16. Application Experience 0.059763 0.21941 0.23257

17. Reuse of existing code 0.20259 0.4015 -0.44519

18. develop for reuse 0.29662 0.31654 -0.60989

19. Platform volatility -0.27396 -0.035285 0.15748

20. Platform experience -0.045341 0.15639 -0.60084

21. Tool Experience 0.36862 -0.1564 -0.29208

22. Team cohesion 0.31846 0.26222 0.2154

Bias to hidden layer neuron:- [-1.3528; -0.40062; -1.2345]

Weight from hidden layer to output layer :- [0.69954 -1.4034 -0.88563]

Bias to output layer neuron :- [0.11863]

3. Simulation of network

Ones the network is trained , it can be simulated by the desired data. We can also check the

correctness of network by giving input as those data for which output is known to us. If the

network will give the output same as desired output then we can say that network is perfect.

66

Fig. 24: Simulation of neural network

4.3 Case Study

Case 1:- Input values for Mobile app development as data to the neural network tool

S. no. Metrics

Input Values

(Mobile App.

Development)

1. Volatility of requirement Medium(3)

2. Complexity Very Low(1)

3. Add-on Function Medium(3)

4. Necessary Function Medium(3)

5. Flexibility High(5)

6. Modularization of task High(5)

7. Time to Market High(5)

8. Amount of Requirement

Known Initially
Medium(3)

9. Clarity and completeness of

requirements
High(5)

10. Expandability High(5)

11. Coupling Very Low(1)

12. Business Risk Very High(8)

13. Technical Risk Very Low(1)

14. Operational Risk Low(2)

15. Programmer's Capability Medium(3)

16. Application Experience Medium(3)

17. Reuse of existing code Medium(3)

18. develop for reuse Medium(3)

19. Platform volatility Low(2)

20. Platform experience Low(2)

21. Tool Experience Medium(3)

22. Team cohesion Medium(3)

67

Input:- 3;1;3;3;5;5;5;3;5;5;1;8;1;2;3;3;3;3;2;2;3;3

Target:-1(i.e Agile)

Output Screen:-

Case 2:- Input values for Air Traffic Controller as data to the neural network tool

S. no. Metrics
Input Values (Air

Traffic Controller)

1. Volatility of requirement Very Low(1)

2. Complexity Very High(8)

3. Add-on Function Low(2)

4. Necessary Function Very High(8)

5. Flexibility Low(2)

6. Modularization of task Very Low(1)

7. Time to Market Low(2)

8. Amount of Requirement Known

Initially
Very High(8)

9. Clarity and completeness of

requirements
Very High(8)

10. Expandability Low(2)

11. Coupling High(5)

12. Business Risk Low(2)

13. Technical Risk Very High(8)

14. Operational Risk Very High(8)

15. Programmer's Capability Very High(8)

16. Application Experience Low(2)

17. Reuse of existing code Very Low(1)

18. develop for reuse High(5)

19. Platform volatility Low(2)

20. Platform experience Very High(8)

21. Tool Experience Very High(8)

22. Team cohesion Very High(8)

68

Input:- 1;8;2;8;2;1;2;8;8;2;5;2;8;8;8;2;1;5;2;8;8;8

Target:-3(i.e Traditional)

Output Screen:-

Case 3:- Input values for ERP implementation in SMEs as data to the neural

network tool

S. no. Metrics Input Values (ERP)

1. Volatility of requirement Low(2)

2. Complexity High(5)

3. Add-on Function Low(2)

4. Necessary Function Very High(8)

5. Flexibility Medium(3)

6. Modularization of task High(5)

7. Time to Market High(5)

8. Amount of Requirement

Known Initially
High(5)

9. Clarity and completeness of

requirements
Medium(3)

10. Expandability Medium(3)

11. Coupling Low(2)

12. Business Risk Very High(8)

13. Technical Risk Medium(3)

14. Operational Risk High(5)

15. Programmer's Capability High(5)

16. Application Experience Low(2)

17. Reuse of existing code Medium(3)

18. develop for reuse Medium(3)

19. Platform volatility Low(2)

20. Platform experience Medium(3)

21. Tool Experience Medium(3)

22. Team cohesion High(5)

69

Input:- 2;5;2;8;3;5;5;5;3;3;2;8;3;5;5;2;3;3;2;3;3;5

Target:-2(i.e Both of them are suitable)

Output Screen:-

Case 4:- Input values for Banking Application development as data to the neural

network tool

S. no. Metrics

Input Values

(Banking

application)

1. Volatility of requirement Very Low(1)

2. Complexity Medium(3)

3. Add-on Function Very Low(1)

4. Necessary Function Very High(8)

5. Flexibility Low(2)

6. Modularization of task Medium(3)

7. Time to Market High(5)

8. Amount of Requirement

Known Initially
High(5)

9. Clarity and completeness of

requirements
High(5)

10. Expandability High(5)

11. Coupling High(5)

12. Business Risk Very High(8)

13. Technical Risk High(5)

14. Operational Risk High(5)

15. Programmer's Capability Very High(8)

16. Application Experience Low(2)

17. Reuse of existing code Very Low(1)

18. develop for reuse Medium(3)

19. Platform volatility Very Low(1)

20. Platform experience Low(2)

21. Tool Experience Medium(3)

22. Team cohesion High(5)

70

Input:- 1;3;1;8;2;3;5;5;5;5;5;8;5;5;8;2;1;3;1;2;3;5

Target:-2(i.e Both of them are suitable)

Output Screen:-

71

Chapter 5

Conclusion and Discussion

In this study we identified whether a project is fit for development using Agile Methodology

or Traditional Methodology, or both. For this purpose, we identified 22 project metrics based

on their impact on the selection of software development lifecycle. We assigned to these

metrics, weights by taking into account their bias towards either Agile or Traditional

Methodology. By examining a set of sample projects with our technique we came to the

following conclusions,

1. The proposed technique is helpful in predicting which Methodology should be

followed while developing a particular project. This can help organizations save on

huge losses incurred upon failure of projects for selection of wrong process model.

2. The prediction process can be made more intelligent by use of machine learning

algorithms. In our study we used Feed-Forward Back-Propagation neural network

with 1 hidden layer. Different values of the output neuron give the class to which the

project belongs.

Based on our experience while working on this problem we have come across some points

that could be used as basis for further exploration in this area,

1. The model has been validated on some particular type of project data. We need to run

this model on various other types of project data. Such validation is important for

industrial application of this method.

2. We have used only one machine learning algorithm in this study. This does not ensure

proper selection of machine learning algorithm for this kind of data. Algorithms like

Random Forest, Logistic Regression, Decision Tree, Bagging, etc. should also be tried

over datasets to select the best algorithm for such classification.

72

3. We have not developed any tool for the framework given in 3.1. Therefore, we do not

have any repository for storage of the samples. This tool will make the lifecycle

selection task more robust and easy.

73

Chapter 6

PUBLICATIONS

During the period of working over this project we interacted with International community

working on software engineering. Our Research papers have been accepted in International

conference for presentation and will be published in their proceedings.

This paper presents the concept of applicability of agile methodology for mobile software

development and proposed a technique for domain specific (various age group) priority based

implementation of mobile services. In this paper, we also discussed the applicability of

method configuration for mobile domain.

6.1 The details of Conference publications:

Conference Name: International Conference on Software Engineering and Research

Practices (SERP-12), Las Vegas, USA.

URL: http://www.world-academy-of-science.org/

Paper Title: “Domain specific priority based implementation of mobile

services- an agile way”

URL: http://www.ucmss.com/main/papersNew/papersAll/SER2782.pdf

Authors: Dr. Daya Gupta, Rinky Dwivedi, Sinjan Kumars

Location: Monte Carlo Resort, Las Vegas, Nevada, USA

Publishers/ proceedings: The accepted papers will be published in printed conference

books/proceedings (they will also be available on the web). The proceedings will be

processed for indexing into science citation databases that track citation frequency/data for

each paper. These science citation databases include: Inspec / IET / The Institute for

Engineering and Technology, CiteSeerX citation index, Google Scholar, Microsoft Academic

Search, and other science databases. Like prior years, extended versions of selected papers

(about 40%) will appear in journals and edited research books (publishers include: Springer,

Elsevier).

http://www.ucmss.com/main/papersNew/papersAll/SER2782.pdf

74

References and Bibliography

[1] Kruchten, P., The Rational Unified Process, 2nd ed: Addison Wesley, 2001.

[2] B. Boehm and R. Turner, Balancing agility and discipline: A guide for the perplexed,

Addison-Wesley, 2003.

 [3] Brinkkemper. S. (1996) Method Engineering-Engineering of Information Systems

development Methods and Tools, in Information and software technology,38,pp.275-

280 (1996).

[4] Shyam R. Chidamber and Chris F. Kemerer,” A metrics suite for object oriented

design,” IEEE transactions on software engineering, vol. 20, no. 6, June 1994.

[5] Chidamber and Kemerer's Metrics Suite: A Measurement Theory Perspective Martin

Hitz and Behzad Montazeri. IEEE transactions on software engineering, vol. 22, no.

4, april 1996.

[6] Henderson-Sellers, B. et al, (2002) Using OPEN’s deontic matrices for e-business, in:

C. Rolland, S. Brinkkemper, M.Saeki(Eds.), Engineering Information Systems in the

Internet Context, Kluwer Academic Publishers, Boston, USA, 2002, pp. 9-30.

 [7] Nielsen, J.: “Agile Development Projects and Usability”

http://www.useit.com/alertbox/agile-methods.html

[8] Gupta D. and Prakash N. (2001) Engineering Methods from their Requirements

Specification, in Requirements Engineering Journal 2001, 3, pp.133 – 160.

[9] Harmsen, A.F., Brinkkemper, S., Oei, H. (1994) Situational Method Engineering for

Information Systems Projects. In Methods and Associated Tools for the Information

Systems Life Cycle. Proceedings of the IFIP WG8.1 Working Conference Cris/94,

T.W. Olle, A.A. Verrijn-Stuart, Eds. North Holland, Amsterdam, 1994, 169-194.

http://www.useit.com/alertbox/agile-methods.html

75

[10] Harmsen F, Brinkkemper S.(1995) Description and manipulation of method

fragments for method assembly. In Proceedings of the workshop on management of

software projects. Pergamon Press, London, 1995.

[11] Dias, M. V.: A new project management approach for software development.

Master‟s Thesis, Universidade de São Paulo (2006)

http://www.teses.usp.br/teses/disponiveis/12/12139/tde- 03012006-122134/

[12] J. Coplien, D. Hoffman, D. Weiss, “Commonality and Variability in Software

Engineering,” IEEE Software, pp. 37-45, 1998.

[13] A Conceptual Knowledge Base Representation for Agile Design of Human-Computer

Interface(2009 Third International Symposium on Intelligent Information Technology

Application) IEEE .

[14] Aggarwal K.K., Singh Y. ,Software Engineering, 2
nd

 Edition, New Age

International Publisher.

[15] Sommerville I., Software Engineering -8th Edition

[16] E. Valavanis, C. Ververidis, M. Vazirgianis, G.C. Polyzos, K. Norvag,“MobiShare,

Sharing Context-Dependent Data & Services from Mobile Sources”, in Proc. of the

IEEE/WIC International Conference on Web Intelligence (WI 2003), 2003.

[17] M. Haahr, R. Cunningham, V. Cahill, “Towards a Generic Architecture for Mobile

Object-Oriented Applications”, in Proc. of the 2000 IEEE Workshop on Service

Portability and Virtual Customer Environments,2000.

[18] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M.Korkala, J.

Koskela, P. Kyllönen, and O. Salo, “Mobile-D: An Agile Approach for Mobile

Application Development”, in Proc of the OOPSLA’04 Conference, 2004.

[19] Kelly, S., Lyytinen, K., Rossi, M.(1996) Metaedit+: A Fully Configurable Multi-User

and Multi-Tool CASE and CAME Environment. In Proceedings of the 8th Conf. on

http://www.teses.usp.br/teses/disponiveis/12/12139/tde-%2003012006-122134/

76

Advanced Information Systems Engineering, Y. Vassiliou, J. Mylopoulos, Eds.

Springer-Verlag, 1996.

[20] Boehm B. W. et al.,The ROI of Systems Engineering: Some Quantitative Results for

Software-Intensive Systems.

[21] Boehm B.W., “Software Engineering Economics,” Prentice Hall, 1981.

[22] Boehm B.W. et al , “Software Cost Estimation with COCOMO II,” Prentice Hall,

2000.

[23] Ralyté, J. (2004) Towards Situational Methods for Information Systems Development:

Engineering Reusable Method Chunks, In Proceedings of the International

Conference on Information Systems Development (ISD‟04), Vilnius Technika, 2004,

271-282.

 [24] Kemerer C.F., “An Empirical Validation of Software Cost Estimation Models,”

Comm. ACM, vol. 30, no. 5, 1987, pp. 416–429.

[25] Gupta D. and Prakash N. (2001) Engineering Methods from their Requirements

Specification, in Requirements Engineering Journal 2001, 3, pp.133 – 160.

[26] Chen Z. et al, “Finding the Right Data for Software Cost Modelling”.

[27] Boehm B. W., "A Spiral Model of Software Development and Enhancement", ACM

SIGSOFT Software Engineering Notes", "ACM", 11(4):14-24, August 1986.

 [28] Rolland, C., Prakash, N.(1996) A Proposal for Context-Specific Method Engineering.

In Method Engineering. Principles of Method Construction and Tool Support.

Proceedings of IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering,

26-28 August 1996, Atlanta, USA, S. Brinkkemper, K. Lyytinen, R.J. Welke, Eds.

Chapman & Hall, London, 191-208.

[29] Gupta D., Dwivedi R., Configuration from Situational Method Engineering, ACM

SIGSOFT, Software Engineering Notes. Page 1, May 2012, Volume 37, Number 3.

77

[30] “Software Cost Estimation with COCOMO II”, Prentice Hall, 2000.

[31] Beedle, M., et al., Principles behind the Agile manifesto,

http://www.agilemanifesto.org/principles.html

[32] NguyenV.P. and Henderson-Sellers, B. (2003) OPENPC: A tool to automate aspects

of method engineering, ICSSEA 2003. 16
th

 International Conference on Software and

Systems Engineering and their Applications, ICSSEA 2003, Paris, France, vol. 5, 7

pp.

[33] Weiss D.M., Lai C.T.R., “Software Product-line engineering: A Family based

Sofwtare development Process,” Addison Wesley,1999.

[34] Gupta D., Dwivedi R., “A Step towards Method Configuration From Situational

Method Engineering”, Software Engineering : An International Journal (SEIJ), Vol.

2, No. 1, March 2012.

[35] MATLAB, http://www.mathworks.com/

[36] www.agilealliance.org

[37] www.agilemethodology.org

[38] http://www.executivebrief.com/software-development/minimal-marketable-product.

[39] http://www.executivebrief.com/agile.

http://www.mathworks.com/
http://www.agilemethodology.org/
http://www.executivebrief.com/software-development/minimal-marketable-product
http://www.executivebrief.com/agile

78

