
1

CHAPTER 1: INTRODUCTION

With the rush of services and information provided on the Internet in present times, it has

become extremely essential to authenticate the flow of information to the appropriate recipients.

Since the volume of internet users and online data has gone beyond limits, it has become

impossible for a single server-client model to cater the needs of today‟s internet users.

Henceforth come the era of Multi Server–Client model in distributed network along with multi-

server authentication protocol to check that the right information is being provided to the right

user on internet.

A user authentication scheme is a mechanism that is used by a server to authenticate the user

before he/she is allowed to access the service [13]. A considerable number of user authentication

schemes have been proposed till now.

A single–server user authentication scheme is mechanism where a user is authenticated by a

server prior to he/she is allowed to access services of that server. For a single server-client

model, the remote machine access verification worked on the conventional authentication

schemes which when applied to multi-server client model becomes impractical and inconvenient,

since user has to memorize different pairs of identities and passwords to login to each one of the

server.

A multi–server user authentication scheme is mechanism which is used by a set of multiple

servers to authenticate the user before he/she is allowed to access the services of the respective

set of multiple servers. Generally there are three kinds of participants in a multi-server user

2

authentication system: users, a group of servers, and the authentication center. A user registered

with the authentication center once can login to any server in the respective set of multi–server

system i.e. they are not required to register themselves with different servers again and again

within the multi–server system individually.

As the number of multi-server systems in the distributed environment increases, more user

authentication schemes for multi–server environments have been proposed. A multi-server

authentication schemes should fulfill the advantages of freely chosen password, no verification

table, mutual authentication, single registration, secrecy and low computation and

communication cost. However, a Multi–server authentication scheme is generally vulnerable to

security attacks such as impersonation attack, password guessing attack, replay attack, insider

attack, man-in-the-middle attack, forward secrecy, server spoofing and authentication center

spoofing attack.

There are many authentication schemes developed for multi–server environment, but these all

suffer from one or the other drawbacks.

So after exercising and analyzing these drawbacks, we are proposing “A Remote Authentication

Methodology for Secure Communication in Distributed Network” which addresses the shortfalls

of the existing multi–server environment.

1.1 Motivation

The motive behind designing this Remote Authentication Methodology for a distributed

environment is to inherit the characteristic security features of Diffie-Hellman key exchange

protocol and simultaneously overcomes the drawbacks of multi–server authentication schemes

3

which provide a robust and invincible authentication mechanism. Generally, the security in

distributed network is provided mostly through smart card based authentication schemes. The

already proposed protocols in the literature are based on the idea of generation of keys before the

session begins. However, due to the limitation on memory resources of smart card and openness

of the internet environment, these proposed protocols are not able to achieve perfect security and

also face a key management problem. These limitations and constraints laid down the foundation

for the proposed work and became the key motivating factor for designing a secure and a

scalable Mutual Authentication and Key Management Scheme in the domain of distributed

network. Further the limitations and the constraints on memory resources and ease to generate

and secure interface in the transfer of session key parameters inspired and encouraged us to use

Diffie-Hellman key exchange protocol in domain of Distributed Networks.

1.2 Related Work

There are few works available in the field of mutual authentication and particularly for key

generation in distributed network along with the use of Diffie-Hellman Cryptography within the

same and consideration of the factors such as security, scalability, conformance, adaptability,

reliability and less memory utilization plays a vital role in deciding the major characteristic

features of any mutual authentication and key generation scheme for a distributed network. In the

stated works various characteristic features have been taken into account along with the

consideration of the protocol or scheme complexities involved in the processing, memory

limitations, cost constraints. Some of which are stated and analysed below:

For single-server client model, lamport[1] proposed a conventional scheme which needed a

verification table and it can be hacked easily. After this, many such schemes were proposed

4

using one-way hash function without verification table. Some prominent schemes were given by

hwang and liu[15], Sun[4], Das[16], Chen[17], Kim[18].

However such conventional schemes were inappropriate in terms of efficiency and convenience

for users in the multi-server environment. Researchers then came up with multi-server

authentication schemes. In 2001, Li[5] proposed such a scheme based on neural network. Lin

used Euclidean plane and Elgamal digital signature for authentication in the paper[22]. Xie and

Chen[11] presented another scheme using hash function and Xor operation. Using diffie-

hellman, Zhu et al provide authenticity and session key generation in paper[12]. However, they

all suffer from one or the other drawbacks, specified in the various papers [25] , [26], [10], [13],

[16], [31], [20], [9], [32], [6], [12], [34], [11].

1.3 Problem Statement:

The main reason behind the proposed methodology in this thesis is to design and in turn

successfully implement an efficient and a secure mutual authentication and key generation

scheme using Diffie-Hellman key exchange protocol for Distributed Networks using appropriate

simulation environment. The proposed scheme must satisfies the following set of security

features: (1) No Verification Table (2) Freely Chosen Password (3) Mutual Authentication (4)

Low computation and communication cost (5) Single registration (6) Session key agreement (7)

User anonymity (8) Access Control (9) Security (10) Session Key Security (11) Known Key

Security (12) Forward Secrecy[14]. Also the new authentication scheme should be successful to

negate the following security attack on a given multi–server environment such as insider attack,

impersonation attack, replay attack, password guessing attack, stolen–verifier attack and server

spoofing attack[13]. The dissertation comprises of an analytical survey of the complexities

5

involved in the various multi-server authentication schemes of distributed network platforms.

This project attempts to address some of them with a summary of some early and current results

from the implementation of proposed research. This thesis is to design, develop and propose:

“A Remote Authentication Methodology for Secure Communication in

Distributed Network”

1.4 Scope of Work

The work done in this thesis is able to clearly demonstrate the importance of public key

cryptography and its efficiency in mutual authentication and key generation scheme in domain of

Distributed networks. Though the project follows a systematic, hierarchal, organised and a

structured approach in proposing, demonstrating and implementing the vital statistics of the

session key generation in distributed network but simultaneously it exploits the vital and

beneficial characteristic features of an diffie-hellman in that scenario.

We have implemented the methodology on .Net framework using visual studio and C# language

to demonstrate the working of the proposed methodology. The proposal consists of four phases:

Server Registration, here each server registers itself at the authentication center; User

Registration, the user registers with authentication center; Authentication of Remote User and

Server, in this phase authentication center authenticates user and target server and vis-versa, after

which, authentication center provides user and server a mutual key; Mutual Authentication and

Session Key Generation, this is the last phase where the user and target server authenticates each

other and generate session key.

6

 The proposed work is confined to a single session establishment, mutual authentication,

verification, acknowledgement and secure data exchange between the participating user and

server at a particular instance of time. The proposed work can be very efficiently extended for a

multisession establishment, mutual authentication, verification, acknowledgement and secure

data exchange between two or more than two user and server terminals at a particular instance in

multi-server environment.

The proposed scheme is independent of the local and global clock synchronous or asynchronous

behaviour and is efficient and accurate in both the scenario.

The scope of the proposed scheme ranges from research domain to practical environment where

the distributed systems play a vital role such as internet, research centers, retail markets, banking,

industries, healthcare applications and its data security is of prime concern to us considering the

processing limitations, memory constraints and security attacks on the usage of these.

1.5 Organization of Thesis

The remainder of this thesis is organized as follows:

Chapter 2 presents the historical work carried out in this area and the state of art in the multi-

server authentication schemes. All the works taken from the literature and described in this

chapter are related to the problem of efficiently utilizing the limited and constrained resources

along with the maximum security defend with the possible use of Diffie–Hellman key exchange

protocol, an asymmetric key cryptographic technique, in the domain of distributed environment

for efficient and secure session establishment and secure communication through the

correspondingly established channel.

7

Chapter 3 introduces the vital basic concepts behind successful working of the proposed scheme.

It describes mathematical properties for a public key cryptographic system in the domain of

Multi-Server Authentication scheme. From there it briefly explains the standard and widely

accepted Diffie-Hellman key exchange protocol.

Chapter 4 gives the detailed description of the proposed scheme and the associated methodology

employed in order to establish a secure communication channel for a particular session. First it

introduces the various phases involved in the proposed scheme, followed by the terminology or

notation used in describing the corresponding scheme for mutual authentication and key

generation in the domain of Multi-Server environment. It then explains the proposed scheme in

detail with related verifications of the corresponding phases. Finally it highlights architectural

layout of the proposed scheme.

Chapter 5 presents the security perspective and performance analysis of the proposed scheme in

a systematic and organized manner. It describes the detailed analysis of various security attacks

on the proposed smart-card based multi-server authentication scheme in the distributed

environment and gives implementation details and performance analysis of the corresponding

scheme under distributed domain.

Chapter 6 describes the results of the proposed scheme. Several snapshots of the implementation

results have been introduced in order to clearly demonstrate the working and efficiency of the

proposed scheme.

Chapter 7 covers the conclusion and future prospective of the proposed work done in the thesis.

It gives the conclusion remarks about the characteristic results achieved from the implementation

8

of the proposed scheme and briefly highlights the enhancements which can be made to the

current work for extending the proposal in future research.

Chapter 8 enlists the references used throughout the thesis and in the proposed scheme.

Appendix A enlists the source code of the various modules in the proposed scheme.

This chapter has discussed the overview of the entire thesis which in turn helps to analyze the

thesis and to some extent describes what the proposed work is all about. Further Chapters will

describe the proposed work in more detail and will give a rigorous analysis of the proposed

scheme along with the facts of the respective implementation results or findings of this thesis

along with the advantages and the limitations of the proposed scheme in the domain of

Distributed network.

9

CHAPTER 2: LITERATURE SURVEY

2.1 Objective:

Literature review constitutes an important section of my thesis. This chapter describes the

various backgrounds that were considered during the thinking process. So following are the

objectives behind the literature survey conducted by me:

 Place each work in the context of its contribution to the understanding of the subject

under review.

 Describe the relationship of each work to the others under consideration.

 Identify new ways to interpret, and shed light on any gaps in, previous research.

 Identify areas of prior scholarship to prevent duplication of effort.

 Point the way forward for further research.

 Place my original work in the context of existing literature.

2.2 State of Art

Security, scalability, computational and communication cost, efficiency, reliability and less

memory utilization are major features of any key management algorithm or protocol of multi-

server networks. In this literature survey we have considered the complexities, limitations,

constraints of various authentication schemes of single-server and multi-server environment

10

using smart card and also analyzed the Diffie-Hellman Key exchange protocol which is used for

key exchange or sharing in that domain .

Basically this literature survey has analysis and rigorous coverage of mainly two domain specific

research surveys and facts and features of both viz.

 Related Work of Cryptography

 Mathematical Overview

 Various Authentication Schemes for Distributed Network.

2.3 Related Work of Cryptography

2.3.1 Cryptography

Basic idea of cryptography is to mumble-jumble the original message into something that is

unreadable or to something that is readable but makes no sense of what the original message is.

To retrieve the original message again, we have to transform the mumble-jumbled message back

into the original message again. So, Cryptography is the science of mathematics to “encrypt”

and “decrypt” data. Cryptography enables us to store sensitive information or transmit it across

insecure networks like Internet so that no one else other the intended recipient can read it.

Cryptographic algorithms are mathematical functions that are used in the encryption and

decryption process.

2.3.1.1 Two Kinds of Cryptography Systems

There are two kinds of cryptosystems: symmetric and asymmetric. Symmetric cryptosystems use

the same key (the secret key) to encrypt and decrypt a message, and asymmetric cryptosystems

use one key (the public key) to encrypt a message and a different key (the private key) to decrypt

11

it. Symmetric cryptosystems are also called as private key cryptosystems and asymmetric

cryptosystems are also called as public key cryptosystems.

2.3.1.2 Symmetric Key Cryptography – An Overview

In symmetric-key cryptography, the sender and recipient agree beforehand on a secret private

key. The plaintext is somehow combined with the key to create the cipher text. The method of

combination is such that, it is hoped, an adversary could not determine the meaning of the

message without decrypting the message, for which he needs the key. The following diagram

illustrates the encryption process:

 Figure 2.1: Symmetric Key Cryptography - Encryption Process

The following diagram illustrates the decryption process:

Figure 2.2: Symmetric Key Cryptography - Decryption Process

Message to be

encrypted or

plain text

Encryption

Algorithm

Encrypted

message or

Cipher text

Private Key known

only to sender and

receiver

Message to be

decrypted or

cipher text

Decryption

Algorithm

Decrypted

message or

Plain text

Private Key known

only to sender and

receiver

12

To break a message encrypted with private-key cryptography, an adversary must either exploit a

weakness in the encryption algorithm, or else try an exhaustive search of all possible keys (brute

force method).

2.3.1.3 Asymmetric Key Cryptography – An Overview

Asymmetric Key cryptography uses two keys Private key (known only by the recipient) and a

Public key (known to everybody). The public key is used to encrypt the message and then it is

sent to the recipient who can decrypt the message using the private key. The message encrypted

with the public key cannot be decrypted with any other key except for its corresponding private

key. The following Diagram illustrates the encryption process in the public key cryptography

Figure 2.3: Asymmetric Key Cryptography - Encryption Process

The following diagram illustrates the decryption process in the public key cryptography:

Figure 2.4: Asymmetric Key Cryptography - Decryption Process

Message to be

encrypted or

plain text

Encryption

Algorithm

Encrypted

message or

Cipher text

Public Key known

to everyone

Message to be

encrypted or

plain text

Encryption

Algorithm

Encrypted

message or

Cipher text

Private Key known

only to receiver

13

The public-key algorithm uses a one-way function to translate plaintext to cipher text. Then,

without the private key, it is very difficult for anyone (including the sender) to reverse the

process (i.e., translate the cipher text back to plaintext). Some examples of public-key

cryptosystems are Elgamal (named for its inventor, Taher Elgamal), RSA (named for its

inventors, Ron Rivest, Adi Shamir, and Leonard Adleman), Diffie-Hellman (named, you guessed

it, for its inventors), and DSA, the Digital Signature Algorithm (invented by David Kravitz).

2.3.2 Diffie-Hellman Key Exchange Protocol

Diffie-Hellman key exchange, also called exponential key exchange, is a method of digital

encryption that uses numbers raised to specific powers to produce decryption keys on the basis

of components that are never directly transmitted, making the task of a would-be code breaker

mathematically overwhelming.

The most serious limitation of Diffie-Hellman in its basic or "pure" form is the lack of

authentication. Communications using Diffie-Hellman all by itself are vulnerable to man-in-the-

middle attacks. Ideally, Diffie-Hellman should be used in conjunction with an authentication

method such as digital signatures to verify the identities of the users over the public

communications medium. So, we have used Diffie-Hellman for the same proposes in our scheme

i.e., to verify the identity of the each participant in the session key generation mechanism.

14

2.4 Mathematical Overview

2.4.1 Groups

A mathematical structure consisting of a set G and a binary operator on G is a group if,

 a, b G, if c = a b, then c G (Closure)

 a (b c) = (a b) c, a, b, c G (Associative)

 e G, such that a G, a e = e a = a (Identity element)

 a G, a G such that, a a = a a = e. a is unique for each a and is called the

inverse of a.

The group is represented as G, . Additionally, a group is said to be abelian if it also satisfies

the commutative property, i.e., a, b G, if, a b = b a.

2.4.2 Modular Arithmetic

In modular arithmetic, the outcome of „a mod n‟ is always a non-negative integer less than „n‟. In

other words, the result of the modulo operation with modulus „n‟ is always an integer between 0

and n-1. This set of integer {0,1,2,….n-1} created by the modulo operation is, in modular

arithmetic, referred to as the set of least residues modulo n or Zn.

Zn = {0, 1, 2, … n-1}. Zn is the set of integers from 0 to n-1.

Zn* is a sub-set of Zn that contains all the numbers that is less than „n‟ and are relatively prime to

„n‟.

Zn* = {x < n-1 | x and n are relatively prime}.

15

2.4.3 Additive Inverse

In Zn, two integers are additive inverses of each other if

a + b ≡ 0(mod n)

Basically, in modular arithmetic, Zn is a set of integers where each integer has its additive

inverse.

2.4.4 Multiplicative Inverse

 In Zn, two numbers a and b are the multiplicative inverse of each other if

a * b ≡ 1(mod n)

Basically, in modular arithmetic, an integer „a‟ has a multiplicative inverse in Zn if and only if

gcd(n,a) = 1, i.e. a and n are relatively prime. Thus, Zn is a set of integers where only some

integers have multiplicative inverse. But, Zn* is a set of integers where each integer has a

multiplicative inverse.

2.4.5 Generator „g‟

An element g is called a generator of a group G = <Zp*, X>, if every element in G can be

expressed as the product of finitely many powers of g.

i.e, G = { e, g
1
, g

2
,…….,g

n-1
}, where g

n
=e and „e‟ is the identity element of the group G.

2.4.6 Cyclic Group

If the entire group can be generated using the power of an element, then the group is called a

cyclic group. if a group has a generator, then it is a Cyclic Group.

16

2.4.7 Euler‟s Totient Function„(n)‟

The number of elements in Zn that are relatively prime to n. Hence (n) = | Zn*|. In particular,

(p) = p – 1.

2.4.8 Order of the Group

The order of the finite group is the number of elements in the group. In G = <Zp*,X>, the order

of group is (p).

2.4.9 Order of the Element

In group G = <Zp*,x>, the order of the element „a‟ is the smallest integer i such that a
i
 mod n = e

mod n, where „e‟ is the identity element of the G.

2.4.10 Primitive Root

In the group G = <Zp*,x>, when the order of the element is same as the order of the group((p)),

then that element is referred as the primitive root of the group G.

Each generator is a primitive root and can be used to generate the whole set. And if group is

cyclic, it will have primitive roots.

In other words, if g is a primitive root of the group G = <Zp*,X>, the set Zp* can be generated as,

Zp* = { g
1
,g

2
,g

3
,……,g

(p)
}

17

2.4.11 Diffie-Hellman Key Exchange Protocol

In Diffie-Hellman, p is a large prime number and g is a generator of group Zp* with

multiplication as its operation, <Zp*, X>. Here, Zp* is same as Zn* except that p is a prime. Zp*

contains all integers from 1 to p-1. Since p is a prime number, all the members of the set Zp*

have multiplicative inverse.

To implement Diffie-Hellman, the two end users A and B, while communicating over an

insecure channel, mutually agree on positive whole numbers p and g, such that p is a prime

number and g is a generator of p. The generator g is a number that, when raised to positive

whole-number powers less than p, never produces the same result for any two such whole

numbers. The value of p may be large but the value of g is usually small.

Once A and B have agreed on p and g, they randomly choose positive whole-number keys

privately, a and b, both are less than the prime-number modulus p. Neither user divulges their

personal key to anyone; ideally they memorize these numbers and do not write them down or

store them anywhere. Next, A and B compute public keys a* and b* based on their personal keys

according to the formulas

a* = g
a
 mod p

and

b* = g
b
 mod p

The two users can share their public keys a* and b* over a communications medium assumed to

be insecure, such as the Internet or a corporate wide area network (WAN). From these public

18

keys, a number x can be generated by either user on the basis of their own personal keys. A

computes x using the formula

x = (b*)
a
 mod p

B computes x using the formula

x = (a*)
b
 mod p

The value of x turns out to be the same according to either of the above two formulas. However,

the personal keys a and b, which are critical in the calculation of x, have not been transmitted

over a public medium. Because it is a large and apparently random number, a potential hacker

has almost no chance of correctly guessing x, even with the help of a powerful computer to

conduct millions of trials. The two users can therefore, in theory, communicate privately over a

public medium with an encryption method of their choice using the decryption key x.

2.5 Various Authentication Schemes for Distributed Network

In the era of internet various types of information are shared among distant users. So it is very

much necessary that the identity of the users gets authenticated before allowing the sharing of

information[6].

Firstly in 1981, Lamport [1] proposed a single sever authentication scheme for authenticating

users in the distributed environment like internet, which is a highly insecure network. However,

the scheme proposed by him required the server to keep a verification table for the remote users.

So, the major drawback of this schema was that information can be hacked by the hackers and

thus, can be its security parameters can be compromised easily.

19

To use the network services provided by servers, password and hash function based

authentication using smart card is one of the simplest and most widely used strategies. However,

there are two weaknesses in the hash-based function schemes. The one is that the server should

store verification table to verify the validity of the users, but it will suffer from the stolen-verifier

attack. The other is, timestamps are used to avoid replay attacks, but it needs time

synchronization [11]. So, to strengthen the security and lowers the communication and

computation cost, a number of single-server authentication schemes using one-way hash function

without verification table were proposed [2][3][4].

Hwang and liu[15] proposed a efficient and secure solutions where there is no necessary to

maintain password table to verify the authentication of the user. But, it involves high

communication and computational cost.

To remedy this, Sun proposed the revised version to significantly reduce the communication and

computational costs [4]. However, it was for static user which limited its application and increase

chances of ID-theft problem.

In order to overcome the ID-theft problem, Das gave a dynamic ID-based remote user

authentication scheme using smart cards [16].

Chien and Chen proposed a revised version of the Das‟s scheme to conquer the weakness of the

protection of user‟s anonymity [17].

However, the Kim et al‟s effort [18] is remarkable in order to guarantee user privacy against a

remote server and traceable anonymity authentication along the user protection against the

outside attacks.

20

But, these single server authentication schemes had certain shortcomings. Since, the user

accesses services from more than one server, remote user authentication schemes for multi-

server architectures, rather than single server architecture is considered. And if multiple servers

architecture is considered for these conventional schemes designed for single server

environment, the user must register their identities and passwords at these servers individually,

which results in inefficiency for the scheme and highly hectic for the user to register at different

servers individually.

As a result, the single-server architecture authentication schemes become highly inconvenient

and impractical. And, as the amount of servers increases in the multi-server environment, many

multi-server user authentication schemes for these environments came up [19] [20] [7] [5] [8]

[21] [22] [10] [23] [24]. In these multi-server schemes, the remote user only registers with the

authentication center once and can obtain services from multiple servers without repeating

registration to every single server [11].

In 2001,Li et al[5] proposed a simple password authentication scheme for multi-server

architecture in which the password authentication system is a pattern classification system based

on neural networks without any verification table. Using neural networks for the scheme was a

good approach but to train and maintain neural networks would take a great deal of time. The

scheme cannot resist password guessing attacks and insider attack[25]. Their scheme did not

provide mechanism for mutual authentication and session key agreement[13]. The costs such as

computation and communication costs are extremely high as the scheme is based on the neural

networks.

21

In 2003, Lin et al[22] gave a multi-server protocol based on ElGamal digital signature and

geometric transformations on an Euclidean plane. But, this protocol has weaknesses and broken

by Cao and Zhong [26].

In 2004 and 2005, Tsaur et al [27,23] gave two protocol. But, both their scheme were based on

Lagrange interpolating polynomial which is computationally intensive.

 In 2006 and 2007, Cao et al. [28] and Hu et al. [29] proposed an authentication scheme for

multi-server environment. Both of their schemes assume that all servers are trustworthy.

Nevertheless, this assumption is not always true as stated in [10].

 In 2008, Lee et al. [30] proposed an authenticated key agreement scheme for multi-server using

mobile equipment. However, their scheme cannot add a server freely. Because when a server is

added, all users who want to login to this new server have to re-register themselves at the

registration center for getting a new smart card. This increases the registration center‟s card-issue

cost.

Lin [21] extended the work of Li et al [20] and revised their scheme by removing its

vulnerabilities. However, this new scheme did not provide mechanism for mutual authentication

and session key agreement[13].

Juang [7] also proposed a multi server authentication scheme in which symmetric encryption

techniques without verification table was used which not only solved the problem of repeat

registration but also satisfies computation efficiency. This scheme removed the weakness of

Lin[21] and Lie[20] and provide mutual authentication and session key agreement mechanism.

This scheme suffered from insider attack also[16].

22

Ku et al. [31] showed that Jung‟s scheme was vulnerable to the insider attack and could not

provide forward secrecy.

In 2005, Chang and Kuo [19] proposed another authenticated key agreement protocol based on

the Chinese Remainder Theorem and a modulus table.

Huang and Shiau [20] showed that both Jung[7] and Chang-Kuo[19] lacked of explicit key

authentication and were inefficient with respect to communication costs. And they came up with

an improved authentication protocol based on the line of geometry. However, Huang and Shiau‟s

scheme still lacks of forward secrecy, and each server must maintain a user table[13].

Liao and Wang [8] proposed a dynamic ID based remote user authentication scheme for a

multi-server environment. They utilized a dynamic ID instead of a static ID to achieve user

anonymity. They indicated that a threat to user privacy is caused because of static ID for

authentication. Hence, the scheme is appropriate for specific applications such as e-

commerce[13]. However, their scheme is not secure. Hsiang et al [9] found that the Liao‟s

scheme suffered from inside attacks. Liao and Wang scheme is vulnerable to server-spoofing

attack and impersonation attack[32].

In 2008, Tsai[10] proposed an efficient multi-server authentication scheme based on one-way

hash function without a verification table. In their scheme, the server do not maintain the

verification table [10]. The scheme is based on the nonce, so it does not suffer from the time

synchronization problem. Tsai claimed that their proposed scheme can satisfy the properties

including mutual authentication, preventing the replay attack, preventing the spoofing attack, no

verification table, and session key agreement[33].

23

Yoon and Yoo[6] claimed that the Jung and Tsai scheme are vulnerable to privileged insider

attacks.

Chen et al.[34] showed that Tsai‟s scheme cannot resist the server spoofing attack, and proposed

a novel protocol. They claimed that the new protocol is not only the most secure but also the

most efficient in a multi-server environment.

Xie and Chen [11] claimed that Chen et al scheme[34] cannot resist off-line password guessing

attack and proposed a new scheme. However, we found that Xie and Chen scheme[11] is not

resisted to insider attacker, impersonation attack and fails forward security.

Zhu et al[12] claimed that both the scheme Liao and Wang[8] and Tsai[10] suffers from the

server spoofing attack and the parallel session attack and proposed a new scheme. However, we

pointed out their scheme cannot resist impersonation attack.

This Chapter has presented a history and background on the work already done in the field. This

presents fairly in detail what all is already done and presents a faint idea of what all could be

done.

24

CHAPTER 3: METHODOLOGY

This chapter describes the proposed methodology of the thesis. This starts with the description of

the framework, then, we discuss the complete model so as to give a detailed basis for our thesis.

3.1 System Framework

An Overview of the entire system framework is presented in Figure 3.1. The whole methodology

is divided into four phases: the first phase is server registration, then User Registration phase,

after which comes the Authentication of Remote User and Server phase and final phase is

Mutual Authentication and Session Key Generation. In the first phase, each server first sends its

ID and registers itself with the authentication center. The user who wants to obtain services from

a registered server at the authentication center, register himself/herself with a chosen Id and

chosen password at authentication center during the user registration phase. In the authentication

of remote user and server phase, the user logs in at the authentication center. The authentication

center verifies the authenticity of the user and the remote server with which the user wants to

connect. If the authentication is successful, then last phase execute in which the authentication

center allows the user to communicate with the remote server directly and authenticate each

other and establish session key. The computed session key is used in the service transaction over

an insecure channel. The completed task flow is elaborated in the following sections.

25

User Authentication Centre(AC) Target Server

1. Server Registration:

 Enter SIDj

 Compute token for server

 Receive token

2. User Registration:

Select ID, Pw

 Compute token for user

Receive and Store token

3. Authentication Center authenticating User and Server:

Input: ID*, Pw*, SID*

Generate token for AC

 token

 User ID*

 Generate token for AC

 token

 Verify received messages and authenticate user and Server

 Generate: Mutual Key

 Mutual Key Mutual Key

4. Mutual Authentication and Session Key Generation:

Generate: e1 Generate: e2

 e1

 e2

Authenticate Server Authenticate User

Compute: Session Key Compute: Session Key

Figure 3.1: System Framework

26

3.2 Proposed Methodology

The proposed methodology takes „s‟ servers, „n‟ remote users and an authentication centre(AC).

At the beginning, AC randomly chooses two secret numbers „x‟ and „y‟. When the user decides

to login a server, he/she first registers themselves at the authentication center. The proposed

methodology consists of 4 phases:

1. Server Registration,

2. User Registration,

3. Authentication of Remote User and Server,

4. Mutual Authentication and Session Key Generation.

The notations used in the scheme are showed in following table:

Table 3.1: NOTATIONS

 Symbol Definition

U, Sj The user and jth server, respectively

AC The authentication center

ID, Pw U‟s identity and password, respectively

SID Sj‟s identity

x AC generated random secret number for U

Y AC generated random secret number for Sj

K User random nonce

h(.) Secure one-way hash function

 Bit-wise Exclusive-or(XOR) operation

|| Concatenation operation

A B: M A sends a message M to B

P A large prime number

G The primitive element in the GF(p)

a , b , c , d , a‟ , b‟ Ephemeral random numbers in {1,……,p-1} generated

by user, server and authentication center.

 p, g Publicly known Information

x, y Information held by AC

27

As the proposed methodology is using Diffie-Hellman, „p‟ and „g‟ are two publicly known

variables, where „p‟ is a large prime number and „g‟ is the generator of order p-1 in the group

<Zp*,x>. The details for each phase are as follow,

3.2.1 Server Registration Phase:

In this phase, the server Sj requests the authentication centre to register it in form of sending its

ID, as shown in the figure 3.2. The following steps are performed during the registration phase.

 Sj AC: SID

In this, the server sends its identity „SID‟ to the AC by a secure channel.

 AC S: h(SID||y)

AC performs a hash operation on the concatenated value, obtained by the concatenation of

the received server ID „SID‟ and the secret value „y‟, i.e.

h(SID||y)

AC sends back this computed value to server Sj without storing it through a secure channel.

 Figure 3.2: Server Registration Phase

28

3.2.2 User Registration Phase:

The user sends his identity „ID‟ and XORed password „Pw K‟ to AC through a secure channel

to get registered with the authentication center, as shown in the figure 3.3. AC performs

following computation on them.

 U AC: ID, (Pw K)

After receiving the „ID‟ and XORed password „Pw K‟ where K is a randomly chosen

value at the user end only, AC computes „Ru‟ as a hash function on the concatenated value of

„ID‟ and the secret value „x‟ and C0 as an XORed value of Ru and hashed value obtained on

performing a hash function on the received value „Pw K‟.

Ru = h(ID||x) and

 C0 = Ru h(Pw K).

 AC U: C0

AC sends C0 back to user through a secure channel which gets stores on the user terminal or

in the smart card but with no storage at the AC side.

Figure 3.3: User Registration Phase

29

3.2.3 Authentication of Remote User and Server:

The following steps explain how a remote user generates a session key with the desired server

through AC. The AC allows only the registered user to login and access the registered servers.

The servers which are ready to provide their resources to user through AC, need to be logged in

at the AC before this phase starts or else the user will not be able access that server through

AC.As the scheme is maintaining no verification table either at AC end or at user or server end,

the authentication center can still securely authenticate the validity of user and server and via-

versa also, as shown in the Figure 3.4. In this phase, the communication is conducted between

user and AC and between server and AC. The user and server do not communicate directly with

each other. The AC does not generate any session key as that will be generated in the last phase.

However, AC generates a mutual session key which is important in the session key generation.

The steps are executed as follows,

A.1 U AC: ID*, SID*, C1, C2; U Sj: ID*

When the user wants to access a server, registered on AC, the user enters his/her registered ID

and password and the target server Id „SID*‟ with which user desires to communicate. The user

terminal computes Ru using the stored value „C0‟ in the smart card and the password entered by

the user. „K‟ is the randomly chosen value at the time of user registration with the AC. The AC

obtained Ru by XORing the „C0‟ and hashed „Pw K‟.

Ru = C0 h(Pw K)

30

After retrieving Ru, the user randomly chooses „a‟ ϵ Z*p and computes C1 as modulus operation p

over the value, obtained by raising „g‟ to power „a‟ and C2 as a hash operation on the

concatenated value of Ru, SID* and C1.

C1 = (g
a
)(mod p)

C2 = h(Ru||SID*||C1)

On the computation of C1 and C2, user sends ID*, SID*, C1, C2 to AC and ID* to target server Sj

with which the user wants to communicate or of which the user wants to access services over the

public network.

A.2 Sj AC: ID*, SID*, C3, C4

On receiving the user request for accessing server „j‟ resources, in the form of ID*, the server

„Sj‟ extracts its stored hashed ID provided by the AC at the time of registration, it performs

following operations on user id.

„Sj‟ randomly selects „b‟ ϵ Z*p and compute C3 as modulus operation p over the value, obtained

by raising „g‟ to power „b‟ and C4 by performing hash operation on the concatenated value of

h(SID||y), ID* and C3. Here, h(SID||y) is the registered value with the AC stored at the server.

C3 = (g
b
)(mod p)

C4 = h(h(SID||y)||ID*||C3)

After these computation, Sj sends ID*, SID*, C3, C4 to the AC over the public network.

A.3 AC U: C5, C6; AC Sj: C7, C8

On receiving messages in A.1 and A.2, the AC now verifies whether the received values, C2 and

C4, over the public network are correct or not. For verification of received values, AC computes

31

its own C2‟ and C4‟ by using received user id „ID*‟, server id „SID*‟, C1, C3, and its „x‟ and „y‟.

As AC does not maintain any verification table, AC calculates h(ID*||x) and h(SID*||y) on the

received „ID*‟ and „SID*‟ for use in further operations. After calculating C2‟ and C4‟, AC checks

them with the received C2 and C4 as follows,

h(h(ID*||x)||SID*||C1) = C2?

h(h(SID*||y)||ID*||C3) = C4?

If they both are equal, then AC authenticates the user with id „ID*‟ and the server with id „SID*‟

and provides them with further information. If either of them is not equal, AC does not

authenticate that identity and rejects any further communication with that identity for that

session.

After authenticating both the identities, AC chooses randomly „c‟ ϵ Z*p and „d‟ ϵ Z*p and

computes C5, C6, C7 and C8. Here, the scheme computes two more variables K1 and K2 using C1

and C3 respectively.

C5 = (g
c
)(mod p)

 K1 = (C1)
c
(mod p) = (g

ac
)(mod p)

 C6 = h(K1||h(ID*||x)||SID*)

 C7 = (g
d
)(mod p)

 K2= (C3)
d
(mod p) = (g

bd
)(mod p)

 C8 = h(K2||h(SID*||y)||ID*)

After computing these values, the AC communicates C5, C6 to the user and C7, C8 to the server

„Sj‟ on the public network.

32

A.4 U AC: C9; Sj AC: C10

On receiving the messages from AC, the user computes K1 using modulus operation „p‟ over the

received value C5 which is raised to power „a‟, that is randomly chosen during calculation of C1.

After computing K1, user computes C6‟ using this K1, SID* and h(ID||x) as follows,

K1 = (C5)
a
(mod p) = (g

ac
)(mod p)

C6‟ = h(K1||h(ID||x)||SID*)

On calculating C6‟, user ensures its equality with the received value C6 from the AC over the

public network.

If it equals, the user authenticates the validity of AC and gets ensured about the security of

network and accepts the communication with AC for further information and if C6‟ value comes

out different then the received C6, then User rejects any further communication with the AC and

ends the session with it.

After the authentication of the AC, the user computes C9 by performing a hash operation K1.

Here, the value of K1 is updated by 1.

 C9 = h(K1+1)

On the completion of the above operation, user sends C9 to AC and asks for C11 over the same

public network.

Similarly on the target server end, the server „Sj‟ receives messages from AC and computes K2

using modulus operation „p‟ over the received value C7 which is raised to power „b‟, that is

randomly chosen during calculation of C3. After computing K1, user computes C6‟ using this K2,

ID* and h(SID||y) as follows,

33

 K2 = (C7)
b
(mod p) = (g

bd
)(mod p)

 C8‟ = h(K2||h(SID||y)||ID*)

On calculating C8‟, server ensures its equality with the received value C8 from the AC over the

network.

If it equals, the server authenticates the validity of AC and gets ensured about the security of

network and agrees for further communication with AC and if C8‟ value comes different, then

server rejects any communication with AC and ends the session there only.

On the authentication of AC, the user computes C10 by performing a hash operation over K2

which is incremented by 1.

 C10 = h(K2+1)

After completion of the above operation, server sends C10 and asks for C11 from AC over same

public network.

A.5 AC U: C11; AC Sj: C11

When AC receives C9 and C10 from the user and server respectively, it verifies the validity of

these received values for further authenticity of the user and server and ensures itself that the

network is secure for transmitting mutual session key to user and server. It calculates C9‟ by

incrementing its own K1 value by 1 and performing a hash operation on it. Similarly, it gets C10‟

by performing hashing on the value obtained by updating K2 by 1.

 C9‟ = h(K1+1)

 C10‟ = h(K2+1)

34

After these calculations, the AC checks their equality with C9 and C10, respectively. If they both

are equal, AC authenticates the user and target server completely, as K1 and K2 values sent in C6

and C8 are received and sent back by the intended receivers correctly and safely. And either of

them is not equal, AC stops immediately any communication with both the ends and ends the

session, assuming that the user or the server or the network is not secure for communicating any

information to the user or server.

After the final authentication of user and server, AC generates a mutual session key „C11‟ for the

user and target server. This mutual key is used by the user and target server for further

communication between them. The key is obtained by XORing the information held by both user

and server so that user can extract the server information and server can extract the user

information using this key. It contains the hashed value of user information, i.e.

„h(ID*||x)||SID*||K1+2‟ and hashed value of server information, i.e. „h(ID*||x)||SID*||K1+2‟. The

computation of C11 is as follows,

 C11 = h(h(ID*||x)||SID*||K1+2) h(ID*||x)||SID*||K1+2)

Once the C11 is computed, it sent to user and server over the same public network from where

AC received C9 and C10. The AC does not conduct any communication with them after this. User

and target server is allowed to communicate with each other directly and generate the session

key. This step marks the end of AC involvement.

3.2.4 Mutual Authentication and Session Key Generation Phase:

This phase is an important one as it generates the session key. In this phase, the user and target

server communicate directly and mutually authenticate each other after which they involve in the

process of session key generation. There is no communication with AC for any information. This

35

phase ends with the generation of session key between user and target server. The generated

session key is only known to the user and the target server. No one else have any information for

the generation of session key, even AC has no information how the session key is generated.

Section B of figure 3.4 shows the mutual authentication of the user and the target server. The

details of each step are as follows.

B.1 U Sj: C14

On receiving the mutual session key „C11‟ from AC, the user U chooses a‟ϵ Z*p and extracts the

server information „C12‟ which is h(h(SID||y)||ID*||K2+2), from C11 by XORing C11 and user

information h(h(ID||x)||SID*||K1+2). Here, the user increases value of K1 by only 1 as it has

already been incremented by 1 in C9. The computation of C12 is following,

C12 = C11 h(h(ID||x)||SID*||K1+2)

After the extraction of C12, user computes two new values, „C13‟ which is a modulus operation

„p‟ on the value obtained by raising „g‟ to the power „a‟‟ which is a randomly chosen value form

the group <Zp*,x> and „C14‟ which is a hashing operation on the XORed value of „C13‟ and the

extracted „C12‟.

C13 = (g
a‟

)(mod p)

C14 = h(C13 C12)

However, the user transmits only C14 to the server Sj through the public network and keeps the

C13 and C12 for further computation.

36

B.2 Sj U: C17

Similarly, when the target server „Sj‟ receives the mutual session key „C11‟ from AC, Sj extracts

the user information „C15‟ which is h(h(ID||x)||SID*||K1+2), from C11 by XORing C11 and server

information h(h(SID||y)||ID*||K2+2). Here, the server increases value of K2 by 1 only as it has

been incremented by 1 in C10 already. The computation of C15 is following,

C15 = C11 (h(h(SID||y)||ID*||K2+2)

After the extraction of C15, the server randomly chooses b‟ϵ Z*p and computes two new values,

„C16‟ which is a modulus operation „p‟ on the value obtained by raising „g‟ to the power „b‟‟ and

„C17‟ that is a hashing operation on the XORed value of „C16‟ and the extracted value „C15‟.

C16 = (g
b‟

)(mod p)

C17 = h(C16 C15)

However, the server sends C17 to the user through the public network and keeps C16 and C15 for

further computation.

B.3 U Sj: e1

When user receives C17, user XOR the received C17 and user information

„h(h(ID||x)||SID*||K1+2)‟ to compute C16‟. After extracting C16‟, user concatenates C16‟ and C13

and performs hash function on the concatenated value. User computes this value as „e1‟.

C16’ = C17 h(h(ID||x)||SID*||K1+2)

e1 = h(C16‟||C13)

37

On the computation of e1, user sends the computed value of e1 to target server Sj for mutual

authentication and finally session key generation through the public network.

B.4 Sj U: e2

Concurrently to the above step „B.3‟, the server performs the following step. On receiving C14

from user, the server Sj retrieves C13‟ by XORing C14 and server information

„h(h(SID||y)||ID*||K2+2)‟.

C13‟ = C14 h(h(SID||y)||ID*||K2+2)

After computing C13‟, server computes e2 which is a hashed value calculated by performing hash

operation on the concatenated value of C13‟ and C16.

e2 = h(C13‟||C16)

Server also sends „e2‟ value through public network to user for their mutual authentication and

generation of session key between them.

B.5 Mutual Authentication and Session Key

This is the final and last step of the scheme. In this step, the User and server authenticates each

other and generate a session key between them for their secure communication over the public

network using that with any kind of symmetric cryptographic technique. However, the session

key generated is only for this session between the user and the target server. For a session key

with another server, the user have to login again and go through all the above steps of last two

phases for the generation of new session key. The authentication and generation of session key is

as follows,

38

At the recipient of e1 and e2 at the respective ends, user and target server concurrently compute e3

and e4 respectively. Here, e3 is a hash value produced by performing hash function on the

concatenated value of C13 and C16‟ and e4 is also produced in the same way as e3 but instead of

C13 and C16‟, e4 used concatenation of C16 and C13‟, that is C13 and C16‟ in reverse order.

e3 = h(C13||C16‟)

e4 = h(C16||C13‟)

After computing e3 and e4, user and target server evaluate these computed values with the

respectively received values, that is e2 and e1.

e3 = e2?

e4 = e1?

If they both come equal, user and target server authenticate the identity of each other and agree

to produce a session key between them. They both produce the session key individually at their

own ends. However, they still compute same session key.

But if either of them evaluate to different value, user and target server fails each other

authenticity and do not proceed for session key generation.

The Session Key defined between User „U‟ and Target Server „Sj‟ is,

Session Key: h(h(h(ID||x)||SID||K1+2)||h(h(SID||y)||ID||K2+2)||C13+2||C16+2)

39

User Authentication Centre Target Server

A. Authentication Center authenticating User and Server

Enter ID*, Pw*, SID*

Extract: Ru=C0 h(Pw* K)

Choose: a ϵ Z*p

Compute:

C1=(g
a
)(mod p)

C2=h(Ru||SID*||C1)

 ID*, SID*, C1,C2

Receive messages from User

ID*

Choose: b ϵ Z*p

Compute:

 C3= (g
b
)(mod p)

 C4=h(h(SID||y)||ID*||C3)

 ID*, SID*, C3, C4

 Receive messages from Server

 Verify:

 h(h(ID*||x)||SID*||C1)=C2?

 h(h(SID*||y)||ID*||C3)=C4?

 Choose: c ϵ Z*p; d ϵ Z*p

 C5=(g
c
)(mod p)

 K1=(C1)
c
=(g

ac
)(mod p)

 C6=h(K1||h(ID*||x)||SID*)

 C7=(g
d
)(mod p)

 K2=(C3)
d
=(g

bd
)(mod p)

 C8=h(K2||h(SID*||y)||ID*)

 C5, C6 C7, C8

40

User Authentication Centre Target Server

K1=(C5)
a
(mod p) K2=(C7)

b
(mod p)

Verify: h(K1||h(ID||x)||SID*)=C6? Verify: h(K2||h(SID||y)||ID*)=C8?

Compute: Compute:

 C9=h(K1+1) C10=h(K2+1)

C9 C10

Receive messages from User and Server

 Verify:

h(K1+1)=C9?

h(K2+1)=C10?

 Compute: C11=h(h(ID*||x)||SID*||K1+2) h(h(SID*||y)||ID*||K2+2)

C11 C11

B. Mutual Authentication and Session Key Generation

Choose a‟ϵ Z*p Choose b‟ϵ Z*p

Compute: Compute:

 C12=C11 (h(h(ID||x)||SID*||K1+2) C15=C11 h(h(SID||y)||ID*||K2+2)

 C13=(g
a‟
)(mod p) C16=(g

b‟
)(mod p)

 C14=C13 C12 C17=C16 C15

 C14

 C17

Extract: C16‟=C17 h(h(ID||x)||SID*||K1+2) Extract: C13‟=C14 h(h(SID||y)||ID*||K2+2)

Compute: Compute:

 e1=h(C16‟||C13) e2=h(C13‟||C16)

 e1

e2

Compute: Compute:

 e3=h(C13||C16‟) e4=h(C16||C13‟)

Verify: e3=e2? Verify: e4=e1?

User and Server Compute Session Key as:

h(h(h(ID||x)||SID||K1+2)||h(h(SID||y)||ID||K2+2)||C13+2||C16+2)

Figure 3.4: Authentication Phase

41

CHAPTER 4: ANALYSIS

In this, we analyze the proposed system in terms of security and performance based on the

observations derived from different works in this field. The security analysis validates the

methodology against every possible security attack and performance analysis evaluates it in

terms of accuracy and efficiency.

4.1 Security Analysis

Theorem 1: The proposed scheme can withstand against Password Guessing Attack

Proof: The proposed scheme does not get attack by on-line password guessing attack as the

authentication center will authenticate the user before allowing it for mutual authentication with

the server, i.e. after A.5 the password guessing attack will fail. The offline password guessing

attack will fail as the password is only protecting the user and no important information is

generated by using password. The user with the legal password can only generate the correct

value of Ru from the C0 h(Pw* K) which is contained in the smart card, otherwise the Ru

generated by the offline guessed password will be incorrect.

Theorem 2: The proposed scheme can withstand against Replay Attack

Proof: In the proposed scheme, the replay attack cannot occur at any point of time as the

messages transmitted among server, user and authentication center contain the element of

freshness in them. The freshness in messages is because of the use of randomly chosen values of

42

a, b, c, d, a‟, b‟ from Z*p. So, the proposed protocol can withstand the replay attack till the

attacker has not know h(SID||y) or h(ID||x).

Theorem 3: The proposed scheme can withstand against Impersonation Attack

Proof: The proposed protocol first uses the authentication center to authenticate the server and

user and provide them with new authentication key every time they go for mutual authentication

phase. If the attacker imitates as the valid user, he cannot get authentication from authentication

center without knowing user h(ID||x), C1 and C2. The server is provided only the user id for

computation. Thus, the attacker will not get the correct authentication key. Thus, the proposed

protocol resists Impersonation attack.

Theorem 4: The proposed scheme can withstand against Insider Attack

Proof: In the proposed scheme, the user makes registration to authentication center by presenting

its password in the form (Pw K) instead of simply providing it as (Pw). So, any insider in the

authentication center won‟t be able to get to know the actual user password till it does not know

the value of K, which is a randomly generated value. So, the proposed scheme successfully

resists insider attack.

Theorem 5: The proposed scheme can withstand against Stolen-Verifier Attack

Proof: The proposed scheme does not allow authentication center and server to hold any

verification table. Due to this, the stolen-verifier attack is impossible to occur. The authentication

center and server authenticates the user from the values it provides to them.

43

Theorem 6: The proposed scheme can withstand against Man-In-The-Middle Attack

Proof: Since the message generated by the server and user for the authentication center contains

the secret identity of the user and server, the message generated by the adversary would fail to

get authentication by the authentication center. The adversary would not know the values of „x‟

and „y‟. So, the messages generated by the adversary cannot imitate the correct values of user

and server. Thus, our scheme resists Man-in-the-Middle attack.

Theorem 7: The proposed scheme can withstand against Server Spoofing Attack

Proof: In the proposed protocol, the attacker cannot masquerade as Sj and cheat user or

authentication center. As servers do not contain verification table, they cannot authenticate any

user directly. To authenticate the user, the server must get authenticated by the authentication

center first and then have the h(ID||x) of user. The attacker must know h(SID||y) to cheats

authentication center. Therefore, this scheme resists Server Spoofing attack.

Theorem 8: The proposed scheme can withstand against Authentication Center Spoofing Attack

Proof: In our scheme, the attacker cannot masquerade as authentication center, as every user and

server has (ID||x) and (SID||y) respectively. So, they use their secret information in C6 and C8 to

authenticate the authentication center. Thus, this scheme resists Authentication Center Spoofing

Attack.

Theorem 9: The proposed scheme can withstand against Forward Secrecy Attack

Proof: The scheme is forward secure. Even if x and y discloses, the attacker has to get two

messages C1, C2, C3 and C4 to get authenticate from the authentication center. Since, C1 and C3

are randomly chosen. The attacker will not able to guess these accurately and thus generate

44

access to session key. So, the attacker, getting only secret key x and y, cannot get the session

key.

Theorem 10: the proposed scheme can withstand against Denning-Sacco Attack

Proof : The Denning-Sacco attack is where an attacker compromises an old session key and tries

to find a long-term private key (e.g. user password or server private key) or other session

keys[12]. The proposed scheme resists this type of attack as it is harder for the attacker to get the

K1 and K2 and spoof other entities which are in communication with it.

Theorem 11: The proposed scheme provides Authentication Key Security

Proof: in this scheme, the authentication key cannot be calculated by anyone other than the

server, user and authentication center since it contains random values K1, K2, user secret key and

server secret key. The attacker can only get authentication key if it gets to know these values

which are random and very large.

Theorem 12: The proposed protocol provides Security of Session Key

Proof: In this scheme, the session key cannot be calculated by any other except the server and

user since it contains random values C13, C16, user authentication key, server authentication key.

Only, the authenticated server and authenticated user can generate these values and the session

key. Thus, the session key is secure.

45

 Security Properties

 Proposed Scheme

Password Guessing Attack Yes

Replay Attack Yes

Impersonation Attack Yes

Insider Attack Yes

Stolen-Verifier Attack Yes

Man-In-The-Middle Attack Yes

Server Spoofing Attack Yes

Authentication Center spoofing

Attack

 Yes

Forward Secrecy Attack Yes

Denning-Sacco Attack Yes

Authentication Key Security Yes

Session Key Security Yes

Table 4.1: Security Properties

46

4.2 Performance Analysis

We have implemented the authentication scheme on Intel(R) Core™ i3-2330 CPU @ 2.20 GHz

and window 7 operating system using C# and Visual Studio2010.

We have successfully implemented this scheme on the above mentioned platform and the results

are convincing. It has generated the session key between a remote user and a server in the

distributed environment securely. It does not authenticate invalid user and invalid server before

computing session key where the invalid criteria include wrong user password, wrong user id,

wrong server id. Our implementation rejects any blank inputs and puts off the server with which

the user is not asking for session key.

Since the scheme uses Diffie-hellman key Exchange agreement, the generator of Zp* is usually

taking a considerable time in computation when the number of digit of p exceeds five. The

authentication scheme must take computation and efficiency into consideration. In our scheme,

user needs three XOR, ten concatenations and seven hash function operations; also, two XOR,

ten concatenation and six hash function operations are performed by the server. The

authentication performs one XOR, eighteen concatenation and ten hash function operations. As

only the hash function is taken in computation cost, our scheme computation is considerable.

But, hash-function operation is done with large computation system and smart card is used to

store the values, thereby the computation cost is not a constraint. As compare to [11], the scheme

is more efficient and computationally less costly.

This Chapter presented analysis on the methodology proposed in this thesis. This explains in

detail how it resists various security attacks and efficient.

47

CHAPTER 5: IMPLEMENTATION OF PROPOSED

METHODOLOGY

This chapter includes the implementation of the proposed methodology, which describes how the

methodology can be practically implemented. The implementation requires a computer with

network capabilities. This computer can be used to demonstrate the program alone, if it can

handle two simultaneous servers, authentication center and a client working at the same time.

Additionally to demonstrate the full strength, two or more computers will be required, that can

work as servers with full network capabilities. All ends were coded in C#. So, .Net framework is

required on the machines to run the program. No additional hardware requirement is there.

Kindly note, the implementation is from a single developer‟s point of view. Different developers

may use different approaches to implement the given model. It all depends upon the developers

comfort level with a particular set of tools/languages.

5.1 Development Environment

In this, we introduced the various technologies that were used while designing a practical

working model for the demonstration of the concept. The description includes only necessary

details of the required technology in the project. Most of the technologies used in the project are

freely available on the internet.

5.1.1 .Net Framework

The .NET Framework is a software framework developed by Microsoft that runs primarily

on Microsoft Windows. It includes a large library and provides language interoperability (each

language can use code written in other languages) across several programming languages.

Programs written for the .NET Framework execute in a software environment (as contrasted

48

to hardware environment), known as the Common Language Runtime (CLR), an application

virtual machine that provides important services such as security, memory management,

and exception handling. The class library and the CLR together constitute the .NET Framework.

The .NET Framework is intended to be used by most new applications created for the Windows

platform. Microsoft also produces a popular integrated development environment largely for

.NET software called Visual Studio [43].

5.1.2 Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is

used to develop console and graphical user interface applications along with Windows

Forms applications, web sites, web applications, and web services in both native code together

with managed code for all platforms supported by Microsoft Windows, Windows

Mobile, Windows CE, .NET Framework, .NET Compact Framework and Microsoft Silverlight.

Visual Studio supports different programming languages that includes C/C++, VB.NET, C#,

and F#. Support for other languages such as M, Python, and Ruby among others is available via

language services installed separately. It also supports XML/XSL, HTML/XHTML, JavaScript

and CSS [44].

5.1.3 C#

C# is a multi-paradigm programming language encompassing strong imperative, declarative,

functional, generic, object-oriented and component-oriented programming disciplines. It was

developed by Microsoft within its .NET initiative and later approved as a standard

by Ecma (ECMA-334) and ISO (ISO/IEC 23270:2006). C# is one of the programming languages

designed for the Common Language Infrastructure [45].

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Windows_Forms
http://en.wikipedia.org/wiki/Windows_Forms
http://en.wikipedia.org/wiki/Windows_Forms
http://en.wikipedia.org/wiki/Web_site
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Native_code
http://en.wikipedia.org/wiki/Managed_code
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/Windows_CE
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/Microsoft_Silverlight
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/VB.NET
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/F_Sharp_(programming_language)
http://en.wikipedia.org/wiki/M_(programming_language)
http://en.wikipedia.org/wiki/IronPython
http://en.wikipedia.org/wiki/IronRuby
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Ecma_International
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/Common_Language_Infrastructure

49

C# is intended to be a simple, modern, general-purpose, object-oriented programming

language.[6] Its development team is led by Anders Hejlsberg. The design goals for C# are:

 C# language is intended to be a simple, modern, general-purpose, object-oriented

programming language.

 The language, and implementations thereof, should provide support for software engineering

principles such as strong type checking, array bounds checking, detection of attempts to use

uninitialized variables, and automatic garbage collection.

 The language is intended for use in developing software components suitable for deployment

in distributed environments.

 Source code portability is very important, as is programmer portability, especially for those

programmers already familiar with C and C++.

5.2 Procedures in Implementation

To show the working of the methodology, we have stimulated smart card and the smart card

terminal as a windows application and the target server also, with which the user wants to

communicate. The authentication center has been stimulated as a console application. The

procedure for various modules used in the implementation is as follows. The code for the

procedures can be found in the Appendix-I.

http://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-ECMA-334-6
http://en.wikipedia.org/wiki/Anders_Hejlsberg
http://en.wikipedia.org/wiki/Strong_type
http://en.wikipedia.org/wiki/Bounds_checking
http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://en.wikipedia.org/wiki/Software_components

50

5.2.1 Procedure for Group Generator

This procedure is used for generating the generator of a cyclic group. This is required for the

selection of parameters and performing modular operations.

5.2.2 Procedure for Hash and XORing Operation

The following procedure performs a hash operation on the concatenated string of numbers and

words. However, it generates output in an integer number which is further XORed with another

integer used in further calculations.

5.2.3 Procedure for Power Operation using Square and Multiply Method

This procedure is used for performing the power operation on binary form of the number. It uses

square and multiply method for the easy and fast computation.

primit_root(Prime_no, fhi)

Here, prime_no is ramdomly chosen prime number and fhi is a Euler‟s Totient function

that gives the order of the group.

1 Intialise re, i, a.

2 Repeat steps 3 to 6 while a < (Prime_no - 1)

3 Repeat steps 4 and5 while re !=1

4 Assign re = pow(a,i) mod Prime_no.

5 Increament i till re != 1.

6 If i is equal to fhi ,

7 break

8 return a.

1 Concatenate string and number to a string.

2 Extract Ascii code of the concatenated string

3 Perform hashing on the ascii code.

4 Convert Ascii code to integer .

5 Perform xor on the two integer numbers.

51

5.2.4 Procedure for Sending Data

This procedure creates a socket and then sends the string over the public network. We have used

a fixed port for simplicity.

Pow(int e, int f, int n)

1 Initialize x

2 Assign binary form of f to x

3 Set y = sq_and_multi(a, x, n).

4 Return y.

//---------- the square and multiply method --------------//

sq_and_multi(a, x, n)

1 y = 1

2 //as nb is the number of bits in x.

3 For (i=0 to nb-1)

4 {

5 // multiply only if the bit is only 1.

6 If (xi = 1)

7 y = (a*y) mod n

8 // squaring is not needed in the last iteration.

9 a = a
2
 mod n

10 }

11 return y

//------ to convert integer to binary ------------//

1 // N is the decimal number

2 While N > 0

3 // output the remainder

4 Print N mod 2

5 // replace N by n divided by 2

6 N = N/2

7 End loop

52

5.2.5 Procedure for Receiving Data

This procedure creates a socket and then accepts the data over the public network. We have used

a fixed port for simplicity.

5.2.6 Procedure for Mutual Key

This procedure transmits the mutual key over the public network which is used by the server and

user to generate session key. Before sending the key, it authenticates the validity of user and

server and security of the public channel.

1 // Here, port is used for port number and sck_r is for the socket at the client side.

2 port = 7798.

3 // Define Socket

4 sck_r = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp).

5 IPEndPoint localendpoint = new IPEndPoint(IPAddress.Parse(aip_r), port).

6 Initialise data to text.

7 try

8 {

9 sck_r.Connect(localendpoint);

10 cx = "User is connected to authencation centre for registration ";

11 Send data.

12 }

1 // Here, port is used for port number and sck2 is for the socket at the authentication side.

2 port = 1235;

3 // Define Socket.

4 sck2 = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

5 sck2.Bind(new IPEndPoint(0, pno));

6 sck2.Listen(1);

7 // Receive Data

8 Accept the socket request.

9 Receive the data through socket.

1 Generate a by concatenating user id, server id and user token.

2 Perform hash operation on a.

3 Store the hashed value in a1.

4 Generate b by concatenating server id, user id and server token.

5 Perform hash operation on b.

6 Store the hash value in b1.

7 Perform xor-ing in a1 and b1.

53

5.2.7 Procedure for Session Key

The procedure below generates the session key at the user and server end individually. However,

the generated key is same. This key is used for communication over the public network.

5.2.8 Procedure for Encrypting Data

This procedure is used to encrypt the data to send to server over the public network. The key for

encryption process is the session key generated between user and server.

5.2.9 Procedure for Decrypting Data

This procedure is used to decrypt the encrypted data received from user over the public network.

The key for decryption is the session key generated between user and server.

1 Perform hashing on concatenated value of user id, server id and user token.

2 Store the hashed value in a.

3 Perform hashing on concatenated value of server id, user id and server token.

4 Store the hash value in b.

5 Increment c and d, diffie-hellman intermediates by 2.

6 Concatenate a,b,c,d.

7 Perform hash function on concatenated value .

Encryption: Ci=(Pi + K) mod 26

where, Ci is the ciphertext, Pi is the plaintext, K is user session key

Decryption: Pi=(Ci-K+26) mod 26

where, Ci is the ciphertext, Pi is the plaintext, K is server session key

54

5.2.10 Procedure for Diffie-Hellman Key Exchange

This is a sample procedure for Diffie Hellman Key Exchange Scheme.

5.3 Results

This section gives us the implementation results of the project in form of screenshots. The

Screen-shots have brief description about them. This helps us to visualize the project better. This

also gives us a fair idea of how the system will work, if implemented on a larger scale. The

results were calculated on a single machine which was capable of running the two servers,

authentication center and the client.

5.3.1 Server Registration:

In this, the two servers register themselves with the authentication center by connecting and

sending their IDs‟ to the authentication center. On receiving the servers IDs, the authentication

center performs the computation of phase 1 of the methodology. The results of the computation

are shown below, when two servers with ID „asd‟ and „abc‟ are getting register themselves to the

authentication center.

1 // At user end

2 Choose randomly x. //0<x<p-1

3 Calculate c1 = g
x
 mod p.

4 //At server end

5 Choose randomly y. //0<y<p-1

6 Calculate c2 = g
y

mod p.

7 User sends c1 to server.

8 Server sends c2 to user.

9 User calculates K = (c2)
x
 mod p.

10Server calculates K= (c1)
y
 mod p.

55

Figure 5.1: Authentication Center(Server Registration)

Figure 5.2: Server „asd‟ Registration

56

Figure 5.3: Server „abc‟ Registration

5.3.2 User Registration:

During this phase, the user registers at the authentication center by sending user ID and

password. The authentication center performs the operations of phase 2 on the received data

from the user. Here, there are snapshots of the results when user „asd‟ with password „asd‟

registers at the authentication center successfully.

57

Figure 5.4: Authentication Center(User Registration)

Figure 5.5: User Registration

58

5.3.3 Authentication of Remote User and Server and Mutual Authentication

and Session Key Generation:

During this phase, the user logins at the authentication center with its unique ID and password,

received during the user registration phase. Before the user login, all the servers registered with

the authentication center login and make themselves available to the use of user. After user

successfully logins, the user enters the ID of the target server with which user wants to

communicate. Then, the authentication center authenticates the user and the target server using

the operation in phase 3. In this phase, the user and the target server are also meant to

authenticate the authentication center. After authentication of each other, the AC allows user and

the target server to authenticate each other directly and communicate for the generation of

session key between each other using the operations of phase 4 of our scheme. The user „asd‟ has

chosen server „abc‟ for communication. Here are the snapshots of the communication among the

AC, target server „abc‟ and user „asd‟ for the authentication and generation of session key.

Figure 5.6: Authentication Center

59

Figure 5.7: Target Server Session Key

60

Figure 5.8: User Session Key

61

Figure 5.9: Session Key Generated.

The value of public variables „p‟ and „g‟ are 26713 and 10 respectively. The values of various

variables in communication among authentication center, target server „abc‟ and user „asd‟

shown in the above snapshots. However, the session key generated between target server „abc‟

and user „asd‟ is 104908688.

The user „asd‟ has used this session key to encrypt the data „bob and alice are couple‟ and sent it

to the server „abc‟. This data transmission is successfully done as seen in the figure 5.10 and 5.11

below. We have used simple cesar cipher technique to encrypt and decrypt this data

transmission.

Figure 5.10: User encrypting data using session key

62

Figure 5.11: Server decrypting data using session key

This chapter has shown the implementation and outputs of the implemented project. The Code

presented in this discussion is not exactly the same code used in my project but a similar code

that is easier to understand. We have also discussed the specifications for the proposed

methodology which gives us the fair idea about the machines required for the demonstration of

the system. The User smart card and smart card terminal is stimulated as a single window

application. The Authentication center‟s console messages and target server‟s window messages

are also discussed in brief, which helps us to see the actually working at authentication center

and the server which is normally hidden. The Chapter has in short, shown the complete internal

working of the project which can be analyzed further if required.

63

CHAPTER 6: CONCLUSION AND FUTURE WORK

This chapter concludes the work done on the proposed methodology and the future work that can

be done to improve our proposal. This chapter is a discussion which is limited to my thinking

and analytical power. Different people have different approach to a particular problem. So, some

people may not agree to the ideas presented by me in this discussion.

6.1 Conclusion of the Thesis

In this, we proposed a new efficient and secure multi-server authentication using one-way hash

function, XOR function and Diffie-Hellman. The scheme proposed does not maintain any

verification table, allow freely chosen password, low computation and communication cost,

mutual authentication, session key agreement, access control and provide security against every

possible attack. It does not authenticate invalid user or invalid server before computing the

session key. The weakness found in the Zhu et al[123] and Xie and Chen[128] schemes have

been successfully resisted by our scheme. The scheme has not used any encryption/decryption

operations to establish authentication and session key between the remote user and the server.

The analysis of the scheme has proven that it can securely authenticate and generate a session

key between the remote user and the requested server in a multi-server distributed environment

for communication process.

64

6.2 Future Work

Since the methodology is one mainly designed for smart-card, we can even allow mobile phones,

smartcards, PDA, etc. to act as a client. However, the system doesn‟t allow these low memory

devices. Currently this is not included. The future work also includes more enhancing the

efficiency of the methodology. In addition, we can also look for the proposal of a multi-server

multi-authentication center authentication schema.

65

CHAPTER 7: REFERENCES AND BIBLIOGRAPHY

 [1] Lamport L., “Password Authentication with insecure communication”. Communication of

the ACM November24(11)(1981)770-772

[2] Hwang T, Chnen Y, Laih CS, “Non–interactive password authentication without password

tables”, In : IEEE region 10 conference on computer and communication system(1990)429-431

[3] Wang XY, Yu HG, “How to break MD5 andother hash functions”, Eurocrypt (2000)19-35

[4] Sun HM, “An efficient remote use authentication scheme using smart cards”, IEEE

Transactions on Consumer Electronics 46(4)(2000)958-961.

[5] Li LH, Lin IC, Hwang MS, “A remote password authentication scheme for multi –server

architecture using neural network”, IEEE Transactions on Neural Network 12(06)(2001)1498-

1504.

[6] Eun-Jun Yoon, Kee-Young Yoo*, “Robust Multi-Server Authentication Scheme”, IEEE

sixth IFIP International Conference on Network and Parallel Computing(2009).

[7] Juang WS, “Efficient multi-server password authenticated key agreement using smart

cards”, IEEE Transactions on Consumer Electronics 50(1)(2004)251-255.

[8] Y. P. Liao, S. S. Wang, “A secure dynamic ID based remote user authentication scheme for

multi-server environment”, Computer Standards & Interfaces, 31(1): 24-29, 2009.

66

[9] H. C. Hsiang, W. K. Shih, “Improvement of the secure dynamic ID based remote user

authentication scheme for multi-server environment”, Computer Standards & Interfaces.

[10] J. L. Tsai, “Efficient multi-server authentication scheme based on one-way hash function

without verification table”, Computers & Security, 27(2008):115-121, 2008.

[11] Qi Xie and Deren Chen, “Hash function and smart card based multi-server authentication

protocol”, IEEE WASE International Conference on Information Engineering,2010.

[12] H. Zhu, T. Liu, J. Liu, “Robust and Simple multi-server authentication protocol without

verification table”, Ninth International Conference on Hybrid Intelligent Systems, 2009.

[13] TY Chen, MS Hwang*, CC Lee, JK Jan, “Cryptanalysis of a secure dynamic ID based

remote user authentication scheme for multi-server environment”, Fourth International

Conference on Innovative Computing, Information and Control, 2009.

[14] MH Shao, YC Chin, “A Novel Dynamic ID-based Remote User Authentication and Access

Control Scheme for Multi-Server Environment”, 10
th
 IEEE International Conference on

Computer and information Technology(CIT 2010), 2010.

[15] M.S. Hwang and I.H. Li, “A new remote user authentication scheme using smart cards”,

IEEE Transactions on Consumer Electronics, vol. 46, no. I, pp. 28-30, 2000.

[16] M.L. Das, A. Saxena, and V.P. Gulati, “A dynamic ID-based remote user authentication

scheme”, IEEE Transactions on Consumer Electronics, vol. 50, pp. 629-631, 2004.

[17] H.Y. Chien and C.H. Chen, “A remote authentication scheme preserving user

anonymity”, International Conference on Advanced Information Networking and Applications,

vol. 2, pp. 245-248, 2005.

67

[18] S. Kim, H.S. Rhee, J.Y. Chun and D.H. Lee, “Anonymous and traceable authentication

scheme using smart cards”, International Conference on Information Security and Assurance, pp.

162-165, 2008.

[19] C.C. Chang and J.Y. Kuo. “An efficient multi-server password authenticated key

agreement scheme using smart cards with access control”, In 19
th

 IEEE int. Conf. Advanced

Information Networking and Applications(AINA2005), volume 2, pages 257-260, Taipei,

Taiwan, March 2005. IEEE Computer Society.

[20] R. J. Hwang and S. H. Shiau, “Provably efficient authenticated key agreement protocol for

multi-servers”, The Computer Journal, 50(5):602–615, 2007.

[21] I. C. Lin, “A neural network system for authenticating remote users in multi-server

architecture”, International Journal of Communication Systems, 21:435–445, 2008.

[22] I. C. Lin, M. S. Hwang, and L. H. Li, “A new remote user authentication scheme for multi-

server architecture”, Future Generation Computer System January, 19:13–22, 2003.

[23] W. J. Tsaur, C. C. Wu, and W. B. Lee, “A smart card based remote scheme for password

authentication in multi-server internet services”, Computer Standards and Interfaces, 2004.

[24] Y. M. Tseng, T. Y. Wu, and J. D. Wu, “A pairing-based user authentication scheme for

wireless clients with smart cards”, INFORMATICA, 19(2):285–302, 2008.

[25] W. C. Ku, “Weaknesses and drawbacks of a password authentication scheme using neural

networks for multi-server architecture”, IEEE Transactions on Neural Networks, 2005.

[26] X. Cao, S. Zhong, “Breaking a remote user authentication scheme for multi-server

architecture”, IEEE Communications Letters, Vol. 10, No. 8, pp. 580-581, August 2006.

68

[27] W.J. Tsaur, C.C. Wu, W.B. Lee, “An enhanced user authentication scheme for multi-server

Internet services”, Applied Mathematics and Computation, Vol. 170, 258-266, November 2005.

[28] Z.F. Cao, D.Z. Sun, “Cryptanalysis and Improvement of User Authentication Scheme using

Smart Cards for Multi-Server Environments”, Proceedings of International Conference on

Machine Learning and Cybernetics, pp. 2818-2822, August 2006.

[29] L. Hu, X. Niu, Y. Yang, “An Efficient Multi-server Password Authenticated Key

Agreement Scheme Using Smart Cards”, Proceedings of International Conference on

Multimedia and Ubiquitous Engineering, pp. 903-907, April 2007.

[30] J. H. Lee, D. H. Lee, “Efficient and Secure Remote Authenticated Key Agreement Scheme

for Multi-server Using Mobile Equipment”, Proceedings of International Conference on

Consumer Electronics, pp. 1-2, January 2008.

[31] W. C. Ku, H. M. Chuang, and M. H. Chiang, “ Cryptanalysis of a multi-server password

authenticated key agreement scheme using smart cards”, IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, E88- A(11):3235–3238, November 2005.

[32] R.C. Wang, W.S. Juang, C.L. Lei, “User Authentication Scheme with Privacy-

Preservation for Multi-Server Environment”, IEEE Communication Letters, no.2, February 2009.

[33] W.S. Juang, H.C. Tseng and Y.Y. Shue, “An Efficient and Privacy Protection Multi-

server Authentication Scheme for Low-cost RFID Tags”, IEEE 2010.

[34] Y. L. Chen，C. H. Huang，J. S. Chou，“A novel multi-server authentication protocol ”,

http://eprint.iacr.org/2009/176, 2009.

[35] B. Shneier, “Applied Cryptography Second Edition, “John Wiley & Sons, Inc.,1996.

69

[36] A.J. Menezes, P.C. Oarschot, and S.A. Vanstone, “Handbook of Applied Cryptograph,”

CRC Press, New York, 1997.

[37] W. Mao, “Modern Cryptography Theory & Practice,” Prentice Hall, 2004.

[38] D. Stinson, “Cryptography Theory and Practice Second edition,” Chapman & Hall/CRC,

2002.

[39] C. Boyd and A. Mathuria, “Protocols for Authentication and Key Establishment,”

Springer-Verlag Berlin Heidelberg New York, 2003.

[40] W. Juang, C. Lei and C. Chang, “Anonymous Channel and Authentication in Wireless

Communications,” Computer Communications, Vol. 22, o. 15-16, pp. 1502-1511, 1999.

[41] W. Juang, “Efficient Password Authenticated Key Agreement Using Smart Cards,”

Computers & Security, in press, 2004.

[42] http://en.wikipedia.org/wiki/Man-in-the-middle_attack, Wikipedia.

[43] http://en.wikipedia.org/wiki/.NET_Framework, Wikipedia.

[44] http://en.wikipedia.org/wiki/Microsoft_Visual_Studio, Wikipedia.

[45] http://en.wikipedia.org/wiki/C_Sharp_(programming_language), Wikipedia.

70

APPENDIX A

Code for Group Generator

public static int primit_root(int nu, int f)

 {

 int re, i, a;
 for (a = 1; a < nu - 1; a++)

 {

 for (i = 1; ;)
 {

 re = Pow(a, i, nu);

 if (re == 1)

 {
 break;

 }

 i++;
 }

 if (i == f)

 break;
 }

 return a;

 }

Code for Hash and XORing Operation

string l = kj + u0 + K2.ToString();
byte[] sd;

byte[] fd;

sd = ASCIIEncoding.ASCII.GetBytes(l);

fd = new MD5CryptoServiceProvider().ComputeHash(sd);
int h = BitConverter.ToInt32(fd, 0);

int C13 = g1 ^ h;

Code for Power Operation using Square and Multiply Method

public static int Pow(int e, int f, int n)

{

 int[] x = new int[32];

 x = int_to_bin(f);
 int y = sq_and_multi(e, x, n, 32);

 return y;

}

71

//---------- the square and multiply method --------------//

public static int sq_and_multi(int a, int[] x, int n, int nb)

{ int y = 1;

 for (int i = 0; i <= nb - 1; i++)

 {
 if (x[i] == 1)

 y = (a * y) % n;

 a = (a * a) % n;}
 return y;}

//------- to convert integer to binary ------------//

public static int[] int_to_bin(int x)

{

 int[] ans = new int[32]; int i = 0;

 while (x > 1)
 {

 if (x % 2 == 1)

 ans[i] = 1;
 else

 ans[i] = 0;

 x /= 2;
 i++; }

 if (x == 1)

 ans[i] = 1;

 return (ans); }

Code for Sending Data

pno1_r = 7798

sck_r = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

 IPEndPoint localendpoint = new IPEndPoint(IPAddress.Parse(aip_r), pno1_r);

 u = textBox1.Text;
 pwd = textBox2.Text;

 try

 {
 sck_r.Connect(localendpoint);

 cx = "User is connected to authencation centre for registration ";

 //------- sending id and pwd for registration to authen tication centre -------//

 text3 = u + '`' + pwd;

 data = Encoding.ASCII.GetBytes(text3);
 sck_r.Send(data);

}

72

Code for Receiving Data

pno = 1235;

sck2 = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

sck2.Bind(new IPEndPoint(0, pno));
sck2.Listen(1);

Socket accepted2 = sck2.Accept();

buffer2 = new byte[accepted2.SendBufferSize];
int bytesRead2 = accepted2.Receive(buffer2);

byte[] formatted2 = new byte[bytesRead2];

for (int i = 0; i < bytesRead2; i++)
{

 formatted2[i] = buffer2[i];

}

string s2 = Encoding.ASCII.GetString(formatted2);

Code for Mutual Key

K1 = K1 + 1;

K2 = K2 + 1;

string k = r3 + d + K1.ToString();

p1 = ASCIIEncoding.ASCII.GetBytes(k);
q = new MD5CryptoServiceProvider().ComputeHash(p1);

int g1 = BitConverter.ToInt32(q, 0);

string l = kj + u0 + K2.ToString();
sd = ASCIIEncoding.ASCII.GetBytes(l);

fd = new MD5CryptoServiceProvider().ComputeHash(sd);

int h = BitConverter.ToInt32(fd, 0);

//------- Mutual Key ---------//

int C13 = g1 ^ h;

Code for Session Key

//------ compution of sesion key at User end ------//
f3 = C17.ToString()+C14_.ToString();

w11 = ASCIIEncoding.ASCII.GetBytes(f3);

w12 = new MD5CryptoServiceProvider().ComputeHash(w11);
int C19_ = BitConverter.ToInt32(w12, 0);

if(C19_==C19)

{

 label25.Text = "User has Authencated the Server.Now,generate the mutual session key";
 Nc213 = C16 + 2;

 Ns2334 = C17 + 2;

 N8 = Nc213.ToString();
 N9 = Ns2334.ToString();

73

 f6 = C14_.ToString() + C14.ToString() + N8 + N9;

 w17 = ASCIIEncoding.ASCII.GetBytes(f6);
 w18 = new MD5CryptoServiceProvider().ComputeHash(w17);

 usessionkey = BitConverter.ToInt32(w18, 0);

}

//--------computation of session key at Server end -----------//

f4 = C16.ToString() + C15_.ToString();
w13 = ASCIIEncoding.ASCII.GetBytes(f4);

w14 = new MD5CryptoServiceProvider().ComputeHash(w13);

int C18_ = Convert.ToInt32(e6.ToString());
if (C18_ == C18)

{

 label19.Text = "Server has Authencated the user.Now,generate the mutual session key";

 Ns231 = C16 + 2;
 Nc2343 = C17 + 2;

 N6 = Ns231.ToString();

 N7 = Nc2343.ToString();
 f5 = C15.ToString() + C15_.ToString() + N6 + N7;

 w15 = ASCIIEncoding.ASCII.GetBytes(f5);

 w16 = new MD5CryptoServiceProvider().ComputeHash(w15);
 ssessionkey = BitConverter.ToInt32(w16, 0);

}

Code for Encrypting Data

//------- encrypting the data for server ---------//

int q = p.Length;
int[] a = new int[q];

int i = 0;

foreach (var item in p)

{
 a[i] = item + usessionkey;

 i++;

}
//------ the data sent to server ---------//

string b = a[0].ToString();

for (int j = 1; j < q; j++)

{
 b = b + '`' + a[j].ToString();

}

//---- to show data sent by user ---------//
string b1 = a[0].ToString();

for (int j1 = 1; j1 < q; j1++)

{
 b1 = b1 + a[j1].ToString();

 }

 byte[] data = Encoding.ASCII.GetBytes(b);

74

Code for Decrypting Data

//------- decrypting the received data from user ---------//

string b = Encoding.ASCII.GetString(formatted123478);
string[] s = b.Split(new char[] { '`' });

int q1 = s.Count();

int[] m = new int[q1];
int x = 0;

foreach (var item in s)

{
 m[x] = Convert.ToInt32(item) - ssessionkey;

 x++;

}

string b1 = s[0];
for (int j2 = 1; j2 < q1; j2++)

{

 b1 = b1 + s[j2];
}

char[] n = new char[q1];

for (int y = 0; y < q1; y++)
{

 n[y] = Convert.ToChar(m[y]);

}

string c = n[0].ToString();
for (int j1 = 1; j1 < q1; j1++)

{

 c = c + n[j1].ToString();
}

string data = c;

Code for Diffie-Hellman Key Exchange

//--------- At user end ---------//

int aq = r.Next(p); //generation of aq.
int C1 = Pow(g, aq, p);

// user sends C1 to authentication center over public network and in return receives C5 to computes value

of K1.
 int C5 = Convert.ToInt32(strarr[0]);

 int K1 = Pow(C5, aq, p);

//---------- At authentication center end --------------//

int cq = r.Next(p); //generation of cq.

int C5 = Pow(g, cq, p);

// authentication center C5 to user and computes K1 using the received value of C1.
int K1 = Pow(C1, cq, p);

