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CHAPTER 1 

INTRODUCTION 

In the last decades, we have been observed a dynamic growth in the number of research 

works conducted in the region of cerebral cancer diagnosis. Many university centres are focused 

on the issue because of the fact that cerebral cancer is spreading among the world population. 

For example in India, the International Agency for Research on Cancer estimated indirectly that 

about 635 000 people died from cancer in 2008, representing about 8% of all estimated global 

cancer deaths and about 6% of all deaths in India [1].The absolute number of cancer deaths in 

India is projected to increase because of population growth and increasing life expectancy. Rates 

of cancer deaths are expected to rise, particularly, from increases in the age-specific cancer risks 

of tobacco smoking, which increase the incidence of several types of cancer. About three-

quarters of Indians live in rural areas. Most deaths in India (and in most low-income or middle-

income countries) occur at home and without medical attention. Due to its negative effects on 

affected people, the cancer diseases constitutes a high burden on national economy and a source 

of suffering for the family as well as the society. 

Data regarding frequencies of various primary brain tumors (diagnosed according to the 

World Health Organization (WHO) classification), in 3936 pediatric patients (<18 yrs of age), 

was collected from seven tertiary care hospitals in India. 

The most common primary pediatric brain tumors were astrocytic tumors (34.7%), 

followed by medulloblastoma and supratentorial primitive neuro-ectodermal tumors (22.4%), 

craniopharyngiomas (10.2%) and ependymal tumors (9.8%). The most common astrocytic tumor 

was pilocytic astrocytoma. In comparison to adults, oligodendrogliomas and lymphomas were 

rare in children [2]. 

Magnetic Resonance Imaging (MRI) has become a widely used method of high quality 

medical imaging, especially in brain imaging where MRI’s soft tissue contrast and 

noninvasiveness is a clear advantage. MRI provide an unparallel view inside the human body. 

MRI reveals which parts of the brain are active in certain tasks with a spatial resolution of 2-5 
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millimetres, which is superior to any of the other non-invasive techniques in cognitive 

neuroscience. This means that places of activity in the brain that are as close as 2-5 millimetres 

apart in the brain can still be distinguished from each other. The temporal resolution (the 

minimal distance in time between two data points that can still be distinguished), however, is 

relatively poor (5-8 seconds) .Reliable and fast detection and classification of brain cancer is of 

major technical and economical importance for doctors 

To start with, some of the principles underlying MRI will be considered. How is the MRI 

image obtained? This will be explained in the first section of this report. In cognitive 

neuroscience, MRI is used to indirectly infer the functional activity of the brain, in which case it 

is referred to as functional Magnetic Resonance Imaging (fMRI). How neural activation leads to 

an fMRI signal will be discussed in the second section of this report. In the third section of this 

report, attention will be focused towards issues relating to the different kinds of experimental 

design that can be used in fMRI experiments. The fourth section of this report will be devoted to 

the different steps of analysing MRI datasets. 

To identify a tumor, a patient will undergo several tests. Most commonly Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) are used to locate brain tumor. The 

information obtained will influence the treatment a patient will receive. Perhaps the most widely 

used clinical diagnostic and research technique is MRI. It’s an efficient medical imagery tool that 

has different methods (T1,T2, ARM, …) having each particular property and an effective way 

that enables to clarify the various tissues and to obtain a 2D, 3D and even 4D sight (3D+T) of a 

part of the body, in particular of the brain. It’s based on the principal of nuclear magnetic 

resonance (NMR). Due to various sequences various tissues with high contrast can be observed.   

Wavelet transform is an effective tool for feature extraction, because they allow analysis 

of images at various levels of resolution. This technique requires large storage and is 

computationally more expensive. Hence an alternative method for dimension reduction scheme 

is used. In order to reduce the feature vector dimension and increase the discriminative power, 

the principal component analysis (PCA) has been used. Principal component analysis is 

appealing since it effectively reduces the dimensionality of the data and therefore reduces the 

computational cost of analyzing new data.  
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Several methods such as linear or quadratic discriminant analysis and k-nearest- neighbor 

techniques are used to classify MR images. All these classifiers are conceptually straightforward 

way of approximating any real valued or discrete valued classification function. However, these 

methods are too slow and less accurate to use for many applications when dealing with large 

amounts of data. Latest development in data classification research has focused more on kernel 

based techniques such as support vector machine (SVM) and relevance vector machine (RVM). 

Support vector machines are a state of the art pattern recognition technique grown up from 

statistical learning theory.  RVM has a probabilistic Bayesian learning framework and has  good 

generalization capability. In the last few years SVM and RVM have shown excellent 

performance in many real-world applications including medical field. The motivation behind this 

work is to develop a machine classification process using SVM and RVM for MRI volume 

classification and evaluating the performance of classifiers. 
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CHAPTER 2 

BASICS OF MRI 

Magnetic Resonance Imaging, or MRI, typically measures the response of hydrogen 

molecules to a perturbation while in a magnetic field. Explaining the physics of MRI in full 

detail would be beyond the scope of this report. However, some basic knowledge of the 

principles is required to fully understand the subsequent sections.  

There are four basic steps involved in measuring the MRI signal. The first step is to place 

the brain in a magnetic field. The second step is the application of a brief radiofrequency (RF) 

pulse and the third step is measuring the relaxation [5]. The fourth step is transforming this 

signal to obtain a 3-dimensional MRI image [3] [4] [6].Each of these steps will be considered in 

turn, concluding with a discussion of the pulse cycles that are commonly used. 

2.1  The brain in a magnetic field  

The first step to measuring an MRI signal is to place the brain in a magnetic field. This will 

cause the atomic nuclei to align with the magnetic field. This occurs to all nuclei that are 

electrically charged and spin around their axis. Of the many types of nuclei in the brain, it is the 

hydrogen nucleus that is most commonly measured in MRI [3] [4] [6].This is because hydrogen 

nuclei are abundant in the human brain and give a strong MRI signal. 

Hydrogen nuclei are positively charged particles that spin around their axis. When an 

electrically charged particle moves, it produces a magnetic field. This magnetic field can be 

represented as a vector (a mathematical entity with both an amplitude and a direction).Generally, 

a vector is mathematically depicted as an arrow where the length of the arrow represents the 

amplitude of the vector and the direction in which the arrow is pointing reflects the direction of 

the vector. Since each hydrogen nucleus produces a magnetic field, which can be represented as 

a vector, this equals saying that each hydrogen nucleus in the brain can be seen as a vector with 

the vector representing the strength and direction of the magnetic field of the hydrogen nucleus 

produced by its spinning around its axis. This vector is also known as the Magnetic Dipole 

Moment (MDM) [3] [4] [5] [6]. 
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Before the brain is placed in a magnetic field, the MDM.s of each hydrogen nucleus 

points in a random direction the nuclei are not aligned. When the brain is placed in a magnetic 

field, two things happen simultaneously [3] [4] [6]. 

Firstly, the MDM.s of many of the hydrogen nuclei aligns themselves in the direction of 

the main magnetic field. How many of the MDM.s align themselves in the direction of the main 

magnetic field depends on the strength of this magnetic field. The stronger the magnetic field, 

the higher the percentage of the MDM.s that align themselves to the magnetic field [3] [4] 

[6].Secondly, when the brain is placed in a magnetic field the MDM.s of the hydrogen nuclei 

start to precess (see Fig. 1.1). The frequency of this precession depends first of all on the type of 

nucleus. This means that the MDM of a hydrogen nucleus will have a different frequency of 

precession from, for instance, the MDM of sodium nuclei in a certain magnetic field. Second of 

all, the frequency of precession depends on the strength of the magnetic field. The frequency of 

precession is directly proportional to the strength of the magnetic field, so the stronger the 

magnetic field the higher the frequency of precession. For example, in a magnetic field of 1.5 

Tesla the frequency of precession for the MDM.s of hydrogen nuclei will be 64 MHz (64000000 

revolutions per second) and in a magnetic field of 3 Tesla the frequency of precession will be 

128 MHz [5] [6]. 

 

Fig. 2.1: Precession of the MDM; the .tail. is stationary while the .top. moves around in a circular motion. 
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2.2  Application of the radiofrequency pulse  

The second step when measuring the MRI signal is the brief application of the 

radiofrequency pulse. The Radio Frequency (RF) pulse is typically an electromagnetic wave 

resulting from the brief application of an alternating current perpendicular to the direction of the 

main magnetic field, otherwise known as a 90
0
 RF-pulse [3] [4] [6].The ultimate goal of this 90

0 

RF-pulse is to tip the MDM.s of the hydrogen nuclei. Conventionally, the direction along the 

main magnetic field is referred to as the z-axis. The 90
0 

RF-pulse then basically tips the MDM.s 

in the x-y plane (see fig. 1.2). This will only work if the frequency of the RF- pulse equals the 

frequency of the precession of the MDM.s. Because the MDM.s of the hydrogen nuclei have 

their own specific frequency of precession in a given magnetic field, it is possible to selectively 

tip the MDM.s of the hydrogen nuclei [3] [4] [6]. 

 

Fig 2.2: .Tipping. of an MDM into the x-y plane during application of the RF-pulse. 

After the MDM.s of the hydrogen nuclei are .tipped., the 90
0
 RF-pulse is terminated and 

the MDM.s return to their original orientation. This returning to the original orientation is known 

as relaxation [3] [4] [6]. 
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2.3  Relaxation  

After the 90
0
 RF-pulse is terminated, the MDM.s of the hydrogen nuclei will return from 

their .tipped. state to their original lower energy state of being aligned in the direction of the 

magnetic field [3] [4] [6].Basically, the RF-pulse poured energy into the system and this energy 

is released when the MDM.s return to their original state. This release of energy is known as 

relaxation and is the signal that is measured during MRI [3] [4] [6]. 

The MDM of a hydrogen nucleus can be broken down into two components. One 

component of the MDM is the amplitude in the z-axis. The other component of the MDM is the 

amplitude in the x-y plane [3] [4] [6].Before application of the RF-pulse the amplitude in the z-

axis is maximal while the amplitude in the x-y plane is zero. Just after application of the RF-

pulse the amplitude in the z-axis is zero while the amplitude in the x-y plane is maximal. During 

relaxation the amplitude in the z-axis will slowly increase while the amplitude in the x-y plane 

slowly decreases. Therefore, the relaxation of the MDM.s of the hydrogen nuclei has two 

components; firstly, a re-growth along the z-axis and secondly, a decay in the x-y plane. The re-

growth along the z-axis of the MDM.s is referred to as T1 relaxation. The decay in the x-y plane 

of the MDM.s is referred to as T2 relaxation [3] [4] [6]. 

2.4  When it all comes together  

The application of the 90
0
 RF-pulse and the measuring of the energy released during 

relaxation is repeated over a vast amount of times in a typical MRI experiment. 

Different tissues in the brain have different T1 and T2 relaxation rates [3] [4] [6].This means that 

at each moment after termination of the RF-pulse, the amplitude of the MDM.s of the hydrogen 

nuclei in the z-axis and the amplitude of the MDM.s in the x-y plane will be different for 

different tissues. If now the MRI signal is measured at a point after termination of the RF-pulse 

where either the relative difference between the amplitudes of the MDM.s of the hydrogen nuclei 

of different tissues in the z-axis is maximized or the relative difference between the amplitudes 

of the MDM.s of different tissues in the x-y plane is maximized a maximum contrast between 

different tissues will be obtained [3] [4] [6]. 



8 

 

At first, it sounds a bit counterintuitive that not the absolute difference in amplitude is 

maximized but instead the relative difference between the amplitudes is maximized. An analogy 

might clarify things a bit. Imagine a person  A who makes 20,000 dollars a year and a person B 

who makes 22,000 dollars a year. The absolute difference is 2,000 dollars but the relative 

difference is quite small (10%). As a consequence, person B doesn’t really feel a lot richer than 

person A because the contrast between the two incomes is not very big. If now, on the other 

hand, person A makes 3,000 dollars a year and person B makes 4,700 dollars a year, even though 

the absolute difference is now smaller (1,700 dollars), the relative difference is a lot bigger. In 

the second case, even though the absolute difference is smaller, the relative difference is a lot 

larger and person B ends up feeling a lot better off than person A because the contrast between 

the two incomes is now a lot bigger. To return to contrasts between different tissues in the brain, 

it can now be seen that to maximize contrast between different tissues the MRI signal must be 

measured at a time when the relative difference in amplitudes of the MDM.s is maximized and 

not the absolute difference. 

When the MRI signal is measured at a point when the ratio of the amplitudes of MDM.s 

of different tissues in the z-axis is maximized, the signal is known as a T1 weighted signal. 

Alternatively, when the MRI signal is measured at a point when the ratio of the amplitudes of the 

MDM.s of different tissues in the x-y plane is maximized, the signal is known as a T2 weighted 

signal [3] [4] [6].By changing certain scanner parameters either a T1 weighted signal or a T2 

weighted signal can be acquired [3] [4] [6].When the time from RF-pulse to measurement of the 

signal (TE) is kept short, while at the same time the time between two successive RFpulses (TR) 

is also kept short, the difference in T1 for the different tissues is maximized and the acquired 

scan is called a T1 weighted scan. T1 weighted scans are also known as anatomical scans, 

because they particularly show good contrast between grey and white matter. On the other hand, 

when the TE is long while at the same time the TR is also long, the difference in T2 for the 

different tissues is maximized and the acquired scan is called a T2 weighted scan. T2 weighted 

scans are also known as pathological scans, because lesions appear very bright [5] [6]. 
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2.5  T2* and the spin-echo pulse cycle  

In the previous sections, it was implied that the decay of the MDM.s in the x-y plane after 

termination of the 90
0
 RF-pulse equals the T2 relaxation signal. This is, however, a 

simplification and to really understand the use of MRI we will need to explain T2 in more detail. 

True T2 decay is actually a lot slower than the decay of the MDM.s in the x-y plane after 

termination of the 90
0
 RF-pulse. The decay of the MDM.s in the x-y plane is more accurately 

described as T2* decay [3] [4] [6].So, the question remains; what is T2 decay? 

The reason why the MDM.s decay in the x-y plane (the T2* signal) is essentially due to 

dephasing [3] [4] [6].Remember that the MDM.s of hydrogen nuclei in a magnetic field of a 

certain field strength all precess at the same frequency. However, before the application of the 

90
0
 RF-pulse, they are not precessing in the same phase. To clarify this, an analogy with a clock 

can be helpful. Imagine a number of clocks that are not synchronized. Even though the hands of 

the different clocks rotate at the same frequency (an hour lasts equally long for all clocks), at a 

given moment the times the clocks indicate are not the same i.e. the clocks are not in phase. 

When applied to the precession of the MDM.s in a magnetic field, this means that even though 

the MDM.s precess at the same frequency, they will each be at a different position in their cycle 

at a given point in time i.e. they are precessing in a different phase (see fig. 1.3) [5][6]. 

 

Fig 2.3: The top row displays one moment in the cycle of precession of 3 MDM.s that are in phase. The bottom row 

displays one moment in the cycle of precession of 3 MDM.s that are not in phase. 
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At the moment when the 90
0
 RF-pulse is applied, the MDM.s are .tipped. in the x-y plane 

and are forced to precess in phase (as the brief RF-pulse .tips. all the MDM.s simultaneously). 

Now the MDM signals are additive and therefore result in a strong signal in the x-y plane. After 

termination of the 90
0
 RF-pulse, however, the precession of the MDM.s will gradually dephase. 

The MDM signals are now no longer additive, but cancel each other out and the signal decays. 

This is the T2* decay [3] [4] [6]. There are two reasons why the MDM.s dephase after 

termination of the 90
0
 RF-pulse and the signal decays [3] [4] [6].The first one is magnetic field 

inhomogeneity. The strength of the magnetic field is not uniform and since the frequency of 

precession of the MDM.s depends on the strength of the magnetic field it follows that different 

MDM.s will precess at a different frequency and therefore this precession will get out of phase. 

The second reason why the MDM.s dephase is because of spin-spin interaction[3] [4] [6].. 

Different hydrogen nuclei are surrounded by different other nuclei. These other nuclei affect the 

frequency of precession of the MDM of the hydrogen nuclei. The frequency of precession of 

each MDM.s will be differently affected by the surrounding nuclei. This, again, results in 

different frequencies of precession for different MDM.s and hence dephasing occurs [3] [4] [6]. 

To summarize, initially the precession of the MDM.s is dephased. When the 90
0
 RFpulse 

is applied, the MDM.s are forced to precess in phase, resulting in a signal in the x-y plane. After 

termination of the 90
0
 RF-pulse, the precession of the MDM.s will dephase again due to the 

inhomogeneities in the magnetic field and spin-spin interactions and the signal in the x-y plane 

decays. This is T2* decay. 

The trick is that the dephasing due to the inhomogeneity of the magnetic field is 

correctable and by correcting for this source of dephasing the true T2 signal is obtained [3] [4] 

[6]. Directly after application of the 90
0
 RF-pulse the precession of the MDM.s is in phase. This 

means that at a given time, all the MDM.s will be at the same point in their cycle of precession. 

After termination of the 90
0
 RF-pulse the precession of the MDM.s will slowly dephase. 

Basically, at a given time, different MDM.s will not longer be at the same point in their cycle of 

precession. If an RF-pulse is now applied from the opposite direction (180
0
) as the direction from 

which the original RF-pulse was applied (90
0
), the direction of rotation of the precession of the 

MDM.s is reversed. After the same amount of time has elapsed following the 180
0
 RF-pulse as 
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the amount of time between the 90
0
 RF-pulse and the 180

0
 RF-pulse, the MDM.s will be in phase 

again [3] [4] [6]. 

An analogy might, again, be helpful. Imagine two cars leaving from the same point in the 

same direction. One is moving at a speed of 100 km/h and the other one is moving at a speed of 

80 km/h. After a while the faster car will be further away from the point of origin than the slower 

car. After, for example, half an hour both cars turn around and head towards the point of origin 

again. If both cars keep moving at their same respective speed, they will both arrive at the point 

of origin again at the same time. To relate this analogy back, directly after application of the 90
0
 

RF-pulse all the MDM.s are at the same point in their cycle of precession. After termination of 

the RF-pulse some MDM.s will rotate faster (have higher frequencies of precession) than others, 

the MDM.s dephase. After a while the 180
0
 RF-pulse is applied and this makes the direction of 

precession of all the MDM.s reverse. The MDM.s, however, all keep their own frequency of 

precession and will arrive at their starting point (the point where they were directly after 

application of the 90
0
 RF-pulse) in the cycle of precession at the same time, they will be in phase 

again. 

The important thing is that the time between the 180
0
 RF-pulse and measurement of the 

signal must be the same as the time between the 90
0
 RF-pulse and the 180

0
 RF-pulse. A 

measurement cycle where one 90
0
 RF-pulse is followed by one or more 180

0
 RF-pulses with a 

measurement after each 180
0
 RF-pulse is known as a spin-echo pulse cycle. Even though the 

spin-echo pulse cycle corrects for the decay in the signal caused by the in homogeneities in the 

magnetic field, the signal still does eventually decay because of the de phasing due to spin-spin 

interactions. The decay is now, however, a lot slower and this is the true T2 decay [3] [4] [6]. 
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CHAPTER 3 

FROM NEURAL ACTIVATION TO THE fMRI SIGNAL 

Besides looking at structural scans of the brain, MRI can also be used to look at 

functional activity of the brain, in which case it is referred to as functional Magnetic Resonance 

Imaging (fMRI). The type of scanning technique most commonly used to obtain fMRI images is 

Echo Planar Imaging (EPI), which is basically a technique that allows for fast measurement of 

the signal. The technique most commonly used in fMRI is the so-called BOLD (blood 

oxygenation level-dependent contrast) technique. The BOLD technique is based on the fact that, 

under normal circumstances, neuronal activity and haemodynamics (regulation of blood flow and 

oxygenation) are linked in the brain. In this section the relationship between neuronal activity 

and haemodynamics will be explained. 

3.1  The T2* signal  

As explained in the previous section, the amount of energy released by the hydrogen 

molecules after the termination of the RF-pulse gradually decays over time. The speed of this 

decay differs for different tissues and this makes the distinction between different types of tissue 

possible. One reason for the decay of the fMRI signal is the dephasing of the precession of the 

MDM.s of the hydrogen nuclei due to inhomogeneities in the magnetic field. The larger the 

inhomogeneity of the magnetic field, the faster the precessions of the MDM.s will dephase and 

the faster the fMRI signal decays. Since the fMRI signal is measured at a predetermined point in 

time after termination of the RF-pulse, the magnitude of the fMRI signal will be smaller at that 

time of measurement when the signal decays faster as compared to when the signal decays 

slower (see fig. 3.1). Therefore, the larger the inhomogeneity of the magnetic field, the smaller 

the fMRI signal at the time of measurement. 
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Fig. 3.1: Decay of the fMRI signal over time after termination of the RF-pulse. The blue curve represents the  decay 

in fMRI signal in a magnetic field with a larger inhomogeneity. The red curve represents the decay in  fMRI signal 

in a magnetic field with a smaller inhomogeneity. Therefore, the blue curve decays faster than the red curve. The 

green arrow indicates the point in time at which the signal intensity is measured. It can be seen that when the fMRI 

signal decays faster (the blue curve), the signal intensity at the moment of measurement is lower than when the 

fMRI signal decays slower (the red curve).  

Usually, this inhomogeneity of the magnetic field is considered an artefact and through a 

process known as .shimming. every attempt is made to make the overall magnetic field as 

uniform as possible. However, even though great care is taken to make the overall magnetic field 

as uniform as possible, small local inhomogeneities in the magnetic field still occur. In the 

BOLD fMRI technique these little inhomogeneities are used to indirectly measure neuronal 

activity. Since the T2 signal is relatively insensitive to inhomogeneities in the magnetic field 

(remember from the previous section that the T2 signal is obtained by correcting for the effects 

of the inhomogeneity of the magnetic field) it follows that the signal most commonly measured 

in BOLD fMRI is the T2* signal. 

The BOLD fMRI technique basically measures changes in the inhomogeneity of the 

magnetic field, which are a result of changes in the level of oxygen present in the blood (blood 

oxygenation).Deoxyhaemoglobin (red blood cells without an oxygen molecule attached to it) has 

magnetic properties and will cause an inhomogeneity in the magnetic field surrounding it. 
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Oxyhaemoglobin (red blood cells with an oxygen molecule attached to it) has  hardly any 

magnetic properties and therefore has very little effect on the magnetic field  surrounding it. 

Therefore, a high level of deoxyhaemoglobin in the blood will result in a  greater field 

inhomogeneity and therefore in a decrease of the fMRI signal. 

The function of the fMRI signal against time in response to a temporary increase in 

neuronal activity is known as the Haemodynamic Response Function (HRF). The HRF goes  

through three stages (see fig. 3.2). 

 

Fig 3.2: Time course of the HRF in response to a short-lasting increase in neuronal activity at time = 0. 

The fMRI signal initially decreases, because the active neurons use oxygen thereby  

increasing the relative level of deoxyhaemoglobin in the blood. This decrease, however, is  tiny 

and is not always found. Following this initial decrease,  there is a large increase in the fMRI 

signal which reaches its maximum after approximately 6 seconds. This increase is due to a 

massive oversupply of oxygen-rich blood. There are two  main hypotheses regarding the reason 

for this increase in blood flow. The first theory states  that the increase in blood flow 

compensates for the oxygen being used by the active neurons.  However, the supply in oxygen 

by the increase in blood flow is much larger than the amount  of oxygen used by the active 

neurons. Instead, the increase in blood flow is proportional to the  amount of glucose being used 

by the active neurons. Therefore, the second theory states that  the increase in blood flow instead 

compensates for the amount of glucose being used by the  neurons and not the amount of 

oxygen. In any case, the result of this  oversupply of oxygen is a large decrease in the relative 
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level of deoxyhaemoglobin, which in  turn causes the increase in the fMRI signal. Finally, the 

last stage of the HRF is a slow return  to the normal level of deoxyhaemoglobin and a decay of 

the fMRI signal until it has reached  its original baseline level after an initial undershoot after 

approximately 24 seconds. 

It is important to note, first of all, that the BOLD fMRI signal is an indirect measure of  

the underlying neuronal activity and therefore strongly relies on the assumption that neuronal  

activity and haemodynamics are indeed linked. Secondly, the fMRI signal reflects the sum of  

the activity of a large group of neurons.This first of all means that an  increase of the fMRI signal 

can both be caused by a large increase in activation of a small  group of neurons and by a small 

increase in activation of a large group of neurons.Inherent, however, is also the deeper 

assumption that the neurons responsible for  the same function will be grouped together in the 

brain. Thirdly, the BOLD fMRI signal is  sensitive to contaminations of large veins in the brain . 

The relative decrease in deoxyhaemoglobin is larger in large veins than in small veins. This 

means that the maximum BOLD fMRI signal is often obtained in the large veins that can be a 

few millimeters away from the site of neural activation. Fourthly and related to the third point, 

the increase in blood flow (and the associated decrease in deoxyhaemoglobin) is not very 

specific to the area of neuronal activation. Usually, veins supply blood to a larger area of the 

brain than just the area of neuronal activation. This leads to spatial blurring, where the area that 

shows an increase in fMRI signal is larger than the area of neuronal activation. Finally, it is also 

important to note that the haemodynamic response is inherently much slower than the underlying 

neuronal activity. Basically, the fMRI signal can be seen as a smoothed function of the 

underlying neuronal activity . Because of this slowness of the haemodynamic response, fMRI 

has a relatively poor temporal resolution when compared to  methods that more directly measure 

neuronal activity such as EEG . Note that this poor temporal resolution is inherent in the BOLD 

fMRI technique. While the spatial resolution might be improved by further technical innovations, 

the temporal resolution cannot be improved because of this inherent slowness of the 

haemodynamic response. The only way to improve the temporal resolution would be by 

measuring a more direct consequence of neuronal activity instead of the indirect consequence 

that is the haemodynamic response.  
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3.2 Optimizing the BOLD signal  

As noted in the previous section, the magnitude of the BOLD effects measured during 

fMRI is very small. As Figure 3.2 depicts, a visual flash may result in a 2% signal change in  the 

occipital cortex (the first cortical stage of visual processing). This low signal-to-noise is a severe 

limit on our statistical power (our ability to find real effects). Broadly speaking, there  are three 

ways we can maximize statistical power. First, we can optimize the behavioral task  used (e.g. 

using a block design), as discussed in the next section. Second, we can run very long fMRI 

sessions. Unfortunately, this is expensive and often results in participants feeling fatigue. A final 

method to maximize fMRI signal is to optimise the hardware, which we will discuss in this 

section. In practice, combining all three techniques is often required to detect subtle differences 

in the BOLD signal.  

In particular, we identify four common practices that influence the BOLD signal. First,  

we discuss echo planar imaging and spiral imaging to collect images of the brain quickly. Next, 

we note that the strength of the T2* signal is greatly dependent on the echo time (TE).  Third, we 

discuss the relationship between magnet field strength and signal. Fourth, we  discuss how the 

matrix size, voxel size and receiver coil all critically influence the measured signal.   

Optimal BOLD effects will be found when the echo time (TE) matches the T2* of blood. 

In theory, this means that the BOLD effect will be maximum with a TE of around 65ms at a field 

strength of 1.5T and around 40ms at 3.0T . In practice, most labs use slightly shorter echo times. 

This probably reflects a trade-off: by using a shorter TE, the BOLD effect in each image is 

reduced but more images are collected in a fixed  amount of time. Therefore, while the signal in 

each sample may be reduced, the larger number of samples results in improved statistical power. 

Furthermore, the shorter TE can result in slightly reduced image distortion. In our own research, 

we use echo planar imaging with a TE  of 60ms at 1.5T and a TE of 30ms at 3.0T.    

As noted earlier, the numbers of hydrogen nuclei that align with the magnetic field  

depend directly on the field strength of the magnet (and the temperature of the sample, about  37 

Celcius for the human brain). In a 1.5 Tesla, about 4.5 nuclei per million are aligned with  the 

field than against the field, while at 3.0 Tesla the number of rises to about 9 nuclei per  million. 

Therefore, at higher field strength, there is theoretically more signal to measure. Also, as noted in 
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the previous paragraph, the T2* of blood reduces at higher field strengths, allowing a shorter 

time to echo time. Therefore, we can collect images of the brain more rapidly at higher field 

strengths. Despite these advantages, higher field magnets also have limitations. First of all, 

increasing field strength drives up the installation and service cost for a MRI system, and higher 

field systems tend to be acoustically much louder (due to more powerful gradients required). 

Second, at higher field strengths inhomogeneity effects become more severe. Images from 3.0 

Tesla magnets typically show much greater inhomogeity artefacts (with some regions of the 

brain appearing brighter than other regions), and exhibit regions of signal dropout than images 

from 1.5 Tesla systems. Clearly, studies in single individuals do reveal stronger fMRI signals 

with increasing field strength. However, images from higher field scanners may not necessarily 

yield better signal in group studies (as image distortion results in poor normalization of images, 

as discussed later)  and may result in an inability to measure some regions of the brain (such as 

the medial temporal lobe and ventral frontal lobe).   

With MRI scanning, one can trade-off image resolution for signal quality. By increasing 

the size of each voxel, we can effectively measuring more hydrogen nuclei. For example, 

consider axial slices where we have a 64x64 matrix (i.e. the image has 64 rows of pixels and 64 

columns) with a field of view of 192x192mm (pixels are separated by 3mm in plane). If the 

distance between slices is 3mm, each voxel will measure 27mm3, and it will require around 36 

axial slices to cover the entire cortex and most of the cerebellum. On the other hand, if we collect 

images that are 5mm thick, each voxel will measure 45 mm3, and we only need to collect around 

22 slices. By collecting fewer slices, we can image the brain more rapidly, and get more samples 

of a given brain area. Another common technique to increase the speed of acquisition is to 

collect EPI data as axial or sagittal slices instead of coronal slices (as the brain is longest in the 

axial-posterior direction). Another issue is interference between slices: unless a gap is added 

between EPI slices, there will be some reduction in image quality due to the RF pulse saturating 

neighbouring slices along with the target slice. One simple technique to reduce this interference 

is to collect the data in an interleaved fashion: all the odd slices of an image are collected first 

(e.g. 1, 3...35) and then all the even slices (2, 4…36). This minimizes interference between slices 

and allows you to sample more nuclei than if a slice gap is employed.   
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CHAPTER 4 

OVERVIEW OF MRI SCAN IMAGING SESSIONS 

4.1  A brief introduction of fMRI 

Functional MRI utilizes the magnetic properties of blood to analyze brain activity in 

specific areas. The technique is based on small changes in blood flow and is referred to as BOLD 

(Blood Oxygen Level-Dependent) imaging. During this  procedure, induced variations in the 

ratio of oxygenated to deoxygenated blood in localized areas of the brain are imaged to generate 

fMRI results . 

4.2  The fMRI procedure 

There are three primary steps to an fMRI procedure: preparation, acquisition and processing. 

4.2.1 Preparation: 

The patient is given a detailed explanation of the procedure and carefully instructed on 

the chosen task in order to obtain the highest quality exam with the least amount of patient-

induced motion. It is common to practice these tasks with the patient before the exam to assure 

the best results. 

4.2.2 Acquisition: 

The first step in the acquisition process is to collect routine 3D datasets. These will later 

be used as the anatomical data upon which the fMRI information will be mapped. Activity in 

specific regions of the brain is induced and controlled by a set of tasks called a paradigm. These 

tasks are performed by the patient during the BOLD imaging measurements. fMRI data 

collection is done in three sessions [7] described below . 
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fMRI Data collection:- 

 

SESSION 1: Structural & functional 

sequences 

 

Duration 

1. Volunteer preparation / equipment adjustment 20:00 

2. 3 plane localizer / Parallel imaging calibration 00:22 

3. Axial T2 slices (site specific duration) ~01:19 

4. Axial T2 Flair slices (site specific duration) ~ 02:25 

5. Instructions / talk to volunteer 2:00 

6. Face task 5:00 

7. Instructions / talk to volunteer 2:00 

8. Stop-signal task 16:00 

9. B0 Map 00:40 

10. 3D Sagittal ADNI MPRAGE (Long)  

Duration 

09:17 

Duration ~60 min 

 

 

SESSION 2: Structural & functional 

sequences 

 

Duration 

1. Volunteer preparation / equipment adjustment 14:00 

2. 3 plane localizer / Parallel imaging calibration 00:22 

3. B0 Fieldmap 00:40 

4. 3D Sagittal ADNI MPRAGE (Short) 02:23 

5. Instructions / talk to volunteer 2:00 

6. M&M Incentive Delay Task 11:06 

7. Instructions / talk to volunteer 02:00 
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8. Global Cognition Assessment 05:00 

9. Instructions / talk to volunteer 02:00 

10. Breath Hold Task (optional) 05:40 

11. DTI (duration is heart-rate dependent) 10:00 

Duration ~60 min 

 

 

 

OPTIONALSESSION 3: Structural & 

functional sequences 

 

Duration 

1. 3 plane localizer / Parallel imaging calibration 00:22 

2. Despot 18:30 

3. 3D Sagittal ADNI MPRAGE (Short) 02:23 

Duration ~22 min 

 

Important notes: 

Please always try to run all of the tasks. In case you need to stop the scanning session 

earlier please skip the optional sessions / tasks first. We do not recommend running all sessions 

in one go as this is too tiring for the participant and has an impact on the data quality. If you have 

to do this please allow at least for a break between sessions. If you have scheduled two 

volunteers and you run both sessions on the same day please use the following scanning order 

which allows for breaks for the volunteer: 

Volunteer 1: first session 

Volunteer 2: first session 

Volunteer 1: second session 

Volunteer 2: second session 
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Paradigms, some of which are described below, differ based on the area of the brain being 

examined. 

• Motor Tasks: The easiest paradigm to implement is a motor task. One version of this 

paradigm is finger tapping where the patient is asked to touch the thumb of one hand to 

each of the fingers during the activation portion of the data collection. Motor tasks are 

often implemented in presurgical planning to assess the effects of lesions close to the 

motor strip and to help improve the surgical outcome. 

• Auditory Tasks: These tasks can involve rhyming or word generation and may require 

the patient to speak specific words or phrases during the active portion of the exam. This 

paradigm allows the clinician to visualize a  lesion's proximity and effect on Broca’s area, 

a key area of  the brain  associated with language, speech and comprehension.  

• Face Tasks: In this task volunteers are asked to passively watch video clips presenting 

faces with neural and angry expressions as well as control non-biological motion stimuli 

(concentric circles). After scanning a short recognition test is performed outside the 

scanner with 5 static pictures extracted from the movies. The pictures are presented 

sequentially, each with the question: "Have you seen this object while you were in the 

scanner?” The volunteers are NOT informed that a recognition test will be performed 

after scanning.  

• Stop Signal Tasks: The main principle of this task is to respond to regular presented visual go 

stimuli (go trials) but to withhold the motor response to the go stimulus when it is followed 

unpredictably by a stop-signal (stop trials). This task yields an estimate of a subject's stop-signal 

reaction time (SSRT). The SSRT is thought to be directly reflective of the central inhibitory 

mechanism. 

• MID (M&M Incentive Delay) Task: This task is a reaction time task - it tests how 

quickly the subject can react and pull the trigger to hit a target (with left or right index 

finger) that only appears for a short time on the left or right of the screen. If the subject 

can hit the target, they will score points. The subject can tell where the target will appear 

and how many points they can win by the symbol they see on the screen before each trial. 

A triangle means no points, a circle with a line means 2 points and a circle with three 

lines means 10 points. Responding too early or too late will result in a loss. The task lasts 

11 minutes and is adaptive - the maximum that can be won is <200 points.The subjects 
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receive 1 M&M (or similar chocolates/sweets) for every 5 points to enhance motivation 

during the task.  

• Visual paradigms: Visual paradigms can be implemented when video projection 

systems are integrated into the examination. This type of paradigm can vary significantly 

but normally requires the patient to focus on specific images or projections during the 

examination. Examining the visual cortex in this way provides additional information that 

can assist the surgeon with minimizing negative surgical effects on vision when removing 

lesions in this area. 

• Breath Hold Task (Paced Expiration Breath Hold Task): This task uses visual 

instructions to pace their breathing in a regular rhythm for 40 seconds (breathing in for 4 

seconds and out for 4 seconds), followed by holding their breath on expiration for a short 

periods of 20 seconds. This cycle is then repeated five times, ending on paced breathing 

to give a total task length of 5 minutes 40 seconds. This task uses the small build up of 

carbon dioxide to assess vascular responsivity in each participant and which differs 

between participants. This task is optional but we would like to ask all sites to run it as 

these data can be used to calibrate the bold response and more accurately measure neural 

responses from all our other tasks. 

• Global Cognition Assessment Task: Cognitive activation paradigms can be very 

complex and can include stimuli to examine areas of thought and reasoning or even pain 

and fear. These paradigms are normally confined to the realm of research but offer a 

clinical benefit in understanding the anatomic areas associated with processes such as 

learning, memory and decision making. 

This task is composed by the following brief tasks: 

1. passive viewing of a flashing checkerboard (20 trials),  

2. pressing three times the left button with the left index finger according to visual instructions  

(5 trials), 

3. pressing three times the right button with the right index finger according to visual instruction 

(5 trials), 

4. pressing three times the left button with the left index finger according to auditory instruction 

(5 trials), 
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5. pressing three times the right button with the right index finger according to auditory 

instruction (5 trials), 

6. reading silently short visual sentences (10 trials), 

7. listening to short sentences (10 trials), 

8. solving silently visual subtraction problems (10 trials), 

9. solving silently auditory subtraction problems (10 trials). 

4.2.3 Processing: 

After data collection, a statistical evaluation (t-test) is used to generate BOLD maps that 

are combined with routine 3D imaging datasets such as MPRAGE. The combined data can then 

be used as a neuronavigational roadmap for use in pre surgical planning or treatment assessment. 
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CHAPTER 5 

ANALYSIS OF MRI SCAN 

In a typical fMRI experiment, a measurement of the entire brain, known as a volume is 

collected every 2 to 4 seconds, resulting in hundreds of collected brain volumes per experiment 

for each subject. This means that the HRF is sampled at many different points in time. Every 

volume consists of a number of 3D slices (or slabs). These slices are typically a few millimetres 

thick. Each slice consists of a number of voxels (a 3D data points) and each voxel represents a 

data point on the HRF. An fMRI voxel of size ∼3 × 3 × 5mm3 contains millions of neurons. 

When neurons in an area become active, blood rich in oxygen flows to the area. The source of 

the fMRI signal is the difference in the magnetic properties of oxygenated blood from 

deoxygenated blood. The measured hemodynamic response due to the BOLD effect, which is the 

neurovascular response to brain activity, lags behind the neuronal activity by approximately      

3–6s. Higher static magnetic field (B0) strengths and more sophisticated MRI pulse sequences 

are often used to increase the signal-to-noise ratio (SNR). The acquired images are then  

preprocessed to correct for head motion, compensate for signal dropouts and magnetic field 

distortions, and apply spatial smoothing. 

5.1 SIGNAL ACQUISITION 

Conventional MRI has been a slow imaging modality where increases in imaging speed 

result in signal losses. The reason is that the MR signal is derived from the on version of tissue 

magnetization to a radio signal, and the magnetization recovers rather slowly. This had limited 

the possibility of implementing a real-time MRI. Fortunately, over the last 20 years technical 

advances in imaging have enabled substantial reduction in acquisition time. The most significant 

speed advance came with the development of echo-planar imaging (EPI). EPI is capable of 

imaging the entire brain in 1–2 s. At this sampling rate, fMRI can accurately follow the time 

course of brain activation. 

In EPI, one 3D slice is collected at a time. Alongside the EPI volumes that display areas 

of the brain that are active in a given task (functional activity) often a high resolution T1 or T2 
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anatomical volume is also obtained. This anatomical volume is used for spatial localization of 

the areas of the brain that are active in a  given task.   

In a traditional fMRI experiment, images are reconstructed offline only after the 

experiment has been completed. Real-time fMRI, on which fMRI-BCI is based, requires the 

simultaneous reconstruction of the images with the acquisition of the MR signal. Cox’s group 

reported the first implementation of a real-time fMRI system using a whole body 3T scanner 

(Bruker Instruments) . In their implementation, the analog signal from the signal acquisition 

system was sent to a workstation for analog-to-digital conversion and image reconstruction. This 

can also be implemented by modifying the Siemens MR scanner’s image reconstruction software 

to allow online reconstruction of whole-brain images at the end of every repetition time (TR) and 

storage of these images in a pre-specified folder to be immediately retrieved for further 

processing, analysis, and feedback by the fMRI-BCI system. The online image reconstruction 

software program is written in C++ based on the image reconstruction environment (ICE) 

provided by Siemens. The RT Export system runs both on the 1.5 T (Vision) and 3 T (TIM Trio) 

Siemens scanners. 

Many factors influencing signal acquisition have important consequences for real-time 

performance of fMRI-BCI: static magnetic field (B0) strength, spatial resolution, temporal 

resolution, echo time, and magnetic field inhomogeneities. Although high spatial resolution is 

desired, increasing the spatial resolution decreases the SNR and increases the acquisition time, 

and hence a compromise needs to be made among these variables. Commonly in fMRI-BCI, 

64x64 image matrices resulting in 3–4 mm in-plane resolution, and slice thickness of around 5 

mm are used. For online processing after image acquisition, spatial filtering or averaging across 

an ROI helps improve SNR. Reduced spatial resolution could be beneficial, compensating for 

head motion, data complexity, and inter-subject variability. A TR of 1,500 ms has been used in 

real-time fMRI with single-shot EPI. It is advisable that fMRI-BCI studies choose the echo time 

(TE) close to the relaxation time (T2∗) of the gray matter in the brain to maximize functional 

sensitivity. This value is about 70 ms at 1.5 T and 45 ms at 3 T.  

At the interface between tissue and air in the brain, in areas such as the orbitofrontal 

cortex and temporal pole, a significant change in the local magnetic field is present over a short 
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distance. Artifacts such as signal dropouts and geometric distortions (local shifts and 

compressions in the image) caused by magnetic field inhomogeneities potentially affect the 

performance of fMRI-BCI. Several methods have been developed for reducing susceptibility-

related signal losses in fMRI Weiskopf et al. developed a theory supported by experimental 

evidence showing that susceptibility-induced gradients in the EPI readout direction cause severe 

signal losses. They have proposed a model to simulate EPI dropouts to make informed choice of 

scan parameters depending on the field inhomogenieties in a region. Based on this insight, they 

developed an optimized EPI sequence for maximal BOLD sensitivity using a specific 

combination of an increased spatial resolution in the readout direction and a reduced echo time. 

We foresee the real-time adaptation of such techniques for fMRI-BCI applications. 

The signal analysis subsystem performs statistical analysis and generates functional maps 

using any of the following methods: subtraction of active and rest conditions, correlation 

analysis, multiple regression, general linear model (GLM), and pattern classification. Feedback 

can be presented to the subject by different modalities, including acoustic and visual, and with a 

variety of visualization methods, such as functional maps, continuously updated curves of the 

mean activity in one or more selected regions of interest (ROI), varying activity levels in one or 

more ROIs using a graphical thermometer, and augmented interfaces such as virtual reality (VR). 

Feedback is presented at an interval that depends on the time involved for image acquisition and 

processing, based on the computational resources available and the efficiency of the algorithms 

with which they are implemented, thus directly affecting the performance of the system. A short 

interval is critical for learning voluntary control of brain activity. 

5.2 SIGNAL PREPROCESSING 

After obtaining the EPI data from the scanner, a number of stages of analysis must be 

performed on the dataset to finally end up with a map that displays the regions with significant 

functional activity. These stages can roughly be subdivided in a stage where the  data is 

temporally adjusted, stages where the data is spatially adjusted and a stage of statistical  analysis. 

The stage where the data is temporally adjusted is known as slice timing correction. The stages 

where the data is spatially adjusted are spatial realignment, spatial normalization and spatial 

smoothing. Methods of signal preprocessing can be head motion artifact correction, respiratory 
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and cardiac artifact correction, and spatial smoothing. The last stage is the stage of statistical 

analysis [8].Each of these stages and their consequences for data interpretation will be 

considered separately in the following paragraphs.  

5.2.1   Slice timing correction  

In EPI every 3D volume of the entire brain consists of a number of 3D slices and these 

slices are each collected at a slightly different time. However, during the statistical analysis the 

assumption is made that the entire volume is collected at one point in time, so each voxel in a 

volume is assumed to represent the same moment in time. The result is that it might seem as 

though the same change in the HRF starts at an earlier time for slices that are acquired later in 

time than for slices that are acquired earlier in time (see fig. 5.1).  

 

Fig. 5.1: The HRF over time. The red arrow represents the time of acquisition for an early slice in the volume, the 

blue arrow represents the time of acquisition for a later slice in the volume. When the assumption is made that the 

entire volume is collected at one point in time (as is done in the statistical analysis), it seems as though the HRF 

begins earlier for the slice that is acquired at a later time (blue curve) than for the slice that is collected at an earlier 

time (red curve).  
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To solve this, the individual slices of a volume must be adjusted in the temporal domain. 

This is done by performing a temporal correction for the differences in acquisition time between 

the slices. This is referred to as slice timing correction [6].First, a decision must be made as to 

which slice is going to be the reference slice. In other words, which time of acquisition of is 

going to be taken as the point in time that the entire volume of the brain was collected? Usually, 

either the first slice or the middle slice of the image of the brain is taken as the reference slice. 

After a certain slice has been chosen as the reference slice, all the other slices in the image of the 

entire volume of the brain are shifted in time by method of interpolation. The slices of a volume 

that are collected earlier in time than the reference slice are weighted with the same slice in the 

subsequent volume. The slices of a volume that are collected later in time than the reference slice 

are weighted with the same slice from the previous volume. For example, if a volume consists of 

10 slices with the fifth slice being the reference slice, the second slice would be weighted with 

the second slice of the subsequent volume and the eighth slice would be weighted with the eighth 

slice from the previous volume. The reference slice is the only slice that is not shifted in time. 

The end result is that each voxel in each slice will approximately have the value that they would 

have had, had they been obtained at the same point in time as the voxels in the reference slice. In 

other words, the same change in the HRF now starts at the same time for each voxel in each slice 

in a volume [6]. 

Which slice to choose as the reference slice depends on where in the brain interesting 

activations are expected to occur. As the difference in time of the phase shifted slice from the 

reference slice increases, the artefacts introduced by this phase shift also increase. This is 

basically because the interpolation method used to shift the slices of a volume in time is not 

perfect. The further in time slices have to be shifted, the larger the errors in the interpolation. 

Therefore, it is important to choose the reference slice as close as possible to the region where 

the interesting activations are expected to occur, so that the interesting activations are not 

confounded by errors of interpolation. 

5.2.2  Spatial realignment  

During an fMRI experiment, hundreds of EPI 3D brain volumes are collected per subject 

in a single time series. Even though subjects are usually instructed to move as little as possible 
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inside the scanner, some head movement is unavoidable. The main result of head movements is 

that the same voxel does not to represent the same location in the brain throughout time [9]. The 

statistical analysis, however, assumes that the same voxel does represent the same location in the 

brain throughout time.  

When the same voxel over time .moves. from a location of the brain with a low fMRI 

signal to a location of the brain with a higher fMRI signal, while the statistical analysis assumes 

that this voxel represents the same location in the brain throughout time, it appears as though 

there was an increase in the fMRI signal for that voxel over time while in reality there was no 

increase in the fMRI signal. This has two potential consequences. Firstly, when movements are 

correlated with task performance, for example, if the head movement always occurs at a certain 

time after stimulus presentation, these false increases in the fMRI signal ultimately appear as 

false activations in the brain after the statistical analysis [9].Secondly, even when these intensity 

changes in the voxel caused by the movement of the head are not correlated with task 

performance they will add to the noise in the signal, thereby worsening the signal to noise ratio, 

which decreases the statistical power [9]. 

The removal of movement effects is done for each subject separately and is referred to as 

spatial realignment or, alternatively, as within modality image coregistration [9].One brain 

volume (usually the first image in the time series) is taken as the reference volume. All the other 

volumes in the same time series are repositioned until they are in the same position as the 

reference volume. This repositioning is done using 6 parameters; x-translation, y-translation, z-

translation, rotation around the x-axis, rotation around the y-axis and rotation around the z- axis 

(these transforms are discussed in more detail in the next section). Only the position of the brain 

is changed and not the size or shape. This repositioning treats the head as a rigid  object and is 

therefore also known as a rigid body transformation.  

For this realignment SPM2 uses a minimization algorithm for the least mean square 

difference between the volumes in the time series and the reference volume. This means that for 

each volume the squared difference between the volume in the time series and the reference 

volume is minimized (see Fig 5.2). The new value of the fMRI signal for a voxel after the 
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realignment is estimated by interpolation from the values of the fMRI signal of neighbouring 

voxels [9]. 

 

Fig 5.2: Illustration of the squared difference between the volume in the time series and the reference volume. A: 

The reference volume. B: the volume that has to be adjusted due to head movement. C: The difference between A 

and B. D: The squared difference(variance) between A and B.  

It should be noted that realignment not only adjusts for actual head movement, but also 

for apparent movement. As the fMRI scanner heats up during a session it appears as though the 

head drifts slightly. This is an artefact arising from the scanner and is also corrected for by 

realignment.  

Unfortunately, there are a number of limitations of realignment. The first limitation is 

that, when the head movements are too large, the minimization algorithm might get stuck in a 

local minimum [9].Usually, the data of subjects with movements that are too large will have to 

be removed. The second limitation is that the brain is not rigid. Heart-beat and respiration cause 

variations in shape and size of the brain. Usually, this source of movement is ignored [9].The 

third limitation is that even perfect realignment will not remove all movement related variance 

[9].The problem is that, in case of a movement, the image not only moves, but also 

fundamentally changes. The time it takes to acquire one image of the brain is usually shorter than 

the time it takes for the hydrogen nuclei to relax after the radiofrequency pulse. This means that, 

by the time the next radiofrequency pulse occurs, there is still a residual effect from the previous 

radiofrequency pulse on the hydrogen nuclei. This is not really a problem when the head does 

not move in the scanner, because in that case the residual effect from the previous 



31 

 

radiofrequency pulse is predictable. However, when the head does move the residual effect from 

the previous radiofrequency pulse on the hydrogen nuclei becomes unpredictable [9].One way to 

remove all movement related variance is to use a linear regression to remove any variance in the 

signal that is correlated with both movements during the present scan and movements during the 

preceding scan. However, when the movements are correlated with task performance, there is a 

risk of accidental removal of interesting activations [9] .The fourth limitation of realignment is 

that a movement also changes the overall magnetic field. Remember from the second section in 

this report that inhomogeneities in the magnetic field result in a decrease in the fMRI signal. 

Through a process known as shimming. every attempt is made to make the overall magnetic field 

as uniform as possible. However, when the head moves the overall magnetic field changes. 

Shimming is usually only done at the beginning of a scanning session and head movements 

therefore create new inhomogeneities in the overall magnetic field, leading to the overall 

magnetic field no longer being uniform and consequently to loss of signal in some areas of the 

brain. The fifth limitation of realignment is that the interpolation method used to estimate the 

new value of the fMRI signal of a voxel after the realignment is not perfect. This leads to so-

called interpolation errors in the signal  [9]. 

Realignment computes a spatial transform to generate a stabilized image of the brain. As 

mentioned, head movements in the scanner result in changes that a simple rigid-body 

transformation can not correct. For example, the head movements alter the shim of the magnet, 

so head motion causes changes to the intensity of some regions of the image. Andersson and 

colleagues have added an EPI unwarping function to SPM2 that reduces this movement-by-

inhomogeneity interaction. This software compensates for the changes in image brightness that 

result from head movements. This unwarping stage can be selected at the same time as the 

realignment. This stage is computationally intensive, and typically requires more processing time 

than all other spatial preprocessing steps combined. 

 Clearly, motion creates serious consequences for fMRI data analysis. As we have 

discussed, a number of clever techniques have been devised to minimise motion artefacts. 

However, these techniques will not completely eliminate motion artefacts, in particular if the 

head movements are large or sudden. Therefore, if possible, head movement should be 
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minimized, for example, by using a head constraint. Furthermore, tasks should be designed to 

minimize the risk of task correlated movement. 

5.2.3  Spatial normalization  

During an fMRI experiment, usually, data is collected for several subjects. However, 

each individual.s brain differs in orientation, size and shape relative to other members in the 

group. Usually, the orientation, size and shape of the brains of individual subjects are changed to 

match the orientation, size and shape of a standard brain .There are a number of reasons why 

making these different brains more alike in size and shape is desirable. Firstly, when the same 

voxels in the brain of each subject represents the same anatomical location, comparisons between 

different subjects are possible .Secondly, when different brains are mapped to a certain standard 

brain, communication of the anatomical loci of interesting effects between different research 

groups becomes less arbitrary. This matching of individual brains to a standard brain is known as 

spatial normalization. 

The orientation, size and shape of the brains of all the subjects are changed to match the 

orientation, size and shape of a standard brain. This standard brain is also known as a template 

[8].Obviously, choosing the right template is important. Optimally, the template should represent 

the brain of most subjects. Often, the template is based on an average of many different subjects 

[6].However, different scanners have unique characteristics and therefore research groups often 

create their own template. Even though this improves the match of the individual brain to the 

template for the research groups, it makes comparisons between research groups more tricky. 

The matching of the orientation, size and shape of each individual to the orientation, size 

and shape of the template is done using 12 linear parameters; x-translation, y-translation, z-

translation, roll, pitch, yaw, resizing (growing or shrinking) in three dimensions and three shear 

(skewing) deformations. Each of these linear parameters changes the entire brain in the same 

way and these are also known as affine parameters (see Figure 5.3). Note that any three points 

that are co-linear (a straight line can be drawn through all three points) will remain collinear after 

these linear transforms. In addition, each linear transform influences the entire 3D volume. As a 

result, linear transforms are fairly robust: small regions of signal dropout rarely have adverse 

influence on linear transforms as the intact portions of the image constrain the transform. 
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However, for the same reason, linear transforms are limited in how  accurately they can match 

two brains: while the overall size and orientation will be matched, local features will often not be 

precisely aligned. 

 

Fig 5.3: Linear transforms used for realignment (motion correction), coregistration and the first stages of  

normalization. The top row shows images prior to the transform, with the image at the bottom showing the result of 

the transform. Note that each transform can be applied in any of three dimensions (e.g. the mage can be translated in 

the anterior-posterior, superior-inferior or left-right dimension). Note that realignment does not typically implement 

or require shear transforms.  

In sum, linear transforms offer a robust but rudimentary match between an individual’s 

scan and a template image. Therefore, packages like SPM2 and AIR typically use linear 

transforms for the initial normalization and subsequently apply nonlinear transforms to offer a 

more accurate normalization. For example, SPM2 applies a set of nonlinear cosine basis 

functions to improve the normalization. Figure 5.4 shows how nonlinear functions can be used to 

aid normalization. These enable local changes in the brain, also known as warping, and 

potentially offer a better match to the template. A minimization algorithm for the least mean 

square difference between the brain volumes of the subject and the template volume is used and 
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the new value of the fMRI signal for a voxel after the normalization is estimated by interpolation 

from the values of the fMRI signal of neighbouring voxels. 

 

Figure 5.4: Nonlinear transforms. The image on the left cannot be made to accurately match the image on the right 

using only linear transforms. However, applying to nonlinear basis functions the image can be accurately 

normalized. These transforms are shown in the middle of the figure: one function crushes information near the 

vertical center of the image, while the other function crushes information near the horizontal center.   

Obviously, some constraints have to be imposed on this minimization procedure, since a 

large difference in the amount of warping between adjacent areas can lead to unrealistic results. 

The constraint usually imposed is that the overall warp of the brain has to be smooth.Practically, 

this means minimizing the difference in the amount of warping between adjacent brain areas. 

The result is that normalization matches the overall orientation, size and shape of the brain of 

each subject to the template, but not the individual sulci. Usually, this overall matching of 

normalization is not considered a problem, since precise matching of each individual brain to the 

template would be unrealistic. 

5.2.4  Spatial coregistration  

In image processing terms coregistration applies to any method for aligning images.By 

this definition, both motion correction and normalization are forms of coregistration. However, 

neuroimagers tend to use the term coregistration to refer to alignment of images from different 

modalities. For example, matching the low resolution T2* fMRI scan to the high-resolution T1-

weighted anatomical scan from the same individual. 
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In theory, intermodality coregistration is simpler than normalization: there should always 

be a perfect correspondence between different scans from the same individual (e.g. the same 

sulcal pattern should exist in both scans). However, note that algorithms implemented by SPM2 

during motion correction and normalization assume a similar relationship between tissues in the 

different scans. For example, in normalization, a T1 scan will be matched to a template image 

with T1-contrast: with air and water (cerebral spinal fluid) appearing dark and white matter 

appearing bright. The difference-squared cost function will fail when this relationship is broken. 

For example, consider a T1 scan and a T2 scan from the same individual that are perfectly 

aligned with each other: the difference-squared cost function will indicate major difference 

between these images, as the air is dark in both images, but the water is bright in the T2 but dark 

in the T1 scan. In this case, the automated algorithms used by SPM.s normalization will result in 

images that do not accurately match each other. 

Therefore, inter-modality coregistration cannot rely on a simple cost function that simply 

relies on the raw difference in intensity between the two images. There are two approaches that 

have been implemented to tackle this problem. The first technique simply normalizes each image 

to a corresponding template image (e.g. normalizing the T1 scan to a T1 template, and the T2* 

scan to a T2* template).  

Next, the images are segmented into grey and white matter maps, and these resulting 

maps are coregistered to each other using a standard difference-squared cost function.A second 

technique relies on mutual information theory: this simply relies on the concept that different 

material will have different intensities within a scan modality (e.g. air will have a consistent 

brightness in the scan, and this brightness will be different from some other materials, such as 

white matter). This method is illustrated in Figure 5.5. 
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Figure 5.5: Intermodality image coregistration using mutual information theory. Consider two MRI scans using 

different sequences (Tz-weighted and Ty-weighted images) of the same individual. If these images are accurately 

aligned (top left) than the resulting image histogram will show very little noise (lower left). On the other hand, if the 

images are not aligned (top left), than the resulting joint histogram (lower right) will show much more noise. 

Therefore, we can iteratively apply linear transforms and see if they influence the entropy between the two images, 

eventually resulting in an accurate alignment.  

5.2.5  Spatial smoothing  

 Spatial resolution determines how "sharp" the image looks. Spatial resolution is defined 

by the size of the imaging voxels. Since voxels are three dimensional  rectangular solids, the 

resolution is frequently different in the three different directions. The size of the voxel and 

therefore the resolution depends on matrix size, the field-of-view (FOV), and the slice thickness. 

The matrix size is the number of frequency encoding steps, in one direction; and the number of 

phase encoding steps, in the other direction of the image plane. 

An important preprocessing step is to blur the fMRI data prior to statistical analysis. At 

first glance, the idea of spatially smoothing data seems counterintuitive. After all, blurred data 

clearly degrades the spatial precision of the image. However, there are a number of important 

reasons for smoothing. Firstly, smoothing increases the signal to noise ratio in the fMRI signal 

by removing the noise present in the high spatial frequencies. In fMRI the effects of interest are 

produced by changes in blood flow. Changes in blood flow are expressed on a low spatial 
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frequency of several millimetres. Noise is usually expressed on a higher spatial frequency. 

Secondly, smoothing removes small frequency differences, so comparisons across subjects are 

made easier. Thirdly, smoothing helps to satisfy the requirements for applying Gaussian Field 

Theory to correct for multiple comparisons in the ensuing statistical analysis. Finally, smoothing 

makes the data more normally distributed [6].   

Smoothing is performed by convoluting the 3D volume with a 3D Gaussian kernel. 

Basically this means that every data point is multiplied by a curve in the shape of a 3D normal 

distribution. The shape of the 3D smoothing curve should match the spatial shape of the signal, 

so that frequencies matching the frequencies of the 3D smoothing curve are emphasized and 

frequencies not matching the frequencies of the 3D smoothing curve are filtered out. The shape 

of the smoothing curve is defined by the Full Width Half Maximum (FWHM). This is the width 

of the curve at half of the maximum and is usually defined in millimetres. The FWHM chosen 

for the smoothing curve is typically two or three times the voxelsize. In our own work, we 

usually collect data with a resolution of around 3x3x3 mm, so we tend to choose an 8 mm 

FWHM for our smoothing filter. However, it should be noted that the smoothing acts as a spatial 

filter . a FWHM of 8 mm is tuned to detect clusters of around this size. Therefore, if you have an 

a priori prediction of the size of the region you hope to measure, you can set your smoothing 

filter to maximize signals for that size of region (for example, if you wanted to examine the tiny 

superior colliculi you would want to select a smaller smoothing filter than if you were interested 

in a larger region such as early visual cortex). The end result of this spatial smoothing is 

therefore that high spatial frequencies in the signal are filtered out while low spatial frequencies 

in the signal are emphasized [6]. 

5.2.6  Physiological Noise Correction 

The magnetic field in the head changes during breathing because of the bulk motion of 

the thorax. Breathing patterns may change the fMRI signal more than the desirable BOLD 

response. Changes in the respiratory rhythm and volume can also change the CO2 level in the 

blood and cause BOLD signal fluctuations. The pulse is also known to cause artifacts. 

Techniques have been developed to remove cardiorespiratory artifacts during offline analysis, 

but they have not been adapted to online processing for real-time fMRI. Recently van Gembris 
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[10] reported a real-time shimming method to compensate for respiration induced fluctuations in 

the main magnetic field (B0 field). Future implementations of fMRI-BCI could potentially 

explore the use of these methods for correction of physiological artifacts and noise. This 

becomes even more important at higher static magnetic fields, because the relative contribution 

of physiology to the noise increases. 

5.3  Statistical analysis  

While the majority of work in fMRI has used conventional neuorimaging methods of 

univariate analysis, there is a growing interest in incorporating multivariate methods of pattern 

analysis using machine learning techniques in the emerging field of brain state detection. In this 

section, we will consider both methods as applied to fMRI. 

5.3.1 UNIVARIATE ANALYSIS 

Univariate methods seek to find out how a particular perceptual or cognitive state is 

encoded by measuring brain activity from many thousands of locations repeatedly but then 

analyzing each location separately. If the responses at any brain location differ between two 

states, then it is possible to use measurements of the activity at that location to determine or 

decode the state. A commonly used method for detecting neuronal activity from fMRI time 

series is correlation analysis. The method computes correlation coefficients between the time-

series of the reference vector representing the expected hemodynamic response and the 

measurement vector of each voxel. A primary advantage of this method is that the reference 

vector can have an arbitrary shape best reflecting the hemodynamic response. Gembris [10] 

presented a computationally efficient algorithm, implemented in the analysis software Functional 

Magnetic Resonance Imaging in Real-time (FIRE), which generates correlation coefficients on a 

“sliding-window” of the fMRI time series. The basic concept of this method is to restrict the 

correlation computation to only the most recent data sets. According to this method, definition of 

the correlation coefficient in combination with detrending is given by the equation: 

→→

→→

=

rsx

rsx
ρ

                                                                        ………………………………. (5.1)
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where 
→

x  is the measurement vector of one voxel that is updated at every time step, 
→

rs  is the 

reference vector, and  
→

x and 
→

rs are detrending vectors. Each new data set replaces the data set of 

the previously acquired sliding-window buffer. This method reduces the load on memory and 

computational time, two important factors that critically affect the performance of fMRI-BCI. 

The authors tested the method in an experiment with 20 healthy participants in a paradigm 

comprising alternating baseline and visual stimulation blocks. The sliding window correlation 

method successfully identified the visual areas as being significantly active with voxels in this 

region crossing the threshold correlation coefficient of 70%. The method offers greater 

sensitivity of the correlation coefficients to changes in the signal response shape and amplitude 

with passing measurements. Another advantage of the sliding window technique is its capability 

for quantifying physiological variability when combined with a technique called reference vector 

optimization. This method takes into account a realistic model of the hemodynamic response 

function to adapt the reference vector to the measured data and thus increases functional 

sensitivity. 

The General Lineal Model (GLM) provides by far the most unified framework in the 

analysis of the fMRI data. GLM can model multiple experimental and confounding effects 

simultaneously. Bagarinao et al. presented a method for real-time estimation of GLM 

coefficients. The observed fMRI data are considered a linear combination of L explanatory 

functions f i(.) and an error term: 

yk,s = bk,1 f1(ts)+· · ·+ bk,1 fL(ts) + εk,s                                          …………………………….(5.2) 

 

where yk,s is the observation of k
th

 voxel at time ts, s = 1….n are scan numbers, fs(.) are basis 

functions that span the fMRI responses for a given experiment, bk are coefficients that need to be 

estimated and εk,s is the residual error or noise term. The method converts the basis functions or 

explanatory variables of a GLM into orthogonal functions using an algorithm called the Gram-

Schmidt orthogonalization procedure. The coefficients of the orthogonal functions are then 

estimated using the orthogonality condition.  
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In a conventional GLM  analysis of fMRI data, multiple trials are required to identify 

significantly activated voxels with sufficient consistency. However, it is not possible to obtain 

many trials in an fMRI-BCI setting with its very need for identifying significantly active voxels 

in real-time. The advantage of the real-time GLM implementation is that estimates can be 

updated when new image data are available, making the approach suitable for fMRI-BCIs. 

Furthermore, with this approach it is not necessary to store the data as the data are immediately 

used in computing the estimates, thus reducing the memory requirements. A similar approach is 

taken by the analysis software (TBV) running on our local fMRI-BCI setup at the University of 

Tübingen, which uses the recursive least squares regression algorithm  to incrementally update 

the GLM estimates. 

After identification of the significantly active voxels, either by the method of real-time 

correlation or GLM analysis, their values are passed to the signal feedback subsystem at every 

time point for computation and presentation of the feedback to the participant. 

5.3.2 MULTIVARIATE ANALYSIS 

Using univariate analysis it is often difficult to find individual locations where the 

differences between conditions are large enough to allow for efficient decoding. In contrast to 

the conventional analysis, recent work shows that the sensitivity of human neuroimaging may be 

improved by taking into account the spatial pattern of brain activity. Pattern-based methods use 

considerably more information for detecting the current state from measurements of brain 

activity. In the previous studies with fMRI-BCI, brain signals from only one or two ROIs were 

extracted for providing neurofeedback to the subject. A major argument for moving away from 

deriving feedback signals from single ROIs is that perceptual, cognitive, or emotional activities 

generally recruit a distributed network of brain regions rather than single locations. Pattern-based 

methods not only use voxel-intensities but also their spatiotemporal relationships.  

Several studies have previously reported offline classification of fMRI signals using 

various pattern-based methods such as multilayer neural networks, Fisher Linear Discriminant 

(FLD) classifier[11], and support vector machines (SVMs). Laconte et al. [11].  recently reported 

probably the first implementation of a real-time pattern classification system that could be 

applied to neurofeedback and BCI. The aim of the study was to first train a classification model 
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based on early fMRI data and thereafter to use the classifier to predict the brain state with each 

acquired image and alter the stimulus based on the estimated brain state. The modified Siemens 

scanner’s image calculation environment (ICE) can be used to perform SVM classification 

during training and testing and then transmitted the classification results to a stimulus display 

computer. To improve the efficiency of classification the authors implemented a method for 

segmenting brain regions from nonbrain regions with a combination of intensity thresholded 

mask and an additional variance mask to remove signals from the eye regions. For SVM 

classification, images from each scan were represented as a vector whose components were 

intensity values for each brain voxel at that time. The experimental condition associated with 

each vector was represented as a scalar class label. The SVM algorithm attempts to find a 

decision boundary as a separating hyperplane to discriminate between the two class labels. Once 

the SVM model was determined from the training images, independent testing images were 

classified into the specified labels. Percentage classification accuracy was reported as the ratio of 

number of correctly classified scans to the total number of scans. To test this approach the 

authors used an experimental task consisting of rapid button press blocks that alternatively used 

the left or right portion of the visual display. During the training runs an arrow in the center of 

the display pointed toward the left or right target acted as the cue. During the subsequent testing 

run, each acquired image was classified by the SVM model, and the arrow was updated in terms 

of its position and orientation based on the classifier’s left or right decision. With additional 

subjects, task instructions were changed to further examine pattern classification of mood, 

language, and imagined motor tasks. The authors concluded that real-time pattern classification 

of brain states using fMRI data is possible; high prediction accuracies are attainable during 

sustained activation; and stimulus feedback based on pattern classification can respond to 

changes in brain states much earlier than the time to- peak limitations of the BOLD response. 

The above approach is limited to two-class classification of brain states. 

We have recently implemented in our fMRI-BCI a multiclass pattern classification 

system that offers the experimenter the flexibility of selecting either an SVM or a multilayer 

neural network classification algorithm [11]. Mourao-Miranda et al.[11] carried out a 

comparison of two methods, SVM and Fisher Linear Discriminant classifier (FLD), for 

classifying multisubject data from an experiment involving a face matching and location 

matching task. They demonstrated that SVM outperforms FLD in classification accuracy as well 



42 

 

as in the robustness of the spatial maps obtained. Further work needs to be carried out to 

rigorously compare the performance of existing pattern classification approaches to assess their 

suitability and efficacy for fMRI brain state classification. 
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CHAPTER 6 

OUR WORK 

The most important advantage of MR imaging is that it is a non-invasive technique. The 

use of computer technology in medical decision support is now widespread and pervasive across 

a wide range of medical area, such as cancer research, gastroenterology, heart diseases, brain 

tumors, etc. Fully automatic normal and diseased human brain classification can be obtained 

from magnetic resonance images; which is a great importance for research and clinical studies. 

Recent work [12,14] has shown that classification of human brain in magnetic resonance 

(MR) images is possible via supervised techniques such as artificial neural networks and support 

vector machine (SVM) , and unsupervised classification techniques such as self-organization 

map (SOM) and fuzzy c -means [14]. Other supervised classification techniques, such as k -

nearest neighbors (k -NN) can be used to classify the normal/pathological T2-weighted MRI 

images. In this study, we used supervised machine learning algorithms (ANN and k -NN) to 

obtain the classification of images under two categories, either normal or abnormal. 

Wavelet transform is an effective tool for feature extraction, because they allow analysis 

of images at various levels of resolution. This technique requires large storage and is 

computationally more expensive [13]. Hence an alternative method for dimension reduction 

scheme is used. In order to reduce the feature vector dimension and increase the discriminative 

power, the principal component analysis (PCA) has been used. Principal component analysis is 

appealing since it effectively reduces the dimensionality of the data and therefore reduces the 

computational cost of analyzing new data. To perform the classification on the input data, the 

SVM have been used. 

The contribution of our work is the integration of an efficient feature extraction tool and a 

robust classifier to perform a more robust and accurate automated MRI normal/abnormal brain 

images classification. Also, this paper focuses on a comparison of our results with a similar study 

using supervised and unsupervised methods that were carried out by other authors [12,14]. 

In our work first, features are extracted using wavelet transformation. Wavelets seem to 

be a suitable tool for this task, because they allow analysis of images at various levels of 



 

resolution [12]. second, principal component analysis (PCA) is used for reducing the number of 

features and also increasing discrimination 

appealing since it effectively reduces 

computational cost of analyzing new data

used for classification. The results indicate fully classification of data. Our work is the extension 

and modification of the method introduced in [12

contains more and different images, we use pre

number of features obtained by PCA for maximum classification rate is less a

classification rate. 

6.1 Wavelet Transform  

A wavelet is a “small wave”

windows for analyzing high frequencies and wide windows for analyzing low frequencies works 

quite well for signals having high frequency components for short durations and low frequency 

components for long durations.  

 

, principal component analysis (PCA) is used for reducing the number of 

features and also increasing discrimination between classes. Principal component analysis

reduces the dimensionality of the data and therefore reduces the 

analyzing new data. Finally, the pattern recognition methods 

used for classification. The results indicate fully classification of data. Our work is the extension 

method introduced in [12]. But, our case is different, the database 

contains more and different images, we use pre-processing step and additional classifier; the 

number of features obtained by PCA for maximum classification rate is less and we obtain better 

A wavelet is a “small wave” of varying frequency and limited duration

frequencies and wide windows for analyzing low frequencies works 

quite well for signals having high frequency components for short durations and low frequency 

 

Fig. 6.1 Wavelet Function 
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Wavelets provide simultaneous localization in time and scale (i.e, frequency)

wavelet allows to explicitly represent the location of  events in time.

allows to represent different detail or resolution.

6.1.1 Discrete Wavelet Transform

 The DWT is an implementation of the wave

wavelet scales and translation 

necessary to discretize the wavelet trans

alogarithmic grid. The translation parameter (t) is then discretized with respec

parameter, i.e. sampling is done on the d

two) sampling grid. The discretized scale a

n 2
-m

 ,where m, n ϵ Z , the set of all integer

in 

 

                                                                                                              

 

Forward DWT: 
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imultaneous localization in time and scale (i.e, frequency).The location of the  

to explicitly represent the location of  events in time. The shape of the wavelet 

represent different detail or resolution. 

Wavelet Transform 

The DWT is an implementation of the wavelet transform using a discrete set of the 

 obeying some defined rules. For practical computations, it is
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The location of the  

The shape of the wavelet  

using a discrete set of the 

es. For practical computations, it is 

parameter( s) is (are) discretized on 

translation parameter (t) is then discretized with respect to the scale 

ithm is usually chosen as 

parameters are given by, s =2
-m 

and t = 

Thus, the family of wavelet functions is represented 

………………… (6.1) 

………………… (6.2) 
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Inverse DWT: 

                                                                                                            ………………… (6.3) 

6.1.2 Regularity and Wavelet Vanishing Moments 

Wavelet transform of a function  f(x) provide information about special feature of f(x). 

Lipschitz regularity of a function f(x) in an interval tells about highest order derivative of 

function f(x) that can exist in that interval. If a function f(x) has highest order derivative ‘m’ then 

this feature of f(x) can be detected by a wavelet function ψ(x) having ‘m’ vanishing moments. 

Wavelet function ψ(t) having ‘m’ vanishing moments is given by 

 

                                                                                                           ………………… (6.4) 

For higher scales  

 

                                                                                                           ………………… (6.5) 

Wavelet transform of a function f(x) with wavelet function ψ(t) having ‘m’ vanishing 

moments will have maximum value at points where m
th 

derivative of f(x) will be maximum. At 

these points derivative of wavelet transform will nullify or have a singularity. Derivative of 

wavelet transform with wavelet function ψ(t) having ‘m’ vanishing moments is equivalent to 

wavelet transform with wavelet function ψ’(t) having ‘m+1’ vanishing moments. Number of 

maxima at a given scale increase linearly with number of moments in wavelet. Fourier transform 

ψ(ω) of ψ(t) having ‘m’ vanishing moments and it’s first ‘m-1’ derivatives are zero at ω=0  
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Fig 6.2 Extrema of W
1
f(s,x) and the zero crossing of W

2
f(s,x) are the inflection points of f*θ5(x). Points of abscissa 

x0 and x2 are sharp variations of f*θ5(x) and are local maxima of ( )xsfW ,1
. The local minimum of ( )xsfW ,1

 

at x1 is also an inflection point but it is a slow variation point. 

In order to minimize the amount of computations, we should have the minimum number 

of maxima necessary to detect the interesting irregular behavior of the signal. This means that we 

must choose a wavelet with as few vanishing moments as possible, but with enough moments to 

detect the Lipschitz exponents of highest order that we are interested in. A wavelet with n 

vanishing moments has at least n + 1 local extrema. For numerical computations, it is better to 

choose a wavelet with exactly n + 1 local extrema. 

In image processing, we often want to detect discontinuities and peaks that have 

Lipschitz exponents smaller than one [15]. It is, therefore, sufficient to use a wavelet with only 

one vanishing moment. In signals obtained from turbulent fluids, interesting structures have a 

Lipschitz exponent between 0 and 2 . We, thus, need a wavelet with two vanishing moments to 

analyze turbulent structures. 

Singularity are the points where wavelet transform is maximum. Wavelet transform is 

maximum when it get a feature for which it is created for example in image processing wavelet 

function used for edge detection has only  one vanishing moment therefore wavelet transform  

formed using this wavelet function will have maximum value at edges. But this type  of edge 

detection increase with scaling factor. 
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Fig 6.3 (a): Image scan line of 256 samples. (b): Dyadic wavelet transform of signal 1(a), on 5 scale (2
5
), we keep 

the remaining low-frequencies S2
5
 f(x) to have the complete representation. (c): Maxima representation of wavelet 

transform shown in (b). Each dirac indicate the position and amplitude of local maxima at the corresponding scale of 

Dyadic wavelet transform. 
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6.1.3 Multi-resolution using Wavelet Transform: 

 

If a set of functions can be represented by a weighted sum of ψ(t - k), then a larger set (including 

the original) can be represented by a weighted sum of ψ(2t - k). 
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Basis functions: 

Vj : space spanned by ψ(2
j
t - k) 

f(t) ϵ Vj                                                                                                      ………………… (6.7) 

 

 

Fig. 6.4 Multiresolution conditions � nested spanned spaces:    1+⊂ jj VV   i.e., if f(t) ϵ V j then f(t) ϵ V j+1 

Let Wj be the orthogonal complement  of Vj in Vj+1 i.e., all functions in Vj+1 that are orthogonal  

to all functions in Vj .  

Vj+1 = Vj + Wj                                   ………………… (6.8) 

 

Fig. 6.5 All functions in Vj+1 that are orthogonal  to all functions in Vj . 
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If f(t) ϵ Vj+1, then f(t)  can be represented using basis functions fromV

Alternatively, f(t) can be represented using basis functions from V

 

                                                                                                              

                                                                                                   

 

Vj+1 = Vj + Wj using recursion on

Vj+1 = Vj-1+Wj-1

                                                                                                

 

 

                                                     

Example: Suppose we are given a 1D "image" with a resolution of 4 pixels:

This image can be represented in the Haar basis as follows:

• Start by averaging the pixels together (pairwise) to get a new lower resolution image:

• To recover the original four pixels from the two averaged pixels, store some 

coefficients.  
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can be represented using basis functions fromVj+1:  

                         ………………… (6

Alternatively, f(t) can be represented using basis functions from Vj and Wj:  

Vj+1 = Vj + Wj 

                                                                                                              …………………

                                                    

using recursion on Vj : 

1+Wj = …= V0 + W0 + W1 + W2 + … + W

                                                                                                …………………

                                                     V0                             W0, W1, W2, … 

Suppose we are given a 1D "image" with a resolution of 4 pixels:[9 7 3 5]

This image can be represented in the Haar basis as follows:  

Start by averaging the pixels together (pairwise) to get a new lower resolution image:

 

To recover the original four pixels from the two averaged pixels, store some 
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………………… (6.9)                                                              

………………… (6.10) 

+ … + Wj 

………………… (6.11) 

[9 7 3 5] 

Start by averaging the pixels together (pairwise) to get a new lower resolution image: 

To recover the original four pixels from the two averaged pixels, store some detail 

)
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• Repeating this process on the averages gives the full decomposition: 

 

• The Harr decomposition of the original four-pixel image is: 

 

• We can reconstruct the original image to a resolution by adding or subtracting the detail 

coefficients from the lower-resolution versions.  
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6.1.4 Two Dimensional Wavelet Transform: 

Scaling function: 

( ) ( ) ( )yxyx ϕϕϕ =,
                              ……………… (6.12.1) 

Wavelet functions: 

     
( ) ( ) ( )yxyx

H ϕψψ =,
  Horizontal direction         ……………… (6.12.2) 

   ( ) ( ) ( )yxyx
V ψϕψ =,

   Vertical direction        ………………….. (6.12.3) 

      
( ) ( ) ( )yxyx

D ψψψ =,
    Diagonal direction          ………………… (6.12.4) 
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Wavelet Toolbox in matlab: Write “wavemenu” in matlab command window to use matlab tool 

box 

 

Fig. 6.6 Wavelet Toolbox in Matlab 
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6.1.5 Feature Extraction Using Wavelet Transform 

 In discussion it is clear how a lower resolution image is obtained using wavelet 

transform. In our work we have done two level wavelet decomposition and image of lower 

resolution is taken for feature extraction purpose. 

 

Fig 6.7 Wavelet decomposition for feature extraction 
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6.2 Principal Component Analysis 

After taking lower resolution image from wavelet decomposition for feature extraction 

we apply feature reduction techniques. The principal component analysis and independent 

component analysis (ICA) are two well-known tools for transforming the existing input features 

into a new lower-dimension feature space. In PCA, the input feature space is transformed into a 

lower-dimensional feature space using the largest eigenvectors of the correlation matrix. In the 

ICA, the original input space is transformed into an independent feature space with a dimension 

that is independent of the other dimensions. PCA is the most widely used subspace projection 

technique. These methods provide suboptimal solution with a low computational cost and 

computational complexity. 

Implementing PCA in image processing: Let we have a database of M images each of size N×N. 

Step 1: Image I is converted to a vector Γ of size  N
2
×1. 

 

Each image is converted to a vector Γi of size  N
2
×1.  

Step 2:Compute average face vector Ψ. 

 

                                                                                                                    ………………… (6.13)                                                              

 

Step 3:Subtract the mean Face 

 

                                                                                                                    ………………… (6.14)                                                              

∑
=

Γ=
M

i

i
M 1

1
ψ

ψφ −Γ= ii
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Step 4:Compute the covariance Matrix C: 

 

 

  

                                                                                                                    ………………… (6.15)                                                              

Step 5:Compute the eigen vectors ui of AA
T
: 

Matrix AA
T
 is very large not practical 

Step 5.1: Consider matrix A
T
A (M×M Matrix) 

Step 5.2: Compute the eigen vectors vi of  A
T
A (M×M Matrix) 

                                                                                                                     ………………… (6.16)                                                              

 

Relation between iu and iv  

 

 

                                                                                                                   ………………… (6.17)                                                              

Thus AA
T
 and  A

T
A have same eigen values and their eigen vectors are related as ii Avu =  

Note 1: AA
T
 can have up to N

2
 eigen values and eigen vectors. 

Note 2: A
T
A can have up to M eigen values and eigen vectors. 

Note3: M eigen values of A
T
A (along with their corresponding eigen vectors) correspond to M 

largest eigen values of AA
T
(along with their corresponding eigen vectors). 

Step 5.3: Compute best eigen vectors of  AA
T
 : ii Avu =  

Important: Normalize iu such that 1=iu  

iii

T
vAvA µ=

( )
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Step 5: Keep only K eigen vectors (corresponding to K largest eigen values). 

Example: 

 

Fig. 6.8 Principal component decomposition of Face 

6.3 Support Vector Machine 

In feature reduction procedure we decompose each image in seven major components 

(along significant eigen vectors).Weights of each image along these eigen vectors will be used 

for classification purpose. For classification we use support vector machine as a classifier. 

 SVM is a binary classification method that takes as input labeled data from two classes 

and outputs a model file for classifying new unlabeled/ labeled data into one of two classes . The 

SVM originated from the idea of the structural risk minimization that was developed by Vapnik. 

Support vector machines are primarily two class classifiers that have been shown to be attractive 

and more systematic to learning linear or non-linear class boundaries. The use of SVM, like any 

other machine learning technique, involves two basic steps namely training and testing. Training 
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an SVM involves feeding known data to the SVM along with previously known decision values, 

thus forming a finite training set. It is from the training set that an SVM gets its intelligence to 

classify unknown data. 

The key concept of SVM is the use of hyperplanes to define decision boundaries 

separating between data points of different classes. SVMs are able to handle both simple, linear, 

classification tasks, as well as more complex, i.e.  nonlinear, classification problems. Both 

separable and nonseparable problems are handled by SVMs in the linear and nonlinear case. The 

idea behind SVMs is to map the original data points from the input space to a high-dimensional, 

or even infinite-dimensional, feature space such that the classification problem becomes simpler 

in the feature space. The mapping is done by a suitable choice of a kernel function. 

Consider a training data set ( ){ }N

iii yx
1

,
=   with xi ϵ R

d
  xi being the input vectors and yi ϵ 

{-1,+1} the class labels. SVMs map the d- dimensional input vector x from the input space to the 

dh dimensional feature space using a (non) linear function φ(.):R
d
 →R

d
h. The separating 

hyperplane in the feature space is then defined as ( ) 0=+ bxw
Tφ  with b ϵ R and w an 

unknown vector with same dimension as φ(x). A data point  x is assigned to the first class if 

( ) ( )( )bxwsignxf
T += φ  equal to +1 or to the second class if f(x) equals -1. 

In case the data are linearly separable, the separating hyperplane can be defined in many 

ways. However, SVMs are based on the maximum margin principle, and aim at constructing a 

hyperplane with maximal distance between the two classes. The SVM classifier starts from the 

following formulations 

( )

( ) 1        1

1        1

−=−≤+

+=+≥+

i

T

i

T

yforbxw

yforbxw

φ

φ

 

Equivalent to  

( )( ) Nibxwy
T

i ,........,1          1 =+≥+φ
                                

         ………………… (6.18)                                                            
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The classifier is written as 

( ) ( )( )bxwsignxf
T += φ

 

In Figure 6.8, SVM classification with a hyper plane that minimizes the separating 

margin between the two classes are indicated by data points marked by “X” s and “O”s. Support 

vectors are elements of the training set that lie on the boundary hyper planes of the two classes. 
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6.4 Simulation and Results 

The MRI data is collected from the Harvard Medical School website [16]  http:// 

med.harvard.edu/AANLIB/ 

Training Data 

Class 1: 
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Class 2: 
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Class3:  

 

 

 

 

 

 

 

 



64 

 

Class4: 
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Class5: 
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Test Data: 

Class 1: 
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Class 2: 
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Class 3: 
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Class 4: 
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Class 5: 
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Results: Our method classify different type of tumor images correctly. Due to lack of data base 

it seems that all results are correct. If we apply our method on large data set results may be true 

up to 98% to 99%. 

 

Fig.6.10 Confusion matrix of results 

6.5 Conclusions 

As our method provides reliable and fast detection of different types of brain tumors. 

Therefore it can be used in fully automated systems for tumor detection as reliable and fast 

detection and classification of brain tumors is of major technical and economical importance for 

the doctors because the information obtained will influence the treatment a patient will receive. 

The designed system is an efficient system for Detection and Classification of Brain Cancer from 

a given MRI image of cancer affected patients. 
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