Major Project Report II

On

Tumor detection in MRI image using SVM

Submitted in Partial fulfillment of the requirement

For the award of the degree of

MASTER OF TECHNOLOGY

In

(Signal Processing and Digital Design)

Submitted by

Chandradeep Singh

DTU/M.Tech/169

Under the Guidance of

Associate Prof. M.S. Choudhary

Department of Electronics and Communication Engineering

DEPARTMENT OF ELECTRONICS & COMMUNIATION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY BAWANA ROAD, DELHI- 110042 July 2012

i

А

DECLARATION BY THE CANDIDATE

July 2012

Date: _____

I hereby declare that the work presented in this dissertation entitled **"Tumor detection in MRI image using SVM"** has been carried out by me under the guidance of **Mr. M.S. Choudhary**, Associate Professor, Department of Electronics & Communication Engineering, Delhi Technological University, Delhi and hereby submitted for the partial fulfillment for the award of degree of Master of Technology in Signal Processing & Digital Design at Electronics & Communication Department, Delhi Technological University, Delhi.

I further undertake that the work embodied in this major project has not been submitted for the award of any other degree elsewhere.

Chandradeep Singh DTU/M.Tech/169 M.Tech (SP&DD)

CERTIFICATE

It is to certify that the above statement made by the candidate is true to the best of my knowledge and belief.

Mr. M.S. Choudhary Associate Professor Electronics & Communication Department Delhi Technological University, Delhi-42

Dated:-----

ACKNOWLEDGEMENTS

At this point I would like to thank the people that helped me producing this dissertation. First, I thank **Dr. Rajiv Kapoor** Head of Department (Electronics and Communication Engineering, DTU), and **Mr. M. S. Choudhary** for giving me the opportunity to write this dissertation and supporting me along the way. Next, I would like to say thanks to all my seniors and friends for their goodwill and support that helped me a lot in successful completion of this dissertation.

Special thanks to Prashant Sharma, Researcher, (Department of supercomputing, Indian Institute of Science, Banglore) for providing help in implementing support vector machine for multi class data.

Chandradeep Singh DTU/M.Tech/169 M.Tech (SP&DD)

ABSTRACT

The aim of this work is to present an automated method that assists diagnosis of normal and abnormal MR images. The diagnosis method consists of four stages, pre-processing of MR images, feature extraction, dimensionality reduction and classification. The features are extracted based on discrete wavelet transformation (DWT) using Haar wavelet. We have emphasised on reducing execution time for classification by taking less number of features selected by principal component analysis (PCA) without degrading performance of system so much. In the last stage classification method, Support Vector Machine (SVM) for multi class data is employed. Our work is the modification and extension of the previous studies on the diagnosis of brain diseases, while we obtain better classification rate with the less number of features and we have used larger and rather different database to classify tumors in different classes on the basis of location in different parts of brain.

Keywords:- Magnetic resonance imaging (MRI), Feature Extraction, Feature Reduction, Classification, Discrete wavelet transform (DWT), Principal Component Analysis(PCA), Support vector machine (SVM).

CONTENTS

Acknowledgements iii					
Abstract					
1.	Intr	ntroduction			
2.	The	Basics of MRI			
	2.1	The brain in a magnetic field	4		
	2.2	Application of the radiofrequency pulse	6		
	2.3	Relaxation	7		
	2.4	When it all comes together	7		
	2.5	T2* and the spin-echo pulse cycle	9		
3.	From	n Neural Activation to the fMRI Signal	12		
	3.1	The T2* signal	12		
	3.2	Optimizing the BOLD signal	16		
4.	Ove	rview of MRI Scan Imaging Sessions	18		
	4.1	A Brief Introduction to fMRI	18		
	4.2	fMRI Procedure			
		4.2.1 Preparation	18		
		4.2.2 Acquisition	18		
		4.2.3 Processing	23		
5.	Analysis of MRI Scan		24		
	5.1	Signal Acquisition	24		
	5.2	Signal Preprocessing	26		
		5.2.1 Slice timing correction	27		
		5.2.2 Spatial realignment	28		
		5.2.3 Spatial normalization	32		
		5.2.4 Spatial coregistration	34		

		5.2.5	Spatial smoothing	36			
		5.2.6	Physiological Noise Correction	37			
	5.3	Statist	ical analysis	38			
		5.3.1	Univariate Analysis	38			
		5.3.2	Multivariate Analysis	40			
6.	Our	Work		43			
	6.1	Wavel	et Transform	44			
		6.1.1	Discrete Wavelet Transform	45			
		6.1.2	Regularity and Wavelet Vanishing Moments	46			
		6.1.3	Multi-resolution using Wavelet Transform	49			
		6.1.4	Two Dimensional Wavelet Transform	53			
		6.1.5	Feature Extraction Using Wavelet Transform	55			
	6.2 Principal Component Analysis		pal Component Analysis	56			
	6.3	Suppo	rt Vector Machine	58			
	6.4	4 Simulation and Results					
	6.5	Conclu	usions	71			
	Bibliography						

LIST OF FIGURES

2.1	Precession of the MDM	5
2.2	Tipping. of an MDM into the x-y plane in RF field	7
2.3	MDM.s that are not in phase	12
3.1	Decay of the fMRI signal over time	13
3.2	Time course of the HRF	14
5.1	The HRF over time	27
5.2	Squared difference of time series data with reference MRI data	30
5.3	Linear transforms for realignment, coregistration and normalization	33
5.4	Non Linear transforms	34
5.5	Intermodality image coregistration	36
6.1	Wavelet Function	44
6.2	To determine Point of inflection when signal multiplied with scaling function	47
6.3	Decomposition of signal at different scales	48
6.4	Multiresolution representation	50
6.5	Orthogonal relation between scaling function and wavelet function	50
6.6	Wavelet Toolbox in Matlab	54
6.7	Wavelet decomposition for feature extraction	55
6.8	Principal component decomposition of Faces	58
6.9	SVM classification for Two Classes	60
6.10	Confusion Matrix of Results	71

LIST OF TABLES

3.1	Session 1: Structural and Functional Sequences	19
3.2	Session 2: Structural and Functional Sequences	19
3.3	Optional Session 3: Structural and Functional Sequences	20