
i 
 

 

MAJOR–II PROJECT REPORT 

ON 

EFFECT OF ROUGHNESS ON SECONDARY FLOW IN A 

RECTILINEAR TURBINE CASCADE 

By: 

DEEPIKA SHARMA 
(03/Thr/2010) 

 
Under the valuable guidance of 

Dr. SAMSHER 
PROFESSOR 

DEPARTMENT OF MECHANICAL ENGINEERING 

 

Submitted in partial fulfillment for the award of the Degree of 

     MASTER OF TECHNOLOGY 

     IN 

      THERMAL ENGINEERING 

 

          Department Of Mechanical Engineering 
             Delhi Technological University 

           (Formerly Delhi College of Engineering) 
         Delhi – 110042 

 
          (June, 2012) 

  

 

 



ii 
 

 
DECLARATION BY THE CANDIDATE 

 
 

Date:____________  
 

I hereby declare that the work presented in this dissertation entitled “Effect of 

Roughness on Secondary Flow in a Rectilinear Turbine Cascade” has been carried 

out by me under the guidance of Dr. Samsher, Professor, Department of Mechanical 

Engineering, Delhi Technological University, Delhi and hereby submitted for the partial 

fulfilment for the award of degree of Master of Technology in Mechanical Engineering 

(Thermal) at Delhi Technological University, Delhi.  

I further undertake that the work embodied in this major project has not been submitted 

for the award of any other degree elsewhere.  

 

Deepika Sharma 

03/ Thr/2010 

M.Tech (Thermal) 

 

 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 

CERTIFICATE 

It is to certify that the above statement made by the candidate is true to the best of my 

knowledge and belief.  

Dated:––––––––––– 

 

Dr. SAMSHER  

Professor  

Mechanical Engineering Department  

Delhi College of Engineering, Delhi-42 

 

 

 

 



iii 
 

ACKNOWLEDGEMENT 

 

This project could not have been reached to this stage without the support of my 

mentor. I take this opportunity to express our gratitude to Dr. Samsher  (Professor, 

Department of Mechanical Engineering Dept, DTU).  His commitments, interest and 

positive attitude for the project has always been undiminished. The numerous 

discussions in which ideas and opinions were heard and decisions taken accordingly 

helped me to do my work regarding the project. 

 

 

Deepika Sharma 

03/ Thr/2010 

M.Tech (Thermal) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ABSTRACT 

 

The aerodynamics of the flow in a turbine stage (stator/rotor) is a complex issue and 

always been a subject of research. The flow through a cascade is inherently three 

dimensional and usually viscous. This characterization leads to the phenomenon of boundary 

layer. Due to the blade profi le the flow becomes unstable and also subjected to separation. 

Both of these phenomenon leads to development of vortices and these vortices are the 

source of cross or circulatory flow which is termed as secondary flow. 

 

This report gives a detailed understanding of secondary flow and effect of roughness 

on secondary flow. Three dimensional geometry of recti linear cascade of four blades 

(reaction) is created in the Gambit® 2.2.3 software and flow behavior has been studied using 

FLUENT 6.2. Air with an inlet velocity of 102m/s is passed through the cascade. The 

cascade is open to atmosphere at the exit. Initially, both surfaces of the blade of the cascade 

are kept as smooth and secondary loss is analyzed in the span wise direction. This 

secondary flow loss is then compared with the blades on which a roughness of 500 µm is 

applied on suction surface and pressure surface individually as well as on both the surfaces 

together. It is observed that in a smooth blade average total loss is 14.7% whereas in case of 

blades having both the surfaces rough this loss gets almost doubled and becomes 27.7%. 

When roughness is applied to all the suction surfaces only then average total loss is 24.7% 

and if roughness is present only on the pressure surfaces then average total loss is 18.2%. 

But the corresponding average secondary loss decreases from 1.7% in case of smooth 

blades to 1.5% for rough blades. This average secondary loss is 1.9% for the blades on 

which roughness is present on all the pressure and 1.3% in case when roughness is applied 

to only suction surfaces of the blades  
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