MAJOR-II PROJECT REPORT

ON

EFFECT OF ROUGHNESS ON SECONDARY FLOW IN A RECTILINEAR TURBINE CASCADE

By:

DEEPIKA SHARMA (03/Thr/2010)

Under the valuable guidance of Dr. SAMSHER PROFESSOR DEPARTMENT OF MECHANICAL ENGINEERING

Submitted in partial fulfillment for the award of the Degree of

MASTER OF TECHNOLOGY

IN

THERMAL ENGINEERING

Department Of Mechanical Engineering Delhi Technological University (Formerly Delhi College of Engineering) Delhi – 110042

(June, 2012)

DECLARATION BY THE CANDIDATE

Date:_____

I hereby declare that the work presented in this dissertation entitled "Effect of Roughness on Secondary Flow in a Rectilinear Turbine Cascade" has been carried out by me under the guidance of Dr. Samsher, Professor, Department of Mechanical Engineering, Delhi Technological University, Delhi and hereby submitted for the partial fulfilment for the award of degree of Master of Technology in Mechanical Engineering (Thermal) at Delhi Technological University, Delhi.

I further undertake that the work embodied in this major project has not been submitted for the award of any other degree elsewhere.

> Deepika Sharma 03/ Thr/2010 M.Tech (Thermal)

CERTIFICATE

It is to certify that the above statement made by the candidate is true to the best of my knowledge and belief.

Dated:-----

Dr. SAMSHER

Professor Mechanical Engineering Department Delhi College of Engineering, Delhi-42

ACKNOWLEDGEMENT

This project could not have been reached to this stage without the support of my mentor. I take this opportunity to express our gratitude to **Dr. Samsher** (Professor, Department of Mechanical Engineering Dept, DTU). His commitments, interest and positive attitude for the project has always been undiminished. The numerous discussions in which ideas and opinions were heard and decisions taken accordingly helped me to do my work regarding the project.

Deepika Sharma 03/ Thr/2010 M.Tech (Thermal)

ABSTRACT

The aerodynamics of the flow in a turbine stage (stator/rotor) is a complex issue and always been a subject of research. The flow through a cascade is inherently three dimensional and usually viscous. This characterization leads to the phenomenon of boundary layer. Due to the blade profile the flow becomes unstable and also subjected to separation. Both of these phenomenon leads to development of vortices and these vortices are the source of cross or circulatory flow which is termed as secondary flow.

This report gives a detailed understanding of secondary flow and effect of roughness on secondary flow. Three dimensional geometry of rectilinear cascade of four blades (reaction) is created in the Gambit® 2.2.3 software and flow behavior has been studied using FLUENT 6.2. Air with an inlet velocity of 102m/s is passed through the cascade. The cascade is open to atmosphere at the exit. Initially, both surfaces of the blade of the cascade are kept as smooth and secondary loss is analyzed in the span wise direction. This secondary flow loss is then compared with the blades on which a roughness of 500 µm is applied on suction surface and pressure surface individually as well as on both the surfaces together. It is observed that in a smooth blade average total loss is 14.7% whereas in case of blades having both the surfaces rough this loss gets almost doubled and becomes 27.7%. When roughness is applied to all the suction surfaces only then average total loss is 24.7% and if roughness is present only on the pressure surfaces then average total loss is 18.2%. But the corresponding average secondary loss decreases from 1.7% in case of smooth blades to 1.5% for rough blades. This average secondary loss is 1.9% for the blades on which roughness is present on all the pressure and 1.3% in case when roughness is applied to only suction surfaces of the blades

TABLE OF CONTENTS

Page No

	Declaration by the Candidate and Certificate	ii
	Acknowledgement	iii
	Abstract	iv
	Table of Contents	V
	List of Figures List of Tables	vii
	Nomenclature Used	x xi
CHAPTER -1	INTRODUCTION	1
	1.1 Motivation	2
	1.2 Problem statement	3
	1.4 Plan of work	4
	1.4 Expected outcome and actual achieved	5
	1.5 Organization of Report	6
CHAPTER -2	LITERATURE REVIEW	7
	2.1 Overview	7
	2.2 Theoretical Background	7
	2.3 Recent Work	10
	2.4 Ways of reducing Secondary losses	16
	2.4.1 End Wall Contouring	16
	2.4.2 Leading Edge Modification	22
	2.5 Parameters affecting the secondary flow	35
	2.6 Conclusions from the literature review	46
	2.7 Gaps in literature review	46
	2.8 Scope of present study	47
CHAPTER-3	MODELLING OF CASCADE	48
	3.1 Basic Governing Equations	48
	3.1.1 Continuity equation	49
	3.1.2 Momentum Equation	49
	3.1.3 Energy equation	50
	3.2 Turbulence Models	52

	3.2.1 Choice of appropriate turbulence model	54
	3.3 Description of Computational Domain	57
	3.3.1 Geometry Creation using Gambit®	58
	3.4 Boundary And Operating Conditions	66
	3.4.1 Boundary Conditions	66
	3.4.2 Operating conditions	68
	3.5 Profile loss calculations	69
CHAPTER-4	RESULT AND DISCUSSIONS	73
	 4.1 Validation of total loss computed from 3-D simulation with experimental data along blade span 	73
	4.2 Computation of Secondary loss in Smooth cascade	75
	4.2.1 Analysis of data	75
	4.3 Computation of Secondary Loss on applying the roughness of 500µm	79
	4.3.1 Secondary Loss when roughness is applied to all the suction surfaces	79
	4.3.2 Secondary Loss when roughness is present only on the pressure surfaces	82
	4.3.3 Secondary Loss when roughness is present on both the surfaces together	83
	4.4 Flow Visualization	85
	4.5 Comparison of Secondary Loss in Smooth and Rough Cascade	90
CHAPTER-5	CONCLUSIONS	92
CHAPTER-6	FUTURE SCOPES	93
	REFERENCES	94
	APPENDIX	98

LIST OF FIGURES

S. No	Title	Page No.
Fig. 2.1	Secondary vortices in short and long blades	8
Fig. 2.2	Variation of losses along blade height	9
Fig. 2.3	Schematic breakdown of losses in the end region, excluding profile loss	10
Fig. 2.4	Classical Secondary Flow Model	11
Fig. 2.5	End wall vortex pattern	12
Fig. 2.6	Development of the Horseshoe and Passage Vortices	13
Fig. 2.7	Cascade flow structure	14
Fig. 2.8	Secondary flow model	15
Fig. 2.9	Turbine blade definition and co-ordinate system	17
Fig. 2.10	Contour plots of static pressure coefficients at the suction surface (a) end wall b) midspan	18
Fig. 2.11	Flow model and the confining boundaries	19
Fig. 2.12	Surface streamlines on the end wall: a) flat b) contoured end walls	19
Fig. 2.13	Spanwise distribution of loss	20
Fig. 2.14	pitch wise mass averaged pressure loss cofficient result for 140% axial chord measurement plane	21
Fig. 2.15	Measured and calculated pitchwise mass averaged gross stagnation pressure loss coefficient	22
Fig. 2.16	a) T106 Cascade data (equal blading for each modification) and (b) T106 profile and the modification (leading edge endwall bulb)	23
Fig. 2.17	Span wise endwall loss distribution	24
Fig. 2.18	Endwall and sectional profiles of blades A, B, C, and D	25
Fig. 2.19	Basic leading-edge fillet geometries a) sharp/pointed, b) rounded, c) bulb type	27 vii

Fig. 2.20	Cascade geometry for LS2 and LS3 and measurement location	28
Fig. 2.21	Measured midspan surface pressure distributions for LS2 and LS3 at design incidence	29
Fig. 2.22	Schematic diagram of the delta wing geometry and delta wing installation positions	32
Fig. 2.23	Comparison of mass-averaged stagnation pressure loss at the cascade exit	33
Fig. 2.24	Original and redesigned profiles	34
Fig. 2.25	Efficiency characteristic for original HD and optimized blade	35
Fig. 2.26	Variation of stagnation pressure loss with the span at the stator trailing edge	36
Fig. 2.27	Kinematic model illustrating the vortex transport through a turbine blade passage	37
Fig. 2.28	Schematic of the shroud geometry: FS (left), PS (middle) and EPS (right)	38
Fig. 2.29	Meridional view of blade to define sweep angle $\boldsymbol{\lambda}$	40
Fig. 2.30	Schematic of swept cascade blade HS, side view	40
Fig. 2.31	Development of measured mass-averaged total pressure coefficient through the cascade	42
Fig. 2.32	Shape and cross sectional view of tested blade tips. (a) PLN, (b) DIM, (c) DSS, (d) PSS, (e) SSS, (f) GCL, (g) GPS, (h) GSS, (i) CPS, (j) CSS, and (k) TEC.	43
Fig. 2.33	Conceptual view of the flow near the plain tip region	45
Fig. 3.1	Shape of turbine blade 6030 cascade model	57
Fig. 3.2	A Blade at Required Stagger Angle	59
Fig. 3.3	A required set of blades	60
Fig. 3.4	Designed Cascade	60
Fig. 3.5	Face of the designed cascade	61
Fig. 3.6	Volume of designed cascade	62
Fig. 3.7	Meshing of fluid field	63

Fig. 3.8	3-D meshing near the leading edge of blade 6030	64
Fig. 3.9	Measurement plane at 15% of the chord	69
Fig.3.10	Profile loss coefficient versus relative pitch	72
Fig. 4.1	Comparison of computational results with experimental data on loss coefficient along the pitch	74
Fig. 4.2	Variation of %total loss coefficient along the blade span for smooth blade	78
Fig. 4.3	variation of % total loss coefficient along the blade height when a roughness of 500µm is present on the suction surfaces of the cascade.	81
Fig. 4.4	variation of % total loss coefficient along the blade height when a roughness of $500\mu m$ is present on the pressure surfaces of the cascade.	82
Fig. 4.5	variation of % total loss coefficient along the blade height when a roughness of 500µm is present on the suction as well as pressure surfaces of the cascade	84
Fig. 4.6	Total pressure distributions in wake region at 1% span for the cascade having all the surfaces smooth	85
Fig. 4.7	Total pressure distributions in wake region at 50% span for the cascade having all the surface smooth	86
Fig. 4.8	Total pressure distributions in wake region at 50% span for the cascade having both the surface rough	87
Fig. 4.9	Total pressure distributions in wake region at 50% span for the cascade having both the surface rough	87
Fig.4.10	Total pressure distributions in wake region at 50% span for the cascade having all the pressure surface rough	88
Fig. 4.11	Total pressure distributions in wake region at 50% span for the cascade having all the pressure surfaces rough	88
Fig. 4.12	Total pressure distributions in wake region at 50% span	00
Fig. 4.13	for the cascade having all the suction surfaces rough Total pressure distributions in wake region at 50% span for the cascade having all the suction surfaces rough	89 89
Fig. 4.14	Comparison of energy loss coefficient along the blade height for a) smooth blade surfaces b) all pressure surfaces rough c) suction surfaces rough d) all the surfaces rough	90

LIST OF TABLES

S. No.	TITLE	PAGE NO
Table 2.1	Turbine cascade geometry	17
Table 2.2	Mass-averaged results of blades A, B, C, and D at 125 percent Cx from experiment and numerical predictions	26
Table 2.3	Stagnation pressure loss	31
Table 2.4	Summary of the test cases	41
Table 3.1	Cascade dimensions and flow parameter	58
Table 4.1	%loss coefficient along the blade height for the smooth blade profile 6030	76
Table 4.2	%loss coefficient along the blade height for the cascade having roughness of $500\mu m$ on all the suction surfaces	79
Table 4.3	%loss coefficient along the blade height for the cascade having roughness of $500\mu m$ on all the pressure surfaces	83

NOMENCLATURE USED

- ρ Density
- ui Velocity vector
- S_m Momentum Source Term
- P Static Pressure
- ρg_i Gravitational Body Force
- F_i External Body Force
- τ_{ii} Stress Tensor
- δ_{ii} Kronecker's delta
- μ molecular viscosity
- K_{eff} Effective Thermal Conductivity
- J_j Diffusion Flux
- Sh Source term includes heat of chemical reaction
- T Temperature
- E Energy term
- h Enthalpy
- m_j mass fraction
- ui instantaneous velocity
- Ø velocity ratio
- κ turbulent kinetic energy
- ε energy dissipation rate
- G_k turbulent kinetic energy due to mean velocity gradients
- G_b turbulent kinetic energy due to buoyancy
- Y_{M} contribution of fluctuating dilatation in compressible turbulence to the overall dissipation rate
- Pr Prantl number
- M Mach Number
- uavg mean velocity
- P_{2s} Static pressure at outlet
- Po1 Total pressure at inlet
- P_{o2} Total pressure at outlet
- T₀ temperature at inlet
- T₂ actual temperature at exit

- T_{2s} temperature at exit when expansion in the cascade is isentropic.
- γ Ratio of specific heats for air
- $\zeta_y \qquad \text{Local energy loss coefficient} \\$
- S span
- z blade height
- y distance along pitch