ON-TO-METHODOLOGY

Ontology Development Methodology

A Dissertation submitted in partial fulfillment of the requirement for the award of degree of

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

By

MAGENDRA SINGH

College Roll No. - 08/SE/2010

Under the esteemed guidance of

Dr. DAYA GUPTA

Department of Computer Engineering

Delhi Technological University

2011-2012

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI – 110042

Date:			

This is to certify that dissertation entitled "On-to-Methodology: Ontology Development Methodology" has been completed by Magendra Singh in partial fulfillment of the requirement of major project of Master of Technology in Software Engineering.

This is a record of his work carried out by him under my supervision and support during the academic session 2011 -2012.

Dr. DAYA GUPTA
Prof., HOD & PROJECT GUIDE

(Dept. of Computer Engineering)

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI – 110042

ACKNOWLEDGEMENT

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor **Dr. Daya Gupta, HOD, Department of Computer Engineering, Delhi Technological University**, for her invaluable guidance, encouragement and patient reviews. Her continuous inspiration only has made me complete this dissertation. She kept on boosting me time to time for putting an extra ounce of effort to realize this work.

I would also like to take this opportunity to present my sincere regards to my teacher Dr. Ruchika Malhotra, for encouragement and perpetual motivation and other faculty members of Computer Engineering Department for providing me unconditional and anytime access to the resources and guidance. I would like to thank my friends for their unconditional support and motivation during this work.

Finally, I would thank my parents who bless me & always have been there for me.

(MAGENDRA SINGH)

Master of Technology
(Software Engineering)

Dept. of Computer Engineering

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI – 110042

Magendra Singh M.Tech- Software Engineering Delhi Technological University

ABSTRACT

For about a decade, ontologies have been known in computer science as explicit

specifications of shared conceptualizations. Researchers have written much about the

potential benefits of using them, and most of us regard ontologies as central building

blocks of the Semantic Web and other semantic systems. There is much work already

existent on their definitions, construction and development and their applications. All

these literature define the set of activities that concern the ontology development process,

the ontology lifecycle, the principles, methods and methodologies for building ontologies

and the tool suites and languages that support them.

The construction of ontology can allow users or agents of software/service to arrive at

consistent views about organization structure of information with same semantics.

However, since domains differ in principles, theories and techniques underlying them,

there is no existing methodology that could work as the standard method for ontology

construction at the present time.

Unfortunately, still not much quality ontologies have been developed. This implies that

the Semantic Web community has yet to build practically useful ontologies for a lot of

relevant domains in order to make the Semantic Web a reality. Indeed, several social and

technical issues exist that cause problems in development of ontologies.

In this work we provide an overview of what ontology is, describing the current trends,

issues and problems in constructing them. We also propose an ontology development

methodology On-to-Methodology that could be used as a standard model for ontology

development tasks across various domains. We have automated the development process

by implementing a tool for Ontology design process. We illustrate our methodology by

developing Ontology of Bikes. We then compare our methodology with other existing

ontology development methodologies.

Magendra Singh M.Tech- Software Engineering

iv

Table of Contents

CERTIFICATE	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
Table of Contents	v
List of Figures	viii
List of Tables	xi
1. INTRODUCTION	1
1.1 Motivation	2
1.2 Related Work	3
1.3 Problem of the Thesis	5
1.4 Scope of the Thesis	6
1.5 Thesis Statement and Outline	8
2. ONTOLOGY DEVELOPMENT METHODOLOGIES	10
2.1 METHONTOLOGY	10
2.1.1 Specification	10
2.1.2 Knowledge Acquisition	10
2.1.3 Conceptualization	11
2.1.4 Integration	12
2.1.5 Implementation	12
2.1.6 Evaluation	12
2.1.7 Documentation	12
2.2 CommonKADS	13

2.3 Methodology by Farooq et. al.	15
2.3.1 Adaptation at Specification Level	15
2.3.2 Adaptation at Design Level	15
2.4 Methodology by Gaoyun et. al.	16
2.4.1 Clarifying domain	16
2.4.2 Building domain model	16
2.4.2.1 Building physical model of domain	16
2.4.2.2 Building concept model of domain	17
2.4.3 Identifying attributes	17
2.4.4 Layered vocabulary	17
2.4.5 Merging ontology	17
2.4.6 Ontology formalization	18
2.5 MADRE	18
2.6 Semi-automatic Domain Ontology Construction methodology	
by Dan et. al.	20
2.7 Automatic Ontology Construction Approach by Jia et. al	21
2.8 Concept Feature-based Ontology Construction and Maintenance	22
2.9 A structured ontology construction by using data clustering and	
pattern tree mining	23
2.9.1 Ontology construction	23
2.9.2 System Architecture	24
3. ON-TO-METHODOLOGY:	
PROPOSED METHODOLOGY FOR ONTOLOGY CONSTRUCTION	26
3.1 Process Description of Ontology Methodology	26
3.2 Define Ontology Scope	27
3.3 Knowledge Acquisition	28
3.3.1 Domain Understanding & Knowledge Elicitation	30
3.3.2 Domain Analysis & Compilation	31
3.3.3 Building Conceptual Model of the Knowledge	31
3.3.4 Validation	32

•	
3.3.5 Format of Ontology Specification Document	33
3.4 Design Ontology	36
3.4.1 Design	36
3.4.2 Ontology Design Document	40
3.5 Formalization	41
3.6 Evaluation	42
3.7 Maintenance	43
4. DISCUSSION	45
4.1 Scope	47
4.2 Document 1: Format for elicitation of ideas	48
4.3 Document 6: The Conceptual Model of the Knowledge	49
4.4 Ontology Specification Document	63
4.5 Ontology Design Document	68
4.6 Formalization	78
5. EVALUATION & COMPARISON	81
5.1 Evaluation	81
5.2 Comparison of Ontology Engineering Methods	86
6. CONCLUSION & FUTURE WORK	90
7. REFERENCES	91
Appendix A: Documents generated during construction of Ontology of Bikes	94
Appendix B: Ontology Design Document	134

List of Figures

Figure 1: Steps involved in On-To-Methodology	6
Figure 2: Set of Intermediate Representations in the conceptualization phase	11
Figure 3: The CommonKADS suite of models	13
Figure 4: The process of MADRE ontology construction	19
Figure 5: The system framework	20
Figure 6: Concept feature-based ontology construction and maintenance framework	22
Figure 7: Document vector algorithm	24
Figure 8: Concept tree construction algorithm	24
Figure 9: Sequence pattern mining algorithm	25
Figure 10: Ontology construction algorithm	25
Figure 11: On-To-Methodology: Proposed Ontology Construction methodology	27
Figure 12: Various forms generated during different activities	29
Figure 13: Framework for extracting the domain concepts	32
Figure 14: Adding new concept	36
Figure 15: Home screen	38
Figure 16(a): Interface for designing	39
Figure 16(b): Interface for designing	39
Figure 17: Deletion process of single concepts	44
Figure 18: Deletion process of a portion of ontology	44
Figure 19: Workflow of Bikes Ontology development process	46
Figure 20: Property hierarchy	58
Figure 21: Inverse-properties	60
Figure 22: Inverse-property hierarchy	61
Figure 23(a): Employment of our tool for design of Ontology of Bike	68
Figure 23(b): Employment of our tool for design of Ontology of Bike	69
Figure 24: Bikes Ontology structure	73
Figure 25: Sub-Ontology structure of <i>HeroHondaBikes</i>	74
Figure 26: Sub-Ontology structure of BajajBikes	75
Figure 27: Sub-Ontology structure of <i>Make</i>	76

Figure 28: Sub-Ontology structure of RoyalEnfieldBikes	77
Figure 29: Class hierarchy for Ontology of Bikes	78
Figure 30: Object Properties for Ontology of Bikes	79
Figure 31: Data Properties for Ontology of Bikes	79
Figure 32(a): Individuals for various Bikes- Hero Honda Karizma(ZMR)	80
Figure 32(b): Individuals for various Bikes- Bajaj Duke200	80
Figure 33(a): Evaluation of competency question	81
Figure 33(b): Evaluation of competency question	82
Figure 34: The output of OntoGraf	83
Figure 35(a): The output of OWLViz	84
Figure 35(b): The output of OWLViz	85
Figure 36: Identified properties	128
Figure 37: Identified property hierarchy	129
Figure 38: Identified inverse-properties	131
Figure 39: Inverse-properties hierarchy	132
Figure 40: Initial Ontology structure	134
Figure 41: Modified Ontology structure	135
Figure 42: Modified Ontology structure	136
Figure 43: Modified Ontology structure	136
Figure 44: Modified Ontology structure	138
Figure 45: Modified Ontology structure	138
Figure 46: Modified Ontology structure	140
Figure 47: Modified Ontology structure	141
Figure 48: Modified Ontology structure	143
Figure 49: Modified Ontology structure	146
Figure 50: Modified Ontology structure	148
Figure 51: Modified Ontology structure	150
Figure 52: Modified Ontology structure	152
Figure 53: Modified Ontology structure	155
Figure 54: Modified Ontology structure	161

Figure 55: Final Ontology structure	169
Figure 56: Sub- Ontology structure of HeroHondaBikes	170
Figure 57: Sub- Ontology structure of BajajBikes	171
Figure 58: Sub- Ontology structure of Make	172
Figure 59: Sub- Ontology structure of RoyalEnfieldBikes	173

List of Tables 42 Table 1 – A comparison of ontology editing tools Table 2 – Domain & Ranges of properties 59 Table 3 – Domain & Ranges of Inverse-properties 62 Table 4 – Final Location map 69 Table 5 – Mapping of concepts between On-To-Methodology & other methodologies 88 Table 6 – Domain & Ranges of identified properties 130 Table 7 – Domain & Ranges of Inverse-properties 133 Table 8 – Initial Location map 134 Table 9 – Modified Location map 135 Table 10 – Modified Location map 136 Table 11 – Modified Location map 137 Table 12 – List of subsequent concepts 137 Table 13 – Modified Location map 138 Table 14 – Modified Location map 139 Table 15 – Modified Location map 140 Table 16 – List of subsequent concepts 141 Table 17 – Modified Location map 142 Table 18 – Modified Location map 144 Table 19 – List of subsequent concepts 144 Table 20 – Modified Location map 147 Table 21 – Modified Location map 148 Table 22 – List of subsequent concepts 149 Table 23 – List of subsequent concepts 150 Table 24 – Modified Location map 153 Table 25 – Modified Location map 155 Table 26 – List of subsequent concepts 156 Table 27 – Modified Location map 161 Table 28 – List of subsequent concepts 163 Table 29 – Final Location map 166

On-To-Methodology:	Ontology Deve	lopment M	lethodology
		- by Mag	endra Singh