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1. INTRODUCTION 

 

In the later half of nineteenth century, the steel was used in a big way in the construction 

industry. As the steel member was thin and slender, stability became an important design 

consideration. With the introduction of composite materials, the research in stability analysis of 

beams, plates and shells has grown exponentially. Steel and composite structural elements 

(beams, plates and shell panels) used in aircrafts, spacecrafts, ships, bridges and offshore 

structures are subjected to a variety of static and dynamic loads during their life span and may 

undergo static and dynamic instabilities. The structural instability may lead to large deflections 

or large amplitude vibrations of the structural elements leading to global or local failures. Hence, 

buckling instability characteristics have become important design considerations.  

              Often, plates are a part of complex structural system and hence load coming on it may 

not be always uniform. For example, in the case of I-beam or wide flanged beam subjected to 

bending moment at the ends or lateral loads on the flange, the web of the beam is subjected to 

non-uniform inplane loads. The load exerted on the aircraft wings, or on the stiffened plate in the 

ship structures or on the slabs of a multi-storey building by the adjoining structures usually is 

non-uniform. The type of distribu-tion in an actual structure depends on the relative stiffnesses of 

the adjoining elements. Behaviour of structures subjected to non- uniform inplane compressive 

loading and shear loading is important in aircraft, civil and ship-building industries. Much work 

has been reported in the literature on the buckling of rectangular plates subjected to uniform 

inplane loading. However, very few papers deal with the buckling of plates subjected to non- 

uniform inplane loads. Buckling of plates subjected to and parabolic inplane compressive 

loading was obtained by earlier researchers based on unrealistic inplane stress distribution. 

                    The development of the governing partial differential equation defining small lateral 

deflections of the middle surface of thin plates, as well as the development of the companion 

relationships, is based on certain assumptions adopted because of prior knowledge about the 

behavior of beams. Because of the limitation of small deflections, 

1. The middle surface is assumed to remain unstrained. Because of the limitation of 

thinness, 



2 
 

2. Normals to the middle surface before deformation remain normal after deformation, and 

3. Normal stresses in the direction transverse to the plate are neglected.  

4. The material is homogeneous, isotropic, continuous, and linearly elastic. 

 

The most commonly encountered problem in stability is the bifurcation buckling in which the 

perfect structure looses its stability by switching from one equilibrium state to another 

equilibrium state. The load associated with the bifurcation point is known as the critical buckling 

load. Bifurcation point is defined as the point where a perfect structure switches from an 

equilibrium path (primary path) to another equilibrium path i.e. secondary path. Characterisation 

of perfect structure can be done by bifurcation point and imperfect structure by limit point. Limit 

point is the point on equilibrium path, which corresponds to zero structural stiffness. Two types 

of buckling exist in the perfect elastic structures: bifurcation buckling and nonlinear collapse. 

Nonlinear analysis is used to predict the nonlinear collapse. Snap-through and snap-back 

buckling is the phenomenon of nonlinear structural analysis.  

When a slender structure is loaded in compression, for small loads it deforms with hardly any 

noticeable change in geometry and load carrying ability. On reaching a critical load value, the 

structure suddenly experiences a large deformation and it may lose its ability to carry the load. 

At this stage, the structure is considered to have buckled. Buckling, also known as structural 

instability may be classified into two categories: 

 

a) Bifurcation buckling 

b) Limit load buckling 

 

In bifurcation buckling, the deflection under compressive load changes from one 

direction to a different direction (e.g., from axial shortening to lateral deflection). In limit load 

buckling, the structure attains a maximum load without any previous 

bifurcation, i.e., with only a single mode of deflection. 
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2. LITERATURE REVIEW 

Leissa AW, Kang JH. Exact solution for buckling of thin plates: 

Leissa and Kang used power series (i.e., method of Frobenius) method to obtain the buckling 

load of the plate with linearly varying in-plane loads .The problem of buckling of a rectangular 

plate subjected to uniformly distributed in-plane compressive loading at each end goes back to 

the work of Bryan in 1890–91. The same problem, for the case of linearly varying in-plane 

compressive loading at each end, was first treated by several European investigators about 90 

years ago. The case of loading that is nonlinearly distributed along two opposite plate edges is 

considerably more complicated in that it requires that first the plane elasticity problem be solved 

to obtain the distribution of in-plane stresses. Then the buckling problem must be solved. This 

problem was claimed to have been solved by van der Neut in 1958 for a half-sine load 

distribution and later by Benoy for a parabolic distribution. However, their work was based on an 

incorrect in-plane stress distribution. Here is presented a solution for the half-sine load 

distribution on two opposite sides, based on a more realistic in-plane stress distribution.  

This distribution shows a decrease (diffusion) in axial stress as the distance from the loaded 

edges is increased. The buckling loads are calculated using Galerkin method and the results are 

compared with the inaccurate results in the literature. 

 

Sarat Kumar Panda, L.S.Ramachandra :[2010] 

In this paper, buckling loads of rectangular composite plates having nine sets of different 

boundary conditions and subjected to non-uniform inplane loading are presented considering 

higher order shear deformation theory (HSDT). As the applied inplane load is non-uniform, the 

buckling load is evaluated in two steps. In the first step the plane elasticity problem is solved to 

evaluate the stress distribution within the pre-buckling range. Using the above stress distribution 

the plate buckling equations are derived from the principle of minimum total potential energy. 

Adopting Galerkin’s approximation, the governing partial differential equations are converted 

into a set of homogeneous linear algebraic equations. The critical buckling load is obtained from 

the solution of the associated linear eigenvalue problem. The present buckling loads are 

compared with the published results wherever available. The buckling loads obtained from the 

present method for plate with various boundary conditions and subjected to non-uniform inplane 
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loading are found to be in excellent agreement with those obtained from commercial software 

ANSYS. Buckling mode shapes of plate for different boundary conditions with non-uniform 

inplane loadings are also presented. 

                               It is observed from the literature that, a large volume of research work 

(Timoshenko and Gere, 1963; Murray and Wilson, 1969; Ng et al., 1998; Ganapathi et al., 1999; 

Leissa and Kang, 2002;) exists in the area of buckling, postbuckling, dynamic instability of 

composite plates and shell panels. However, it is observed that stability analysis of plates under 

non-uniform in-plane loading is scarcely available in the literature (Bert and Devarakonda, 2003; 

Wang et al., 2007; Zhong and Gu, 2006; Jana and Bhaskar, 2006).  

                               To the best of author’s knowledge no work has been carried out in literature 

on the static stability and dynamic stability of composite plates subjected to non-uniform in-

plane loading.Wang have adopted Galerkin procedure with Legendre polynomials as shape 

function to analyse buckling of rectangular plates subjected to linearly varying inplane edge 

compressive load with two loaded edges simply supported, one side free and the other side 

simply supported, clamped or rotationally restrained. Biggers and his co-workers have exploited 

the stiffness-tailoring concept to improve the buckling load capacity of plates subjected to, 

compressive load and shear load Whereas, Baranski and Biggers have used the same concept to 

study the postbuckling response of damaged compo- site plates.  

                              In a companion paper Xie and Biggers have extended the stiffness-tailoring 

concept to improve the compres- sive buckling loads and ultimate loads of flat pates and curved 

panels with cutouts. Buckling of moderately thick composite plates subjected to partial edge 

compression was studied by Sundaresan within the framework of finite element method. 

presented exact solutions for the Kirchhoff plate having two opposite edges simply supported 

subjected to linearly varying inplane loading. They have considered all other possible boundary 

conditions on the unloaded edges. As the loaded edge is simply supported, authors assumed the 

transverse displacement (w) to vary as sin((mpx)/a) (where a is the size of the plate along x-

direction and b along y-direction) and reduced the governing  partial differential equation to an 

ordinary differential equation in y with variable coefficients,for which an exact solution was 

obtained in terms of power series. Applying the boundary conditions at y=0 and b yields the 

eigenvalue problem for finding the buckling load.  
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3. MATHEMATICAL FORMULATION 
 

3.1 The Governing equation 

 

We consider the classical thin plate theory (CPT) in deriving the governing equation, which is 

based on the Kirchhoff hypothesis: 

 

(a) Straight lines perpendicular to the mid-surface (i.e., transverse normals) before 

deformation remain straight after deformation. 

 

(b)The transversenormals do not experience elongation (i.e., they are inextensible). 

 

(c)The transverse normals rotate such that they remain perpendicular to the mid-surface after 

deformation. 

 

The governing partial differential equation defining the lateral deflection of the middle surface of 

the plate in terms of the applied transverse load is obtained by, 

 

   

   
  

   

      
 
   

   
 
 

 
   

   

   
   

   

   
     

   

      
    

the determination of the deflection surface of a plate is reduced to the integration of this 

Equation. 
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3.2 THE VON KARMAN THEORY OF PLATES 

In this section we shall derive the von karman theory of plates. This is a nonlinear theory that 

allows for comparatively large rotations of line elements originally normal to the x,y axes in the 

midplane of the plate (figure 1). These rotations terms allow projections of the in- plane forces 

       and          to be felt in the transverse direction, normal to the plane of plate. 

This theory is derive assuming that strains and rotations are both small compared to unity, so that 

we can ignore changes in geometry in the definition of stress components and in the limits of 

integration needed for work and energy considerations. We further stipulate that the strains will 

be smaller than the rotations, in the sense described below. 

 

We introduce the linear strain parameters    and the rotation parameters      defined as 
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                                                                                                       (1) 

                                                                                                        (2) 

               +             )                                                           (3) 

For simplification discussed, namely      <     reduces to  

         
 

 
                                                                                            (4) 

Finally Kirchhoff assumption that lines normal to under formed middle surface remain normal to 

this surface in the deformed geometry and are un extended after deformation. That means 

             = u(x,y)-z
       

  
                                                                     (5) 

             =  v(x,y)-z
       

  
                                                                    (6) 

             = w(x,y)                                                                                  (7) 

Where u, v and w are the displacement components of the middle surface of the plate. We may 

now give strain parameters and rotation parameters as follows: 
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                                                                                            (8a) 
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                                                              (8b) 

    = -
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We now observe the following. The rotation parameter     approximates a rotation component 

about the z axis, while rotation components about axes parallel to the x and y axes ,respectively, 

in the mid plane of the plate. For a thin, hence flexible, plate we can reasonably expect that: 

    <<                  (9) 

Neglecting      we can now employ Eqs. 4 and 8 to find the    : 
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For a constitutive law we will employ Hook’s law for plane stress over the thickness of the plate. 

Thus we shall be concerned here only with    ,     and    . Accordingly , for the assumptions 

presented here, we can say that the first variation of strain energy U is 

       
     

     dv =      
   

     
                             (11) 

Now we replace the strain terms in the above expression and commute the delta operator with 

derivative operators. 
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 }dA dz  (12) 

Next we integrate with respect to z and introduce resultant stress and moment intensity functions 

       and    , and   ,                          

   =         
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   =         
   

    
 

    =         
   

    
 =     (13) 

   =        
   

    
 

   =        
   

    
 

    =        
   

    
 =      (14) 

 

Where    (  ), as shown in the figure2 is a force in the x direction (y direction) measured per 

unit length in the y direction (x direction) and where     (   ) is a force in the x(y) direction per 

unit length in the y(x) direction. Similarly, the quantity    represents a moment per unit length 

in the y direction, with its vector in the y direction. Finally,     is the twisting moment per unit 

length in the y direction with its vector in the x direction. The terms                     may 
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for practical purposes be compared with normal and shear stresses and we may conclude that 

    =     then we got the following result: 

The Eqs 12 can be written as 

      
=      

    

  
 

  

  

    

  
    

     

   
      

    

  
 

    

  
 

  

  

    

  
 

  

  

    

  
  

 

    
     

    
    

    

  
 

  

  

    

  
     

     

   
 dx dy  (14) 

The first variation of the potential of the applied forces meanwhile takes the form ( noting that  

       is taken as positive in compression as shown in the figure. 

      
= -           

 
 +                 

 +                   
     (15) 

Where    and    are the in plane displacements of the boundary of the plate in direction normal 

and tangential to the boundary, respectively. We are using the under formed geometry for the 

applied loads above rather than the deformed geometry thereby restricting the result to 

reasonably small deformations. By using the above result for       
and using equation 14 for 

      
, may be form       

. the total potential energy so formed approximates the actual total 

potential energy for the kind of deformation restrictions embodied in kirchhoff’s assumptions. 

And since we have used undeformed geometry for stresses and external loads, we are limited to 

small deformations in employing this functional. Finally, because we used equation 4 for strain, 

we are assuming that strains are much smaller than rotations. Thus we have for the total potential 

energy principle: 
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 dx dy -            
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We may proceed to carry out the extermination process. We employ Green’s theorem one or 

more times to get the      and      out form of partial derivatives. Then we proceed to simplify 

the expressions in the line integrals by noting form equilibrium shown in the above figure3. 

   =         + 2          +                      (17)
 

    = (       + 2          +       
 
   -     ) (18) 

Where     and     are the direction cosine of the outward normal of the boundary. Furthermore, 

simple vector projections permit us to say  

   =    u +   v                       (19) 

   =     u +   v                   (20) 

Here we also note 

 

  
 =     

 

  
 -    

 

  
                    (21) 
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Finally we introduce the transverse shear forces of plate theory  
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Now using equation 17, 18 and 23 we can write as 
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-          = 0  …..(24) 

The last expression accounts for “corners” in the boundary. From the above equations we may 

now make series of deductions. First, in region R we conclude that  

   

  
 + 

    

  
  = 0                         (25a) 
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  = 0                      (25b) 
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    = 0  

  (25c)  

The first two equations above clearly are identical to the equations of equilibrium for plane 

stress, as is to be expected. We shall use these equations now to simplify the third equation after 

we use the differentiation operators on the above expressions involving  products. We are thus 

able to eliminate expressions involving products. We are thus able to eliminate expressions 

involving products. We are thus able to eliminate expressions involving the partial of w.We get  
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   = 0      (26) 

Now comparing Eq. 26 with the classical case we have here introduced nonlinear terms 

   
    

   
     

    

    
   

    

   
  involving the in-plane force intensities as additional “transverse 

loading”. 

 

Considering  next the reminder Eq. (24) we can stipulate the following boundary conditions 

along  : 

EITHER    = -       OR     IS SPECIFIED     (27a) 

EITHER     = -         OR     IS SPECIFIED  (27b)  

EITHER    = 0 OR 
  

  
 IS SPECIFIED        (27c)  

EITHER    
     

  
   

  

  
    

  

  
  = 0 OR w IS SPECIFIED  (27d) 

At discontinuities          = 0                           (27e) 

The last three conditions are familiar form work on plates except that the effective shear force 

(   
     

  
) is now augmented by projections of the in-plate forces at the plate edges. 

The equations of equilibrium may be solved if a constitutive law is used. We will employ here 

(as pointed out earlier) the familiar Hook’s law for plane stress. We will use the constitutive law 

to replace the resultant intensity functions by appropriate derivatives of the displacement field of 

the mid plane of the plate. Consider, for example, the quantity   . Using Hook’s law and Eq. 

(10), we have 
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Integrating and inserting limits, we get 
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           (28) 

Where D is the familiar bending rigidity, given as D = 
   

        
 , similarly we have 

   = -D 
    

   
  

   

   
                                                (29a) 

    = - D      
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         (29e)   

Where C is given extensional rigidity, given as 

C = 
  

    
 

We could now substitute in Eq. (26) for the resultant intensity functions, using above relations to 

get the equilibrium equations in terms of displacement components of the mid plane plate. 

However, we shall follow another route that leads to a somewhat less complicated system of 

equations. 

Note accordingly that Eqs. (25a) and (25b) will be individually satisfied if we define an Airy 

stress function F as follows: 

   = 
    

   
 

   = 
    

   
                     (30) 
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Then, replacing, and, it is a simple matter to show that Eq. (25c) can be written as  

D    = 
    

   
 
    

   
 -2

    

     

    

     
 + 

    

   
 
    

   
 + q      (31)  

We now have a single partial differential equation with two dependent variables, w and F. since 

we are now studying in-plane effects by a stress approach, we must ensure the compatibility of 

the in-plane displacements. This will give us a second companion equation to go with Eq. (31). 

To do this, we shall seek to relate the strain           and     at the mid plane surface in such a 

way that when employ Eq. (10) to replace the strains we end up with a result that does not 

contain the in-plane displacement components u and v. thus we you may readily demonstrate by 

substituting from Eq. (10) that 

 
      

   
  

      

    
 

      

   
  z = 0 =  

    

     
  
 

- 
    

   
 
    

   
   (32) 

Since this equation ensures the proper relation of strains at the mid plane surface to the mid plane 

displacement component w without explicitly involving in-plane displacement components u and 

v, it serves as the desired compatibility equation for the strains at the mid plane surface. We next 

express the compatibility equation in terms of the stress resultant intensity function. To do this, 

substitute for strains, using Eq.(10) and then note Eqs.(29) stemming from Hook’s law: 
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Finally, replacing the resultant intensity functions in terms of the Airy function [see Eq. (30)], we 

get 

        
    

     
  
 

  
    

   
 
    

   
                             

    (33)
  

the above  equation and Eq. (), which we now rewrite as 
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 + q            (34) 
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Are the celebrated von karman plate equations. Note that they are still highly non-linear. The 

equations do have considerable mutual symmetry. This is brought out by defining a nonlinear 

operator L: 

L(p,q) = 
    

   
 
    

   
 -2

    

     

    

     
 + 

    

   
 
    

   
                      (35)  

Then the von karman plate equations can be given as 

       
  

 
                                                     (36a) 

                                                                                         
          (36b) 

 

The deflection of the non linear operator leaves us with the (uncoupled) plane –stress problem of 

two – dimensional elasticity theory and the classic plate bending equation. 

 

3.3 BOUNDARY CONDITIONS 
 

A complete solution of the governing Equation depends upon the knowledge of conditions of the 

plate at the boundaries in terms of the lateral deflection of the middle surface w(x, y). The critical 

buckling load of composite rectangular plate with various boundary conditions and subjected to 

parabolically varying in plane compressive load is obtained using Galerkin’s method. In the 

present investigation following nine sets of boundary conditions are considered :SSSS, SSCS, 

SCSS, CSCS, SCSC, SSCC, CCSC, CCCS and CCCC, where S stands for simply supported 

edge and C for clamped edge. The letters indicate the boundary conditions on the edge of the 

plate in the anti-clockwise fashion starting from the left hand corner. In the Galerkin’s method, 

the out-of-plane displacement field w(x,y) satisfying the boundary conditions of the plate is 

expressed as the product of beam function as  

              

 

   

 

   

 

Where        and        are the eigen functions of the beam having the same boundary 

conditions as that of two opposite edges of the plate.This choice of functions satisfies all 

boundary conditions of the plate exactly.In present case following beam functions are adopted:. 
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3.3.1 Simply Supported along two opposite Edges at x=0 and x=a: 

 

          A plate boundary that is prevented from deflecting but free to rotate about a line along the 

boundary edge, such as a hinge, is defined as a simply supported edge. The conditions on a 

simply supported edge paralled to the y-axis at x =a, are. 

                             

                                                     
         

   

 
              (m=1,2,3…….)  

               

 

3.3.2 Clamped support along two opposite Edges at x=0 and x=a: 

 

           If a plate is clamped, the deflection and the slope of the middle surface must 

vanish at the boundary. On a clamped edge parallel to the y-axis at x=0 and x=a the boundary 

conditions are, 

  
        

 

  
      

    
 

 
 

     
 

 
 
       

 

 
                      (m=2,4,6,…………) 

Where   are obtained as roots of  tan(    + tanh(     = 0 

And 

  
        

 

  
      

    
 

 
 

     
 

 
 
       

 

 
                      (m=3,5,7…………) 

Where   are obtained as roots of  tan(    -  tanh(     = 0 

 

3.3.3 Clamped support along the Edge at x=0 and simply supported at x=a: 

 

If a plate is simply supported along two opposite sides and clamped on the other 

two sides at y=0, and y=b. The boundary conditions are, 

                                                  

  
        

 

  
      

    
 

 
 

     
 

 
 
       

 

 
                          (m=2,3,4…………..) 

 

Where   are obtained as roots of  tan(    -  tanh(     = 0 
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3.4 GALERKIN METHOD  

               Galerkin’s  Method, invented by Russian mathematician Boris Grigoryevich   Galerkin. 

In galerkin’s method find the function which satisfies the given differential equations and 

boundary conditions. The Galerkin’s  method has been used to solve problems in mechanical 

engineering such as structural mechanics, dynamics, fluid flow, heat and mass transfer, 

acoustics, neutron transport and others. The Galerkin method can be used to approximate the 

solution to ordinary differential equations, partial differential equation and integral equations. 

 

 Identify the differential equation to solve, along with its domain and boundary 

condition. 

 Identify the vector space in which to look for a solution called the solution space. 

 Rewrite the differential equation in a special way know as weak formulation. 

 Decide what type of function are to be used to approximate the solution. 

 Solve the resulting weak formulation to reflect this approximating function. 

 Solve the resulting weak formulation for an approximate solution. 

 

An approximate solution (   ,         ) of the problem is sought in the form 

 
1 1
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 
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o
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w W c x y
 

         (3.3.1) 

where                 are undetermined coefficients and ,mna  ,mnb  and ,mnc  are suitably 

chosen spatial functions satisfying the prescribed boundary conditions.  
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Then the Galerkin method implies 

 

      
                (x,y)dxdy=0 

 

      
                (x,y)dxdy=0  

 

      
                (x,y)dxdy=0                        

 
where the integration is carried out over the entire shell area. There will be as many equations (in 

Li) as the number of terms taken for the series. 

 

3.5 GALERKIN’S METHOD USED IN PRESENT PROBLEM: 

                              In the present problem first we find out the Governing differential equation by 

using Von-karman method. Because this problem is only one degree of freedom problem so we 

use only on approximate solution using Galerkins method. 

                              In the Galerkin’s method, the out-of-plane displacement field  w(x,y) 

satisfying the boundary conditions of the plate is expressed as the product of beam function as  

 

              

 

   

 

   

 

 

Where        and        are the eigen functions of the beam having the same boundary 

conditions as that of two opposite edges of the plate. This choice of functions satisfies all 

boundary conditions of the plate exactly. In present case the function used is described in 

previous article.. 
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Approximate solution for the partial differential equation can be obtain using the Galerkin’s 

method. , In the case of simply supported edges, by the double series, 

 

       

 

   

 

   

    
   

 
    

   

 
 

 

 

Put this deflection(w) value in Governing differential Equation and find the value Residue(R). 

 

In the present problem the residual is, 

 

   

   
  

   

      
 
   

   
 
 

 
   

   

   
   

   

   
     

   

      
    

 

after that applying the Galerkin’s method: 

 

       
   

 
    

   

 

 

 

 

 

        

 

 

By this Equation we convert the Governing differential Equation into Algebraic Equation now 

the problem will be reduced into eigen value problem.   
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4. RESULT AND DISCUSSION: 

            In this presentation we find the critical buckling load for different in-plane loadings for 

different support condition and buckling modes for simply supported plate for different aspect 

ratio by using Galerkin’s method for Uniformly Compressed in One Direction by using the 

MAT-LAB programming. 

                The critical buckling load of rectangular plate with various boundary conditions and 

subjected to parabolically varying inplane compressive load is obtained using Galerkin’s method. 

In the present investigation following nine sets of boundary conditions are considered: SSSS, 

SSCS, SCSS, CSCS, SCSC, SSCC, CCSC, CCCS and CCCC, where S stands for simply 

supported edge and C for clamped edge. 

                 We will also use the MAT LAB programming to finding the eigen value for the 

Algebric Equation which gives the critical buckling load. We will plot the graph between aspect 

ration (a/b) and the factor (k) by using the Mat-lab programming and find the different modes for 

different aspect ratio. To change the inplane loading condition taking a linearly varying loads in 

the form:    

                                                        [1-α (
 

 
)]                 { y= (0,b)} 

 

By taking various values of α, we obtain different inplane load distribution uniform (α=0), 

trapezoidal (α=0.5), triangular   (α=1), partial tension (α=1.5) and pure bending (α=2.0).After 

evaluating the constants    (i=1,2,3), the stress distribution with in the plate are obtained. 

 

The critical buckling load is given by  

       
   

  
 

For other proportions of the plate the     can be represented in the form 

    
    

  
 

Where k is a numerical factor , 
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4.1 Buckling of simply supported rectangular plate with different type of 

inplane loading: 
 

 

                
  
Fig.1 Variation  of  buckling coefficients of SSSS plate with the aspect ratio(a/b)  

               

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with all simply 

supported edges subjected to linearly varying inplane load against aspect ratio(a/b) of the plate is 

shown in figure1. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , 

different modes are found. Buckling modes changes from m=1 to m=2 at aspect ratio (a/b=   . 

similarly the mode changes from m=2 to m=3 at aspect ratio (a/b =   . Modes changes from  

m=3 to m=4 at aspect ratio(a/b=     & Modes changes from  m=4 to m=5 at aspect ratio    

(a/b=    ). It is observed from the figure1 that for very long (a/b>5) plates, the buckling loads 

remains the same.The  results are exactly matching with the results given in Timoshenko S.P and 

Gere J.M.  “Theory of elastic stability”. 

                    The variation of dimensionless buckling load coefficients  of a isotropic plate with 

all simply supported edges subjected to trapezoidal inplane load against aspect ratio(a/b) of the 

plate is shown in figure2. In the graph shows that if we increase the aspect ratio (0 to 5) of the 

plate , different modes are found. In point where aspect ratio is (a/b=1.4) ,the mode of the plate 

are changed from m=1 to m=2.similarly the aspect ratio (a/b =2.45,3.45 & 4.45) points are 

changed the different modes. It is observed from the figure that for very long (a/b>5) plates, the 

buckling loads remains the same but the deflection curve is going sharp. 
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           Fig.2 Variation  of  buckling coefficients of SSSS plate with the aspect ratio (a/b)                       

 

 

 

 

 

     Fig.3 Variation  of  buckling coefficients of SSSS plate with the aspect ratio (a/b)                       
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The variation of dimensionless buckling load coefficients  of a isotropic plate with all simply 

supported edges subjected to triangular inplane load against aspect ratio(a/b) of the plate is 

shown in figure 3. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , 

different modes are found. In point where aspect ratio is (a/b=1.45) ,the mode of the plate are 

changed from m=1 to m=2.similarly the aspect ratio (a/b =2.4,3.3 & 4.3) points are changed the 

different modes. It is observed from the figure that for very long (a/b>5) plates, the buckling 

loads remains the same. 

 

 

 
 

   Fig.4 Variation  of  buckling coefficients of SSSS plate with the aspect ratio (a/b)                       

 

 

In the Fig.4 shows that if we increase the aspect ratio (0 to 5) of the plate , different modes are 

found. In point where aspect ratio is (a/b=1.25) ,the mode of the plate are changed from m=1 to 

m=2.similarly the aspect ratio (a/b =2.20,2.85,3.70 & 4.55) points are changed the different 

modes. In this loading we seen that the more number of modes are obtained, means the variation 

in loading from the one end to other end of the plate gives more effect in buckling. It is observed 

from the figure that for very long (a/b>5) plates, the buckling loads remains the same. 
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 Fig.5 Variation  of  buckling coefficients of SSSS plate with the aspect ratio (a/b)                       

 

 

In the Fig.5 shows that if we increase the aspect ratio (0 to 5) of the plate , different modes are 

found. In point where aspect ratio is (a/b=1.65) ,the mode of the plate are changed from m=1 to 

m=2.similarly the aspect ratio (a/b =2.35,2.90 & 3.60) points are changed the different modes. 

Also on this loading we seen that the more number of modes are obtained, means the variation in 

loading from the one end to other end of the plate gives more effect in buckling. In this case the 

value of the buckling coefficient is also vary high,means high buckling load is prominent. 
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4.1.1  Buckling Modes of the Simply Supported Rectangular Plates  Uniformly 

Compressed in One Direction: 

 

 

Fig6. Buckling modes for SSSS rectangular isotropic plate under uniform inplane load   

distributions for aspect ratio (a/b=3.45). 

 

 

 

 Fig7. Buckling modes for SSSS rectangular isotropic plate under uniform inplane load    

distributions for aspect ratio (a/b=3.5). 
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Fig8. Buckling modes for SSSS rectangular isotropic plate under uniform inplane load 

distributions for aspect ratio (a/b=4.45). 

 

 

 

Fig9. Buckling modes for SSSS rectangular isotropic plate under uniform inplane load 

distributions  for aspect ratio (a/b=4.5). 
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In the Fig.6 the buckle mode for the SSSS rectangular isotropic plate under uniform inplane load  

distributions (α=0) for aspect ratio (a/b=3.45) is shown. In given aspect ratio (a/b=3.45) the plate 

is buckle in a 3
rd

 mode. similarly we see the Fig.7 for the aspect ratio (a/b=3.5) for same 

boundary condition & loading condition are buckle in a 4
th

 mode. So it is clear that the plate is 

change his mode from m=3 to m=4 between the aspect ratio 3.45 & 3.5. 

 

Similarly we see in Fig.8 the plate is buckle in a 4
th

 mode with aspect ratio (a/b=4.45) and in 

Fig.9 the plate is buckle in a 5
th

 mode with aspect ratio (a/b=4.5) means that the plate is change 

his mode from m=4 to m=5 between aspect ratio 4.45 to 4.5. 

 

When the loaded edges are simply supported and applied in-plane load is uniform distributed , 

the plate buckles in a particular mode along the loading direction depending on length to width 

ratio of  plate and in a combination of two or more modes along unloaded edges. 
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4.2 Buckling of rectangular plate with different boundary condition applied   

with  uniformly compression: 

 

4.2.1 CSCS Rectangular Plates: 

 

 
 

       Fig.10 Variation  of  buckling coefficients of CSCS plate with the aspect ratio (a/b) 

 

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with mixed support 

condition (CSCS) subjected to linearly varying load against aspect ratio(a/b) of the plate is 

shown in figure. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , 

different modes are found. In point where aspect ratio is (a/b=1.725) ,the mode of the plate are 

changed from m=1 to m=2.but the point is very sharp, the difference between buckling 

coefficient is very small because the loading side of the plate is clamped. It is observed from the 

figure that for very long (a/b>4) plates, the buckling loads is going down. 
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4.2.2  SCSC  Rectangular  Plates: 

 

 

 

             Fig.11  Variation  of  buckling coefficients of SCSC plate with the aspect ratio (a/b) 

 

 

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with mixed support 

condition (SCSC) subjected to linearly varying load against aspect ratio(a/b) of the plate is 

shown in figure. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , 

different modes are found. In point where aspect ratio is (a/b=1.025) ,the mode of the plate are 

changed from m=1 to m=2 and the point is very clearly shown, the difference between buckling 

coefficient is uniform because the loading side of the plate is simply supported. It is observed 

from the figure that for very long (a/b>4) plates, the buckling loads is remains same. 
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4.2.3  SCSS  Rectangular  Plates: 

 

 

 
 

     Fig.12  Variation  of  buckling coefficients of SCSS plate with the aspect ratio (a/b) 

 

 

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with mixed support 

condition (SCSS) subjected to linearly varying load against aspect ratio(a/b) of the plate is shown 

in figure. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , different 

modes are found. In point where aspect ratio is (a/b=1.115) ,the mode of the plate are changed 

from m=1 to m=2.similarly the aspect ratio (a/b =1.945,2.735) points are changed the different 

modes.The difference between buckling coefficient is uniform because the loading side of the 

plate is simply supported. It is observed from the figure that for very long (a/b>4) plates, the 

buckling loads is remains same. 
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4.2.4  SSCC  Rectangular  Plates  Uniformly : 

 

 

 
 

    Fig.13 Variation  of  buckling coefficients of SSCC plate with the aspect ratio (a/b) 

 

 

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with mixed support 

condition (SSCC) subjected to linearly varying load against aspect ratio(a/b) of the plate is 

shown in figure. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , 

different modes are found. In point where aspect ratio is (a/b=1.145) ,the mode of the plate are 

changed from m=1 to m=2.but the point is very sharp, and but the in  point the constant value of 

buckling coefficient are found the difference between buckling coefficient is very small because 

the one end of loading side of the plate is simply supported and one end is  clamped. It is 

observed from the figure that for very long (a/b>4) plates, the buckling loads is going down. 
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      4.2.5  SSCS  Rectangular  Plates: 

 
 

 
 

           Fig.14 Variation  of  buckling coefficients of SSCS plate with the aspect ratio (a/b) 

 

 

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with mixed support 

condition (SSCS) subjected to linearly varying load against aspect ratio(a/b) of the plate is shown 

in figure. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , different 

modes are found. In point where aspect ratio is (a/b=1.385) ,the mode of the plate are changed 

from m=1 to m=2.but the in  point the constant value of buckling coefficient are found and the 

difference between buckling coefficient is very small because the one end of loading side of the 

plate is simply supported and one end is  clamped. It is observed from the figure that for very 

long (a/b>4) plates, the buckling loads is going down. 
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4.2.6  CCCC  Rectangular  Plates: 

 

 

 
 

          Fig.15 Variation of  buckling coefficients of CCCC plate with the aspect ratio (a/b) 

 

 

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with mixed support 

condition (CCCC) subjected to linearly varying load against aspect ratio(a/b) of the plate is 

shown in figure. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , 

different modes are found. In point where aspect ratio is (a/b=1.15) ,the mode of the plate are 

changed from m=1 to m=2.but the in  point the constant value of buckling coefficient are found 

and the difference between buckling coefficient is very small because the both end of loading 

side of the plate is clamped. It is observed from the figure that for very long (a/b>3.5) plates, the 

buckling loads is going down. 
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4.2.6  CCCS  Rectangular  Plates: 

 

  

 
 

 

         Fig.16 Variation of  buckling coefficients of CCCS plate with the aspect ratio (a/b) 

 

 

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with mixed support 

condition (CCCS) subjected to linearly varying load against aspect ratio(a/b) of the plate is 

shown in figure. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , 

different modes are found. In point where aspect ratio is (a/b=1.385) ,the mode of the plate are 

changed from m=1 to m=2.but the in  point the constant value of buckling coefficient are found 

and the difference between buckling coefficient is very small because the both end of loading 

side of the plate is clamped. It is observed from the figure that for very long (a/b>3.5) plates, the 

buckling loads is going down. 
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4.2.8  CCSC  Rectangular  Plates: 

 

 

 
 

              Fig.17 Variation of  buckling coefficients of CCSC plate with the aspect ratio (a/b) 

 

 

 

The variation of dimensionless buckling load coefficients  of a isotropic plate with mixed support 

condition (CCSC) subjected to linearly varying load against aspect ratio(a/b) of the plate is 

shown in figure. In the graph shows that if we increase the aspect ratio (0 to 5) of the plate , 

different modes are found. In point where aspect ratio is (a/b=1.385) , the constant value of 

buckling coefficient are found and the difference between buckling coefficient is very small 

because the one end of loading side of the plate is clamped and other side is simply supported the 

remain other to side is clamped. It is observed from the figure that for very long (a/b>3.5) plates, 

the buckling loads is going down. 
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5. Conclusion: 
 

In the present problem the stress distributions with in the plate is same as the applied in-plane 

stresses in the plate edge . Using this stress distribution and adopting Galerkin’s approximation 

the critical buckling loads are evaluated. Beam functions are used as shape functions in the 

Galerkin’s technique. It is observed that, whenever the plate restrained condition increases, the 

number of terms required is more to get the converged buckling load. When the two loaded 

edges are simply supported and applied in plane load is uniform or linearly varying, the plate 

buckles with a particular number of half-waves in the loading direction depending on the length 

to width ratio of the plate and incombination of two or more half-waves along the unloaded edge.  

If the applied inplane loading is non-uniform the buckling mode is combination of two or more 

half-waves in both loaded direction as well as the unloaded direction independent of boundary 

conditions. As the applied load is pure bending type we need to take six terms in x-direction and 

six terms in y-direction to get the converged buckling load for maximum restrained plate i.e. 

CCCC plate. For other boundary conditions less number of terms is required to get the converged 

solution. It is observed that for the same aspect ratio, the SCSS and SCSC boundary condition 

plate buckles into more number of half-waves due to the increase in boundary restraint. 
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