
1. Objective 

 

The aim of this study is to develop a quick and accurate method to investigate the elastic-

plastic large deflection behaviour of aluminium/steel plates subjected to a combination of 

biaxial compression/tension, biaxial in-plane bending, edge shear and lateral pressure 

loads, until the ultimate limit state is reached. The welding induced residual stresses are 

included in the method as initial parameters. It is assumed that the plating is simply 

supported at all four edges which are kept straight. 

 

2. Introduction 

 

 Ultimate strength of plates and stiffened plates is the most fundamental strength 

for marine structures, and a great deal of progress has been achieved in this area 

in the past decades. There are a variety of methods and computer codes available 

for the ultimate strength analysis of plates and stiffened plates, ranging from 

simple analytical formulas to complicated numerical methods. The analysis costs 

typically increase with the level of detail modeling and the fidelity of the analysis 

procedure used. Therefore, the studies on ultimate strength of plates and stiffened 

plates have been and shall continue to be a large area of active researches in 

marine structures. 

 

 

 The geometry of plating found in Ship and offshore structures is normally 

rectangular and the material used is usually mild or high tensile steel. The use of 

aluminum alloys is now increasing in the design and fabrication of high-speed 

vessel structures. 

 

 The initial imperfections in the forms of initial distortion and welding residual 

stress are inevitable in marine structures due to the limits of fabrication 

technology. They have very significant effects on the ultimate strength of plates 
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and stiffened plates and should be accounted in the ultimate strength evaluation of 

marine structures.  

 

 The ship plating is generally subjected to combined in-plane and lateral pressure 

loads. In-plane loads include biaxial compression/tension, biaxial in-plane 

bending and edge shear, which are mainly induced by overall hull girder bending 

and/or torsion of the vessel. Lateral pressure loads are due to water pressure 

and/or cargo. 

 

 These load components are not always applied simultaneously, but more than one 

load component will normally exist and interact. Hence, for more advanced 

ultimate strength design of ship structures, it is of crucial importance to better 

understand the characteristics of the ultimate strength for ship plating under 

combined loads.  

 

 The FEM have been increasingly applied to predict ultimate strength of structural 

components, such as plates and stiffened plates. However, there has been little 

development in improving the computational efficiency of FEM analysis to 

evaluate ultimate strength in the recent past. It has thus been recognized that semi-

analytical methods can in specific cases compute the nonlinear behaviour of 

structural elements more efficiently and with the required accuracy. 

 

 A unique feature of the developed method is that geometric nonlinearity is 

handled by analytically solving the nonlinear governing differential equations of 

the elastic large deflection plate theory, while material nonlinearity associated 

with plasticity is dealt with by an implicit numerical technique. Also, the ultimate 

strength characteristics of ship plating are investigated and discussed by varying 

the plate dimensions, load application etc. 
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3. The Incremental Galerkin Technique : An Insight 

 

The basic purpose behind the introduction of this method was to accommodate the 

geometric nonlinearity associated with buckling by analytically formulating the 

incremental forms of the governing differential equations for the elastic large deflection 

plate theory. Upon solving these newly formed set of incremental governing differential 

equations using the Galerkin method, a set of linear first order simultaneous equations for 

the unknowns will be obtained, which can be easily solved. Such a method will not only 

reduce the computational effort drastically but also the solution thus determined will be 

unique, unlike the traditional potential energy based approach. In this paper, the 

incremental Galerkin method mentioned above is improvised to better accommodate 

material nonlinearity associated with plasticity as well as geometric nonlinearity due to 

large lateral deflection. 

 

 

Assumptions in formulating the Incremental Galerkin Technique: 

 

 The plating is rectangular and simply supported on all four sides. The material of 

the plating is isotropic homogeneous steel or aluminum alloy. In-plane 

movements of the boundary are freely allowed, while keeping their edges 

straight. 

 

 The plate is normally subjected to combined loads. The number of potential load 

Components acting on the plate are six, namely biaxial compression/tension, edge 

shear, biaxial in-plane bending moment and uniform lateral pressure loads, as 

shown in Fig. 1. 

 

 The shape of initial deflection existing in the plate is normally complex, but it 

can be expressed by a Fourier series function. 
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 The welding induced residual stresses which may exist in the plating will affect 

the large deflection behavior as well as the plasticity.  

 

 Residual stresses can develop in the plate in both x and y directions, since 

welding is normally carried out in the two directions. As shown in Fig. 2, the 

distribution of welding induced residual stresses for the plate is idealized to be 

composed of two stress blocks, namely a compressive residual stress block and a 

tensile residual stress block. 

 

 

 

Fig.1. A ship plating under combined biaxial compression/tension, biaxial in-plane 

bending, edge shear and lateral pressure loads 
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Fig.2. Idealized welding induced residual stresses distribution inside the plate x and y 

directions  

 For the approximate evaluation of the plasticity, it is assumed that the plate is 

composed of a number of membrane fibers in the x and y directions. Each mem- 

brane fiber is considered to have a number of layers in the z direction, as shown 

in Fig. 3. 
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 Fig.3. Example subdivision of plate mesh regions applied for treatment of plasticity   
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4. Analysis of elastic large deflection response 

Basically, there are two different approaches to solve the nonlinear differential equations 

governing the large deflection of a simply supported plating viz,  

 The traditional approach 

 The incremental approach 

In this study we analyze both these methods and eventually proceed with the incremental 

technique because of its simplicity and higher efficiency vis-à-vis the traditional method. 

 

 

5. The traditional approach 

 

The elastic large deflection response of steel or aluminum plates with initial 

imperfection is governed by two differential equations : 

 The equilibrium equation. 

 The compatibility equation.  

 

These equations are as follows: 

 

 

 

Equilibrium equation: 

 

4 2 24 4 4 2 2 2

0 0 0

4 2 2 4 2 2 2 2

( ) ( ) ( )
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w w w w w ww w w F F F
D t p
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             
           

              

 

 

(1)  

                                                                                                                                                                                                                                                                                            

                                                                                                                                           

Compatibility equation: 
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             
         

                  

           (2) 

                                                                                                                                       

Where F = Airy’s Stress function. When Airy’s stress function, F, and the added 

deflection, w, are known, the stresses inside the plate can be calculates as follows: 
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Also the corresponding strain components at a certain location inside the plate are 

given by: 
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     

     
    
     

       
     
         

 

 

where u , v  = axial displacements in x and y directions . 

      Each strain component noted above is expressed as a function of stress 

components as follows: 

 

 
1

x x y   


 

 
1

y y x   

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 2 1 xy

xy

 






 

 

Where z is the coordinate in the plate thickness direction with z = 0 at mid thickness. 

Above equations are often called the Marguerre equations. By solving the governing 

differential equations subject to the given boundary conditions, load application and 

initial imperfections , the membrane stress distribution inside the plate can be calculated 

and thus it is possible to examine the  large- deflection behaviour of the plate. 

 

In solving Eqs. (1) and (2) by the Galerkin method, the added deflection w and 

initial deflection w0 can be assumed to be as follows: 

 

   0 0

1 1

mn m n

m n

w f x g y
 

 

                                                        (3) 

 

   
1 1

mn m n

m n

w f x g y
 

 

                                                        (4) 

  

where  

 mf x  and  ng y = basis functions which satisfy the boundary conditions for the 

                                 plate.    

mn  = unknown deflection coefficient  

0mn = known deflection coefficient 

 

 Substituting Eqs. (3) and (4) into Eq. (2), the stress function F can be obtained by: 

 

   
1 1

rs r s

r s

F F p x q y
 



 

                                                (5) 

 



   9 

 

where it is evident from Eq. (2) that the coefficients rs will be second order 

functions with regard to the unknown deflection coefficients . F   is a homogeneous 

solution of the stress function which satisfies the applied loading condition. 

To compute the unknown coefficients mn , one may use the Galerkin method for the 

equilibrium Eq. (1), resulting in the following equation: 

 

 

    0, 1,2,3,..., 1,2,3,...r sf x g y dvol r s               (6) 

 

 

Substituting Eqs. (3)–(5) into Eq. (6), and performing the integration over the whole 

volume of the plate, a set of third order simultaneous equations with regard to the 

unknown coefficients mn  will be obtained.  

 

 

 

 

Anomalies in the traditional approach: 

 

 Since a cubic equation is obtained for each of the unknown coefficients, solving 

the simultaneous equations to get the coefficients mn  normally requires an 

iteration process.  

 

 Also the solution of each coefficient should be unique; therefore we will have to 

correctly select one among the three solutions obtained for each coefficient.  

 

 It is not always an easy task to solve a set of third order simultaneous equations 

especially when the number of unknown coefficients mn  is very large. 
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6. Large deflection analysis of a simply supported plate subjected to Combined  

Longitudinal Axial Load and Lateral Pressure by the Traditional Approach 

 

Since it is known that for plates under predominantly longitudinal axial compressive 

loads the deflection term associated with the lowest bifurcation mode plays a dominant 

role in the elastic large deflection response. For this reason the initial and added 

deflection functions are simplified by including only the buckling mode initial deflection 

as follows:  

         0 0 sin cosm

m x y
w A

a b

 
  

         sin cosm

m x y
w A

a b

 
  

where 

          m = buckling mode half wave number in the x direction . 

0m = amplitude of the initial deflection for axial compressive loading. 

              m = unknown amplitude of the added deflection function.  

 

The stress distribution inside the plate can be analyzed by solving the governing 

differential equations. First we determine the unknown amplitude of the added deflection, 

under the applied loading. On substituting w & 0w in the compatibility equation (i.e. eqn 

(2)), we get: 

 

2
2 2 42

2 2

2 2
cos cosmmw m x y

x y a b a b

    
 

  
 

 

2 2 42 2
2 2

2 2 2 2
sin sinmmw w m x y

x y a b a b

   


 
 

 

2 2 42
2 20 0

2 2
2 2 cos cosm mw mw m x y

x y x y a b a b

    


   
 



   11 

 

2 2 42
2 20 0

2 2 2 2
sin sinm mw mw m x y

x y a b a b

    


 
 

 

2 2 42
2 20 0

2 2 2 2
sin sinm mw mw m x y

x y a b a b

    


 
 

 

2
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          

                  
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m m mm x y m x y m x y
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       

    

    
   



   
  
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2
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        
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(Multiplying and dividing by 2) 
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 2 44 4 4
0
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2
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Let the particular solution, F , of the stress function, F, be given by  

 

1 2

2 2
cos cos

m x y
F C C

a b

 
    

 

On substituting this value of F  in the above relation, we get: 
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14 4
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C
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 

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
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4
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

 
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       
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   
 

 

Now equating the coefficients of 
2
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m x

a


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2
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y

b


 , we get: 
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 

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The homogeneous solution, F , of the stress function ,F, is obtained by treating the 

welding-induced residual stress as an initial stress parameter: 

 

Let FH be given by   

2 2

2 2

x y
F A B Cxy     

We know,  
2

2 ry

F
A

x


 


 

 and   
2

2 rx xav

F
B

y
 

  


 ,  therefore 

 
2 2

2 2
xav rx ry

y x
F        

where ,rx ry  = welding induced residual stresses. 

The applicable stress function, F, may then be expressed as a sum of the particular 

solution and the homogeneous solution as follows: 

 
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0
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2 2 2
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2 2 32
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F
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 
  

     
     

 
 

By substituting the values of w, w0 and F in the equilibrium equation (i.e. eqn (2)) and 

applying the Galerkin method, the following equation is obtained: 
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 

 

 

By performing the integration of the above equation over the entire plate, a third-order 

equation with respect to the unknown variable mA  is obtained. For the integration of the 

above equation it may be assumed that the contribution of lateral pressure to non-linear 

membrane stresses arises only from the deflection component of m = 1 and it is linearly 

superposed to those by in-plane loads. This results in  
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 
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
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    
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6.1 Examples of the Analysis (using MATLAB) 

 

 6.1.1 Square Plate subjected to lateral Load 

A square plate subjected to uniformly distributed lateral load Q is analyzed. Fig 4 

and Fig 5 show a comparison between the load deflection relationship at the 

centre of the plate obtained by the traditional approach and that given by FEM. It 

may be seen that the traditional method is quite accurate in case of lateral load. 

Details of the Square Plate: 
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Fig. 4. Square Plate subjected to uniform lateral Load (traditional method) 
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 6.1.2 Simply supported Square plate under uniaxial Compression 

 

Fig 6 shows the Load deflection Relationship at the centre of a simply supported 

square plate obtained by subjecting it to a uniaxial compressive load. This graph 

is further validated by the Incremental Galerkin technique in the next section.  
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Fig. 6. Square Plate subjected to uniaxial compression. 

 

 

7. The incremental approach 

 

To solve the non linear governing differential equations for plating subjected to combined 

in-plane and lateral loads and to analyze the large deflection associated with it, in an 

efficient and easier way, we devise an incremental form of the governing differential 

equations. This method eliminates the following anomalies in the traditional approach: 

 

 Linear first order equations for the unknown deflection coefficients are obtained 

by applying the incremental Galerkin technique as against the cubic equations 

obtained in the case of traditional method. 

 

 The computational effort is reduced drastically in this method. 

 

 As the equations are linear, a unique solution is obtained for each variable. 

    

Derivation of the incremental forms of governing equations      

        

Let us assume that the load is applied incrementally. Also let the deflection and stress 

function be denoted by 1iw  and 1iF  , respectively, at the end of the  1
th

i  load increment 

step. Similarly, the deflection and stress function at the end of the thi  load increment step 

be denoted by iw  and iF , respectively. 
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             Therefore, the equilibrium equation and the compatibility equation at the end of 

the  1
th

i  load increment step are written as follows: 

 

 

4 4 4 2 4

1 1 1 1 1 0
1 4 2 2 4 2 2

2 2 2 2

1 1 0 1 1 0 1

2 2

( )
2

( ) ( )
2 0

i i i i i
i

i i i i i

w w w F w w
D t

x x y y y x

F w w F w w p

x y x y x y t

    


    

       
      

       

     
   

      

                  

 

2
4 4 4 2 2 2

1 1 1 1 1 1

4 2 2 4 2 2

2 2 2 2 2 2

0 1 0 1 1 0

2 2 2 2

2

2 0

i i i i i i

i i i

F F F w w w
E

x x y y x y x y

w w w w w w

x y x y x y x y

     

  

      
    

        

     
   

        

                                 

 

Similarly, the equilibrium equation and the compatibility equation at the end of the 

thi load increment step are written as follows: 

 

4 4 4 2 4

0

4 2 2 4 2 2

2 2 2 2
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2 2

( )
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( ) ( )
2 0

i i i i i
i

i i i i i
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F w w F w w p

x y x y x y t

       
      

       

     
   
      
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i i i
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        

     
   

        

                                        

 

It is assumed that the accumulated (total) deflection iw  and stress function iF at 

the end of the thi  load increment step are given by: 
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1i iw w w                                                                                       (7) 

 

1i iF F F                                                                                        (8) 

 

 

where w and F are the increments of deflection or stress function, respectively. 

 

 

Substituting equations (7) and (8) into the equilibrium Eq. (1) and the 

compatibility Eq. (2) at the end of the  1
th

i  load increment step, and subtracting these 

equations from the equilibrium equation and the compatibility equation at the end of the 

thi  load increment step, the necessary incremental forms of the governing differential 

equations are obtained as follows: 

 

2 44 4 4 4 2

1 1 0

4 2 2 4 2 2 2 2

2 2 22 2 2

1 1 0 1

2 2 2 2

22

1 0

( )
2

( )
2

( )
2 0

i i

i i i

i

F w ww w w w F
D t

x x y y y x y x

F w w Fw F w

x y x y x y x y

w wF p

x y x y t

 

  



             
       

         

        
  

       

   
  

    

       (9) 

 

 

   

24 4 4 2
1 0
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1 0 1 0
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2 2
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x y x y
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 

         
   

       

      
  

    
                              (10) 

where the terms of very small quantities with order higher than second order of 

the increments w and F have been neglected. 

At the end of the  1
th

i  load increment step, the deflection 1iw   and the stress 

function 1iF   will have been known, as follows: 
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   1

1

1 1

i

i mn m n

i j

w A f x g y
 





 

                                                             (11) 

 

    1 1

1

1 1

i i

i ij i j

i j

F F p x q y
 

 

 

 

                                                       (12) 

 

Where  1i

mn

 and 1i

ij

 = the known coefficients, and 

      1iF 

 = homogeneous solution for the stress function.  

 

The welding induced residual stresses can be included in the stress function 1iF 

 as initial 

stress terms. 

The added deflection increment w associated with the load increment at the thi  

step can be assumed to be as follows: 

 

   
1 1

kl k l

k l

w f x g y
 

 

                                                                        (13) 

 

where kl = unknown added deflection increment. 

             Substituting Eqs. (3), (11) and (13) into Eq. (10), the stress function increment 

F can be obtained by: 

 

   
1 1

ij i j

i j

F F p x q y
 



 

                                                                          (14)                        

 

where ij are linear (i.e. first order) functions in terms of unknown coefficients 

kl . F  is a homogeneous solution for the stress function increment which satisfies 

the applied loading condition. 

               To compute the unknown coefficients kl , the Galerkin method can then be 
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applied to Eq. (9): 

 

    0, 1,2,3,..., 1,2,3,...r sf x g y dvol r s                                              (15)                                   

 

Substituting Eqs. (3), (11)–(14) into Eq. (15), and performing the integration over the 

whole volume of plating, a set of linear simultaneous equations in terms of unknown 

coefficients kl will be obtained. Solving these linear simultaneous equations is 

normally easy. Having obtained kl , one can then calculate w (i.e. from Eq. (13)), F  

(i.e. from Eq. (14)),  1i iw w w  and  1i iF F F  at the end of the thi  load increment 

step. By repeating the above procedure with increase in the applied loads, the elastic large 

deflection response for plating can be obtained. In this process, it is evident that the load 

increments must be small in order to get more accurate solutions. Since the computational 

effort required for this procedure is normally very small, using smaller load increments 

would not lead to any severe penalties unlike the case of the usual numerical methods. 

 

 

 

8. Application to the elastic large deflection analysis of a simply supported 

plating 

 

In the following, we apply the incremental Galerkin technique to analyze the deflection 

of a simply supported plate subjected to various in-plane and lateral loads. The simply 

supported plate should satisfy the following edge conditions: 
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 
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The initial, added and incremental deflection functions satisfying the boundary conditions 

can be assumed to be as follows: 

 

0 0

1 1

sin sinmn

m n

m x n y
w

a b

  

 

                                                             (16) 

 

1

1

1 1

sin sini

i mn

m n

m x n y
w

a b

  




 

             (17) 

 

1 1

sin sinkl

k l

k x l y
w

a b

  

 

                                                                (18) 

 

where  

 

 0

0mn mn    And 1i

mn

  = known coefficients 

kl = unknown coefficients to be calculated. 

 

Now, we know  

2

2

F
d t y

y



    

   where dA = small elemental area. 

and 

            .
2

b
M y

 
   

 
   where 

2

b
y

 
 

 
= distance from the neutral axis of small element 

 

 

Therefore for the given situation, the boundary conditions are: 
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:

2 2

2 2

0 0

2 2

2 2

0 0

2

, 0,
2

, 0,
2

b b

x x

a a

y y

F F b
t y t y y at x a

y y

F F a
t x t x x at y b

x x

F
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x y


   
       

   

   
       

   


 

 

 

   

 

 

Where 

x , y  = axial loads in the x and y directions,  

x , y = in-plane bending moments in the x and y directions. 

  

To simplify the calculations we use the following substitutions: 

 

     sin , sin , ( ) cos , cos
m x n y m x n y

sx m sy n cx m cy n
a b a b

   
     

 

The stress function increment F can be obtained by substituting the values of w , 

0w and 1iw  into the incremental form of compatibility equation .On substitution we get: 
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         
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 
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or, 
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 
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or, 
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       
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or, 
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or, 
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(Multiplying and dividing by 4) 

 

 

 

or, 
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 

           

           

4 4 4 4
1

04 2 2 4 2 2

2 2

2 2

2
4

i

kl mn mn

m n k l

F F F

x x y y a b

kn ml cx m k cy n l kn ml cx m k cy n l

kn ml cx m k cy n l kn ml cx m k cy n l

       
     

   

        


       




              (19) 

 

 

A particular solution, F , for the stress function increment is then obtained as follows: 

Let, 

 

 

     

           

     

1

2 3

4

, , ,

, , , , , ,

, , ,

P

m n k l

F B m n k l cx m k cy n l

B m n k l cx m k cy n l B m n k l cx m k cy n l

B m n k l cx m k cy n l

   

     

  



             (20) 

 

Then, 

 

           

           

4 4 4
4 4

1 24 4 4

4 4
4 4

3 44 4

m n k l

F
m k cx m k cy n l m k cx m k cy n l

x a a

m k cx m k cy n l m k cx m k cy n l
a a

 

 

 
        



       



 

 

               

               

4 4
2 2 2 2

1 22 2 2 2

2 2 2 2

3 4

2
2

m n k l

F
m k n l cx m k cy n l m k n l cx m k cy n l

x y a b

m k n l cx m k cy n l m k n l cx m k cy n l

            
 

         




 

 

           

           

4 4 4
4 4

1 24 4 4

4 4
4 4

3 44 4

m n k l

F
n l cx m k cy n l n l cx m k cy n l

y b b

n l cx m k cy n l n l cx m k cy n l
b b

 

 

 
        



       


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On adding the above three relations, we get:  

 

4 4 4

4 2 2 4
2

F F F

x x y y

       
  

   
 

           

           

           

         

4 2 2
4 4 2 2

12 2 2 2

2 2
4 4 2 2

2 2 2

2 2
4 4 2 2

3 2 2

2 2
4 4 2 2

4 2 2

2

2

2

2

m n k l

b a
m k n l m k n l cx m k cy n l

a b a b

b a
m k n l m k n l cx m k cy n l

a b

b a
m k n l m k n l cx m k cy n l

a b

b a
m k n l m k n l cx m k cy n

a b

   
          
  

 
          

 

 
          

 

 
         

 



 l


 


 

 

Put 
a

b
   , then  

 

4 4 4

4 2 2 4
2

F F F

x x y y

       
  

   
 

 

       

       

       

       

24
2 2

12 2

2
2 2

2

2
2 2

3

2
2 2

4

1

1

1

1

m n k l

m k n l cx m k cy n l
a b

m k n l cx m k cy n l

m k n l cx m k cy n l

m k n l cx m k cy n l















  
       

 

 
       

 

 
       

 

 
        

  


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Comparing the above relation with equation (19) , we get the values of coefficients 

1 2 3 4, , ,     as : 

 

   
 

   

22
1

1 0 2
2 22

, , ,
4

i

kl mn mn

kn ml
B m n k l

m k n l






 

   
   
 

                                   (21) 

   
 

   

22
1

2 0 2
2 22

, , ,
4

i

kl mn mn

kn ml
B m n k l

m k n l








   
   
 

                                  (22) 

   
 

   

22
1

3 0 2
2 22

, , ,
4

i

kl mn mn

kn ml
B m n k l

m k n l








   
   
 

                                  (23) 

   
 

   

22
1

4 0 2
2 22

, , ,
4

i

kl mn mn

kn ml
B m n k l

m k n l






 

   
   
 

                                  (24) 

 

where α = a/b. 

Substituting the above values of 1 2 3 4, , ,    into the expression for equation (20), 

 

 
 

   
   

 

   
   

 

   
   

 

   
   

22
1

0 2
2 22

2 2

2 2
2 2 2 22 2

2

2
2 22

4

i

kl mn mn

m n k l

kn ml
F cx m k cy n l

m k n l

kn ml kn ml
cx m k cy n l cx m k cy n l

m k n l m k n l

kn ml
cx m k cy n l

m k n l





 








  

      
    
 

 
     
        
   


  

   
    
  



 

F Can be written in a more simplified form as follows: 
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 

         

2
1

0

12 2

1

1 1

4

1 1 , 1 1 1

i

P kl mn mn

m n k l

r s
r r r s

r s

F

h k l cx m k cy n l

 

 

 


    

            
     





                       (25) 

 

 

where  

            
 

 

   

2

1 2

1 1 2 2
2 22

1 2

1 1 2

,

0 0 0

n m
h

m n

h if m and n

 
 

  

 

 

   
 

    

     

 

 

Let the homogeneous solution, F , of stress function increment F , be given by 

 

2 2 3 2 2 3

2 2 6 2 2 6
H

cx ey fx gx y hxy iy
F dxy         

 

Now, at boundary, stress increment in x direction = 
3

12

2

x
x

b
y

b t

  
   

 
 

Similarly, stress increment in y direction = 
3

12

2

y

y

a
x

a t

  
   

 
 

and shear stress increment = xy  

 

 

 

at boundary, 

 



   30 

 

 

2

2 3

2

2 3

2

12

2

12

2

yH
y

xH
x

H
xy

F a
c fx gy x

x a t

F b
e hx iy y

y b t

F
d gx hy

x y


   
        

  

   
       

  

 
    

 

  

 

On solving, we get: 

 

3

3 3

3

12
,

2

1212
,

2

12
0 , 0 ,

y y

xy

yx x

x

M a
c d

at a t

MM b
e f x

bt b t a t

M
g h i y

b t


 

     

 
     


   

 

 

   2 2 2 2

3 3
2 3 2 3

2 2

y yx x
H xyF y x y y b x x a xy

bt at b t a t


  
                     (26) 

 

Since the overall stress increment is equal to the sum of the particular and homogeneous 

solutions, therefore: 

 

H PF F F      

Similarly , to get the stress function , 1i

PF   , at the end of the  1
th

i  load increment 

step , we substitute the values of w, w0 and wi-1 into the incremental form of the 

compatibility equation at the end of the  1
th

i  load increment step, resulting in the 

following equation :  
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 

           

           

4 4 4 4
1 1 0 01 1 1

4 2 2 4 2 2
2

4

i ii i i
mn kl mn kl

m n k l

F F F

x x y y a b

ml kn ml cx m k cy n l ml kn ml cx m k cy n l

ml kn ml cx m k cy n l ml kn ml cx m k cy n l

       
      

   

       

        



         (27) 

 

 

A particular solution, 1i

PF  , for the stress function increment , 1iF  is then obtained as 

follows: Let,  

 

     

           

     

1

1

2 3

4

, , ,

, , , , , ,

, , ,

i

P

m n k l

F C m n k l cx m k cy n l

C m n k l cx m k cy n l C m n k l cx m k cy n l

C m n k l cx m k cy n l

   

     

  



        (28) 

 

The coefficients 1 2 3 4, , ,C C C C can then be determined as follows: 

 

   
 

   

   
 

   

   
 

   

 

2
1 1 0 0

1 2
2 2 2

2
1 1 0 0

2 2
2 2 2

2
1 1 0 0

3 2
2 2 2

2
1 1

4

, , ,
4

, , ,
4

, , ,
4

, , ,
4

i i

mn kl mn kl

i i

mn kl mn kl

i i

mn kl mn kl

i i

mn kl

ml kn ml
C m n k l

m k n l

ml kn ml
C m n k l

m k n l

ml kn ml
C m n k l

m k n l

C m n k l















 

 

 

 


    

   
 


    

   
 


    

   
 


   

 

   

0 0

2
2 2 2

mn kl

ml kn ml

m k n l 


 

   
 

 

 

 

Substituting the above values of C1, C2, C3, C4 into the expression for 1i

PF  ,  
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 
 

   
   

 

   
   

 

   
   

 

   
   

2
1 1 1 0 0

2
2 22

2 2
2 2 2 22 2

2
2 22

4

i i i

mn kl mn kl

m n k l

ml kn ml
F cx m k cy n l

m k n l

ml kn ml ml kn ml
cx m k cy n l cx m k cy n l

m k n l m k n l

ml kn ml
cx m k cy n l

m k n l





 



  




 

      
    
 

 
     
        
   


 

   
    
  



 

 

1i

PF  can be written in a more simplified form as follows: 

 

 

         

1 1 1 0 0

2

2 2

2

1 1

4

1 1 , 1 1 1

kl

i i i

P mn mn kl

m n k l

r s
r r r s

r s

F

h k l cx m k cy n l



  



 


    

            
     



                       (29) 

where  

             

 
 

   

2 1 2

2 1 2 2
2 2 2

1 2

2 1 2

,

0 0 0

m n m
h

m n

h if m and n

  
 

  

 



   
 

    

 

 

The homogeneous solution 1i

HF   , at the end of   1
th

i   load increment step, being the 

summation of load steps from 1 to (i-1) , is given by: 

 

   
1 11 1

1 2 2 2 2 2 2 1

3 3
2 3 2 3

2 2 2 2

i ii i
y ry yi ix rx x

xyF y y x x y y b x x a xy
bt at b t a t




  
 



  
          

(30) 
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Therefore, the stress function, F
i-1

 at the end of the  1
th

i  load increment step can be 

obtained by the sum of equations (29) and (30) as follows: 

 

1 1 1i i i

P HF F F     

 

The values of 1

1 0, , , i

iw w w F and F 

  are then substituted into the incremental form of 

the governing equilibrium equation. We then apply the Galerkin method to compute the 

unknown coefficients kl . 

          The integration of equilibrium equation eventually results in a set of linear first 

order simultaneous equations for the unknown coefficients kl .The equation can be 

written in a matrix form as follows: 

 

         0F F B M          (31) 

 

where  F = external load increments,  F = stiffness matrix associated with initial 

stress (including weight -induced residual stresses),  B = bending stiffness matrix,  M = 

stiffness matrix due to membrane action.    = unknown coefficients of deflection 

amplitudes.  

Having obtained kl , we can then calculate w  , F ,  1i iw w w  and 

 1i iF F F   at the end of the thi  load increment step. By repeating the above 

procedure with increase in the applied loads, the elastic large deflection response for 

simply supported plate can be obtained.  
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8.1 Examples of the Analysis 

 

 8.1.1 Simply Supported square plate under uniaxial compression 

 

The square plate in example 7.1.2 is now analyzed using the incremental 

technique. The dimensions of the plate are same as in example 7.1.2. The initial 

and the added deflection functions are also assumed to be the same. A comparison 

of Fig 6 and Fig 7 shows that the new method is quite accurate for this case. 
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Fig.7. Simply Supported Plate subjected to uniaxial compression (incremental 

method) 

 

 8.1.2 Simply Supported square plate under uniaxial compression 
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A simply supported square plate subjected to uniaxial compression is analyzed 

and the Load deflection relationship is obtained at the centre for different values 

of initial deflection. The dimensions of the plate are the same as in example 9.1.1. 

The initial and the added deflection functions are also assumed to be the same. 

The critical load however, is 81994 N/mm
2
 in this case.  
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Fig.8. Load deflection relationship for a Simply supported Plate subjected to uniaxial 

compression (incremental method) 

 Square Plate subjected to Lateral Loading 

The square plate in example 7.1.1 is now analyzed using the incremental technique. A 

comparison of Fig 10 with Fig 4 and Fig 5 shows that the present method is quite 

accurate for a square plate subjected to lateral loading. 

 

 

 

                     2

0

1000 , 1000 , 10

210000 , 0.3

sin sin , 0

a b t

mm

x y
w w

a b



 

  

   

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.10 Load deflection relationship for square plate subjected to lateral loading (present 

method) 

 

 8.1.4 Rectangular Plate subjected to in-plane compression in longitudinal    
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A simply supported rectangular plate as shown in figure 11 is now analyzed 

taking two terms of the deflection function for different values of the initial 

deflection. The plate is subjected to uniaxial in plane compression in longitudinal 

direction. The analysis is carried out by the present method for two different 

points A and B on the plate. The load is applied incrementally from 0 to an 

average stress of 16 kgf/mm
2
.  

 

Details of the plate:  
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Fig. 11. All edges are simply supported and kept straight in the plane of the plate 
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Fig.12 Load Deflection relationship of a plate subjected to in plane compression (present 

method) 
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9. Treatment of Plasticity 

 

Till now, the differential equations governing the elastic large deflection response of 

plates have been formulated and are solved analytically. But the effects of plasticity have 

not been included. It is normally difficult to formulate governing differential equations 

representing both geometric and material nonlinearities for plates, although not 

impossible. A major source of difficulty is that an analytical treatment of plasticity with 

increase in the applied loads is very difficult. Even if such treatment were possible, it 

would not be an easy task to solve the resulting equations analytically. Hence an easier 

alternative is to deal with progress of the plasticity numerically. In the present method, 

therefore, the progress of plasticity with increase in the applied loads is treated 

numerically. For this purpose, as indicated in Fig. 3, the plate is subdivided into a number 

of mesh regions in the three dimensions similar to the conventional finite element 

method. The average membrane stress components for each mesh region can be 

calculated at every load increment step. Yielding for each mesh region is checked for the 

plate by using the following von Mises yield criteria: 

 

2 2 2 2

03x x y y xy                 (32) 

 

As the applied loads increase, the stiffness matrices for the plate are redefined by 

considering the progress of plasticity. In Eq. (31), the stiffness matrix associated with 

external loads would be calculated for the whole volume of the plate regardless of the 

plasticity. However, the bending stiffness will be reduced by the plasticity if any mesh 

region yields. In the calculation (i.e. integration) of the bending stiffness matrix, 

therefore, contribution to the yielded regions is removed. 

As noted above, it is assumed that the plate is composed of a number of 

membrane strings (or fibers) in the two (i.e. x, y) directions. Each fiber has a number of 

layers in the z direction. The end condition for each fiber would satisfy the plate edge 

condition as well. In fact, due to the membrane action of the fibers, occurrence of the 
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additional plate deflection may to some extent be disturbed with further increase in the 

applied loads. However, if any local region in the fiber is yielded, the fiber (i.e. string) 

will be cut such that the membrane action is not available further. In calculating (or 

integrating) the stiffness matrix due to membrane action, therefore, the entire fibers 

associated with yielded regions are not included. It should be noted that a mesh region 

inside the plate may be common to two fibers, i.e. in the x (i.e. length) and y (i.e. breadth) 

directions. In this case, the contribution from the two relevant fibers (i.e. strings) should 

be removed in the calculation of the stiffness matrix associated with the membrane 

effects. 

The stiffness for the plate will be progressively reduced by large deflection and 

local yielding. The plate can be considered to have reached the ultimate limit state when 

the plate stiffness eventually becomes zero (or negative). The process indicated above to 

include plasticity effects is carried out numerically. In this regard, the present method 

could perhaps be better classified as a semi-analytical approach. 
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10. Conclusion* 

 

 

 The Incremental technique is the most efficient method for analyzing large 

deflection behaviour of plates. 

 

 Plasticity can be numerically incorporated into this technique thereby saving 

computational effort. 

 

 The applicability of the method has been verified to a great extent by comparing 

the results obtained in various cases with existing theoretical and experimental 

results.  

  

 The insights and developments obtained in this study can be very efficiently used 

for the design of ship structures since the developed method is quick as well as 

accurate.  

 

 

*Remark: Although the formulation for plasticity has been carried out, but it has not been 

included for obtaining the results in this paper and the material of the plate is assumed to 

be elastic everywhere.  
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