DECLARATION

I, Vineet Kumar Dhankar hereby certify that the work which is being
presented in this Major report entitled "Wind effect on tall structure" by
me in partial fulfillment of the requirement for the award of degree of
Master of Engineering with specialization in Structural Engineering from
Delhi College of Engineering, Delhi is an authentic record of my own work
carried under the supervision of Dr. Munendra Kumar . The matter
presented in this report has not been submitted in any University/Institute
for the award of Master of Engineering.

(Vineet Kumar Dhankar)	Date:
Signature of Student	

This is certified that the above statement made by the candidate is correct to best of my knowledge.

Dr. Munendra Kumar (Assistant Professor)
Date:

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartiest felt gratitude to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor **Dr. Munendra Kumar** for his invaluable guidance, encouragement and patient reviews. I am very thankful to **Prof. Ashok Kumar Gupta**, H.O.D Civil Engineering Department who allows me to do project under the Guidance of Dr. Munendra Kumar. With their continuous inspiration only, it becomes possible to complete this dissertation and both of them kept on boosting me with time, to put an extra ounce of effort to realize this work.

I would also like to take this opportunity to present my sincere regards to all the faculty members of the Department for their support and encouragement.

I am grateful to my **mom and dad** for their moral support all the time; they have been always around to cheer me up, in the odd times of this work. I am also thankful to my classmates **Harkanwar Singh & Puneet Kumar** for their unconditional support and motivation during this work.

VINEET KUMAR DHANKAR

College Roll No: 17/ME/STR/09

University Roll No: 13943

ABSTRACT

The design of buildings must take into consideration the lateral drift of the structure due to wind loading and any serviceability issues that may arise from this lateral movement. Modern Tall buildings designed to satisfy lateral drift requirements, still may oscillate excessively during wind storm. Sometimes these oscillations may even cause discomfort to the occupants even if it is not in a threatening position for the structural damage. So an accurate assessment of building motion is an essential prerequisite for serviceability.

This report begins with a comprehensive review of the literature that covers all pertinent aspects of wind drift in buildings. Next an explanation of the procedure of analysis procedure is studied. A study is carried out in which height wise design forces are computed by analytical method (IS 875) and base shear is calculated. Due to different height of building both static and dynamic analysis is done using IS 875.

This report also carries a study of difference in Base bending moment as per different international codes and standards.

CONTENTS

DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
LIST OF FIGURES	vi
LIST OF TABLES	vii
CHAPTER 1- INTRODUCTION	
1.1 WIND	1
1.2 CAUSE	1
1.3 MEASUREMENT	1
1.4 WIND EFFECT ON STRUCTURES	1
1.5 DESIGN CONSIDERATION	4
1.6 LONG AND CROSS WIND LOADING	13
CHAPTER 2- LITRATURE SURVEY	
2.1 GENERAL	16
2.2 HISTORICAL WORK	16
2.3 ANALYTICAL WORK	18
CHAPTER 3- METHODOLOGY	
3.1 INTRODUCTION	25
3.2 WIND TUNNEL	25
3.3 WIND ANALYSIS BY IS 875 PART 3	27

iv

CHAPTER 4- IMPLEMENTATION

4.1 INTRODUCTION	34
4.2 BUILDING 1	35
4.3 BUILDING 2	39
4.4 BUILDING 3	43
4.5 BUILDING 4	47
4.6 BUILDING 5	51
CHAPTER 5- CONCLUSION	
CONCLUSION	54
REFERENCES	55

LIST OF FIGURES

CHAPTER 1	
Figure 1.1:- Wind flow around building	3
Figure 1.2:- Wind velocity profiles as defines by ASCE 7-05	5
Figure 1.3:- Schematic record of wind speed measured by an anemometer	6
Figure 1.4:- Critical components of wind in aeronautical engineering	10
Figure 1.5:- Simplified wind flow consisting of along wind and across wind	10
Figure 1.6:- Vortex shedding; periodic shedding of vertices generates vibration in the transverse direction	building 11
Figure 1.7:- Wind response direction	13
Figure 1.8:- Vortex formation in the wake of a bluff object	15
CHAPTER 3	
Figure 3.1:- World trade Centre	25
Figure 3.2:- Wind tunnel test on WTC	26
Figure 3.3:- Value of g _t r and L (h)	31
Figure 3.4:- Background factor	31
Figure 3.5:- Size reduction factor S	32
Figure 3.6:-Gust energy factor	32

CHAPTER 4

Figure 4.1:- 3-D model of 5 story structure	35
Figure 4.2:- Plan of 5 story structure	38
Figure 4.3:- Elevation of 5 story structure	38
Figure 4.4:- 3-D model of 10 story structure	39
Figure 4.5:- Plan of 10 story structure	42
Figure 4.6 :-Elevation of 10 story structure	42
Figure 4.7:- 3-D model of 50 story structure	43
Figure 4.8:- Plan of 50 story structure	45
Figure 4.9 :-Elevation of 50 story structure	46
Figure 4.10:- 3-D model of 100 story structure	47
Figure 4.11:- Plan of 100 story structure	49
Figure 4.12:-Elevation of 100 story structure	50
Figure 4.13:- 3D view of 200 m high building	51

LIST OF TABLES

Table 1.1 Probability of Exceeding Design Wind Speed during Design Life of Build	ling 9
Table 2.1 Calculation of Gust loading factor in codes and standards	22
Table 2.2 Mean wind velocity profiles in codes and standards	23
Table 2.3 Turbulence Intensity profiles in codes and standards	23
Table 2.4 Wind load calculation as per diff. international codes and standards	24
Table 3.1 Damping coefficient	33
Table 4.1 Wind load calculation of 5 story structure	36
Table 4.2 Wind load calculation of 10 story structure	40
Table 4.3 Wind load calculation of 50 story structure	44
Table 4.4 Wind load calculation of 100 story structure	48
Table 4.5 Wind load calculation of 200 m high structure	52
Table 5.1 Base shear and moment	54
Table 5.2 Comparison of result of wind load calculation	54