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ABSTRACT 

 
 

Evolutionary Algorithms (EAs) cover all the applications involving the use of 

Evolutionary Computationin electronic system design. It is largely applied to 

complex optimizationproblems. EAs introduce a new idea for automatic design of 

electronic systems; instead of imaginemodel, abstractions, and conventional 

techniques, it uses search algorithm to design a circuit. 

 

In this project we have used Genetic Algorithm (GA) as the Evolutionary 

Algorithm and Entropybased measures, such as Mutual Informationand 

Normalized MutualInformation are investigated as toolsfor similarity, measures 

between the target and evolving circuit. 

 

The target circuit evolved is combinational logic circuit, a Majority Function using 

Genetic algorithm and Information Theory Measures.The circuit evolved uses only 

2x1 multiplexers and the evolved circuit is compared to the circuit identified using 

the ROBDD (Reduced Ordered Binary Decision Diagram) 
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I. Introduction 
 
 

Evolving Algorithms are capable of evolving 100% functional arithmetic circuits. 

Evolutionary Algorithms include Genetic Algorithms (GA), Genetic Programming 

(GP), Evolutionary Strategies etc.In our study we will be concentrating on Genetic 

Algorithm. The largest of these circuits arethe most complex digital circuits to 

have been designed by purely evolutionary means. The algorithm isable  to  re-

discover  conventionally  optimum  designs  for  the  combinational circuits like 

full adder and parity generators,  but  moresignificantly is able to improve on the 

conventional designs. By analyzing thehistory of an evolving design up to 

complete functionality it is possible to gain insight into evolutionaryprocess.  

The design of electronic circuits is generally a complex task requiring knowledge 

of   large collectionsof domain-specific rules.  In particular  the  process  of  

implementing  a  digital  electronic circuit inhardware has typically  involved  

transforming  the original logical specification  into a form suitable for, thetarget 

technology  (i.e.  choosing  the  gate  types),  minimising  the  representation,  

optimising  therepresentation with respect to user defined constraints (i.e. timing 

characteristics, fan-in/outs, etc.) andfinally  carrying  out technology  mapping  

onto  the  target  device.  This latter step typically involvesplacing  and  routing  of  

the component  gates  which  comprise  the complete  design.  It should 
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beemphasised that during all these stages great care has to be taken to maintain the 

logical functionality ofthe original circuit specification.This  new  approach  is  

perhaps  best  expressed  as  a black-box  view  of  the  problem.  In  this  view  

oneregards  the  problem  of  implementing  the circuit  as  being  equivalent to 

designing  a  black-box  withinputs and outputs with the property that on 

presentation of the original input signals the desired outputsare delivered. The key 

new feature of this technique is that the details inside the box are encoded into 

chromosomes  and  subjected  to  the  usual  processes  of  evolutionary  

algorithms.  In  this  technique  thefitness of  a particular  chromosome  is 

measured purely  as  the  degree  to which  the  black-box  outputsbehave in the 

desired way. 

Up  until  now, most  electronic  systems  of  any  complexity were created by  a  

designer who  had beentrained  in a particular way  to understand  the operation of  

individual  electronic components,  and whowould,  therefore,  be able  to  use  

these  rules  of  behavior  to  construct larger  systems  from  the  basicparts. This 

was true whether the system to be created was purely analogue (responding to real-

worldsignals), purely digital (responding to binary streams), or some combination 

of the two. 

This method of working is somewhat constrained both by the training and 

experience of the designerand by the domain-specific knowledge which he may or 
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may not possess. For example, some designerswill be more expert in the analogue 

domain, some more expert in the digital domain. Instead, those whoadvocate  the  

use  of  evolution  to  assist in  the  design  process  are  not  so  concerned with  

this  type  ofexpertise, but merely  seek  to  set  up  the appropriate conditions 

which will  allow  solution  to  evolvenaturally. Figure demonstrates the difference 

between the two approaches. 
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The reason for the recent increase of research activity in the evolvable hardware 

field is probably due in availability of programmable electronic components. 

Unlike traditionalcomponents, these devices have no fixed operation or 

functionality when first obtained. Instead it is theresponsibility of the user/designer 

to decide - via the appropriate programming - what that functionalityshould be 

either during or after implementation within a given system. In many instances, 

these devices,once programmed, are even then not dedicated to that  particular  

operational  characteristic,  but mayafterwards be re-programmed to adopt yet 

another different functionality. 

 We intend to evolve a 3,2 majority function combinational circuit using 

Genetic Algorithm as the Evolutionary Algorithm. The circuit is evolved using a 

programmable module written in Verilog HDL called the Universal Module for 3 

variables, it can implement any combinational circuit of 3 variables depending 

upon the fact that how it is programmed. The fitness function used in the evolution 

is based upon the Information Theory indices of Normalised Mutual Information. 

The Evolution process is carried out in real time using MATLAB EDA simulator 

link and Modelsim.  
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II. Related Works 

I. Mutual Information-based Fitness Functions forEvolutionary Circuit 

Synthesis[7] 
 

 

Entropy-based measures, such as Mutual Information and Normalized Mutual 

Information are investigated as tools for similarity, measures between the target 

and evolving circuit. Three fitness functions are built over a primitive one. It is   

shown that  the  search landscape  of  Normalized  Mutual  Informationlooks more  

amenable  for  evolutionary  computation algorithmsthan  simple Mutual  

Information.  The evolutionary synthesized circuits are compared to the known 

optimum size. A discussion of the potential of the InformationTheoretical approach 

is given in this paper. 

 

II. Evolutionary Synthesis of Logic Functions using Multiplexers[8] 

 

This paper presents a genetic programming based approach to the synthesis of 

logic functions by means of multiplexers. This method uses 1-control line 

multiplexer as the only design unit for the synthesis of any logic function. Logic 

design with multiplexers is similar to logic design with binary decision diagrams 

which can be transformed into ordered binary decision diagrams. It is argued that 
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since the metric of the designs is minimum number of components, ordered 

diagrams are not suitable approach for this particular goal. 

 

III. Gate level synthesis of Boolean Functions using Binary Multiplexers 

and Genetic Programming [9] 

 

In this paper genetic programming approach for synthesis of logic functions by 

means of multiplexers is presented. This approach uses 1-control line multiplexers 

as the only deign unit. Any logic function defined by the truth table can be 

produced through the replication of this single unit. It‟s fitness function works in 

two stages, first it finds the feasible solution and then it concentrates on 

minimization of the circuit. The proposed approach does not require any 

knowledge of the application domain. 

 

IV. Information Theory Method forFlexible Network Synthesis [10] 

 

This paper   introduces a novel approach to extend flexibility of combinational 

multi-level networks synthesis based on InformationTheoretical Measure  (ITM).  

This problem is related to optimization for combinational multi-level networks, 

artificial evolution and machine learning in circuitry design. Using ITMs, we 
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verify not only that an evolved  network achieves  the target functionality, but also 

that this network can.  be corrected  in a simple regular way to achieve  it.  

We demonstrate experimental results by evolutionary strategy on gate-level 

network design: effectiveness in evolved valid networks increases dozens of times. 

 

 

V. Evolutionary Algorithms and Their Use in the Design of 

Sequential Logic Circuits[11] 

 

In this paper an approach based on an evolutionary algorithm to design 

synchronoussequential logic circuits with minimum number of logic gates is 

suggested. The proposed method consists offour main stages. The first stage is 

concerned with the use of genetic algorithms (GA) for the state assignmentproblem 

to compute optimal binary codes for each symbolic state and construct the state 

transitiontable of finite state machine (FSM). The second stage defines the 

subcircuits required to achieve the desiredfunctionality. The third stage evaluates 

the subcircuits using extrinsic Evolvable Hardware (EHW).During the fourth stage, 

the final circuit is assembled. The obtained results compare favorably againstthose 

produced by manual methods and other methods based on heuristic techniques. 
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VI. Application of Design Style in EvolutionaryMulti-Level Networks 

Synthesis[12] 

 

 

This paper considers evolutionary design oflogical networks from the Computer 

Aided Design(CAD) point of view. It states that scanning of a spaceof all possible 

network solutions by a scanning windowis the crucial point of an evolutionary 

paradigm.This is the base for implementation of CAD methodsin order to improve 

the recently obtained results onevolutionary approach for a network synthesis. 

Firstly, it introduces the concept of a target design stylein evolutionary network 

synthesis and show that itis closely related to the CAD problem of multi-

levelnetworks design over a fixed library of cells. Secondly,because the network 

search space is partition able,we use the technique of decomposition of 

switchingfunctions. Therefore, independent parallel processingof subspaces via 

genetic algorithms (GAs) is possible.Moreover, since GA is inherently parallel, 

itachievemassive parallel processing. The experimental datademonstrate the 

efficiency of the proposed approach andlarge improvements over recently obtained 

results. 
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VII. Binary Decision Diagrams [13] 

 

This paper describes a method for defining, analyzing,testing, and implementing 

large digital functions by means of abinary decision diagram. This diagram 

provides a complete, concise,"implementation-free" description of the digital 

functions involved.Techniques are then outlined for using the diagrams to analyze 

thefunctions involved, for test generation, and for obtaining 

variousimplementations. It is shown that the diagrams are especially suitedfor 

processing by a computer. Finally, methods are described forintroducing inversion 

and for directly "interconnecting" diagrams todefine still larger functions.  

 

 

VIII. Graph-Based Algorithms for Boolean FunctionManipulation[14] 

 

In this paper a new data structure forrepresenting Boolean functions and an 

associated set of manipulation algorithms. Functions are represented by directed, 

acyclicgraphs in a manner similar to the representation, but with further restrictions 

on theordering of decision variables in the graph. Although a function 

requires, in the worst case, a graph of size exponential in thenumber of arguments, 

many of the functions encountered intypical applications have a more reasonable 
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representation. Thesealgorithms have time complexity proportional to the sizes of 

thegraphs being operated on, and hence are quite efficient as long asthe graphs do 

not grow too large. The experimental resultsfrom applying these algorithms to 

problems in logic designverification that demonstrates the practicality of this 

approach. 
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III. Genetic Algorithm 
 

1. Introduction 

 

 

Genetic Algorithms are a family of computational models inspired by evolution. 

These algorithms encodea potential solution to a specific problem on a simple 

chromosome-like data structure and applyrecombination operators to these 

structures as  to preserve critical information. Genetic algorithmsare often viewed 

as function optimizer, although the range of problems to which genetic algorithms 

havebeen applied are quite broad.An implementation of genetic algorithm begins 

with a population of (typically random) chromosomes. 

 

One then evaluates these structures and allocated reproductive opportunities in 

such a way that thesechromosomes which represent a better solution to the target 

problem are given more chances to `reproduce'than those chromosomes which are 

poorer solutions. The 'goodness' of a solution is typically defined withrespect to the 

current population. 
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1.1. Background 
 

Many human inventions were inspired by nature. Artificial neural networks is one 

example,anotherexample is Genetic Algorithms (GA). GAs search by simulating 

evolution, starting from an initial set ofsolutions or hypotheses, and generating 

successive "generations" of solutions. This particular branch ofAI was inspired by 

the way living things evolved into more successful organisms in nature. The main 

idea is survival of the test, a.k.a. natural selection.A chromosome is a long, 

complicated thread of DNA (deoxyribonucleic acid). Hereditary factors that 

determine particular traits of an individual are strung along the length of these 

chromosomes, like beadson a necklace. Each trait is coded by some combination of 

DNA (there are four bases, A (Adenine), C(Cytosine), T (Thymine) and G 

(Guanine). Like an alphabet in a language, meaningful combinations ofthe bases 

produce special instructions to the cell.Changes occur during reproduction. The 

chromosomes from the parents exchange randomly by aprocess called crossover. 

Therefore, the offspring exhibit some traits of the father and some traits of 

themother. A rarer process called mutation also changes some traits. Sometimes an 

error may occur duringcopying of chromosomes (mitosis). The parent cell may 

have -A-C-G-C-T- but an accident may occurand changes the new cell to -A-C-T-

C-T-. Much like a typist copying a book, sometimes a few mistakesare made. 

Usually this results in a nonsensical word and the cell does not survive. But over 
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millions ofyears, sometimes the accidental mistake produces a more beautiful 

phrase for the book, thus producinga better species. 

1.2. Natural Selection. 

 

In nature, the individual that has better survival traits will survive for a longer 

period of time. This inturn provides it a better chance to produce offspring with its 

genetic material. Therefore, after a longperiod of time, the entire population will 

consist of lots of genes from the superior individuals and lessfrom the inferior 

individuals. In a sense, the fittest survived and the unfit died out. This force of 

natureis called natural selection.The existence of competition among individuals of 

a species was recognized certainly before Darwin.The mistake made by the older 

theorists (like Lamarck) was that the environment had an effect on anindividual. 

That is, the environment will force an individual to adapt to it. The molecular 

explanationof evolution proves that this is biologically impossible. The species 

does not adapt to the environment,rather, only the fittest survive. 

1.3. Simulated Evolution 
 

 

To simulate the process of natural selection in a computer, we need to define the 

following: A representationof an individual,at each point during the search process 

we maintain a "generation" of "individuals". Each individual is a data structure 

representing the "genetic structure" of a possible solution or hypothesis. 
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Like a chromosome, the genetic structure of an individual is described using a 

fixed, finite alphabet.In GAs, the alphabet 0, 1 is usually used. This string is 

interpreted as a solution to the problem we aretrying to solve.For example, say we 

want to find the optimal quantity of the three major ingredients in a recipe (say, 

sugar, wine, and sesame oil). We can use the alphabet 1, 2, 3 ..., 9 denoting the 

number of ounces ofeach ingredient. Some possible solutions are 1-1-1, 2-1-4, and 

3-3-1.As another example, the traveling salesperson problem is the problem of 

finding the optimal path totraverse, say, 10 cities. The salesperson may start in any 

city. A solution is a permutation of the 10cities: 1-4-2-3-6-7-9-8-5-10. 

As another example, say we want to represent a rule-based system. Given a rule 

such as "If color=redand size=small and shape=round then object=apple" we can 

describe it as a bit string by first assumingeach of the attributes can take on a fixed 

set of possible values. Say color=red, green, blue, size=small,big, shape=square, 

round, and fruit=orange, apple, banana, pear. Then we could represent the value 

for each attribute as a sub-string of length equal to the number of possible values of 

that attribute. Forexample, color=red could be represented by 100, color=green by 

010, and color=blue by 001. Note alsothat we can represent color=red or blue by 

101, and any color (i.e., a "don't care") by 111. Doing thisfor each attribute, the 

above rule might then look like: 100 10 01 0100. A set of rules is then represented 
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by concatenating together each rule's 11-bit string. For another example see page 

620 in the textbookfor a bit-string representation of a logical conjunction. 

1.4. Genetic algorithm vocabulary 
 

 

Explanation of Genetic Algorithm terms: 

 

Genetic Algorithms  Explanation 

Chromosome(string, individual)  Solution (coding) 

Genes (bits)  Part of solution 

Locus  Position of gene 

Alleles  Values of gene 

Phenotype  Decoded solution 

Genotype  Encoded solution 

 

 
 

2. Fitness Function 
 
 

As mentioned earlier, GAs mimic the survival-of-the-fittest principle of nature to 

make a search process.Therefore, GAs are naturally suitable for solving 
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maximization problems. Maximization problems areusually transformed into 

maximization problem by suitable transformation. In general, a fitness function 

F(i) is first derived from the objective function and used in successive genetic 

operations. Fitness inbiological sense is a quality value which is a measure of the 

reproductive efficiency of chromosomes. Ingenetic algorithm, fitness is used to 

allocate reproductive traits to the individuals in the population andthus act as some 

measure of goodness to be maximized. This means that individuals with higher 

fitnessvalue will have higher probability of being selected as candidates for further 

examination. Certain geneticoperators require that the fitness function be non-

negative, although certain operators need not have thisrequirement. For 

maximization problems, the fitness function can be considered to be the same as 

theobjective function or F(i) = O(i). For minimization problems, to generate non-

negative values in all thecases and to reach the relative fitness of individual string, 

it is necessary to map the underlying naturalobjective function to fitness function 

form. A number of such transformations is possible. Two commonlyadopted 

fitness mappings is presented below. 

F(x) =1/{1 + f(x)} . 

This transformation does not alter the location of the minimum, but converts a 

minimization problemto an equivalent maximization problem. An alternate 

function to transform the objective function to getthe fitness value F(i) as below. 
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ℱ 𝑖 = 𝑉 −
𝑂 𝑖 𝑃

 𝑂(𝑖)𝑃
𝑖=1

 

where, O(i) is the objective function value ofith individual, P is the population size 

and V is a largevalue to ensure non-negative fitness values. The value of V adopted 

in this work is the maximum value ofthe second term of equation 5 so that the 

fitness value corresponding to maximum value of the objectivefunction is zero. 

This transformation also does not alter the location of the solution, but converts a 

minimization problem to an equivalent maximization problem. The fitness function 

value of a string isknown as the string fitness. 

3. GA operators 
 

The operation of GAs begins with a population of a random strings representing 

design or decision variables.The population is then operated by three main 

operators; reproduction, crossover and mutationto create a new population of 

points. GAs can be viewed as trying to maximize the fitness function, byevaluating 

several solution vectors. The purpose of these operators is to create new solution 

vectors byselection, combination or alteration of the current solution vectors that 

have shown to be good temporarysolutions. The new population is further 

evaluated and tested till termination. If the termination5criterion is not met, the 

population is iteratively operated by the above three operators and evaluated.This 
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procedure is continued until the termination criterion is met. One cycle of these 

operations andthe subsequent evaluation procedure is known as a generation in 

GAs terminology. The operators aredescribed in the following steps. 

3.1. Selection 
 
 

Reproduction (or selection) is an operator that makes more copies of better strings 

in a new population.Reproduction is usually the first operator applied on a 

population. Reproduction selects good stringsin a population and forms a mating 

pool. This is one of the reason for the reproduction operation tobe sometimes 

known as the selection operator. Thus, in reproduction operation the process of 

naturalselection cause those individuals that encode successful structures to 

produce copies more frequently. Tosustain the generation of a new population, the 

reproduction of the individuals in the current population isnecessary. For better 

individuals, these should be from the fittest individuals of the previous population. 

There exist a number of reproduction operators in GA literature, but the essential 

idea in all of themis that the above average strings are picked from the current 

population and their multiple copies areinserted in the mating pool in a 

probabilistic manner. 

Roulette-Wheel Selection: The commonly-used reproduction operator is the 

proportionate reproductionoperator where a string is selected for the mating pool 
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with a probability proportional to its fitness. Thus, the ith string in the population is 

selected with a probability proportional to Fi. Sincethe population size is usually 

kept fixed in a simple GA, the sum of the probability of each string being 

selected for the mating pools must be one. Therefore, the probability for selecting 

the ith string is 

pi=
𝓕𝒊

𝚺𝓕𝒊
 

where n is the population size. One way to implement this selection scheme is to 

imagine a roulette-wheelwithit's circumference marked for each string 

proportionate to the string's fitness.  

 

3.2. Crossover 
 

 

A crossover operator is used to recombine two strings to get a better string. In 

crossover operation,recombination process creates different individuals in the 

successive generations by combining materialfrom two individuals of the previous 

generation. In reproduction, good strings in a population areprobabilistically signed 

a larger number of copies and a mating pool is formed. It is important to notethat 

no new strings are formed in the reproduction phase. In the crossover operator, 

new strings arecreated by exchanging information among strings of the mating 
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pool.The two strings participating in the crossover operation are known as parent 

strings and the resultingstrings are known as children strings. It is intuitive from 

this construction that good sub-strings fromparent strings can be combined to form 

a better child string, if an appropriate site is chosen. With arandom site, the 

children strings produced may or may not have a combination of good sub-strings 

fromparent strings, depending on whether or not the crossing site falls in the 

appropriate place. But thisis not a matter of serious concern, because if good 

strings are created by crossover, there will be morecopies of them in the next 

mating pool generated by crossover. It is clear from this discussion that theeffect of 

cross over may be detrimental or beneficial. Thus, in order to preserve some of the 

good stringsthat are already present in the mating pool, all strings in the mating 

pool are not used in crossover.When a crossover probability, defined here as pc is 

used, only 100pc per cent strings in the populationare used in the crossover 

operation and 100(1-pc) percent of the population remains as they are in thecurrent 

population. A crossover operator is mainly responsible for the search of new 

strings even thoughmutation operator is also used for this purpose sparingly. 

Many crossover operators exist in the GA literature.One site crossover and two site 

crossover are themost common ones adopted. In most crossover operators, two 

strings are picked from the mating pool atrandom and some portion of the strings 

are exchanged between the strings. Crossover operation is doneat string level by 
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randomly selecting two strings for crossover operations. A one site crossover 

operator isperformed by randomly choosing a crossing site along the string and by 

exchanging all bits on the rightside of the crossing site.In one site crossover, a 

crossover site is selected randomly. The portion rightof the selected site of these 

two strings are exchanged to form a new pair of strings. The new strings arethus a 

combination of the old strings. Two site crossover is a variation of the one site 

crossover, exceptthat two crossover sites are chosen and the bits between the sites 

are exchanged .One site crossover is more suitable when string length is small 

while two site crossover is suitable forlarge strings. Hence the present work adopts 

a two site crossover. The underlying objective of crossover is to exchange 

information between strings to get a string that is possibly better than the parents. 

3.3. Mutation 
 
 

Mutation adds new information in a random way to the genetic search process and 

ultimately helpsto avoid getting trapped at local optima. It is an operator that 

introduces diversity in the populationwhenever the population tends to become 

homogeneous due to repeated use of reproduction and crossover 

operators. Mutation may cause the chromosomes of individuals to be different 

from those of their parentindividuals.Mutation in a way is the process of randomly 

disturbing genetic information. They operate at thebit level; when the bits are being 
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copied from the current string to the new string, there is probabilitythat each bit 

may become mutated. This probability is usually a quite small value, called as 

mutationprobability pm. A coin toss mechanism is employed; if random number 

between zero and one is less thanthe mutation probability, then the bit is inverted, 

so that zero becomes one and one becomes zero. Thishelps in introducing a bit of 

diversity to the population by scattering the occasional points. This 

randomscattering would result in a better optima, or even modify a part of genetic 

code that will be beneficialin later operations. On the other hand, it might produce 

a weak individual that will never be selectedfor further operations.The need for 

mutation is to create a point in the neighborhood of the current point, thereby 

achievinga local search around the current solution. The mutation is also used to 

maintain diversity in thepopulation. For example, the following population having 

four eight bit strings may be considered: 

 

01101011 

00111101 

00010110 

01111100. 

 

It can be noticed that all four strings have a 0 in the left most bit position. If the 

true optimumsolution requires 1 in that position, then neither reproduction nor 

crossover operator described abovewill be able to create 1 in that position. The 

inclusion of mutation introduces probability pm of turning0 into 1.These three 
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operators are simple and straightforward. The reproduction operator selects good 

stringsand the crossover operator recombines good sub-strings from good strings 

together, hopefully, to createa better sub-string. The mutation operator alters a 

string locally expecting a better string. Even thoughnone of these claims are 

guaranteed and/or tested while creating a string, it is expected that if bad stringsare 

created they will be eliminated by the reproduction operator in the next generation 

and if good stringsare created, they will be increasingly emphasized. Further 

insight into these operators, different waysof implementations and some 

mathematical foundations of genetic algorithms can be obtained from 

GAliterature.Application of these operators on the current population creates a new 

population. This new populationis used to generate subsequent populations and so 

on, yielding solutions that are closer to theoptimum solution. The values of the 

objective function of the individuals of the new population areagain determined by 

decoding the strings. These values express the fitness of the solutions of the new 

generations. This completes one cycle of genetic algorithm called a generation. In 

each generation if thesolution is improved, it is stored as the best solution. This is 

repeated till convergence. 
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4. Schema Theorem 

 

m(H,t+1)≥m(H,t)*
𝒇(𝑯)

𝒇
[1- pc*

𝜹(𝑯)

𝒍−𝟏
 – O(H) * pm] 

 

 

 

 

The equation above describes how many schema of type H can be observed in the 

next generation i.e. t+1 given their numbers in this generation i.e. t is m(H,t). 

According to this theorem highly fit short defining length schemata are propagated 

from generation to generation. 

m(H,t)= no. of strings of schema of type H in a population 

f(H)= Average fitness of schema H 

f= Average fitness of the population 

δ(H) = Defining distance of schema (distance between the 1
st
 and last fixed 

position) 

O(H)= Order of schema ( no. of fixed positions in schema) 

pc = Crossover probability  

pm= Mutation probability 
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IV. Information Theory 
 

1. Information 

 

Let E be some event which occurs with probabilityP(E). If we are told that E has 

occurred, then wesay that we have received. 

I(E) = - log2 P(E)bits of information. 

Base 2 of log signifies that we are dealing in bits of information. We‟ll stick with 

bits, and always assume base 2. Wecan also think of information as amount of 

“surprise” in E(e.g. P(E) = 1, P(E) = 0) 

• Example: result of a fair coin flip (log2 2 = 1 bit) 

• Example: result of a fair die roll (log2 6 = 2.585 bits) 

 

2. Entropy 

 

 

A Zero-memory information source S is a source that emits symbols from an 

alphabet {s1, s2, . . . , sk} with probabilities {p1, p2, . . . , pk},respectively, where 

the symbols emitted are statistically independent. The average amount of 

information in observing theoutput of the source S calledas Entropy and 

mathematically is given by 
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H(s) = ∑i  pi*I(si)= ∑i  pi * log2( 
𝟏

𝒑𝒊
 ) 

 

 

Other definitions of the entropy may be stated as follows 

 

1. average amount of information provided per symbol 

2. average amount of surprise when observing a symbol 

3. uncertainty an observer has before seeing the symbol 

4. average number of bits needed to communicate each symbol 

(Shannon: there are codes that will communicate these symbols with efficiency 

arbitrarily close to H(S) bits/symbol;there are no codes that will do it with 

efficiency < H(S)bits/symbol) 

 

3. Conditional Entropy 

 

 

If T is alphabet of symbols of a transmitter and R is the alphabet of the receiver 

then conditional entropy defined by H(T/R) defines the measure of average 

uncertainty of the transmitted symbol t given the received  symbols r. 

Mathematically it is given by 

H(T/R)=  𝒑 𝒕, 𝒓 𝒍𝒐𝒈(
𝒑 𝒓 

𝒑 𝒕,𝒓 
)𝒋𝒊  
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4. Joint Entropy 

 

 

The joint entropy measures how much entropy is contained in a joint system of two 

random variables,  in our case a receiver R and a transmitter T and represented by 

H(T,R). Mathematically it is given by 

 

H(T,R)=  𝒑 𝒕, 𝒓 𝐥𝐨𝐠⁡(𝒕, 𝒓)𝒋𝒊  

H(T,R)=H(R/T)+H(T) 

H(T,R)=H(T/R)+H(R)  

5. Mutual Information 

 

 

It is the measure of information that one random variable has about the other 

random variable. It resolves the uncertainty in one random variable after observing 

the other. Mathematically it is given by 

 

I(T,R)=H(T)-H(T/R) 

I(T,R)=H(R)-H(R/T) 

I(T,R)=H(T)+H(R)-H(T,R) 

I(T,R)=H(R)-H(R/T) 
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6. Entropy and Circuits 

 

Entropy has to be carefully applied to the synthesis ofBoolean functions. Let us 

assume any two Boolean functions, F1 and F2, and a third F3 which is the one‟s  

complement of F2,  then F3 ≠ F2. For these complementary functions, H(F2)  = 

H(F3) MI(F1,F2) = MI(F1,F3). Also Mutual Information shows a similar 

behavior.The implications for Evolutionary Computation are important since 

careless use of  entropy-based measures  can prevent the  system  from attaining 

convergence.  Assume the target Boolean function is T.  Then, MI(T,  F2) = MI(T,  

F3),  but only  one of  the circuits implementing F2 and  F3 is close  to the solution 

since their Boolean functions are complementary. A  fitness  function based  on 

mutual  information will  reward both  circuits  with the  same  value, but  one  is 

better  than  the other, Things could get worse as evolution progresses because the 

mutual information increases when  the circuits are closer to  the  solution,  but in  

fact,  two  complementary  circuits  are then  given larger rewards. The scenario is 

one  in which  the population  is  driven  by  two equally strong  attractors,  hence  
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convergence is never  reached.Mutual information is not an invariant measure 

between random variables because it contains the marginal entropies. Normalized 

Mutual Information is a better measure of theprediction that one variable can do 

about the other. Normalized Mutual Information is given by  

 

NMI = 
𝑯 𝑹 +𝑯(𝑻)

𝑯(𝑻,𝑹)
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V. Binary Decision Diagrams (BDD) 
 
 

1. Introduction 

 

 

With the ever increasing complexity of digital functionsand systems, the researcher 

who is charged withtheir analysis, testing, and implementation is faced with avery 

real "description" dilemma. On the one hand, he has athis disposal a variety of 

sophisticated design languageswhich can provide concise functional descriptions 

of thedevice or system with which he is concerned. However, when 

he attempts to use such descriptions in any sort of formalanalysis procedure, he 

typically discovers that their veryconciseness virtually precludes any detailed 

logical investigation.On the other hand, when he turns to those descriptionswhich 

are amenable to extensive analysis, he finds thatthese take the form of truth tables, 

Boolean equations,Karnaugh maps, etc.-all of which have the unpleasantproperty 

of growing exponentially with the number ofvariables involved. What he would 

like to have would be aconcise, "implementation-free" description which could 

stillyield meaningful results about the logical structure andtesting requirements of 

the function involved. This paperwill explore one possible approach to bridging 

this "descriptiongap."The general idea will be to define a digital function interms 
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of a "diagram" which tells the user how to determinethe output value of the 

function by examining the values ofthe inputs. We shall begin by describing these 

diagrams andshowing how they may be derived for various digital devices. 

2. Implementation 

 

This technique is based on the Shannon‟s expansion 

 

f(A,B,C..)=!Af0(0,B,C,..) + Af1(1,B,C..) 

 

Consider the switching function, 

f= A+(!B.C) 

and assume we are interested in defining a procedure fordetermining the binary 

value offgiven the binary values ofA, B, and C. One way to do this would be to 

begin by lookingat the value of A. If A = 1, thenf= 1 and we are finished. IfA = 0, 

we look at B. If B = 1, thenf= 0 and again we arefinished. Otherwise, we look at C 

and its value will be thevalue offFig. 1 shows a simple diagram ofthis procedure. 

We enterat the node indicated by the arrow and then simply proceeddownward 

through the diagram, noting at each node thevalue of its variable and then taking 

the indicated branch.When a 0 or 1 value is reached, this gives the value offandthe 

process ends. There is little difficulty in confirming that the diagram doesindeed 
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describe a procedure for finding the value of theindicated function. We shall refer 

to these diagrams as binarydecision diagrams. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

There can be redundant nodes in the BDD which can be pruned by followingrules 

which are described below with the help of diagrams.  
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VI. MATLAB EDA Simulator Link 

1. Writing Test Bench in MATLAB for HDL Combinational Logic 

 

TheEDA Simulator 

LinksoftwareprovidesameansforverifyingHDLmoduleswithintheMATLABe

nvironment. YoudosobycodinganHDLmodeland 

aMATLABfunctionthatcansharedatawiththeHDLmodel. 

MATLABtestbenchfunctionsletyou verify theperformanceoftheHDL 

model,orofcomponentswithinthemodel. Atestbenchfunctiondrives 

valuesontosignalsconnectedtoinputportsofanHDLdesignundertestand 

receivessignalvaluesfromtheoutputportsofthemodule.Thefollowingfiguresho

wshowaMATLABfunctionwrapsaroundand 

communicateswiththeHDLsimulatorduringa testbenchsimulation session. 
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2. HDL Cosimulation Using MATLAB Component Function 

 

TheEDA Simulator 

LinksoftwareprovidesameansforvisualizingHDLcomponents withinthe 

MATLABenvironment.You 

dosobycodinganHDLmodelandaMATLABfunctionthatcansharedatawiththeH

DLmodel. MATLABcomponent functionssimulatethebehavior 

ofcomponentsinthe HDLmodel.Astubmodule(providingportdefinitions 

only)intheHDLmodel 

passesitsinputsignalstotheMATLABcomponentfunction. TheMATLAB 

componentprocessesthisdataandreturnstheresultstotheoutputsofthe 

stubmodule. AMATLABcomponenttypicallyprovidessomefunctionality 

(suchasafilter)thatisnotyetimplementedintheHDLcode. 

Thefollowingfigureshow showanHDLsimulatorwrapsaroundaMATLAB 

component functionandhowMATLABcommunicates withtheHDL 
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simulatorduringacomponentsimulationsession. 

 

 

 

 

 

 

 

 

VII. Circuit Evolution 
 

 

1. 3,2 Majority Logic Circuit 

 

A 3,2 majority circuit  is a combinational circuit that has one output (P) which is 

equal to 1 if the number of  1s on the input  are greater than the number of 0s and 

the output (P) equals 0 if the number of  1s on the input are less than the number of 

0s . The switching function, the logic diagram and the truth table are given below. 

 

P=AB+BC+AC 

 

 

 

A B C 

P 
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Table 1 

shows the truth table of the 3,2 Majority function 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Table -1 
 

2. Universal Logic Module for 3 Variables 

 

 

Inputs Outputs 

A B C P 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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The Universal Logic module for 3 variables is capable of implementing any 

combinational logic function out of a possible combination of 2
8
=256 for 3 input 

variables. It has 3 inputsa, b &cand one output f, in addition there is cntlinput  29 

bits wide which is used to programme the module. 

 

The module consists of 7,  2x1 multiplexers, the control inputs to each multiplexers 

can be programmed through cntl input of the module. Any switching function of n 

variables can be programmed using 2
n
-1 2x1 multiplexers. The module is written 

in Verilog HDL and the code for the module is available in Annexure-. The 

module has been designed deliberately using only 2x1 multiplexers  as in the VLSI 

system design where the emphasis is to reduce the whole manufacturing cost rather 

than reduce the number of components used. It is common therefore to replicate 

the same unit as many times as possible, although it may lead to larger number of 

gates. Our interest in VLSI system design leads us to restate the circuit design 

problem in such a way that the issues mentioned previously are taken into account. 

Figure 1 shows the block diagram of the module and figure 2 shows the internal 

structure of the module. 

 

 

 

 

Universal Logic 

Module for 3 

Variables 

Control Inputs (cntl) 

a 

b f 
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Figure -1 
 

In figure 2, the internal structure of the module, all the control inputs of the muxes 

are programmable, they can have either of the values 0,1,a,~a,b,~b,c,~c depending 

upon the control input “cntl”. The inputs to the muxes 1,2,3 and 4 can have value 

either 0 or 1 again depending upon the control input “cntl”. The control muxes are 

not shown in the figure 2. Table 2 shows the relation of input values to muxes 1,2,3 

and 4 vis a vis the control input. The input values can either be a „0‟ or a „1‟ 

depending upon the implementation of the function. Table 3 shows the relation 

between the control input of every 2x1 mux and the vis a vis control input. 

 

Control Input  Output 

0 0 

1 1 

 

Table 1 
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Control Input  X 

000 0 

001 1 

010 a 

011 !a 

100 b 

101 !b 

110 c 

111 !c 

 

Table 2



 

Page 41 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-2 
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3. Fitness Function 
 
 

Information Theory measures were used for the calculation of the fitness function. 

Conditional Entropy can be used as one of the measures for the calculation of the 

fitness functions, but as stated earlier It has a big drawback that it rewards both the 

function and complement of the function equally, we may end up with a circuit that 

does not meet our requirement. Instead we can Normalised Mutual Information 

(NMI) and function that uses Conditional Entropy that does not reward the 

complement of the function as can be seen in equation (3). 

fitness= (Length(T) - Hamming(T,C)) x NMI(T,C) (1) 

fitness1= 
𝒇𝒊𝒕𝒏𝒆𝒔𝒔

𝑵𝑴𝑰(𝑨𝒊,𝑪)𝒊 (2) 

fitness2=(Length(T) - Hamming(T,C))x(10-H(T/C)     (3) 

Where T is the actual output and C is the simulated output. Ai are the attributes 

(variables) of the target function. To evolve the required combinational circuit both 

(2) and (3) have to be maximized. As the tool used by us for GA optimization is 

able to achieve global minimum we have to convert both equation (2) and (3) to 

using a transformation. Thus we have a function given by (4) used as a fitness 

function. 

f=
𝟏

𝟏+𝒇𝒊𝒕𝒏𝒆𝒔𝒔𝟏
(4) 
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4. GA Parameters 

 

Table 3 shows the parameters used in GA for evolution of the 3,2 majority function 

circuit. The tool used for optimization was Global Optimization Toolbox of 

MATLAB. 

 

Parameters Value 

Population Size 150 

No. of Generations 25 

Crossover Rate 0.8 

Crossover Type Two Point 

Mutation Rate 0.2 

Mutation Type  Uniform  

Scaling Rank 

Elitism 2 

Selection Stochastic Uniform 

 

Table 3 
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VIII. Results and Conclusion 
 

 

1. Verification of the Evolved 3,2 Majority Function 

 

The 3,2 majority function circuit was evolved using programmable universal 

module for 3 variables having a programming input of 29 bits labeled as “cntl”. 

These 29 bits were used by the GA to evolve the 3,2 majority function. The 

module itself constituted a mux tree of 7,  2x1 multiplexers, with control inputs of 

either 0,1,a, !a, b, !b c, !c depending upon the control input “cntl”. The inputs to 

level 3 mux can take values of either a „0‟ or a „1‟ again depending upon the 

control input “cntl”. 

The GA string which is nothing but the control input “cntl” is coded in the 

following  manner. The chromosome consists of a string of 29 bits which form the 

control input “cntl” to the universal logic module for 3 variables. Bits from 0 to 7 

decide what inputs to be fed to inputs of level 3 multiplexers, the inputs to the 

muxes can have a value of either a „0‟ or a „1‟ only. Bits from 8 to 19 decide what 

variable is to be fed as control inputs to muxes at level 3,similarly the bits from 20 

to 25 decide the control input for level 2 muxes and bits 26 to 28 decide control 

input for level 1 mux. The relation, for what input combination what control signal 

is chosen has already been described table 2 of the previous chapter.  
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The GA was able to identify a number of input combinations for which the output 

met the desired criteria. The one describe here uses minimum number of muxes 

which can be considered as the optimum solution to the problem of evolving 3,2 

majority function. The figure 1 below of the simulated clearly shows that the 

objectives have been met and circuit has been evolved. 

 

 

 

Figure 1 

 

 

2. Evolved and Optimized Module 

 

The evolved module with inputs to stage 3 and control stages to all the 3 stages is 

shown in figure 2. The optimized module with thewith minimum number of 

multiplexers is shown in figure 3. 
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Figure 2 
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 Figure 3 
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It is clearly visible from the figure 3 that the requirement for the number of 

multiplexers has come down from 7 to 4. It will be shown in the next section 

using ROBDD that this is the canonical form of the circuit and hence optimized. 

 

 

3. Binary Decision Diagrams (BDD) and Reduced Ordered Binary 

Decision Diagrams (ROBDD) 

 

 

In order to verify our conclusion we took the help of BDD and ROBDD. The BDD 

and ROBDD for the 3,2 Majority functions are presented in figure 4  and 5 

respectively. 

 

 

 

 

 

 

 

Figure 4 
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The dashed lines show „0‟ as the input and solid lines show „1‟ as the input. The 

BDD is in agreement with the evolved circuit of figure 2. The ROBDD is shown in 

the next figure with the order being C<B<A. 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 5 

 

 

From figure 5 it can be clearly seen that the reduced and optimized circuit of the 

figure 3 is in agreement to that of ROBDD. 
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4. GA Convergence 

 

Figure 6 shows the convergence of the GA with generations and the mean and the 

average value of the fitness function for a given generation. It can be seen that the 

value of the fitness function converges to 0.0185 after generation 9 till 25. 

 

Figure 6 

 

Figure 7 shows the best, worst and the mean values of the fitness function over the 

entire range of the 25 generations.  Again form this graph it is very clear that after 

generation 10 the GA has converged to one single value of the fitness function 
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which is the global minimum for the fitness function having a value of 0.0185 and 

leads to the evolution of the combinational circuit. 

 

 

 

 

Figure 7 
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5. Conclusion 

 

In this project we have been able to evolve a digital combination circuit using GA 

algorithm as a search tool for optimum solution in a very large search space. We 

have shown that it is possible to incorporate information theory indices like 

Normalized Mutual Information for the creation of fitness function. The solution 

so found was compared to the optimum solution which was determined by 

ROBDD and has least number of elements i.e. 2x1 muxes. 

 

6. Future Work 

 

 

We plan to take this work further and carry out the evolution to other more 

complex arithmetic combinational circuits such as multipliers.  We also plan to 

carryout work on sequential circuits such as sequence detector. 
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Appendix – 1 

Verilog Module for Universal Logic Module for 3 Variables 

 

File Name :-majority_mux.v 

modulemajority_mux(cntl,a,b,c,out); 

input [28:0] cntl; 

input a; 

input b; 

input c; 

output out; 

reg out; 

reg [20:0] w; 

always @(a,b,c) begin 

if (cntl[10:8]== 3'b000) 

w[8]=1'b0;  

else if (cntl[10:8]== 3'b001) 

w[8]=1'b1;  

else if (cntl[10:8]== 3'b010) 

w[8]=a; 

else if (cntl[10:8]==3'b011) 

w[8]=~a;  

else if (cntl[10:8]== 3'b100) 

w[8]=b; 

else if (cntl[10:8]== 3'b101) 

w[8]=~b; 

else if (cntl[10:8]==3'b110) 

w[8]=c; 

else if (cntl[10:8]== 3'b111) 

w[8]=~c;  

 

if (cntl[13:11]== 3'b000) 

w[8]=1'b0;  

else if (cntl[13:11]== 3'b001) 

w[9]=1'b1;  

else if (cntl[13:11]== 3'b010) 

w[9]=a; 

else if (cntl[13:11]== 3'b011) 

w[9]=~a;  

else if (cntl[13:11]== 3'b100) 

w[9]=b; 

else if (cntl[13:11]== 3'b101) 

w[9]=~b; 

else if (cntl[13:11]== 3'b110) 

w[9]=c; 

else if (cntl[13:11]== 3'b111) 

w[9]=~c;          

 

if (cntl[16:14]== 3'b000) 
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w[10]=1'b0;  

else if (cntl[16:14]== 3'b001) 

w[10]=1'b1;  

else if (cntl[16:14]== 3'b010) 

w[10]=a; 

else if (cntl[16:14]== 3'b011) 

w[10]=~a;  

else if (cntl[16:14]== 3'b100) 

w[10]=b; 

else if (cntl[16:14]== 3'b101) 

w[10]=~b; 

else if (cntl[16:14]== 3'b110) 

w[10]=c; 

else if (cntl[16:14]== 3'b111) 

w[10]=~c; 

 

if (cntl[19:17]== 3'b000) 

w[11]=1'b0;  

else if (cntl[19:17]== 3'b001) 

w[11]=1'b1;  

else if (cntl[19:17]== 3'b010) 

w[11]=a; 

else if (cntl[19:17]== 3'b011) 

w[11]=~a;  

else if (cntl[19:17]== 3'b100) 

w[11]=b; 

else if (cntl[19:17]== 3'b101) 

w[11]=~b; 

else if (cntl[19:17]== 3'b110) 

w[11]=c; 

else if (cntl[19:17]== 3'b111) 

w[11]=~c;  

 

if (cntl[22:20]== 3'b000) 

w[16]=1'b0;  

else if (cntl[22:20]== 3'b001) 

w[16]=1;  

else if (cntl[22:20]== 3'b010) 

w[16]=a; 

else if (cntl[22:20]== 3'b011) 

w[16]=~a;  

else if (cntl[22:20]== 3'b100) 

w[16]=b; 

else if (cntl[22:20]== 3'b101) 

w[16]=~b; 

else if (cntl[22:20]== 3'b110) 

w[16]=c; 

else if (cntl[22:20]== 3'b111) 

w[16]=~c; 

 

if (cntl[25:23]== 3'b000) 

w[17]=1'b0;  

else if (cntl[25:23]== 3'b001) 

w[17]=1'b1;  

else if (cntl[25:23]== 3'b010) 

w[17]=a; 

else if (cntl[25:23]== 3'b011) 
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w[17]=~a;  

else if (cntl[25:23]== 3'b100) 

w[17]=b; 

else if (cntl[25:23]== 3'b101) 

w[17]=~b; 

else if (cntl[25:23]== 3'b110) 

w[17]=c; 

else if (cntl[25:23]== 3'b111) 

w[17]=~c;  

 

if (cntl[28:26]== 3'b000) 

w[20]=1'b0;  

else if (cntl[28:26]== 3'b001) 

w[20]=1'b1;  

else if (cntl[28:26]== 3'b010) 

w[20]=a; 

else if (cntl[28:26]== 3'b011) 

w[20]=~a;  

else if (cntl[28:26]== 3'b100) 

w[20]=b; 

else if (cntl[28:26]== 3'b101) 

w[20]=~b; 

else if (cntl[28:26]== 3'b110) 

w[20]=c; 

else if (cntl[28:26]== 3'b111) 

w[20]=~c; 

 

if (cntl[0]==1'b0) 

w[0]=1'b0; 

else 

w[0]=1'b1; 

 

if (cntl[1]==1'b0) 

w[1]=1'b0; 

else 

w[1]=1'b1; 

 

if (cntl[2]==1'b0) 

w[2]=1'b0; 

else 

w[2]=1'b1; 

 

if (cntl[3]==1'b0) 

w[3]=1'b0; 

else 

w[3]=1'b1; 

 

if (cntl[4]==1'b0) 

w[4]=1'b0; 

else 

w[4]=1'b1; 

 

if (cntl[5]==1'b0) 

w[5]=1'b0; 

else 

w[5]=1'b1; 
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if (cntl[6]==1'b0) 

w[6]=1'b0; 

else 

w[6]=1'b1; 

 

if (cntl[7]==1'b0) 

w[7]=1'b0; 

else 

w[7]=1'b1; 

 

if (w[8]==0) 

w[12]=w[0]; 

else 

w[12]=w[1]; 

 

if (w[9]==0) 

w[13]=w[2]; 

else 

w[13]=w[3]; 

 

if (w[10]==0) 

w[14]=w[4]; 

else 

w[14]=w[5]; 

 

if (w[11]==0) 

w[15]=w[6]; 

else 

w[15]=w[7]; 

 

if (w[16]==0) 

w[18]=w[12]; 

else 

w[18]=w[13]; 

 

if (w[17]==0) 

w[19]=w[14]; 

else 

w[19]=w[15]; 

 

if (w[20]==0) 

out=w[18]; 

else 

out=w[19]; 

end 

endmodule 
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Appendix – 2 

Testbench File for Veirlog Module in MATLAB 
 

File Name :-majority_mux.m 

 
functionmajority_mux(obj) 

global s1; 

global x1; 

global y; 

obj.tnext=obj.tnow+5e-9;  

s1=s1+1; 

if (strcmp(obj.simstatus,'Init')) 

obj.portvalues.cntl=dec2mvl(x1,29); 

obj.userdata.sum=int16.empty; 

y=int16.empty; 

end 

if (strcmp(obj.simstatus,'Running')) 

mvl2dec(obj.portvalues.out); 

y(s1-1)=mvl2dec(obj.portvalues.out); 

end 

if s1==8 

obj.portvalues.a= dec2mvl(1,1); 

obj.portvalues.b=dec2mvl(1,1); 

obj.portvalues.c=dec2mvl(1,1); 

 

 

return 

end 

if s1==7 

obj.portvalues.a= dec2mvl(1,1); 

obj.portvalues.b=dec2mvl(1,1); 

obj.portvalues.c=dec2mvl(0,1); 

 

return 

end 

if s1==6 
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obj.portvalues.a= dec2mvl(1,1); 

obj.portvalues.b=dec2mvl(0,1); 

obj.portvalues.c=dec2mvl(1,1); 

 

 

return 

end 

if s1==5 

obj.portvalues.a= dec2mvl(1,1); 

obj.portvalues.b=dec2mvl(0,1); 

obj.portvalues.c=dec2mvl(0,1); 

 

return 

end 

if s1==4 

obj.portvalues.a= dec2mvl(0,1); 

obj.portvalues.b=dec2mvl(1,1); 

obj.portvalues.c=dec2mvl(1,1); 

 

return 

end 

if s1==3 

obj.portvalues.a= dec2mvl(0,1); 

obj.portvalues.b=dec2mvl(1,1); 

obj.portvalues.c=dec2mvl(0,1); 

 

return 

end 

if s1==2 

obj.portvalues.a= dec2mvl(0,1); 

obj.portvalues.b=dec2mvl(0,1); 

obj.portvalues.c=dec2mvl(1,1); 

 

return 

end 

if s1==1 

obj.portvalues.a= dec2mvl(0,1); 
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obj.portvalues.b=dec2mvl(0,1); 

obj.portvalues.c=dec2mvl(0,1); 

 

return 

end 

 

if s1==9 

obj.tnext=[]; 

end 

end 
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Appendix -- 3 

Evaluation Function File 
 

 

File Name:-majority.m 

 
function f=majority(x) 

global y; 

global r; 

global z; 

global s1; 

global f; 

global f1; 

global x1; 

s1=0; 

globaltclcmd; 

a=[0;0;0;0;1;1;1;1]; 

b=[0;0;1;1;0;0;1;1]; 

c=[0;1;0;1;0;1;0;1]; 

r=[0;0;0;1;0;1;1;1]; 

r=int16(r); 

x1=x; 

commInfo = hdldaemon; 

tclcmd = { ... 

'vsimmatlabmajority_mux -t 1ns -novopt ;', ... 

['matlabtb /majority_mux  -mfuncmajority_mux.m -use_instance_obj  ;'], ... 

'run 100;',... 

'quit -f',... 

}; 

% Launch HDL simulator for use with MATLAB 

vsim('tclstart',tclcmd,'runmode','Batch'); 

pause(8); 

y=int16(y); 

y=y'; 
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f1=[(8-sum(abs(r-y)))*(entropy(r)+entropy(y))/(entropy(r)+entropy(y)-

mutualinformation(r,y))]; 

f2=f1*[(entropy(y)+entropy(a))/(entropy(y)+entropy(a)-

mutualinformation(a,y))+... 

    (entropy(y)+entropy(b))/(entropy(y)+entropy(b)-

mutualinformation(b,y))+... 

    (entropy(y)+entropy(c))/(entropy(y)+entropy(c)-mutualinformation(c,y))]; 

f=(1/(1+f2)); 

if (y==r) 

done=dec2mvl(x1,29); 

fprintf('correct value = %s\n',done); 

fid = fopen('values.txt', 'a'); 

fprintf(fid, 'VectorXVectorYFunctionValue\n'); 

fprintf(fid, '%s  %d %d %d %d %d %d %d %d   %6.4f\n',done,y,f); 

fclose(fid); 

end 
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