

A Dissertation
On

Evolutionary Logic Circuit Synthesis Based On Mutual
Information Based Fitness Function

Submitted in Partial fulfillment of requirement for the

Award of Degree of

MASTER OF ENGINEERING
(Electronics and Communication)

Submitted By

ArunRudra
College Roll No. 01/E&C/PT/2009

University Roll No. 13921
Under the guidance of

Dr(Ms) S Indu
Associate Professor

&
Dr (Ms) Neeta Pandey

Associate Professor

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DELHI COLLEGE OF ENGINEERING
DELHI UNIVERSITY

2009-2012

Certificate

Certified that the thesis work entitle “Evolutionary Logic Circuit

Synthesis Based On Mutual Information Based Fitness

Function” is bonafide work carried out by Mr. ArunRudra in

partial fulfillment of Master‟s Degree in Engineering in Electronics

and Communication to University of Delhi during the year 2009-

2012. The project report has been approved as it satisfies the

academic requirements in respect of thesis work prescribed for the

Masters of Engineering Degree.

Signature of Guide:- Signature of Guide:-

Dr(Ms) S Indu Dr (Ms) Neeta Pandey

Associate Professor Associate Professor

Dept of Electronics& Comm. Dept of Electronics & Comm.

Delhi College of Engineering Delhi College of Engineering

Acknowledgement

 It is a great pleasure to have the opportunity to extend my heartfelt gratitude

to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and in indebtness

to my learned supervisor Dr. S Indu, Associate Professor andDr. Neeta Pandey,

Associate Professor at DCEfor their invaluable guidance, encouragement and

patient reviews. Without their guidance and reviews it would have been very

difficult for me to complete my project successfully. I am very thankful to Prof.

Rajiv Kapoor, HOD, Dept. of Electronics & Communication at DCE, who

allowed me to do the project under the guidance of Dr.(Ms) S Indu and Dr (Ms)

Neeta Pandey.

A r u n R u d r a

M.E (Electronics & Communication)
College Roll No. 01/E&C/PT/2009
University Roll No. 13921
Dept. of Electronics & Communication
Delhi College of Engineering

ABSTRACT

Evolutionary Algorithms (EAs) cover all the applications involving the use of

Evolutionary Computationin electronic system design. It is largely applied to

complex optimizationproblems. EAs introduce a new idea for automatic design of

electronic systems; instead of imaginemodel, abstractions, and conventional

techniques, it uses search algorithm to design a circuit.

In this project we have used Genetic Algorithm (GA) as the Evolutionary

Algorithm and Entropybased measures, such as Mutual Informationand

Normalized MutualInformation are investigated as toolsfor similarity, measures

between the target and evolving circuit.

The target circuit evolved is combinational logic circuit, a Majority Function using

Genetic algorithm and Information Theory Measures.The circuit evolved uses only

2x1 multiplexers and the evolved circuit is compared to the circuit identified using

the ROBDD (Reduced Ordered Binary Decision Diagram)

Table of Contents
I. Introduction ... 2

II. Related Works ... 6

III. Genetic Algorithm ... 12

1. Introduction ... 12

1.1. Background ... 13

1.2. Natural Selection. .. 14

1.3. Simulated Evolution .. 14

1.4. Genetic algorithm vocabulary ... 16

2. Fitness Function .. 16

3. GA operators ... 18

3.1. Selection .. 19

3.2. Crossover .. 20

3.3. Mutation .. 22

4. Schema Theorem .. 25

IV. Information Theory .. 26

1. Information ... 26

2. Entropy .. 26

3. Conditional Entropy .. 27

4. Joint Entropy ... 28

5. Mutual Information ... 28

6. Entropy and Circuits ... 29

V. Binary Decision Diagrams (BDD) .. 31

1. Introduction ... 31

2. Implementation ... 32

VI. MATLAB EDA Simulator Link .. 34

1. Writing Test Bench in MATLAB for HDL Combinational Logic ... 34

2. HDL Cosimulation Using MATLAB Component Function ... 35

VII. Circuit Evolution ... 36

1. 3,2 Majority Logic Circuit .. 36

2. Universal Logic Module for 3 Variables .. 37

3. Fitness Function .. 42

4. GA Parameters .. 43

VIII. Results and Conclusion ... 44

1. Verification of the Evolved 3,2 Majority Function ... 44

2. Evolved and Optimized Module ... 45

3. Binary Decision Diagrams (BDD) and Reduced Ordered Binary Decision Diagrams (ROBDD) . 48

4. GA Convergence ... 50

5. Conclusion .. 52

6. Future Work .. 52

Appendix – 1 .. 53

Verilog Module for Universal Logic Module for 3 Variables ... 53

Appendix – 2 .. 57

Testbench File for Veirlog Module in MATLAB ... 57

Appendix -- 3 ... 60

Evaluation Function File .. 60

References .. 62

Page 2

I. Introduction

Evolving Algorithms are capable of evolving 100% functional arithmetic circuits.

Evolutionary Algorithms include Genetic Algorithms (GA), Genetic Programming

(GP), Evolutionary Strategies etc.In our study we will be concentrating on Genetic

Algorithm. The largest of these circuits arethe most complex digital circuits to

have been designed by purely evolutionary means. The algorithm isable to re-

discover conventionally optimum designs for the combinational circuits like

full adder and parity generators, but moresignificantly is able to improve on the

conventional designs. By analyzing thehistory of an evolving design up to

complete functionality it is possible to gain insight into evolutionaryprocess.

The design of electronic circuits is generally a complex task requiring knowledge

of large collectionsof domain-specific rules. In particular the process of

implementing a digital electronic circuit inhardware has typically involved

transforming the original logical specification into a form suitable for, thetarget

technology (i.e. choosing the gate types), minimising the representation,

optimising therepresentation with respect to user defined constraints (i.e. timing

characteristics, fan-in/outs, etc.) andfinally carrying out technology mapping

onto the target device. This latter step typically involvesplacing and routing of

the component gates which comprise the complete design. It should

Page 3

beemphasised that during all these stages great care has to be taken to maintain the

logical functionality ofthe original circuit specification.This new approach is

perhaps best expressed as a black-box view of the problem. In this view

oneregards the problem of implementing the circuit as being equivalent to

designing a black-box withinputs and outputs with the property that on

presentation of the original input signals the desired outputsare delivered. The key

new feature of this technique is that the details inside the box are encoded into

chromosomes and subjected to the usual processes of evolutionary

algorithms. In this technique thefitness of a particular chromosome is

measured purely as the degree to which the black-box outputsbehave in the

desired way.

Up until now, most electronic systems of any complexity were created by a

designer who had beentrained in a particular way to understand the operation of

individual electronic components, and whowould, therefore, be able to use

these rules of behavior to construct larger systems from the basicparts. This

was true whether the system to be created was purely analogue (responding to real-

worldsignals), purely digital (responding to binary streams), or some combination

of the two.

This method of working is somewhat constrained both by the training and

experience of the designerand by the domain-specific knowledge which he may or

Page 4

may not possess. For example, some designerswill be more expert in the analogue

domain, some more expert in the digital domain. Instead, those whoadvocate the

use of evolution to assist in the design process are not so concerned with

this type ofexpertise, but merely seek to set up the appropriate conditions

which will allow solution to evolvenaturally. Figure demonstrates the difference

between the two approaches.

Working Circuit Specification
Domain Specific

Knowledge & Human
Enterprise

Circuit Evaluation
Specification

Automated
Evolution

Page 5

The reason for the recent increase of research activity in the evolvable hardware

field is probably due in availability of programmable electronic components.

Unlike traditionalcomponents, these devices have no fixed operation or

functionality when first obtained. Instead it is theresponsibility of the user/designer

to decide - via the appropriate programming - what that functionalityshould be

either during or after implementation within a given system. In many instances,

these devices,once programmed, are even then not dedicated to that particular

operational characteristic, but mayafterwards be re-programmed to adopt yet

another different functionality.

 We intend to evolve a 3,2 majority function combinational circuit using

Genetic Algorithm as the Evolutionary Algorithm. The circuit is evolved using a

programmable module written in Verilog HDL called the Universal Module for 3

variables, it can implement any combinational circuit of 3 variables depending

upon the fact that how it is programmed. The fitness function used in the evolution

is based upon the Information Theory indices of Normalised Mutual Information.

The Evolution process is carried out in real time using MATLAB EDA simulator

link and Modelsim.

Page 6

II. Related Works

I. Mutual Information-based Fitness Functions forEvolutionary Circuit

Synthesis[7]

Entropy-based measures, such as Mutual Information and Normalized Mutual

Information are investigated as tools for similarity, measures between the target

and evolving circuit. Three fitness functions are built over a primitive one. It is

shown that the search landscape of Normalized Mutual Informationlooks more

amenable for evolutionary computation algorithmsthan simple Mutual

Information. The evolutionary synthesized circuits are compared to the known

optimum size. A discussion of the potential of the InformationTheoretical approach

is given in this paper.

II. Evolutionary Synthesis of Logic Functions using Multiplexers[8]

This paper presents a genetic programming based approach to the synthesis of

logic functions by means of multiplexers. This method uses 1-control line

multiplexer as the only design unit for the synthesis of any logic function. Logic

design with multiplexers is similar to logic design with binary decision diagrams

which can be transformed into ordered binary decision diagrams. It is argued that

Page 7

since the metric of the designs is minimum number of components, ordered

diagrams are not suitable approach for this particular goal.

III. Gate level synthesis of Boolean Functions using Binary Multiplexers

and Genetic Programming [9]

In this paper genetic programming approach for synthesis of logic functions by

means of multiplexers is presented. This approach uses 1-control line multiplexers

as the only deign unit. Any logic function defined by the truth table can be

produced through the replication of this single unit. It‟s fitness function works in

two stages, first it finds the feasible solution and then it concentrates on

minimization of the circuit. The proposed approach does not require any

knowledge of the application domain.

IV. Information Theory Method forFlexible Network Synthesis [10]

This paper introduces a novel approach to extend flexibility of combinational

multi-level networks synthesis based on InformationTheoretical Measure (ITM).

This problem is related to optimization for combinational multi-level networks,

artificial evolution and machine learning in circuitry design. Using ITMs, we

Page 8

verify not only that an evolved network achieves the target functionality, but also

that this network can. be corrected in a simple regular way to achieve it.

We demonstrate experimental results by evolutionary strategy on gate-level

network design: effectiveness in evolved valid networks increases dozens of times.

V. Evolutionary Algorithms and Their Use in the Design of

Sequential Logic Circuits[11]

In this paper an approach based on an evolutionary algorithm to design

synchronoussequential logic circuits with minimum number of logic gates is

suggested. The proposed method consists offour main stages. The first stage is

concerned with the use of genetic algorithms (GA) for the state assignmentproblem

to compute optimal binary codes for each symbolic state and construct the state

transitiontable of finite state machine (FSM). The second stage defines the

subcircuits required to achieve the desiredfunctionality. The third stage evaluates

the subcircuits using extrinsic Evolvable Hardware (EHW).During the fourth stage,

the final circuit is assembled. The obtained results compare favorably againstthose

produced by manual methods and other methods based on heuristic techniques.

Page 9

VI. Application of Design Style in EvolutionaryMulti-Level Networks

Synthesis[12]

This paper considers evolutionary design oflogical networks from the Computer

Aided Design(CAD) point of view. It states that scanning of a spaceof all possible

network solutions by a scanning windowis the crucial point of an evolutionary

paradigm.This is the base for implementation of CAD methodsin order to improve

the recently obtained results onevolutionary approach for a network synthesis.

Firstly, it introduces the concept of a target design stylein evolutionary network

synthesis and show that itis closely related to the CAD problem of multi-

levelnetworks design over a fixed library of cells. Secondly,because the network

search space is partition able,we use the technique of decomposition of

switchingfunctions. Therefore, independent parallel processingof subspaces via

genetic algorithms (GAs) is possible.Moreover, since GA is inherently parallel,

itachievemassive parallel processing. The experimental datademonstrate the

efficiency of the proposed approach andlarge improvements over recently obtained

results.

Page 10

VII. Binary Decision Diagrams [13]

This paper describes a method for defining, analyzing,testing, and implementing

large digital functions by means of abinary decision diagram. This diagram

provides a complete, concise,"implementation-free" description of the digital

functions involved.Techniques are then outlined for using the diagrams to analyze

thefunctions involved, for test generation, and for obtaining

variousimplementations. It is shown that the diagrams are especially suitedfor

processing by a computer. Finally, methods are described forintroducing inversion

and for directly "interconnecting" diagrams todefine still larger functions.

VIII. Graph-Based Algorithms for Boolean FunctionManipulation[14]

In this paper a new data structure forrepresenting Boolean functions and an

associated set of manipulation algorithms. Functions are represented by directed,

acyclicgraphs in a manner similar to the representation, but with further restrictions

on theordering of decision variables in the graph. Although a function

requires, in the worst case, a graph of size exponential in thenumber of arguments,

many of the functions encountered intypical applications have a more reasonable

Page 11

representation. Thesealgorithms have time complexity proportional to the sizes of

thegraphs being operated on, and hence are quite efficient as long asthe graphs do

not grow too large. The experimental resultsfrom applying these algorithms to

problems in logic designverification that demonstrates the practicality of this

approach.

Page 12

III. Genetic Algorithm

1. Introduction

Genetic Algorithms are a family of computational models inspired by evolution.

These algorithms encodea potential solution to a specific problem on a simple

chromosome-like data structure and applyrecombination operators to these

structures as to preserve critical information. Genetic algorithmsare often viewed

as function optimizer, although the range of problems to which genetic algorithms

havebeen applied are quite broad.An implementation of genetic algorithm begins

with a population of (typically random) chromosomes.

One then evaluates these structures and allocated reproductive opportunities in

such a way that thesechromosomes which represent a better solution to the target

problem are given more chances to `reproduce'than those chromosomes which are

poorer solutions. The 'goodness' of a solution is typically defined withrespect to the

current population.

Page 13

1.1. Background

Many human inventions were inspired by nature. Artificial neural networks is one

example,anotherexample is Genetic Algorithms (GA). GAs search by simulating

evolution, starting from an initial set ofsolutions or hypotheses, and generating

successive "generations" of solutions. This particular branch ofAI was inspired by

the way living things evolved into more successful organisms in nature. The main

idea is survival of the test, a.k.a. natural selection.A chromosome is a long,

complicated thread of DNA (deoxyribonucleic acid). Hereditary factors that

determine particular traits of an individual are strung along the length of these

chromosomes, like beadson a necklace. Each trait is coded by some combination of

DNA (there are four bases, A (Adenine), C(Cytosine), T (Thymine) and G

(Guanine). Like an alphabet in a language, meaningful combinations ofthe bases

produce special instructions to the cell.Changes occur during reproduction. The

chromosomes from the parents exchange randomly by aprocess called crossover.

Therefore, the offspring exhibit some traits of the father and some traits of

themother. A rarer process called mutation also changes some traits. Sometimes an

error may occur duringcopying of chromosomes (mitosis). The parent cell may

have -A-C-G-C-T- but an accident may occurand changes the new cell to -A-C-T-

C-T-. Much like a typist copying a book, sometimes a few mistakesare made.

Usually this results in a nonsensical word and the cell does not survive. But over

Page 14

millions ofyears, sometimes the accidental mistake produces a more beautiful

phrase for the book, thus producinga better species.

1.2. Natural Selection.

In nature, the individual that has better survival traits will survive for a longer

period of time. This inturn provides it a better chance to produce offspring with its

genetic material. Therefore, after a longperiod of time, the entire population will

consist of lots of genes from the superior individuals and lessfrom the inferior

individuals. In a sense, the fittest survived and the unfit died out. This force of

natureis called natural selection.The existence of competition among individuals of

a species was recognized certainly before Darwin.The mistake made by the older

theorists (like Lamarck) was that the environment had an effect on anindividual.

That is, the environment will force an individual to adapt to it. The molecular

explanationof evolution proves that this is biologically impossible. The species

does not adapt to the environment,rather, only the fittest survive.

1.3. Simulated Evolution

To simulate the process of natural selection in a computer, we need to define the

following: A representationof an individual,at each point during the search process

we maintain a "generation" of "individuals". Each individual is a data structure

representing the "genetic structure" of a possible solution or hypothesis.

Page 15

Like a chromosome, the genetic structure of an individual is described using a

fixed, finite alphabet.In GAs, the alphabet 0, 1 is usually used. This string is

interpreted as a solution to the problem we aretrying to solve.For example, say we

want to find the optimal quantity of the three major ingredients in a recipe (say,

sugar, wine, and sesame oil). We can use the alphabet 1, 2, 3 ..., 9 denoting the

number of ounces ofeach ingredient. Some possible solutions are 1-1-1, 2-1-4, and

3-3-1.As another example, the traveling salesperson problem is the problem of

finding the optimal path totraverse, say, 10 cities. The salesperson may start in any

city. A solution is a permutation of the 10cities: 1-4-2-3-6-7-9-8-5-10.

As another example, say we want to represent a rule-based system. Given a rule

such as "If color=redand size=small and shape=round then object=apple" we can

describe it as a bit string by first assumingeach of the attributes can take on a fixed

set of possible values. Say color=red, green, blue, size=small,big, shape=square,

round, and fruit=orange, apple, banana, pear. Then we could represent the value

for each attribute as a sub-string of length equal to the number of possible values of

that attribute. Forexample, color=red could be represented by 100, color=green by

010, and color=blue by 001. Note alsothat we can represent color=red or blue by

101, and any color (i.e., a "don't care") by 111. Doing thisfor each attribute, the

above rule might then look like: 100 10 01 0100. A set of rules is then represented

Page 16

by concatenating together each rule's 11-bit string. For another example see page

620 in the textbookfor a bit-string representation of a logical conjunction.

1.4. Genetic algorithm vocabulary

Explanation of Genetic Algorithm terms:

Genetic Algorithms Explanation

Chromosome(string, individual) Solution (coding)

Genes (bits) Part of solution

Locus Position of gene

Alleles Values of gene

Phenotype Decoded solution

Genotype Encoded solution

2. Fitness Function

As mentioned earlier, GAs mimic the survival-of-the-fittest principle of nature to

make a search process.Therefore, GAs are naturally suitable for solving

Page 17

maximization problems. Maximization problems areusually transformed into

maximization problem by suitable transformation. In general, a fitness function

F(i) is first derived from the objective function and used in successive genetic

operations. Fitness inbiological sense is a quality value which is a measure of the

reproductive efficiency of chromosomes. Ingenetic algorithm, fitness is used to

allocate reproductive traits to the individuals in the population andthus act as some

measure of goodness to be maximized. This means that individuals with higher

fitnessvalue will have higher probability of being selected as candidates for further

examination. Certain geneticoperators require that the fitness function be non-

negative, although certain operators need not have thisrequirement. For

maximization problems, the fitness function can be considered to be the same as

theobjective function or F(i) = O(i). For minimization problems, to generate non-

negative values in all thecases and to reach the relative fitness of individual string,

it is necessary to map the underlying naturalobjective function to fitness function

form. A number of such transformations is possible. Two commonlyadopted

fitness mappings is presented below.

F(x) =1/{1 + f(x)} .

This transformation does not alter the location of the minimum, but converts a

minimization problemto an equivalent maximization problem. An alternate

function to transform the objective function to getthe fitness value F(i) as below.

Page 18

ℱ 𝑖 = 𝑉 −
𝑂 𝑖 𝑃

 𝑂(𝑖)𝑃
𝑖=1

where, O(i) is the objective function value ofith individual, P is the population size

and V is a largevalue to ensure non-negative fitness values. The value of V adopted

in this work is the maximum value ofthe second term of equation 5 so that the

fitness value corresponding to maximum value of the objectivefunction is zero.

This transformation also does not alter the location of the solution, but converts a

minimization problem to an equivalent maximization problem. The fitness function

value of a string isknown as the string fitness.

3. GA operators

The operation of GAs begins with a population of a random strings representing

design or decision variables.The population is then operated by three main

operators; reproduction, crossover and mutationto create a new population of

points. GAs can be viewed as trying to maximize the fitness function, byevaluating

several solution vectors. The purpose of these operators is to create new solution

vectors byselection, combination or alteration of the current solution vectors that

have shown to be good temporarysolutions. The new population is further

evaluated and tested till termination. If the termination5criterion is not met, the

population is iteratively operated by the above three operators and evaluated.This

Page 19

procedure is continued until the termination criterion is met. One cycle of these

operations andthe subsequent evaluation procedure is known as a generation in

GAs terminology. The operators aredescribed in the following steps.

3.1. Selection

Reproduction (or selection) is an operator that makes more copies of better strings

in a new population.Reproduction is usually the first operator applied on a

population. Reproduction selects good stringsin a population and forms a mating

pool. This is one of the reason for the reproduction operation tobe sometimes

known as the selection operator. Thus, in reproduction operation the process of

naturalselection cause those individuals that encode successful structures to

produce copies more frequently. Tosustain the generation of a new population, the

reproduction of the individuals in the current population isnecessary. For better

individuals, these should be from the fittest individuals of the previous population.

There exist a number of reproduction operators in GA literature, but the essential

idea in all of themis that the above average strings are picked from the current

population and their multiple copies areinserted in the mating pool in a

probabilistic manner.

Roulette-Wheel Selection: The commonly-used reproduction operator is the

proportionate reproductionoperator where a string is selected for the mating pool

Page 20

with a probability proportional to its fitness. Thus, the ith string in the population is

selected with a probability proportional to Fi. Sincethe population size is usually

kept fixed in a simple GA, the sum of the probability of each string being

selected for the mating pools must be one. Therefore, the probability for selecting

the ith string is

pi=
𝓕𝒊

𝚺𝓕𝒊

where n is the population size. One way to implement this selection scheme is to

imagine a roulette-wheelwithit's circumference marked for each string

proportionate to the string's fitness.

3.2. Crossover

A crossover operator is used to recombine two strings to get a better string. In

crossover operation,recombination process creates different individuals in the

successive generations by combining materialfrom two individuals of the previous

generation. In reproduction, good strings in a population areprobabilistically signed

a larger number of copies and a mating pool is formed. It is important to notethat

no new strings are formed in the reproduction phase. In the crossover operator,

new strings arecreated by exchanging information among strings of the mating

Page 21

pool.The two strings participating in the crossover operation are known as parent

strings and the resultingstrings are known as children strings. It is intuitive from

this construction that good sub-strings fromparent strings can be combined to form

a better child string, if an appropriate site is chosen. With arandom site, the

children strings produced may or may not have a combination of good sub-strings

fromparent strings, depending on whether or not the crossing site falls in the

appropriate place. But thisis not a matter of serious concern, because if good

strings are created by crossover, there will be morecopies of them in the next

mating pool generated by crossover. It is clear from this discussion that theeffect of

cross over may be detrimental or beneficial. Thus, in order to preserve some of the

good stringsthat are already present in the mating pool, all strings in the mating

pool are not used in crossover.When a crossover probability, defined here as pc is

used, only 100pc per cent strings in the populationare used in the crossover

operation and 100(1-pc) percent of the population remains as they are in thecurrent

population. A crossover operator is mainly responsible for the search of new

strings even thoughmutation operator is also used for this purpose sparingly.

Many crossover operators exist in the GA literature.One site crossover and two site

crossover are themost common ones adopted. In most crossover operators, two

strings are picked from the mating pool atrandom and some portion of the strings

are exchanged between the strings. Crossover operation is doneat string level by

Page 22

randomly selecting two strings for crossover operations. A one site crossover

operator isperformed by randomly choosing a crossing site along the string and by

exchanging all bits on the rightside of the crossing site.In one site crossover, a

crossover site is selected randomly. The portion rightof the selected site of these

two strings are exchanged to form a new pair of strings. The new strings arethus a

combination of the old strings. Two site crossover is a variation of the one site

crossover, exceptthat two crossover sites are chosen and the bits between the sites

are exchanged .One site crossover is more suitable when string length is small

while two site crossover is suitable forlarge strings. Hence the present work adopts

a two site crossover. The underlying objective of crossover is to exchange

information between strings to get a string that is possibly better than the parents.

3.3. Mutation

Mutation adds new information in a random way to the genetic search process and

ultimately helpsto avoid getting trapped at local optima. It is an operator that

introduces diversity in the populationwhenever the population tends to become

homogeneous due to repeated use of reproduction and crossover

operators. Mutation may cause the chromosomes of individuals to be different

from those of their parentindividuals.Mutation in a way is the process of randomly

disturbing genetic information. They operate at thebit level; when the bits are being

Page 23

copied from the current string to the new string, there is probabilitythat each bit

may become mutated. This probability is usually a quite small value, called as

mutationprobability pm. A coin toss mechanism is employed; if random number

between zero and one is less thanthe mutation probability, then the bit is inverted,

so that zero becomes one and one becomes zero. Thishelps in introducing a bit of

diversity to the population by scattering the occasional points. This

randomscattering would result in a better optima, or even modify a part of genetic

code that will be beneficialin later operations. On the other hand, it might produce

a weak individual that will never be selectedfor further operations.The need for

mutation is to create a point in the neighborhood of the current point, thereby

achievinga local search around the current solution. The mutation is also used to

maintain diversity in thepopulation. For example, the following population having

four eight bit strings may be considered:

01101011

00111101

00010110

01111100.

It can be noticed that all four strings have a 0 in the left most bit position. If the

true optimumsolution requires 1 in that position, then neither reproduction nor

crossover operator described abovewill be able to create 1 in that position. The

inclusion of mutation introduces probability pm of turning0 into 1.These three

Page 24

operators are simple and straightforward. The reproduction operator selects good

stringsand the crossover operator recombines good sub-strings from good strings

together, hopefully, to createa better sub-string. The mutation operator alters a

string locally expecting a better string. Even thoughnone of these claims are

guaranteed and/or tested while creating a string, it is expected that if bad stringsare

created they will be eliminated by the reproduction operator in the next generation

and if good stringsare created, they will be increasingly emphasized. Further

insight into these operators, different waysof implementations and some

mathematical foundations of genetic algorithms can be obtained from

GAliterature.Application of these operators on the current population creates a new

population. This new populationis used to generate subsequent populations and so

on, yielding solutions that are closer to theoptimum solution. The values of the

objective function of the individuals of the new population areagain determined by

decoding the strings. These values express the fitness of the solutions of the new

generations. This completes one cycle of genetic algorithm called a generation. In

each generation if thesolution is improved, it is stored as the best solution. This is

repeated till convergence.

Page 25

4. Schema Theorem

m(H,t+1)≥m(H,t)*
𝒇(𝑯)

𝒇
[1- pc*

𝜹(𝑯)

𝒍−𝟏
 – O(H) * pm]

The equation above describes how many schema of type H can be observed in the

next generation i.e. t+1 given their numbers in this generation i.e. t is m(H,t).

According to this theorem highly fit short defining length schemata are propagated

from generation to generation.

m(H,t)= no. of strings of schema of type H in a population

f(H)= Average fitness of schema H

f= Average fitness of the population

δ(H) = Defining distance of schema (distance between the 1
st
 and last fixed

position)

O(H)= Order of schema (no. of fixed positions in schema)

pc = Crossover probability

pm= Mutation probability

Page 26

IV. Information Theory

1. Information

Let E be some event which occurs with probabilityP(E). If we are told that E has

occurred, then wesay that we have received.

I(E) = - log2 P(E)bits of information.

Base 2 of log signifies that we are dealing in bits of information. We‟ll stick with

bits, and always assume base 2. Wecan also think of information as amount of

“surprise” in E(e.g. P(E) = 1, P(E) = 0)

• Example: result of a fair coin flip (log2 2 = 1 bit)

• Example: result of a fair die roll (log2 6 = 2.585 bits)

2. Entropy

A Zero-memory information source S is a source that emits symbols from an

alphabet {s1, s2, . . . , sk} with probabilities {p1, p2, . . . , pk},respectively, where

the symbols emitted are statistically independent. The average amount of

information in observing theoutput of the source S calledas Entropy and

mathematically is given by

Page 27

H(s) = ∑i pi*I(si)= ∑i pi * log2(
𝟏

𝒑𝒊
)

Other definitions of the entropy may be stated as follows

1. average amount of information provided per symbol

2. average amount of surprise when observing a symbol

3. uncertainty an observer has before seeing the symbol

4. average number of bits needed to communicate each symbol

(Shannon: there are codes that will communicate these symbols with efficiency

arbitrarily close to H(S) bits/symbol;there are no codes that will do it with

efficiency < H(S)bits/symbol)

3. Conditional Entropy

If T is alphabet of symbols of a transmitter and R is the alphabet of the receiver

then conditional entropy defined by H(T/R) defines the measure of average

uncertainty of the transmitted symbol t given the received symbols r.

Mathematically it is given by

H(T/R)= 𝒑 𝒕, 𝒓 𝒍𝒐𝒈(
𝒑 𝒓

𝒑 𝒕,𝒓
)𝒋𝒊

Page 28

4. Joint Entropy

The joint entropy measures how much entropy is contained in a joint system of two

random variables, in our case a receiver R and a transmitter T and represented by

H(T,R). Mathematically it is given by

H(T,R)= 𝒑 𝒕, 𝒓 𝐥𝐨𝐠(𝒕, 𝒓)𝒋𝒊

H(T,R)=H(R/T)+H(T)

H(T,R)=H(T/R)+H(R)

5. Mutual Information

It is the measure of information that one random variable has about the other

random variable. It resolves the uncertainty in one random variable after observing

the other. Mathematically it is given by

I(T,R)=H(T)-H(T/R)

I(T,R)=H(R)-H(R/T)

I(T,R)=H(T)+H(R)-H(T,R)

I(T,R)=H(R)-H(R/T)

Page 29

6. Entropy and Circuits

Entropy has to be carefully applied to the synthesis ofBoolean functions. Let us

assume any two Boolean functions, F1 and F2, and a third F3 which is the one‟s

complement of F2, then F3 ≠ F2. For these complementary functions, H(F2) =

H(F3) MI(F1,F2) = MI(F1,F3). Also Mutual Information shows a similar

behavior.The implications for Evolutionary Computation are important since

careless use of entropy-based measures can prevent the system from attaining

convergence. Assume the target Boolean function is T. Then, MI(T, F2) = MI(T,

F3), but only one of the circuits implementing F2 and F3 is close to the solution

since their Boolean functions are complementary. A fitness function based on

mutual information will reward both circuits with the same value, but one is

better than the other, Things could get worse as evolution progresses because the

mutual information increases when the circuits are closer to the solution, but in

fact, two complementary circuits are then given larger rewards. The scenario is

one in which the population is driven by two equally strong attractors, hence

Page 30

convergence is never reached.Mutual information is not an invariant measure

between random variables because it contains the marginal entropies. Normalized

Mutual Information is a better measure of theprediction that one variable can do

about the other. Normalized Mutual Information is given by

NMI =
𝑯 𝑹 +𝑯(𝑻)

𝑯(𝑻,𝑹)

Page 31

V. Binary Decision Diagrams (BDD)

1. Introduction

With the ever increasing complexity of digital functionsand systems, the researcher

who is charged withtheir analysis, testing, and implementation is faced with avery

real "description" dilemma. On the one hand, he has athis disposal a variety of

sophisticated design languageswhich can provide concise functional descriptions

of thedevice or system with which he is concerned. However, when

he attempts to use such descriptions in any sort of formalanalysis procedure, he

typically discovers that their veryconciseness virtually precludes any detailed

logical investigation.On the other hand, when he turns to those descriptionswhich

are amenable to extensive analysis, he finds thatthese take the form of truth tables,

Boolean equations,Karnaugh maps, etc.-all of which have the unpleasantproperty

of growing exponentially with the number ofvariables involved. What he would

like to have would be aconcise, "implementation-free" description which could

stillyield meaningful results about the logical structure andtesting requirements of

the function involved. This paperwill explore one possible approach to bridging

this "descriptiongap."The general idea will be to define a digital function interms

Page 32

of a "diagram" which tells the user how to determinethe output value of the

function by examining the values ofthe inputs. We shall begin by describing these

diagrams andshowing how they may be derived for various digital devices.

2. Implementation

This technique is based on the Shannon‟s expansion

f(A,B,C..)=!Af0(0,B,C,..) + Af1(1,B,C..)

Consider the switching function,

f= A+(!B.C)

and assume we are interested in defining a procedure fordetermining the binary

value offgiven the binary values ofA, B, and C. One way to do this would be to

begin by lookingat the value of A. If A = 1, thenf= 1 and we are finished. IfA = 0,

we look at B. If B = 1, thenf= 0 and again we arefinished. Otherwise, we look at C

and its value will be thevalue offFig. 1 shows a simple diagram ofthis procedure.

We enterat the node indicated by the arrow and then simply proceeddownward

through the diagram, noting at each node thevalue of its variable and then taking

the indicated branch.When a 0 or 1 value is reached, this gives the value offandthe

process ends. There is little difficulty in confirming that the diagram doesindeed

Page 33

describe a procedure for finding the value of theindicated function. We shall refer

to these diagrams as binarydecision diagrams.

Figure 1

There can be redundant nodes in the BDD which can be pruned by followingrules

which are described below with the help of diagrams.

Rule 1 Rule 2

C

A

B

0

0

0

1

1

1

1

0

1

0

A

B B

X Y X
Y

A

B

X
Y

A

A

X
Y

X

A

X
Y

Page 34

VI. MATLAB EDA Simulator Link

1. Writing Test Bench in MATLAB for HDL Combinational Logic

TheEDA Simulator

LinksoftwareprovidesameansforverifyingHDLmoduleswithintheMATLABe

nvironment. YoudosobycodinganHDLmodeland

aMATLABfunctionthatcansharedatawiththeHDLmodel.

MATLABtestbenchfunctionsletyou verify theperformanceoftheHDL

model,orofcomponentswithinthemodel. Atestbenchfunctiondrives

valuesontosignalsconnectedtoinputportsofanHDLdesignundertestand

receivessignalvaluesfromtheoutputportsofthemodule.Thefollowingfiguresho

wshowaMATLABfunctionwrapsaroundand

communicateswiththeHDLsimulatorduringa testbenchsimulation session.

Page 35

2. HDL Cosimulation Using MATLAB Component Function

TheEDA Simulator

LinksoftwareprovidesameansforvisualizingHDLcomponents withinthe

MATLABenvironment.You

dosobycodinganHDLmodelandaMATLABfunctionthatcansharedatawiththeH

DLmodel. MATLABcomponent functionssimulatethebehavior

ofcomponentsinthe HDLmodel.Astubmodule(providingportdefinitions

only)intheHDLmodel

passesitsinputsignalstotheMATLABcomponentfunction. TheMATLAB

componentprocessesthisdataandreturnstheresultstotheoutputsofthe

stubmodule. AMATLABcomponenttypicallyprovidessomefunctionality

(suchasafilter)thatisnotyetimplementedintheHDLcode.

Thefollowingfigureshow showanHDLsimulatorwrapsaroundaMATLAB

component functionandhowMATLABcommunicates withtheHDL

Page 36

simulatorduringacomponentsimulationsession.

VII. Circuit Evolution

1. 3,2 Majority Logic Circuit

A 3,2 majority circuit is a combinational circuit that has one output (P) which is

equal to 1 if the number of 1s on the input are greater than the number of 0s and

the output (P) equals 0 if the number of 1s on the input are less than the number of

0s . The switching function, the logic diagram and the truth table are given below.

P=AB+BC+AC

A B C

P

Page 37

Table 1

shows the truth table of the 3,2 Majority function

Table -1

2. Universal Logic Module for 3 Variables

Inputs Outputs

A B C P

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Page 38

The Universal Logic module for 3 variables is capable of implementing any

combinational logic function out of a possible combination of 2
8
=256 for 3 input

variables. It has 3 inputsa, b &cand one output f, in addition there is cntlinput 29

bits wide which is used to programme the module.

The module consists of 7, 2x1 multiplexers, the control inputs to each multiplexers

can be programmed through cntl input of the module. Any switching function of n

variables can be programmed using 2
n
-1 2x1 multiplexers. The module is written

in Verilog HDL and the code for the module is available in Annexure-. The

module has been designed deliberately using only 2x1 multiplexers as in the VLSI

system design where the emphasis is to reduce the whole manufacturing cost rather

than reduce the number of components used. It is common therefore to replicate

the same unit as many times as possible, although it may lead to larger number of

gates. Our interest in VLSI system design leads us to restate the circuit design

problem in such a way that the issues mentioned previously are taken into account.

Figure 1 shows the block diagram of the module and figure 2 shows the internal

structure of the module.

Universal Logic

Module for 3

Variables

Control Inputs (cntl)

a

b f

Page 39

Figure -1

In figure 2, the internal structure of the module, all the control inputs of the muxes

are programmable, they can have either of the values 0,1,a,~a,b,~b,c,~c depending

upon the control input “cntl”. The inputs to the muxes 1,2,3 and 4 can have value

either 0 or 1 again depending upon the control input “cntl”. The control muxes are

not shown in the figure 2. Table 2 shows the relation of input values to muxes 1,2,3

and 4 vis a vis the control input. The input values can either be a „0‟ or a „1‟

depending upon the implementation of the function. Table 3 shows the relation

between the control input of every 2x1 mux and the vis a vis control input.

Control Input Output

0 0

1 1

Table 1

Page 40

Control Input X

000 0

001 1

010 a

011 !a

100 b

101 !b

110 c

111 !c

Table 2

Page 41

Figure-2

2x1

MUX
2

2x1

MUX
3

2x1

MUX
4

2x1

MUX
1

2x1

MUX
5

2x1

MUX
6

2x1

MUX
7

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

X

X

X

X

X

X

X

f

Page 42

3. Fitness Function

Information Theory measures were used for the calculation of the fitness function.

Conditional Entropy can be used as one of the measures for the calculation of the

fitness functions, but as stated earlier It has a big drawback that it rewards both the

function and complement of the function equally, we may end up with a circuit that

does not meet our requirement. Instead we can Normalised Mutual Information

(NMI) and function that uses Conditional Entropy that does not reward the

complement of the function as can be seen in equation (3).

fitness= (Length(T) - Hamming(T,C)) x NMI(T,C) (1)

fitness1=
𝒇𝒊𝒕𝒏𝒆𝒔𝒔

𝑵𝑴𝑰(𝑨𝒊,𝑪)𝒊 (2)

fitness2=(Length(T) - Hamming(T,C))x(10-H(T/C) (3)

Where T is the actual output and C is the simulated output. Ai are the attributes

(variables) of the target function. To evolve the required combinational circuit both

(2) and (3) have to be maximized. As the tool used by us for GA optimization is

able to achieve global minimum we have to convert both equation (2) and (3) to

using a transformation. Thus we have a function given by (4) used as a fitness

function.

f=
𝟏

𝟏+𝒇𝒊𝒕𝒏𝒆𝒔𝒔𝟏
(4)

Page 43

4. GA Parameters

Table 3 shows the parameters used in GA for evolution of the 3,2 majority function

circuit. The tool used for optimization was Global Optimization Toolbox of

MATLAB.

Parameters Value

Population Size 150

No. of Generations 25

Crossover Rate 0.8

Crossover Type Two Point

Mutation Rate 0.2

Mutation Type Uniform

Scaling Rank

Elitism 2

Selection Stochastic Uniform

Table 3

Page 44

VIII. Results and Conclusion

1. Verification of the Evolved 3,2 Majority Function

The 3,2 majority function circuit was evolved using programmable universal

module for 3 variables having a programming input of 29 bits labeled as “cntl”.

These 29 bits were used by the GA to evolve the 3,2 majority function. The

module itself constituted a mux tree of 7, 2x1 multiplexers, with control inputs of

either 0,1,a, !a, b, !b c, !c depending upon the control input “cntl”. The inputs to

level 3 mux can take values of either a „0‟ or a „1‟ again depending upon the

control input “cntl”.

The GA string which is nothing but the control input “cntl” is coded in the

following manner. The chromosome consists of a string of 29 bits which form the

control input “cntl” to the universal logic module for 3 variables. Bits from 0 to 7

decide what inputs to be fed to inputs of level 3 multiplexers, the inputs to the

muxes can have a value of either a „0‟ or a „1‟ only. Bits from 8 to 19 decide what

variable is to be fed as control inputs to muxes at level 3,similarly the bits from 20

to 25 decide the control input for level 2 muxes and bits 26 to 28 decide control

input for level 1 mux. The relation, for what input combination what control signal

is chosen has already been described table 2 of the previous chapter.

Page 45

The GA was able to identify a number of input combinations for which the output

met the desired criteria. The one describe here uses minimum number of muxes

which can be considered as the optimum solution to the problem of evolving 3,2

majority function. The figure 1 below of the simulated clearly shows that the

objectives have been met and circuit has been evolved.

Figure 1

2. Evolved and Optimized Module

The evolved module with inputs to stage 3 and control stages to all the 3 stages is

shown in figure 2. The optimized module with thewith minimum number of

multiplexers is shown in figure 3.

Page 46

Figure 2

2x1

MUX
2

2x1

MUX
3

2x1

MUX
4

2x1

MUX
1

2x1

MUX
5

2x1

MUX
6

2x1

MUX
7

A

A

A

A

B

B

C

f

0

0

0

1

0

1

1

1

Page 47

 Figure 3

0

2x1

MUX
2

2x1

MUX
5

2x1

MUX
6

2x1

MUX
7

1

0

1

A

B

B

C

Page 48

It is clearly visible from the figure 3 that the requirement for the number of

multiplexers has come down from 7 to 4. It will be shown in the next section

using ROBDD that this is the canonical form of the circuit and hence optimized.

3. Binary Decision Diagrams (BDD) and Reduced Ordered Binary

Decision Diagrams (ROBDD)

In order to verify our conclusion we took the help of BDD and ROBDD. The BDD

and ROBDD for the 3,2 Majority functions are presented in figure 4 and 5

respectively.

Figure 4

A

C

B

B

A

A

A

0

0 0 1

0 1
1

1

Page 49

The dashed lines show „0‟ as the input and solid lines show „1‟ as the input. The

BDD is in agreement with the evolved circuit of figure 2. The ROBDD is shown in

the next figure with the order being C<B<A.

Figure 5

From figure 5 it can be clearly seen that the reduced and optimized circuit of the

figure 3 is in agreement to that of ROBDD.

C

B B

A 0

0 1

1

Page 50

4. GA Convergence

Figure 6 shows the convergence of the GA with generations and the mean and the

average value of the fitness function for a given generation. It can be seen that the

value of the fitness function converges to 0.0185 after generation 9 till 25.

Figure 6

Figure 7 shows the best, worst and the mean values of the fitness function over the

entire range of the 25 generations. Again form this graph it is very clear that after

generation 10 the GA has converged to one single value of the fitness function

Page 51

which is the global minimum for the fitness function having a value of 0.0185 and

leads to the evolution of the combinational circuit.

Figure 7

Page 52

5. Conclusion

In this project we have been able to evolve a digital combination circuit using GA

algorithm as a search tool for optimum solution in a very large search space. We

have shown that it is possible to incorporate information theory indices like

Normalized Mutual Information for the creation of fitness function. The solution

so found was compared to the optimum solution which was determined by

ROBDD and has least number of elements i.e. 2x1 muxes.

6. Future Work

We plan to take this work further and carry out the evolution to other more

complex arithmetic combinational circuits such as multipliers. We also plan to

carryout work on sequential circuits such as sequence detector.

Page 53

Appendix – 1

Verilog Module for Universal Logic Module for 3 Variables

File Name :-majority_mux.v

modulemajority_mux(cntl,a,b,c,out);

input [28:0] cntl;

input a;

input b;

input c;

output out;

reg out;

reg [20:0] w;

always @(a,b,c) begin

if (cntl[10:8]== 3'b000)

w[8]=1'b0;

else if (cntl[10:8]== 3'b001)

w[8]=1'b1;

else if (cntl[10:8]== 3'b010)

w[8]=a;

else if (cntl[10:8]==3'b011)

w[8]=~a;

else if (cntl[10:8]== 3'b100)

w[8]=b;

else if (cntl[10:8]== 3'b101)

w[8]=~b;

else if (cntl[10:8]==3'b110)

w[8]=c;

else if (cntl[10:8]== 3'b111)

w[8]=~c;

if (cntl[13:11]== 3'b000)

w[8]=1'b0;

else if (cntl[13:11]== 3'b001)

w[9]=1'b1;

else if (cntl[13:11]== 3'b010)

w[9]=a;

else if (cntl[13:11]== 3'b011)

w[9]=~a;

else if (cntl[13:11]== 3'b100)

w[9]=b;

else if (cntl[13:11]== 3'b101)

w[9]=~b;

else if (cntl[13:11]== 3'b110)

w[9]=c;

else if (cntl[13:11]== 3'b111)

w[9]=~c;

if (cntl[16:14]== 3'b000)

Page 54

w[10]=1'b0;

else if (cntl[16:14]== 3'b001)

w[10]=1'b1;

else if (cntl[16:14]== 3'b010)

w[10]=a;

else if (cntl[16:14]== 3'b011)

w[10]=~a;

else if (cntl[16:14]== 3'b100)

w[10]=b;

else if (cntl[16:14]== 3'b101)

w[10]=~b;

else if (cntl[16:14]== 3'b110)

w[10]=c;

else if (cntl[16:14]== 3'b111)

w[10]=~c;

if (cntl[19:17]== 3'b000)

w[11]=1'b0;

else if (cntl[19:17]== 3'b001)

w[11]=1'b1;

else if (cntl[19:17]== 3'b010)

w[11]=a;

else if (cntl[19:17]== 3'b011)

w[11]=~a;

else if (cntl[19:17]== 3'b100)

w[11]=b;

else if (cntl[19:17]== 3'b101)

w[11]=~b;

else if (cntl[19:17]== 3'b110)

w[11]=c;

else if (cntl[19:17]== 3'b111)

w[11]=~c;

if (cntl[22:20]== 3'b000)

w[16]=1'b0;

else if (cntl[22:20]== 3'b001)

w[16]=1;

else if (cntl[22:20]== 3'b010)

w[16]=a;

else if (cntl[22:20]== 3'b011)

w[16]=~a;

else if (cntl[22:20]== 3'b100)

w[16]=b;

else if (cntl[22:20]== 3'b101)

w[16]=~b;

else if (cntl[22:20]== 3'b110)

w[16]=c;

else if (cntl[22:20]== 3'b111)

w[16]=~c;

if (cntl[25:23]== 3'b000)

w[17]=1'b0;

else if (cntl[25:23]== 3'b001)

w[17]=1'b1;

else if (cntl[25:23]== 3'b010)

w[17]=a;

else if (cntl[25:23]== 3'b011)

Page 55

w[17]=~a;

else if (cntl[25:23]== 3'b100)

w[17]=b;

else if (cntl[25:23]== 3'b101)

w[17]=~b;

else if (cntl[25:23]== 3'b110)

w[17]=c;

else if (cntl[25:23]== 3'b111)

w[17]=~c;

if (cntl[28:26]== 3'b000)

w[20]=1'b0;

else if (cntl[28:26]== 3'b001)

w[20]=1'b1;

else if (cntl[28:26]== 3'b010)

w[20]=a;

else if (cntl[28:26]== 3'b011)

w[20]=~a;

else if (cntl[28:26]== 3'b100)

w[20]=b;

else if (cntl[28:26]== 3'b101)

w[20]=~b;

else if (cntl[28:26]== 3'b110)

w[20]=c;

else if (cntl[28:26]== 3'b111)

w[20]=~c;

if (cntl[0]==1'b0)

w[0]=1'b0;

else

w[0]=1'b1;

if (cntl[1]==1'b0)

w[1]=1'b0;

else

w[1]=1'b1;

if (cntl[2]==1'b0)

w[2]=1'b0;

else

w[2]=1'b1;

if (cntl[3]==1'b0)

w[3]=1'b0;

else

w[3]=1'b1;

if (cntl[4]==1'b0)

w[4]=1'b0;

else

w[4]=1'b1;

if (cntl[5]==1'b0)

w[5]=1'b0;

else

w[5]=1'b1;

Page 56

if (cntl[6]==1'b0)

w[6]=1'b0;

else

w[6]=1'b1;

if (cntl[7]==1'b0)

w[7]=1'b0;

else

w[7]=1'b1;

if (w[8]==0)

w[12]=w[0];

else

w[12]=w[1];

if (w[9]==0)

w[13]=w[2];

else

w[13]=w[3];

if (w[10]==0)

w[14]=w[4];

else

w[14]=w[5];

if (w[11]==0)

w[15]=w[6];

else

w[15]=w[7];

if (w[16]==0)

w[18]=w[12];

else

w[18]=w[13];

if (w[17]==0)

w[19]=w[14];

else

w[19]=w[15];

if (w[20]==0)

out=w[18];

else

out=w[19];

end

endmodule

Page 57

Appendix – 2

Testbench File for Veirlog Module in MATLAB

File Name :-majority_mux.m

functionmajority_mux(obj)

global s1;

global x1;

global y;

obj.tnext=obj.tnow+5e-9;

s1=s1+1;

if (strcmp(obj.simstatus,'Init'))

obj.portvalues.cntl=dec2mvl(x1,29);

obj.userdata.sum=int16.empty;

y=int16.empty;

end

if (strcmp(obj.simstatus,'Running'))

mvl2dec(obj.portvalues.out);

y(s1-1)=mvl2dec(obj.portvalues.out);

end

if s1==8

obj.portvalues.a= dec2mvl(1,1);

obj.portvalues.b=dec2mvl(1,1);

obj.portvalues.c=dec2mvl(1,1);

return

end

if s1==7

obj.portvalues.a= dec2mvl(1,1);

obj.portvalues.b=dec2mvl(1,1);

obj.portvalues.c=dec2mvl(0,1);

return

end

if s1==6

Page 58

obj.portvalues.a= dec2mvl(1,1);

obj.portvalues.b=dec2mvl(0,1);

obj.portvalues.c=dec2mvl(1,1);

return

end

if s1==5

obj.portvalues.a= dec2mvl(1,1);

obj.portvalues.b=dec2mvl(0,1);

obj.portvalues.c=dec2mvl(0,1);

return

end

if s1==4

obj.portvalues.a= dec2mvl(0,1);

obj.portvalues.b=dec2mvl(1,1);

obj.portvalues.c=dec2mvl(1,1);

return

end

if s1==3

obj.portvalues.a= dec2mvl(0,1);

obj.portvalues.b=dec2mvl(1,1);

obj.portvalues.c=dec2mvl(0,1);

return

end

if s1==2

obj.portvalues.a= dec2mvl(0,1);

obj.portvalues.b=dec2mvl(0,1);

obj.portvalues.c=dec2mvl(1,1);

return

end

if s1==1

obj.portvalues.a= dec2mvl(0,1);

Page 59

obj.portvalues.b=dec2mvl(0,1);

obj.portvalues.c=dec2mvl(0,1);

return

end

if s1==9

obj.tnext=[];

end

end

Page 60

Appendix -- 3

Evaluation Function File

File Name:-majority.m

function f=majority(x)

global y;

global r;

global z;

global s1;

global f;

global f1;

global x1;

s1=0;

globaltclcmd;

a=[0;0;0;0;1;1;1;1];

b=[0;0;1;1;0;0;1;1];

c=[0;1;0;1;0;1;0;1];

r=[0;0;0;1;0;1;1;1];

r=int16(r);

x1=x;

commInfo = hdldaemon;

tclcmd = { ...

'vsimmatlabmajority_mux -t 1ns -novopt ;', ...

['matlabtb /majority_mux -mfuncmajority_mux.m -use_instance_obj ;'], ...

'run 100;',...

'quit -f',...

};

% Launch HDL simulator for use with MATLAB

vsim('tclstart',tclcmd,'runmode','Batch');

pause(8);

y=int16(y);

y=y';

Page 61

f1=[(8-sum(abs(r-y)))*(entropy(r)+entropy(y))/(entropy(r)+entropy(y)-

mutualinformation(r,y))];

f2=f1*[(entropy(y)+entropy(a))/(entropy(y)+entropy(a)-

mutualinformation(a,y))+...

 (entropy(y)+entropy(b))/(entropy(y)+entropy(b)-

mutualinformation(b,y))+...

 (entropy(y)+entropy(c))/(entropy(y)+entropy(c)-mutualinformation(c,y))];

f=(1/(1+f2));

if (y==r)

done=dec2mvl(x1,29);

fprintf('correct value = %s\n',done);

fid = fopen('values.txt', 'a');

fprintf(fid, 'VectorXVectorYFunctionValue\n');

fprintf(fid, '%s %d %d %d %d %d %d %d %d %6.4f\n',done,y,f);

fclose(fid);

end

Page 62

References

[1] Digital Design by Mano, M. M

[2] www.mathworks.com

[3] EDA Simulator Link User Guide

[4] Advance Digital Design with Verilog HDL by Michael D. Cilett

[5] Verilog HDL Design and Modeling by Joseph Cavanagh

[6] Genetic Algorithm in Search, Optimization and Machine Learning by David Goldberg

[7] Mutual Information-based Fitness Functions for Evolutionary Circuit Synthesis by Arturo Hemindez Aguirre

and Carlos A. Coello CoelloM5]̂

[8] Evolutionary Synthesis of Logic Functions using Multiplexers by Arturo Hemindez Aguirre ,Bill P Buckles and

Carlos A. Coello CoelloM 5^]

[9] Gate level synthesis of Boolean Functions using Binary Multiplexers and Genetic Programming by Arturo

Hemindez Aguirre ,Bill P Buckles and Carlos A. Coello CoelloM5^]

[10] Information Theory Method for Flexible Network Synthesis by V. Cheushev, S. Yanushkevich, V. Shmerko, C.

Moraga and J. Kolodziejczyk

[11] Evolutionary Algorithms and Their Use in the Design of Sequential Logic Circuits by B.ALI and

A.E.A.ALMAINI

[12] Application of Design Style in EvolutionaryMulti-Level Networks Synthesis by TadeuszLuba, Claudio Moraga,

Svetlana Yanushkevich, VladShmerko, and Joanna Kolodziejczyk

[13] Binary Decision Diagrams by Sheldon B. Akers

[14] Graph-Based Algorithms for Boolean Function Manipulation by Randal E Bryant.

[15] Designing Electronic Circuits Using Evolutionary Algorithms.Arithmetic Circuits: A Case Study by J. F. Miller,

P.Thomson, T. Fogarty

[16] Algorithm For Logic-Circuit Synthesis By Using Multiplexers By DG Whitehead

[17] Evolution of Digital Circuits with Variable Layout by Tatiana Kalganov, J. F. MILLERand T. FOGARTY

[18] Universal Logic Modules and their Application by STEPHEN S. YAU and CALVIN K. TANG

