
Serendipitious Recommendation for
Mobile Applications using Item-similarity

Graph

Thesis submitted for the degree of
Masters of Technology (CTA)
Dept. of Computer Sciences

Delhi Technological University

2012

Upasna Bhandari

under supervision of

Dr. Anindya Datta (NUS) and Dr.Rajni Jindal (DTU)

I would like to dedicate this thesis to my loving parents, Mrs Geeta
Bhandari and Mr Anil Kumar Bhandari. You both are my strength.

Acknowledgements

I would like to extend my deep gratitude towards Prof. Rajni Jin-
dal(Supervisor, DTU) for her support and involvement in the suc-
cessful completion of this work.

My earliest memories of meeting Prof. Anindya Datta(Supervisor,
NUS) is of being pleasantly surprised by his modest yet inspiring
demeanour. He consistently provided me with valuable ideas and
suggestions during my research work and has been very consid-
erate all the time. The freedom he gave me in pursing new and
sometimes radical ideas taught me how to think and perceive cre-
atively. His continued support and deep involvement have been
invaluable during the preparation of this thesis.

I would also like to thank Prof. Kaushik Dutta for the in-depth
discussions which have been of great help in my research. Special
thanks to Dr. Kazunari Sugiyama for his valuable suggestions. His
patience and modesty is inspiring.

I would like to thank my friends Nargis Pervin, Pooja Roy, Sangar-
lingam Kajanan, Feiping Liu for their friendship and valuable feed-
back.

I would like to express my love and gratitude towards Mrs. Geeta
Bhandari and Mr. Anil Kumar Bhandari (Parents) who always encour-
aged me to chase my dreams and supported me in all possible ways
to make it this far in life. They fill me with hope and reassurance so
that I keep working harder. My brother Uphar for being the joy of
my life. Someone has become special during last few months and
his belief in me cannot go unaddressed, Thank you!. Finally, I am
thankful to my spiritual teachers, my grandmothers, Mrs.Santosh
Bhandari and Mrs.Raj Vadhera for being my true heroes.

Contents

1 Introduction 8
1.1 Recommender Systems: What They are and Why are They Needed 8

1.1.1 Data Source and Classification 12
1.1.2 Content-based Filtering for Recommendations 13
1.1.3 Collaborative Filtering for Recommendations 13

1.2 Research Motivation . 14
1.2.1 Limitations with Existing Approaches 14
1.2.2 What is Serendipity and its Scope in Content Based and

Collaborative Filtering Approaches 15
1.3 Research Objective . 17

1.3.1 Can Serendipitous Recommendations be Generated More
E↵ectively Using Graph Based Recommendations? . . . 17

1.4 Proposed approach . 18
1.4.1 Graph Based Recommendations to Address Over-Specialization

in Content Based Filtering 18
1.5 Organization of Thesis . 19
1.6 Summary . 20

2 Basic Issues with Recommender Systems 21
2.1 Content-based Filtering . 22

2.1.1 Content-based Filtering: Challenges and Advantages . . 23
2.2 Collaborative Filtering . 26

2.2.1 Collaborative Filtering: Challenges and Advantages . . 27
2.3 Neighborhood Based Recommendations 29
2.4 Graph Based Recommendations 30

3

CONTENTS

2.4.1 Summary . 32

3 Literature Review 33
3.1 Basic Approach to Recommendations 33
3.2 ”Accuracy Does Not Tell the Whole Story”: Need for Serendipity

in Recommendations . 36
3.3 Towards Serendipitous Recommendations 38
3.4 Evaluation Metrics for Serendipitous Recommendations 42
3.5 Summary . 44

4 Proposed Methodology 45
4.1 Intuition: Why the Graph Approach is Employed? 45
4.2 Existing Recommendation Techniques: Where They Lack. . . . 46
4.3 Preliminaries . 47

4.3.1 Data Collection . 47
4.3.2 App Representation . 49
4.3.3 Preprocessing of App data 50
4.3.4 App-App Similarity . 52
4.3.5 User Preference Representation 52

4.4 System Architecture and Methodology 53
4.4.1 Similarity Calculation Module 57
4.4.2 App Similarity Graph Construction Module 58
4.4.3 User Preference Graph Construction Module 59
4.4.4 Recommendation Generation Module 61

4.5 Summary . 63

5 Experiments and Results 64
5.1 Experiments and Results . 64

5.1.1 Test Data . 64
5.1.2 Implementation Details 65
5.1.3 Results . 67

6 Conclusion and Future Work 70
6.1 Conclusions and Future Work . 70

6.1.1 Evaluating serendipitous Recommendations 70

4

CONTENTS

References . 76

5

List of Figures

1.1 Classification of recommender systems 13
1.2 Comparison of user-based and item-based collaborative filtering

recommendation techniques . 16

2.1 Components of content-based recommendation system 23
2.2 User-item ratings matrix for collaborative filtering. 30
2.3 Graph representing user-item interactions. 31
2.4 Various graph-based approaches for representing users, items

or both. 32

3.1 Pie chart depicting the share of books, movies, mobile apps in
the market . 40

3.2 Bar graph with estimates of how much percentage of products
are actually experienced by the end user 40

4.1 App-app similarity matrix . 52
4.2 User preference similarity matrix 53
4.3 System architecture . 55

6

Abstract

The domain of mobile applications(apps) has recently surfaced and
generated lot of interest in academia and industry alike. With an
App-store for every leading operating system - Apple, Android,
Blackberry, Windows, an explosive growth of Mobile applications is
not a surprise. The absolute number of apps currently in existence,
as well as their rates of growth, are remarkable. This might be
good news for the developers from the revenue perspective but for
consumers it means the inherent task of ”App Discovery” being
intensified.

A reasonable solution to this problem are Recommender systems.
They usually deal with indicators of user preferences(purchase his-
tory/rating history) for suggesting/predicting items for a target user.
An e↵ective way to cut-the-queue and straightaway hit the user’s
interest in shortest possible time, RS are extremely popular with
commercial systems today.

To generate relevant recommendations for users, our system tries
to leverage the interest patterns in the downloaded applications on
mobile phones of users themselves by using item-item similarity
graphs. This work essentially tries to overcome the inherent prob-
lem of over-specialization in content based recommender system
by using graph approach.

This thesis first presents the background literature for recommender
systems and then proposes a graph based approach for recommend-
ing serendipitous recommendations to a user.

Chapter 1

Introduction

This chapter briefly introduces the research work proposed in the thesis. Sec-
tion 1.1 gives an overview of recommender systems, what they are and why
they are needed. Also it discusses the two most common techniques used in
recommender systems- content based and collaborative filtering. Section 1.2
discusses what are the limitations with existing approaches and thus provides
motivation for this work. Section 1.3 and 1.4 set the research objective of this
work and briefly introduces the proposed approach. Section 1.5 presents an
outline of this thesis describing the organization of the remaining chapters.
Finally, Section 1.6 gives the summary of this chapter.

1.1 Recommender Systems: What They are and Why
are They Needed

Picture this; You walk into a departmental store which today are a dime a
dozen intending to buy the usual household items. After you enter the aisle
which contains these products, you are faced with an array of choices. Each
brand/product is jostling for both shelf space and head space which will enable
it to be purchased. The modern consumer is more discerning, however this
sense of discrimination is only limited by its ability to di↵erentiate between
comprehensible numbers of choice it is presented with. If these choices are
increased to manifold the consumer/user is stumped. And herein lies the prob-
lem of plenty.

8

1.1 Recommender Systems: What They are and Why are They Needed

The departmental store problem is limited by the availability of shelf/retail
space, but transpose this scenario to the virtual world of retail or ”online shop-
ping” as we know today, the space or shelf constraint is eliminated. Now the
user is left with what is is page after page of options. So much so that they
are overwhelmed. Online retailers or e-commerce websites o↵er a long list of
choices from pin to plane. Any online shopper has one sure shot complaint;
there are so many options to choose from, ”I can’t decide what to buy”. Simply
put, its the problem of plenty manifesting itself in the virtual world as well.

From the retailer’s point of view the problem presents itself di↵erently. It is
becoming much more di�cult to present the products to the users for enhanc-
ing cross-selling and up-selling both. Retailers of all types are now expanding
product o↵erings by adding in-store pickup, free shipping and experimenting
with social media. But the inherent problem of ”item-discovery” persists.

Since, we all believe in the adage that no two people are the same, recom-
mender systems follow the same approach and would guide the amateur/ex-
perienced buyer to navigate through the sea of choices he/she will come across
on such websites. Thus recommender systems are tools that help consumers
narrow down to a list of potential items of interest or that one final product
they would deem fit for purchasing. Let us now look at some of the existing
definitions for Recommender Systems in the literature.

Recommender systems are defined as the supporting systems which help
users to find information, products, or services (such as books, movies, music,
digital products, web sites, and TV programs) by aggregating and analyzing
suggestions from other users, which means reviews from various authorities,
and user attributes [19][14][13]. Another definition says RSs are software tools
and techniques providing suggestions for items to be of use to a user [30][24][9].
The suggestions relate to various decision-making processes, such as what
items to buy, what music to listen to, or what online news to read.

RSs are primarily directed towards individuals who lack su�cient personal
experience or competence to evaluate the potentially overwhelming number

9

1.1 Recommender Systems: What They are and Why are They Needed

of alternative items that a website may o↵er [30]. For example, a book recom-
mender system assists users to select a book to read. In the popular Website,
Amazon.com, RS helps to personalize the online store for each customer. Rec-
ommendations are thus becoming more and more personalized. Di↵erent
users, groups, communities receive various suggestions. There exists non per-
sonalized recommendation systems as well. For example, in newspapers and
magazines, one can often spot ”Top 10 things to do when you are on a holiday”. But
research in recommender system does not deal with such lists. On the other
hand, its more directed towards ranking these recommendations. According
to the data collected which is a reflection of user’s taste and preference, RS tries
to rank or score these recommendations and then suggest them to the user.
Data from users can either be explicitly collated like ratings/transaction history
or implicitly like time spent browsing a particular category of products.

We often ask colleagues or friends for movie/book recommendations, in-
spired by this simple observation, RS tries to use information about users and
suggest products. This approach is termed collaborative-filtering and its ratio-
nale is that if the active user agreed in the past with some users, then the other
recommendations coming from these similar users should be relevant as well
and of interest to the active user.

This sounds rather simple but the magnitude of items present in the market
today create a major problem for the users- ”How do I find what I need?”. Most
of the times we do not know for sure as to what we are looking for. Especially
with commodities like books/movies, there is a certain kind of emotional setup
that guides as to what we prefer reading or watching that day. Thus it is
di�cult to recommend based on user’s preferences in the past alone as to what
he would like in the future. But nevertheless the state-of-the-art recommender
systems are e�cient in producing recommendations which are of potential
interest to the user and are accurate according to traditional evaluation metrics
like precision and recall.

Providing a user with an exhaustive list of 20 odd recommendations may
often leave them overwhelmed and confused. Firstly they do not have a very
concrete idea of what they are looking for, secondly it appears like they have
been thrown in a pool of options with no rescue in sight. Very often the users
complain of a low overall satisfaction. Thus providing choices is a good thing but

10

1.1 Recommender Systems: What They are and Why are They Needed

excess of everything is harmful.
RSs have proved in recent years to be a valuable means for coping with the

information overload problem. Ultimately, a RS addresses this phenomenon by
pointing a user towards new, not-yet-experienced items that may be relevant
to the users current task. Upon a users request, which can be articulated,
depending on the recommendation approach, by the users context and need,
RSs generate recommendations using various types of knowledge and data
about users, the available items, and previous transactions stored in customized
databases. The user can then browse the recommendations. She may accept
them or not and may provide, immediately or at a next stage, an implicit
or explicit feedback. All these user actions and feedbacks can be stored in the
recommender database and may be used for generating new recommendations
in the next user-system interactions.

In recent years, the research work in recommender systems has dramatically
increased. Below are some facts that aid that fact:

• Recommender systems play an important role in highly rated Inter-
net sites such as Amazon1, YouTube2, Netflix3, Yahoo4, TripAdvisor5,
Last.fm6, and IMDb7. Companies are now developing and deploying
RSs as part of their services.

• There are dedicated conferences and workshops related to the field es-
pecially ACM Recommender Systems(RecSys), established in 2007 and is
now the premier annual event in recommender technology research and
applications.

• At institutions of higher education around the world, undergraduate and
graduate courses are now dedicated entirely to RSs.

1http://amazon.com
2http://youtube.com
3http://netflix.com
4http://yahoo.com
5http://tripadvisor.com
6http://last.fm.com
7http://imdb.com

11

1.1 Recommender Systems: What They are and Why are They Needed

1.1.1 Data Source and Classification

”Item”-Item is the general term used to denote what the system recommends
to users. RS normally focuses on a specific type of item (e.g., CDs, or news)
and accordingly its design, its graphical user interface, and the core recommen-
dation technique used to generate the recommendations are all customized to
provide useful and e↵ective suggestions for that specific type of item [34]. The
value of an item may be positive if the item is useful for the user, or negative if
the item is not appropriate and the user made a wrong decision when selecting
it. We note that when a user is acquiring an item she will always incur in a
cost, which includes the cognitive cost of searching for the item and the real
monetary cost eventually paid for the item.

”Users”-Users of RS may have very di↵erent goals and characteristics. In
order to personalize the recommendations and the human-computer interac-
tion, RSs exploit a range of information about the users. This information can
be structured in various ways and again the selection of what information to
model depends on the recommendation technique.

”Transactions”-We generically refer to a transaction as a recorded interaction
between a user and the RS. Transactions are log-like data that store important
information generated during the human-computer interaction and which are
useful for the recommendation algorithm that the system employs. For in-
stance, a transaction log may contain a reference to the item selected by the
user and a description of the context (e.g., the user goal/query) for that particu-
lar recommendation. If available, that transaction may also include an explicit
feedback the user has provided, such as the rating for the selected item.

A RS either recommends a list of items for a particular user or predicts the
rating of an item for a particular user. For example, the popular recommender
system used by movie rental company Netflix predicts the ratings of movies
so that user can decide which movie he wants to watch. The online retailer
Amazon1 generates recommendation for a particular user.

RSs are generally classified into collaborative filtering (CF) and content-based
filtering (CBF). CF is an information filtering technique based on user’s eval-

1Amazon

12

1.1 Recommender Systems: What They are and Why are They Needed

Figure 1.1: Classification of recommender systems

uation of items or previous purchases records but there are two major issues
with this approach, namely, sparsity problem and scalability problem. CBF on
the other hand, analyzes a set of items rated by an individual user and uses the
content of these items, as well as the ratings, to infer profile that can be used to
recommend additional item of interest [5]. But a common faced challenge with
CBF is that it provides recommendations to be made from a very restricted
set of items. Lot of work is currently going on to discover new approaches in
recommender systems to solve problems of both CF and CBF.

1.1.2 Content-based Filtering for Recommendations

The content based filtering approach consists of analyzing the content of the
items being recommended. Each user is treated individually. It is a purely
item-based; there is no sense of community or group. Items of target users are
compared to items purchased by other users and then recommendations are
made. It is highly possible that items are recommended from a small subset.

1.1.3 Collaborative Filtering for Recommendations

It is the most popular approach for recommendations currently used by Ama-
zon, YouTube etc. Collaborative filtering basically works on the principle of
word-of-mouth recommendations. Herlocker et. al [17] states that ”one of the
most successful technologies for recommender systems is called collaborative

13

1.2 Research Motivation

filtering”. This system is based on the collection of taste information from
many users. But there is a sense of a community. It assumes that a group of
users will have a similar liking to items then tries to find the probability of
unpredicted items for an active user based on a linear weighted combination
of other user’s preferences.

1.2 Research Motivation

1.2.1 Limitations with Existing Approaches

One of the most inherent problem with recommender systems is the problem of
”Item Discovery”. With items being added every day in the market, it is getting
more and more di�cult for users to reach out to good items which are poten-
tially relevant to their interest. This issue in the domain of mobile applications
gets more and more intensified. Mobile applications are popularly known as
”Apps”. Now app market is huge. Nearly 1.1 million of free and paid apps are
available now in leading app stores like Apple,Android,Windows,Blackberry.
There are about 100 movies and 250 books that get released per week as com-
pared to the release of around 15,000 apps per week.This means that the prob-
lem of item discovery poses serious threat to the recommendation generation.
Thus there is a need to develop techniques that can get the users to experi-
ence useful products without wasting much time. Other issues with existing
approaches are listed as follows:

• Scalability: The issue of scalability has long been associated with RS.
Algorithms that are su�cient in one scenario become insu�cient in the
other. With increasing number of products and users, scalability issues
of transactional data have become even worse and need to be taken care
of.

• Proactive recommender systems: There is a rising need for such recom-
mender systems which do not require explicit inputs to produce recom-
mendations. They should be able to predict when and what to recom-
mend.

14

1.2 Research Motivation

• User’s privacy: There is a rising insecurity amongst users since most RS
consume user data to make predictions. These systems need to ensure
that they use the data in a justified and sensible manner.

• Diversity in a recommendation list: Everyone is now waking up to the
idea of moving beyond the ”obvious”. The recommendations made by
state-of-the-art are far too obvious and o↵er very little diversification in
terms of the choices it presents to the users. RS now needs techniques to
incorporate surprising recommendations to increase the diversity of the
recommendation lists.

1.2.2 What is Serendipity and its Scope in Content Based and
Collaborative Filtering Approaches

Serendipity means a ”happy accident” or ”pleasant surprise”; specifically, the
accident of finding something good or useful without looking for it[37]. We
often we find things or meet someone where we least expected, although a
surprise, it is a happy surprise. In case of recommendations we call them
Serendipitous Recommendations. Serendipitous recommendations are recom-
mendations targeted for a particular user that might be of his interest even
when he has not explicitly displayed interested for this item.

Collaborative filtering have been successful in providing serendipitous rec-
ommendations. In item-based methods, the rating predicted for an item is
based on the ratings given to similar items. Consequently, recommender sys-
tems using this approach will tend to recommend to a user items that are related
to those usually appreciated by this user. For instance, in a movie recommen-
dation application, movies having the same genre, actors or director as those
highly rated by the user are likely to be recommended. While this may lead to
relevant recommendations, it does less to help the user discover di↵erent types
of items that he might like as much. Because they work with user similarity, on
the other hand, user-based approaches are more likely to make serendipitous
recommendations. This is particularly true if the recommendation is made
with a small number of nearest neighbors. For example, a user A that has
watched only comedies may be very similar to a user B only by the ratings

15

1.2 Research Motivation

made on such movies. However, if B is fond of a movie in a di↵erent genre,
this movie may be recommended to A through his similarity with B.

Figure 1.2: Comparison of user-based and item-based collaborative filtering
recommendation techniques

Content based filtering tends to make rather relevant predictions and are not
desirable for making serendipitous recommendations. What do we mean by
this? Well these predictions are rather restricted in terms of the options it
presents to the user. Since the method is primarily driven by information like
user’s past preferences towards certain items, it tends to recommend items
very similar to them. But this might not be completely desirable. Very often
we are pleasantly surprised by recommendations from friends or family that
are nowhere close to our past preferences. Content-based recommenders have
no inherent method for finding something unexpected. The system suggests
items whose scores are high when matched against the user profile, hence the
user is going to be recommended items similar to those already rated. This

16

1.3 Research Objective

drawback is also called serendipity problem to highlight the tendency of the
content-based systems to produce recommendations with a limited degree of
novelty. To give an example, when a user has only rated movies directed by
Stanley Kubrick, she will be recommended just that kind of movies. A perfect
content-based technique would rarely find anything novel, limiting the range
of applications for which it would be useful [34].

This leads us to research objective of this work, can content based recom-
mendation be elevated to make serendipitous recommendations? The next
section addresses this concern.

1.3 Research Objective

1.3.1 Can Serendipitous Recommendations be Generated More
E↵ectively Using Graph Based Recommendations?

Having established the fact that recommendations are necessary and there
will always be a need to provide users with suggestions especially due to the
information overload, we will now look how serendipity in recommendation
scan be achieved.

Usually collaborative filtering approaches are used to make serendipi-
tous recommendations. It is quite understandable since collaborative filtering
framework allows far more opportunities for surprise recommendations since
it first finds similar users to a target user and then recommends new items.
Content based approach relies on items that user has liked in the past and
the item description information and thus are not used to make serendipitous
recommendations because of its shortcoming- ”over-specialization”.

With the over abundance of mobile apps, it is often di�cult for consumers to
get the apps of their interest along with considerable novelty.I understand this
is nothing but ”stereotyping” a user because the of the choices he made in his
past.Recommendations drawn from the past history of user’s transactions or
ratings often tends to give very obvious choices which are highly accurate but
does not work well to enhance the user’s overall experience. Moreover novel
and serendipitous recommendations are necessary to broaden user’s view in
the recommendation flow [18].

17

1.4 Proposed approach

In this work, we try to use graph-based recommendations which can ad-
dress the issue of ”over-specialization” associated with content based methods
to present the users with serendipitous recommendations. Graph approaches
for recommendations mainly concentrate on using the inherent graph struc-
ture to predict proximity between users to measure similarity between two
users [12][23]. They have also been used to predict rating of unrated items by
using ratings for items connected to it. For our domain(i.e., mobile apps) we
try to e↵ectively represent a user on the product-product similarity graph by
using information like apps downloaded on his mobile phone, the frequency
of usage,duration of usage. Later using graph theory operations we try to find
interest patterns inherent in a graph structure. By controlling the similarity
threshold between apps, we introduce serendipity into our recommendation
process and suggest beyond the obvious but still being novel to the user’s
preference.

1.4 Proposed approach

1.4.1 Graph Based Recommendations to Address Over-Specialization
in Content Based Filtering

Though this work is di↵erent from content based and collaborative filtering,
the proposed approach still manages to fit into a standard recommendation
framework. The proposed method has the following steps:

• App-App Similarity Graph Construction- First the similarity,Sim(Appi,Appj)
between two mobile apps is calculated by using metadata like title, cat-
egory, description. Standard TF-IDF score is used because of its e↵ec-
tiveness in calculating similarity between short texts. This information
is thus used to construct a G = (V,E) where V is the set of vertices(apps)
and E is set of edges between them.

• User Preferences on the graph- Information available on the user’s mobile
phone like the applications already installed, frequency of the usage,
duration of the usage etc. can be encashed upon by considering it as a
holistic view of a user’s interest span.

18

1.5 Organization of Thesis

• Recommendation prediction- For generating recommendations, we find
paths between pairs of apps following edges with a similarity score higher
than a threshold. We do not intend to follow very high similarity score
since it would lead to less serendipitous recommendations.

This approach will help overcome the most prominent problem existent in
content-based filtering, personalization or over-specialization. The recommen-
dation prediction does not require ratings of a product for it to appear in the
recommendation lists. By collecting information from user’s mobile phone we
concentrate on what his current preferences are instead of relying on his past
preferences. Recommendations thus generated are highly serendipitous.

Note that we do not take any explicit input from the user in the form
of reviews or rankings instead we simply focus on what is available on the
user’s phone to serve as the window to their taste set as far as mobile apps
are concerned. This is slightly di↵erent from popular RSs based on collabora-
tive filtering which rely on ratings and reviews to compare user profiles and
item profiles. The user provides no input and recommendations are simply
generated by collecting data from the user’s phone.

1.5 Organization of Thesis

This thesis is structured into five chapters.It is organized as follows:
Chapter 2 provides the essential background and context for this thesis and

provides a complete justification for the research work described in this thesis.
Chapter 3 provides the literature review of existing work in the domain

of serendipitous recommendations and the important aspects of generating
serendipitous recommendations.

Chapter 4 provides the details of the proposed method and outlines the
graph based recommendation system.

Chapter 5 describes the experimental results.
Chapter 6 presents conclusion and future work.

19

1.6 Summary

1.6 Summary

This chapter has laid the foundations for this thesis. It briefly introduced the
research problem, research objectives and the proposed solution framework. A
justification for the research problem is outlined, together with an explanation
of the research methodology used. The next chapter examines the pertinent
literature most relevant to this research.

20

Chapter 2

Basic Issues with Recommender
Systems

This chapter provides background literature for the research work proposed
in the thesis. Section 2.1 and 2.2 talk about content based filtering in detail,
their advantage and shortcomings. Sections 2.3 and 2.4 discuss collaborative
filtering and what are their limitations and advantages. Section 2.5 talks about
neighbourhood based recommender system which is another popular tech-
nique. Finally section 2.6 talks about graph based recommendations which is
used in the proposed approach.

Items cannot be recommended unless they are worth recommending. In
other words, we need to find out the utility of an item and thus this task is at
the heart of a recommender systems. Ranking or scoring is the most common
and easiest way to calculate this utility. This also helps in comparing two items
so that one can be chosen over another.

Content-based filtering: The system learns to recommend items that are simi-
lar to the ones that the user liked in the past. The similarity of items is calculated
based on the features associated with the compared items. For example, if a
user has positively rated a movie that belongs to the comedy genre, then the
system can learn to recommend other movies from this genre

Collaborative filtering: The simplest and original implementation of this ap-
proach recommends to the active user the items that other users with similar

21

2.1 Content-based Filtering

tastes liked in the past. The similarity in taste of two users is calculated based
on the similarity in the rating history of the users. Collaborative filtering is
considered to be the most popular and widely implemented technique in RS.

2.1 Content-based Filtering

The basic idea of content based recommender systems is to recommend items
that a user has liked in the past. So the idea is to use the features or attributes
of items liked by a user and compare those with other items and recommend
similar items. The idea of personalization for a user is very obvious in this
context. Content based filtering as discussed above recommends items in the
basis of prior preferences of a user.

RSs implementing content based approach have to be involved in comput-
ing similarities between documents or textual descriptions previously used or
rated by the user. This in a way represents the user on the basis of his prior
preferences.

As shown in 2.1, basic components of a Content based filtering stem are as
follows [34].

(1) CONTENT ANALYZER-The main role of the content analyzer is to struc-
ture the information provided to the recommender systems. It could be
in the form of documents, web pages, descriptions etc. This information
usually gets converted into feature vectors where each document, web
page, textual description is represented as a vector in the target space.
This becomes an input to the next stage.

(2) PROFILE LEARNER- This module collects data representative of the user
preferences and tries to generalize this data, in order to construct the user
profile. Usually, the generalization strategy is realized through machine
learning techniques [27], which are able to infer a model of user interests
starting from items liked or disliked in the past

(3) FILTERING COMPONENT - This module exploits the user profile to sug-
gest relevant items by matching the profile representation against that of
items to be recommended. The result is a binary or continuous relevance

22

2.1 Content-based Filtering

judgment computed using some similarity of potentially interesting and
is realized by computing the item vectors.

Figure 2.1: Components of content-based recommendation system

In order to construct and update the profile of an active user ua (user for which
recommendations are provided), reactions to items are collected in some way
and recorded in the repository ”Feedback”. These reactions, called annotation-
Kendall1 or feedback, together with the related item descriptions, are exploited
during the process of learning a model useful to predict the actual relevance of
newly presented items. Users can also explicitly define their areas of interest
as an initial profile without providing any feedback.

2.1.1 Content-based Filtering: Challenges and Advantages

Challenges:

• Limited Content Analysis-Content-based techniques have a natural limit
in the number and type of features that are associated, whether automati-
cally or manually, with the objects they recommend. Domain knowledge

1Kendall-1990

23

2.1 Content-based Filtering

is often needed, e.g., for movie recommendations, the system needs to
know the actors and directors, and sometimes, domain ontologies are also
needed. No content-based recommendation system can provide suitable
suggestions if the analyzed content does not contain enough informa-
tion to discriminate items the user likes from items the user does not
like. Some representations capture only certain aspects of the content,
but there are many others that would influence a users experience. For
instance, often there is not enough information in the word frequency to
model the user interests in jokes or poems, while techniques for a↵ective
computing would be most appropriate. Again, for Web pages, feature
extraction techniques from text completely ignore aesthetic qualities and
additional multimedia information.

• Over-Specialization- Content-based recommenders have no inherent method
for finding something unexpected. The system suggests items whose
scores are high when matched against the user profile, hence the user
is going to be recommended items similar to those already rated. This
drawback is also called serendipity problem to highlight the tendency of
the content-based systems to produce recommendations with a limited
degree of novelty. To give an example, when a user has only rated movies
directed by Stanley Kubrick, she will be recommended just that kind of
movies. A perfect content-based technique would rarely find anything
novel, limiting the range of applications for which it would be useful.

• New User - Enough ratings have to be collected before a content-based
recommender system can really understand user preferences and provide
accurate recommendations. Therefore, when few ratings are available, as
for a new user, the system will not be able to provide reliable recommen-
dations [34].

Advantages:

• User independence - Content-based recommenders exploit solely ratings
provided by the active user to build her own profile. Instead, collabora-
tive filtering methods need ratings from other users in order to find the
”nearest neighbors” of the active user, i.e., users that have similar tastes

24

2.1 Content-based Filtering

since they rated the same items similarly. Then, only the items that are
most liked by the neighbors of the active user will be recommended.

• Transparency - Explanations on how the recommender system works
can be provided by explicitly listing content features or descriptions that
caused an item to occur in the list of recommendations. Those features
are indicators to consult in order to decide whether to trust a recommen-
dation. Conversely, collaborative systems are black boxes since the only
explanation for an item recommendation is that unknown users with
similar tastes liked that item;

• New Item - Content-based recommenders are capable of recommending
items not yet rated by any user. As a consequence, they do not su↵er from
the first-rater problem, which a↵ects collaborative recommenders which
rely solely on users’ preferences to make recommendations. Therefore,
until the new item is rated by a substantial number of users, the system
would not be able to recommend it.

• Limited Content Analysis - Content-based techniques have a natural limit
in the number and type of features that are associated, whether automati-
cally or manually, with the objects they recommend. Domain knowledge
is often needed, e.g., for movie recommendations the system needs to
know the actors and directors, and sometimes, domain ontologies are
also needed. No content-based recommendation system can provide
suitable suggestions if the analyzed content does not contain enough in-
formation to discriminate items the user likes from items the user does
not like. Some representations capture only certain aspects of the content,
but there are many others that would influence a user’s experience. For
instance, often there is not enough information in the word frequency to
model the user interests in jokes or poems, while techniques for e↵ective
computing would be most appropriate. Again, for Web pages, feature
extraction techniques from text completely ignore aesthetic qualities and
additional multimedia information [34].

25

2.2 Collaborative Filtering

2.2 Collaborative Filtering

CF models try to capture the interactions between users and items that pro-
duce the di↵erent rating values. However, much of the observed rating values
are due to e↵ects associated with either users or items, independently of their
interaction. A principal example is that typical CF data exhibit large user and
item biases - i.e., systematic tendencies for some users to give higher ratings
than others, and for some items to receive higher ratings than others. Because
these predictors tend to capture much of the observed signal, it is vital to model
them accurately. Such modeling enables isolating the part of the signal that
truly represents user-item interaction, and subjecting it to more appropriate
user preference models denoted by , the overall average rating. A baseline
prediction for an unknown rating ru,i is denoted by bu,i and accounts for the
user and item e↵ects [34].

Bui = µ + bu + bj

The parameters bu and bi indicate the observed deviations of user u and
item i, respectively, from the average. For example, suppose that we want a
baseline predictor for the rating of the movie Titanic by user Joe. Now, say that
the average rating over all movies, , is 3.7 stars. Furthermore, Titanic is better
than an average movie, so it tends to be rated 0.5 stars above the average. On
the other hand, Joe is a critical user, who tends to rate 0.3 stars lower than the
average. Thus, the baseline predictor for Titanics rating by Joe would be 3.9
stars by calculating 3.7 � 0.3 + 0.5. In order to estimate bu and bi one can solve
the least squares problem

Among collaborative filtering approaches the most popular one is the neigh-
borhood based approach. They do so because of their simplicity, e�ciency and
their ability to produce personalized and accurate predictions [34].

Unlike content based filtering, collaborative tends to keep the target user
in the limelight and thus aims to find users similar to a target user. The main
idea is that if two users u and v have similar interests then they will tend to rate
or buy products in a similar pattern. Exploiting this key idea, collaborative
filtering first finds such similar user; thus forming a neighborhood of similar

26

2.2 Collaborative Filtering

users which is later analyzed to find what items to recommends to the target
user.

Collaborative filtering approach can be classified into two classes namely
memory and model based approach.In the memory based approach, the user-
item rating information available already is used to predict ratings for unrated
items.This can be done either by user-based or item-based method.The user based
method approaches the task with information like User u rated the product ,lets
call this R(u).It then finds neighbors of User u(users who have similar tastes)
and thus predicts rating for an item using this information.

2.2.1 Collaborative Filtering: Challenges and Advantages

Challenges:
There are many challenges for collaborative filtering tasks. CF algorithms are
required to have the ability to deal with very sparse data, to scale with the
increasing numbers of users and items, to make satisfactory recommendations
in a short time period, and to deal with other problems like synonymy (the
tendency of the same or similar items to have di↵erent names), shilling attacks,
data noise, and privacy protection problems. E-commerce recommendation
algorithms often operate in a challenging environment, especially for large
online shopping companies like eBay and Amazon. Usually, a recommender
system providing fast and accurate recommendations will attract the interest of
customers and bring benefits to companies. For CF systems, producing high-
quality predictions or recommendations depends on how well they address
the challenges, which are characteristics of CF tasks as well.

• Data Sparcity: Due to large product number of products and users the
user-item matrix is often very sparse and thus the predictions or recom-
mendations are not very e↵ective. One of the most common problem in
which data sparsity is a major challenge is the Cold-start problem. Cold-
start problem occurs when a new user or item just enters the system.
An item does not appear in the recommendations until some users pro-
vide ratings for that item and users are not provided recommendations
because of less information in their purchase history.

27

2.2 Collaborative Filtering

• Scalability: When numbers of existing users and items grow tremen-
dously, traditional CF algorithms will su↵er serious scalability problems,
with computational resources going beyond practical or acceptable lev-
els. For example, with tens of millions of customers(M) and millions of
distinct catalog items (N), a CF algorithm with the complexity of�(MN)
is already too large. Also, many systems need to react immediately to
online requirements and make recommendations for all users regardless
of their purchases and ratings history, which demands a high scalability
of a CF system [26][34].

Advantages:

• Simplicity- Neighborhood-based methods are intuitive and relatively
simple to implement. In their simplest form, only one parameter (the
number of neighbors used in the prediction) requires tuning.

• Justifiability- Such methods also provide a concise and intuitive justifi-
cation for the computed predictions. For example, in item-based recom-
mendation, the list of neighboring items, as well as the ratings given by
the user to these items, can be presented to the user as a justification
for the recommendation. This can help the user easily understand the
recommendation and its relevance, and could serve as the basis for an in-
teractive system where users can select the neighbors for which a greater
importance should be given in the recommendation [4].

• E�ciency- One of the strong points of neighborhood-based systems is
their e�ciency. Unlike most model-based systems, they require no costly
training phases, which need to be carried out at frequent intervals in large
commercial applications. While the recommendation phase is usually
more expensive than for model-based methods, the nearest-neighbors
can be pre-computed in an o✏ine step, providing near instantaneous rec-
ommendations. Moreover, storing these nearest neighbors requires very
little memory, making such approaches scalable to applications having
millions of users and items.

• Stability- Another useful property of collaborative filtering approach is
that they are little a↵ected by the constant addition of users, items and

28

2.3 Neighborhood Based Recommendations

ratings, which are typically observed in large commercial applications.
For instance, once item similarities have been computed, an item-based
system can readily make recommendations to new users, without having
to re-train the system [34].

2.3 Neighborhood Based Recommendations

Collaborative filtering can be represented as the problem of predicting missing
values in a user-item ratings matrix.Figure 2.2 shows a simplified example of
a user-item ratings matrix. For example, in the figure, User 2 assigns rating of
“2” to Item 1, whereas the active user a assigns rating of “5” to Item 2. Here,
the active user a is the user whose ratings are to be predicted.

In the neighborhood-based algorithm [16], a subset of users is first chosen
based on their similarity to the active user, and a weighted combination of their
rating is then used to produce predictions for the active user. This algorithm is
summarized in three steps:

1. Weigh all users with respect to similarity to the active user. This similarity
between users is measured as the Pearson correlation coe�cient between
their rating vectors.

2. Select n users that have the highest similarity with the active user. These
users form the neighborhood.

3. Compute a prediction from a weighted combination of the neighbor’s
ratings.

In Step 1, Sa,u, which denotes similarity between users a and u, is computed
using the Pearson correlation coe�cient defined below:

Sa,u =

PI
i=1(ra,i � r̄a) ⇥ (ru,i � r̄u)

qPI
i=1(ra,i � r̄a)2 ⇥PI

i=1(ru,i � r̄u)2
, (2.3.1)

where ra,i is the rating given to Item i by User a, and r̄a is the mean rating given
by User a, and I is the total number of items.

29

2.4 Graph Based Recommendations

In Step 2, a subset of appropriate users is chosen based on their similarity
to the active user, and a weighted aggregate of their ratings is used to generate
predictions for the active user in the next Step 3.

In Step 3, predictions are computed as the weighted average of deviations
from the neighbor’s mean:

pa,i = r̄a +

Pn
u=1(ru,i � r̄u) ⇥ Sa,uPn

u=1 Sa,u
, (2.3.2)

where pa,i is the prediction for active user a for item i. Sa,u is the similarity
between users a and u as described in Equation (2.3.1). n is the number of users
in the neighborhood.

Figure 2.2: User-item ratings matrix for collaborative filtering.

2.4 Graph Based Recommendations

In graph based approach data is represented in the form of a graph where
the nodes can represent users or items or both and the edges represent the
interactions or similarity between them. Graphs can inherently represent in-
formation which is unexploited by traditional collaborative filtering methods.
The transitive relations between nodes can be used to derive recommendations
that might be of interest to a user maybe not directly but transitively.

For example, in Figure 2.3,nodes represent both users and items. The edges
represent the interaction between the user and item. The interaction can be of
various types. Presence of an edge could represent that the item was bought

30

2.4 Graph Based Recommendations

by the user. The edge could even carry some weight which could indicate the
rating of that user for that particular item. These weights could then be used
to calculate the proximity of a user and item.

In Figure 2.4, few possible ways of using graphs to represent user-item,
user-user, item-item interactions are shown. In Figure 2.4a an item’s rating is
predicted by using ratings of items that are connected to that item. This is the
standard approach to follow for predicting rating of unrated item. But this
phenomenon can be leveraged by allowing edges to carry information that is
more than merely an interaction.It can provide a way to traverse items that are
not directly connected but still related to a particular item. In Figure 2.4b the
rating for an item is predicted by calculating proximity between a user and the
item on the graph. Another way to approach is shown in Figure 2.4c where
nodes simply represent users and the edges are the similarity between those
users.This approach could alternatively be used for items as well.

Figure 2.3: Graph representing user-item interactions.

Similarity measures in graph based approach are as follows:

• Path based Similarity- The distance between two nodes of the graph is
evaluated as a function of the number of paths connecting the two nodes
as well as the length of these paths [34].

• Random walk similarity- Similarity between users or items is evaluated
as probability of reaching these nodes in a random walk.This process is

31

2.4 Graph Based Recommendations

(a) (b) (c)

Figure 2.4: Various graph-based approaches for representing users, items or
both.

often described in the form of a weighted graph having a node for each
state and where the probability of jumping from one node to another is
given by the weight of the edge connecting these nodes [34].

Graph-based techniques exploit the transitive relations in the data. These
techniques also avoid the problems of sparsity and limited coverage by eval-
uating the relationship between users or items that are not directly connected.
However, unlike dimensionality reduction, graph based methods also preserve
some of the local relations in the data, which are useful in making serendipitous
recommendations.

2.4.1 Summary

This chapter discussed the state-of-the-art recommender systems. It provided
a detailed study of types of recommender systems followed by their individual
challenges and advantages. Also it introduced graph based approach.The next
chapter presents the literature review pertaining to the proposed approach.

32

Chapter 3

Literature Review

Chapter 2 provided an overview of state-of-the-art in Recommendation sys-
tems. Also it pointed out the problems with existing approaches. This chapter
introduces serendipitous recommendation. Section 3.1 explains the issues with
existing approaches for RSs. Section 3.2 elaborates on why accuracy is not the
only factor to be concerned about when dealing with recommendations these
days. The key focus of section 3.3 and 3.4 is to understand the concept of
serendipitous recommendations and the existing work in this domain. Finally,
Section 3.6 provides a summary of this chapter.

3.1 Basic Approach to Recommendations

In order to achieve serendipitous recommendation we need to review some
problems of RSs which need to be solved. They are as follows:

• Cold start problem: Schein[31] developed a method for recommending
items that combine content and collaborative data under a single proba-
bilistic framework. Recommender systems have to deal with the cold start
problem as new users and/or items are always present. Rating elicitation
is a common approach for handling cold start. However, there still lacks
a principled model for guiding how to select the most useful ratings.Lin
et al.[22] proposed a principled approach to identify representative users
and items using representative-based matrix factorization. The method
is significantly e↵ective in achieving good balance between coverage and

33

3.1 Basic Approach to Recommendations

diversity and demonstrate that ratings on the selected representatives
are much more useful for making recommendation. Building up on his
previous work Liu et al. [21] recognised the importance of multiple se-
lection criteria to improve the recommendation output. They proposed
a principled approach to identify representative users and items using
representative-based matrix factorization. The most common way of
dealing with cold start is to leverage metadata for estimating taste of new
users, but metadata is not always available, so ask user for some ratings
on seed items. The author proposes a principled approach to find seed
items by locating representatives. Representatives are those users whose
linear combination of tastes would accurately approximate other users.

• Data sparsity problem: Zhou et al. [39] presented a functional matrix fac-
torization (FMF), a novel cold-start recommendation method that solves
the problem of initial interview construction within the context of learn-
ing user and item profiles.

Moshfeghi et al. [28] provides a frame- work which is able to tackle
sparsity issues by considering item-related emotions and semantic data.
In order to predict the rating of an item for a given user, this framework
relies on an extension of Latent Dirichlet Allocation [7] , and on gradient
boosted trees for the final prediction.

• Search Result Diversification: Ziegler et al. [40] proposed the idea of
moving beyond pure accuracy and towards overall user experience. He
introduced topic diversification emphasizing that both accuracy and ex-
tent of user’s interest a↵ect of TD on both user-based and item-based
CF algorithms. Moving over regular accuracy metrics like precision and
recall he introduced Intra List Similarity.Lower the ILS, higher is the di-
versity of recommendations.

Topic Diversification: Basically we take a product from the candidate set and
compare it with all the items preceding it in rank and then sort all the products
based on the similarity calculated in the reverse order obtain- ing dissimilarity
rank.

Now merge this rank with the original recommendation rank(according
to a factor that determines the impact that dissimilarity rank exerts on overall

34

3.1 Basic Approach to Recommendations

output). Experiment conducted confirmed the impact of TD on both user based
and item based CF.

Though diversification appeared detrimental to both item and user based
CF along precision and recall metrics. Online and o✏ine experiments were
conducted: Online experiments of ILS suggests that e↵ect of TD on item based
CF is much stronger than user based CF. Limitation of this approach was in
respect with the taxonomies(the problem of what human perceive as diverse
and what the algorithm does). The primary premise upon which top-N recom-
mender systems operate is that similar users are likely to have similar tastes
with regard to their product choices.

For this reason, recommender algorithms depend deeply on similarity met-
rics to build the recommendation lists for end-users. However, it has been
noted that the products o↵ered on recommendation lists are often too similar
to each other and attention has been paid towards the goal of improving di-
versity to avoid monotonous recommendations. Noting that the retrieval of a
set of items matching a user query is a common problem across many appli-
cations of information retrieval, we model the competing goals of maximizing
the diversity of the retrieved list while maintaining adequate similarity to the
user query as a binary optimization problem.

Zhang et.al [38] explore a solution strategy to this optimization problem
by relaxing it to a trust-region problem. This leads to a parameterized eigen
value problem whose solution is finally quantized to the required binary so-
lution. They apply this approach to the top-N prediction problem, evaluate
the system performance on the Movielens dataset and compare it with a stan-
dard item-based top-N algorithm. A new evaluation metric Item Novelty is
proposed in this work. Improvements on both diversity and accuracy are
obtained compared to the benchmark algorithm. Collaborative Filtering (CF)
algorithms, used to build web based recommender systems, are often evalu-
ated in terms of how accurately they predict user ratings. However, current
evaluation techniques disregard the fact that users continue to rate items over
time: the temporal characteristics of the system’s top-N recommendations are
not investigated. In particular, there is no means of measuring the extent that
the same items are being recommended to users over and over again. Lathia
et al. [20] shows that temporal diversity is an important facet of recommender

35

3.2 ”Accuracy Does Not Tell the Whole Story”: Need for Serendipity in
Recommendations

systems, by showing how CF data changes over time and performing a user
survey. They then evaluate three CF algorithms from the point of view of
the diversity in the sequence of recommendation lists they produce over time.
They examine how a number of characteristics of user rating patterns including
profile size and time between rating a↵ect diversity. They propose and eval-
uate set methods that maximise temporal recommendation diversity without
extensively penalising accuracy [38]. Ziegler’s work was for increasing user
satisfaction, but the downside was that accuracy was compromised. Though
they presented greater number of classes as compared to traditional techniques
but failed to analyze or measure item novelty. The novelty is measured in terms
of distance from the present interest to the item recommendation in the tax-
onomy. This approach does this using random walk with restarts [29]. Boim
et.al [8] considers a popular class of recommender systems that are based on
Collaborative Filtering (CF) and proposes a novel technique for diversifying
the recommendations that they give to users by clustering the items based on a
unique notion of prioritymedoids that provides a natural balance between the
need to present highly ranked items vs. highly diverse ones.

3.2 ”Accuracy Does Not Tell the Whole Story”: Need
for Serendipity in Recommendations

Accuracy is the probability that the active user will appreciate the products
recommended. Existing recommendation technologies try to get the recom-
mendation lists with accuracy as high as possible. Their aim is to maximize
precision/recall but they neglect aspects of recommendation like novelty and
serendipity. novelty and serendipity are metrics to measure the non-obviousness
of recommendations. If you go to Amazon, recommendations will appear in
similar purchased or you may also like section. They often tend to be very
restricted in terms of the diversity of items that are recommended. Most of the
times the recommendations made are far too obvious and o↵er little variety.
For a user, it might not be the best things because they want ”good recom-
mendations” and not ones based purely on accuracy. So we have to move
beyond accuracy.Recommendation lists are now considered as entities in their

36

3.2 ”Accuracy Does Not Tell the Whole Story”: Need for Serendipity in
Recommendations

own rights.
Content-based systems su↵er from over-specialization, since they recom-

mend only items similar to those already rated by users. One possible solution
to address this problem is the introduction of some randomness. For example,
the use of genetic algorithms has been proposed in the context of information
filtering [1]. In addition, the problem with over-specialization is not only that
the content-based systems cannot recommend items that are di↵erent from
anything the user has seen before. In certain cases, items should not be recom-
mended if they are too similar to something the user has already seen, such as
a di↵erent news article describing the same event. Therefore, some content-
based recommender systems, such as Daily-Learner [6], filter out items if they
are too similar to something the user has seen before. Zhang et al. [38] pro-
posed the use of redundancy measures to evaluate whether a document that is
deemed to be relevant contains some novel information as well. In summary,
the diversity of recommendations is often a desirable feature in recommender
systems.

Serendipity in a recommender can be seen as the experience of receiving
an unexpected and fortuitous item recommendation, therefore it is a way to
diversify recommendations. While people rely on exploration and luck to find
new items that they did not know they wanted (e.g., a person may not know
she likes watching talk shows until she accidentally turns to David Letterman),
due to over-specialization, content-based systems have no inherent method for
generating serendipitous recommendations, according to Gups theory [15].

It is useful to make a clear distinction between novelty and serendipity.
Herlocker [16] explained that novelty occurs when the system suggests to
the user an unknown item that she might have autonomously discovered. A
serendipitous recommendation helps the user to find a surprisingly interesting
item that she might not have otherwise discovered (or it would have been really
hard to discover).

The injection of serendipity in recommendation lists are often seen as pro-
grammatically allowing serendipitous recommendations to make the cut in the
process of generating recommendations. From this perspective, the problem
has not been deeply studied, and there are really few theoretical and experi-
mental studies.

37

3.3 Towards Serendipitous Recommendations

Toms [35] explains that , there are three kinds of information searching: 1.
seeking information about a well-defined object; 2. seeking information about
an object that cannot be fully described, but that will be recognized at first
sight; 3. acquiring information in an accidental, incidental, or serendipitous
manner.

It is easy to realize that serendipitous happenings are quite useless for
the first two ways of acquisition, but are extremely important for the third
kind. As our discussion concerns the implementation of a serendipity-inducing
strategy for a content-based recommender, the appropriate metaphor in a real-
world situation could be one of a person going for shopping or visiting a
museum who, while walking around seeking nothing in particular, would find
something completely new that she has never expected to find, that is definitely
interesting for her.

In conclusion, the adoption of strategies for realizing operational serendip-
ity is an e↵ective way to extend the capabilities of content-based recommender
systems in order to mitigate the over-specialization problem, by providing the
user with surprising suggestions.

3.3 Towards Serendipitous Recommendations

This is a summary of recent work related to serendipitious recommendations in
recommender system. Serendipity simply means a ”happy encounter” wherein
you stumble upon something you were not explicitly looking for. What role
serendipity has come to play in terms of modern web search, how personaliza-
tion in searches are limiting the scope of serendipitous recommendations, how
to achieve diverse recommendation lists, what are the state-of-the-art evalua-
tion metrics for serendipitous recommendation, through this section we will
try to study these issues.

Not a lot of work has yet been done in the domain of serendipitous rec-
ommendations but slowly people are waking up to the idea of not just relying
on accuracy but the ”overall user experience” to be the driving force behind
generating recommendation lists. In one of the earliest work, Ziegler et al. [40]
recognized this need. Although not strictly in the domain of serendipitous rec-

38

3.3 Towards Serendipitous Recommendations

ommendations, it is an obvious motivation for this thesis. The work presented
topic diversification, a novel method designed to balance and diversify per-
sonalized recommendation lists in order to reflect the users complete spectrum
of interests.

Though being detrimental to average accuracy, they showed that their
method improves user satisfaction with recommendation lists; in particular
for lists generated using the common item-based collaborative filtering algo-
rithm. They also introduced the intra-list similarity metric to assess the topical
diversity of recommendation lists and the topic diversification approach for
decreasing the intra-list similarity.

Relevance of Ziegler’s work in todays scenario with the sudden surge of smart
phones and apps- The essence of this highly cited paper in the domain of
serendipitous recommendations is that there is a need to move beyond the
obvious and the introduction of an evaluation metric to evaluate the obvious-
ness. The obvious here being the explicit interest shown by a customer towards
a particular category of products which leads to recommendations specific to
that category. Everyone appreciates a little change every now and then. This
concept is very subjective in nature owing to the fact that you can never be
certain if the surprise recommendation was actually appreciated by the end
user or not. Well thats something that can be evaluated easily. The di�cult
part is to identify what to recommend. More urgent than this is addressing the
problem of increased cardinality of the domain we are dealing with. As the
number of products increase the consumption rate is pushed in the opposite
direction. The consumers are not able to experience the products at a rate pro-
portional to the rate at which these products are being pushed into the market.

The domain of conventional products like movies, books, CDs wherein the
number of products being introduced in the market is very moderate, current
recommendation engines work su�ciently good but in domains like mobile
applications where a substantial amount of applications are introduced every
week these same recommendation strategies fail to recommend novel items to
the end user. Please refer Figure 3.1.

39

3.3 Towards Serendipitous Recommendations

Figure 3.1: Pie chart depicting the share of books, movies, mobile apps in the
market

If we compare the domains of Books, Movies and Apps, the most distinct is
the number of products in a domain and the actual number of products that
are used by the end user. The cardinality is maximum in the domain of mobile
applications with over 4.5 million applications. Also there is a limited set
of products that are actually experienced by the end user.Please refer Figure
3.2 to see the di↵erence between available products and products actually
experienced. Making recommendation for such products is challenging since
nobody has ever experienced these products.

Figure 3.2: Bar graph with estimates of how much percentage of products are
actually experienced by the end user

40

3.3 Towards Serendipitous Recommendations

With the current market scenario it can be said that there is a need for more
advanced and e�cient recommendation techniques that can move beyond the
obvious recommendations and suggest products that have not been experi-
enced yet but potentially novel to the end user.Ziegler et al. [40] had used
few condensation steps to bring the dataset from 1,157,112 ratings to 361,349
ratings in order to get more accurate findings from the collaborative filtering
algorithm method used. This is a very common practice for doing research
in collaborative filtering approach. But for domains with massive cardinality
the condensation steps followed by the author can push us further and further
away from reality. It is to be believed that over 2/3rd of the products are not
ranked, using steps like removing products with less than 20 mentions will al-
ways discard these infrequently experienced items. But a very few percentage
of users are in fact experiencing them so these transactions are important.

Neighborhood formation is at the very heart of recommender systems. By
finding out users similar to our target user we construct the user-user sim-
ilarity matrix and then make the predictions/recommendations. Both with
user-based and item-based collaborative filtering algorithm, some similarity
measure is used to compare two users or two items. The approach used by
the author is to use a taxonomy to classify all the items and use average of all
the ratings for two products in order to compare them. Now by simple law of
average its easy to prove that too many lower rankings will pull the fewer high
rankings to give an average ranking which is not close to the real time scenario.
Considering work done strictly in the domain of serendipitous recommenda-
tions, Andre et al. [4] came up with some significant observations. Highly
accurate search engines reduce the opportunities for serendipity. Personal-
ization is another deterrent for serendipity by giving user exactly what he
needs. There are two important aspects to understand serendipity, firstly what
activity was user engaged in at the time of the serendipitous encounter and
secondly what type of information was encountered. Whether the user was
doing a goal directed browsing/non directed browsing, relevant/irrelevant in-
formation. There’s value in partially relevant searches since they are interesting
but not directly related to the user’s interest, but they are potential candidates
for serendipitous recommendations. A Low click entropy would mean a small

41

3.4 Evaluation Metrics for Serendipitous Recommendations

number of results for clicked for a particular query. High click entropy would
mean a high number of di↵erent results were clicked for a particular query. Aim
is to move towards positive correlation between click entropy and results that
were judged interesting or potentially serendipitious. Kawamae [18] work on
serendipity via innovators is an approach of selecting representatives for each
user. This helps in solving the cold-start problem very e↵ectively. Sugiyama
and Kan [33] proposed a framework for scholarly paper recommendations.User
profile construction is done using information derived from

• dissimilar users and

• co-authors to specifically target serendipitous recommendation.The pro-
posed method has three main steps.

Firstly, the user profile is constructed for every researcher. Using this pro-
file,another profile is constructed but this time concentrating on the serendip-
itous recommendations. Feature vectors are then constructed to recommend
candidate papers using citations of the target paper.Finally using cosine simi-
larity, recommendations are generated.

3.4 Evaluation Metrics for Serendipitous Recommen-
dations

Evaluation measures act as objective functions to be optimized by informa-
tion retrieval systems. Such objective functions must accurately reflect user
requirements, particularly when tuning IR systems and learning ranking func-
tions. Ambiguity in queries and redundancy in retrieved documents are poorly
reflected by current evaluation measures. In regards to this Clarke et.al [11]
introduces a framework for evaluation that systematically rewards novelty and
diversity. This framework was developed into a specific evaluation measure,
based on cumulative gain demonstrate the feasibility of the approach using a
test collection based on the TREC question answering track.

Kawamae [18] came up with the idea of utilizing the surprise of each user
in the recommendation process by focusing on the estimated search time that
the users would take to find the item by themselves. He assumed that items

42

3.4 Evaluation Metrics for Serendipitous Recommendations

recently purchased by an ”innovator” will surprise other users more than other
items.It is like assigning a user with unpredictable traits as a representative for
other users.It also takes into account the fact that user interests change over a
passage of time and also the trends of products keep changing.The reason for
doing this is quite understandable since the existing metrics do not account for
the dynamics that user preferences goes through.

Nakatsuji [29] proposed a method for identifying items that are highly novel
for the user by identifying the smallest distance from the class accessed before
the class where the actual target item is. Dissimilarity metrics are also being
researched extensively. In this domain Aktolga [2] came up with dissimilar
measures to detect outlier sections in congressional legislation so that readers
can easily understand long legislation documents. The dissimilarity measures
employed are KL divergence, JS divergence, KL divergence contribution, sym-
metric KL divergence contribution. Ziegler et al. [40] came up with new metric
like ”Intra List Similarity” for Topic Diversification. Nakatsuji [29] further
improved on the shortcomings of Ziegler et al. by proposing a method for
identifying items that are highly novel for the user, by defining item novelty
as the smallest distance from the class the user accessed before the class that
actually contains the target item. Regarding serendipity evaluation, there is
a level of emotional response associated with serendipity that is di�cult to
capture, therefore an e↵ective serendipity measurement should move beyond
the conventional accuracy metrics and their associated experimental method-
ologies. New user-centric directions for evaluating new emerging aspects in
recommender systems, such as serendipity of recommendations, are required
[25].

Another work by Celma and Herrera [10] presents two methods, Named
Item and User Centric, to evaluate the quality of novel recommendations. The
former method focuses on analysing the item based recommendation network.
The aim is to detect whether the network topology has any pathology that
hinders novel recommendations. The latter, user centric evaluation, aims at
measuring users perceived quality of novel recommendations. The results of
the experiments, done in the music recommendation context, show that last.fm
social recommender, based on collaborative filtering, is prone to popularity
bias. This has direct consequences on the topology of the item based recom-

43

3.5 Summary

mendation network. Pure audio content based methods (CB) are not a↵ected
by popularity. However, a user centric experiment done with 288 subjects
shows that even though a social based approach recommends less novel items
than our CB, users perceived quality is better than those recommended by a
pure CB method.

The Recommender Systems community is paying increasing attention to
novelty and diversity as key qualities beyond accuracy in real recommenda-
tion scenarios. Despite the raise of interest and work on the topic in recent years,
we find that a clear common methodological and conceptual ground for the
evaluation of these dimensions is still to be consolidated. Di↵erent evaluation
metrics have been reported in the literature but the precise relation, distinction
or equivalence between them has not been explicitly studied. Furthermore,
the metrics reported so far miss important properties such as taking into con-
sideration the ranking of recommended items, or whether items are relevant
or not, when assessing the novelty and diversity of recommendations.They
present a formal framework for the definition of novelty and diversity metrics
that unifies and generalizes several state of the art metrics. We identify three
essential ground concepts at the roots of novelty and diversity: choice, discov-
ery and relevance, upon which the framework is built. Vargas and Castells
[36] introduced item rank and relevance are introduced through a probabilistic
recommendation browsing model, building upon the same three basic con-
cepts. Based on the combination of ground elements, and the assumptions of
the browsing model, di↵erent metrics and variants unfold.

3.5 Summary

This chapter laid the foundation needed to understand the motivation be-
hind the proposed approach.It explained what is the need for serendipity in
recommendations and why we need to go beyond the accuracy metrics like
precision and recall. It then explained the various aspects and issues in achiev-
ing serendipity. The next chapter illustrates the techniques that constitute the
proposed approach to address the issues presented in this chapter.

44

Chapter 4

Proposed Methodology

Section 4.1 introduces the shortcomings of existing approaches. Section 4.2
explains the preliminaries for the proposed system which includes data col-
lection. Section 4.6 illustrates the system architecture of the proposed graph
based approach, describes each component of the system and shows how each
of the components of the proposed technique contributes to the recommen-
dation process. Finally, Section 4.7 gives the algorithm and details about the
various components.Finally section 4.8 gives the summary of the chapter.

4.1 Intuition: Why the Graph Approach is Employed?

Graph-based techniques exploit the transitive relations in the data. These
techniques also avoid the problems of sparsity and limited coverage by eval-
uating the relationship between users or items that are not directly connected.
However, unlike dimensionality reduction, graph based methods also preserve
some of the local relations in the data, which are useful in making serendipitous
recommendations.

Similarity graphs are able to capture the inherent interest pattern of a user
who has downloaded a set of applications and not all the applications. The
main idea is that on the user preference graph if two apps are connected by a
higher weighted edge then these apps are similar. Alternatively, if there exists
a path connecting these two nodes and the weights on each edge that consti-
tutes this path are all su�ciently large or statistically speaking the sub graph

45

4.2 Existing Recommendation Techniques: Where They Lack.

density for this path is high then apps along this path which are not already
downloaded with a user are good candidates for surprise recommendation for
the user.

4.2 Existing Recommendation Techniques: Where
They Lack.

Recommendation techniques are known to have their share of problems, most
common being the new user and new item problem.
New User Problem is the problem of predicting/suggesting items to a new user
since very little data is available about his preferences. Along with this is the
problem of New item, which means that if an item has very little ratings, it does
not appear in the recommendations for quite some time till su�cient ratings
are available.

”Item discovery” becomes one of the major concern for researchers as the
rate at which items are being pushed in the market is increasing exponentially
thus making the task of item discovery more di�cult.

This is also true in the domain of mobile applications(popularly known as
”apps”). There is a constant stream of new apps being added to the various
app stores. These apps do not get experienced by that many users for them to
show up in the recommendations. Thus, even though there is a huge pool of
available apps only a subset gets recommended. This is the early rater problem.
This phenomenon is similar to the portfolio e↵ect [3], which suggests a list of
very similar items. So suggesting movies of same director, set of actors, genre
to a user who has shown preference for them may not be good for an overall
satisfying user-experience even though the accuracy of the list might be very
high.

As discussed earlier, item-based collaborative systems can su↵er from this
e↵ect [40]. A personal experience of visiting the Amazon store backed this
observation. Browsing novels for Danielle Steel1a couple of years back, my rec-
ommendations constituted of other novels by the same author. In economics,
its known as law of diminishing marginal utility[32]. The law describes e↵ects

1http://daniellesteel.com

46

4.3 Preliminaries

of saturation that steadily decrease the incremental utility of products p when
acquired or consumed over and over again. For example, suppose you are
o↵ered your favorite drink. Let p1 denote the price you are willing to pay for
that product. Assuming you are o↵ered a second glass of that particular drink,
the amount p2 of money you are inclined to spend will be lower, i.e., p1 > p2.
Same for p3, p4, and so forth.

A very specific aspect of content recommender systems is relevant to this
discussion. Due to the nature of this kind of systems, they can only recommend
items that score highly against a userś profile, thus the user is limited to being
recommended items similar to those already rated. This shortcoming, called
over-specialization, prevents these systems to be e↵ectively used in real world
scenarios.

The proposed approach tries to address this issue in a way that users get
more diverse items recommended without compromising a lot on accuracy.

4.3 Preliminaries

This section describes the details of representing the information content (IC) of
mobile applications, computing app-to-app similarity weights and construct-
ing the app-to-app similarity matrix.

4.3.1 Data Collection

Data collection related to mobile apps is a challenging task. There are two
major native app stores for mobile market, namely, Apple iTunes for iOS apps
and Google Android market for Android apps. To analyze the mobile app
market, we require collecting data of mobile apps from both. In both stores,
there are the following two types of data for each mobile app:

• Static data, such as App name, description, developer name that does
not change over time and

• Dynamic data, such as rating, rank, reviews that changes on a daily basis.

The static data can be collected by one-time crawling, but the dynamic data
needs to be collected by crawling the native stores on daily basis. This creates a

47

4.3 Preliminaries

challenge. The additional challenge in data collection is the format of the data
available in native stores - iTunes and Android market. It is impossible for a
standard crawler to retrieve the data from native stores; we need to build a
specialized crawler capable of handling AJAX and JSON technologies. Instead
of developing the data collection component from the scratch, for this particular
work, data was collected by a commercial project - Mobilewalla . Mobilewalla
is a venture capital backed company that specializes in collecting, analyzing
and presenting data related to mobile apps in four native stores Apple iTunes,
Google Android market, Blackberry native store and Windows App store.

Android and Apple iOS form 70% of the mobile app market worldwide.
Additionally USA is the largest market for mobile apps 41% of worldwide
mobile app market in 2011. Thus for this particular research, our focus was
on mobile apps in iTunes stores in USA only. Since this work required natural
language processing, data-set included only English language apps, i.e., apps
whose title and descriptions are written in English. Additionally, due to realistic
limitation in a research environment, data from May 2011 to January 2012 was
considered to select the most popular apps in the store.

This work uses two main datasets

• App Data: This is the data about apps like their Title, Category, De-
scription and any other descriptive data. This has been collected from
Mobilewalla1.

• User Data: This data has been collected by doing a survey with campus
students. We asked students to list the names of the apps downloaded
on their iphone(thus restricting apps to apple appstore). The dataset thus
contains username and name of the app installed. This information is
then used to generate the recommendations.

For the sake of notations, we are going to call the datasets as app Data and user
data in all our future references

1http://mobilewalla.com

48

4.3 Preliminaries

Table 4.1: App Attributes

App ID Unique ID for every app
in a particular store

App Title Name of the app
App Category Category the app belongs

to i.e lifestyle, entertain-
ment, sports, travel etc

App Description Description of the applica-
tion

Price Free/Paid
Dev ID Unique ID given to the de-

veloper of the app
Seller ID Unique ID given to the

seller of the app
Latest Version Di↵erent versions of an

app exist in the app store
Update Date Date on which the last up-

date was performed
Platform Whether the App is an

Apple, Android, Black-
berry or Windows based

Size Size of the App in Kb/Mb
Language Language in which the

app is available

4.3.2 App Representation

There is a vast amount of information available for mobile applications pop-
ularly called mobile apps. Ranging from app characteristics to download
statistics to developer details.

Information available about Mobile apps(Mobilewalla) is as follows:
If we talk about information content of a mobile application, only a handful
of the textual information can lead us to what the application is actually all
about like,what does the app do, what sort of user base it caters to, what the
quality of the application is etc. So even though there is a lot of information
available about mobile apps, we selected the attributes most relevant to the
research problem. Textual Information available in case of mobile apps:

49

4.3 Preliminaries

• Title of the Mobile App: A title is the basic and most intuitive way of
knowing what the App does and thus is an obvious choice.

• Category of an App: This indicates what category the apps belongs to and
thus helps in finding similar apps.

• Description: Most mobile apps have a good description about the func-
tionality of an app, which platform it supports and what are the prime
features, it thus helps understand the mobile app better.

These three attributes collectively now represent an app-document repre-
senting each app. Thus the further processing is done on these app-documents
generated by combining these three attributes. The next step is to prepro-
cess these app-documents so as to prepare them for the similarity generation
module.

4.3.3 Preprocessing of App data

Most of the time app developer release various versions of their root apps(pro,
lite and HD). For example, app called Fruit Ninja has several variants by same
developers in both Apple and Android platforms such as Fruit Ninja Pro,
Fruit Ninja Lite and Fruit Ninja THD Free. To work with so many apps and
their di↵erent versions and finally calculate the similarity values between each
pair of apps, first we preprocess all the app names and descriptions using
the preprocessing algorithm. Usually there are stop words- by, edition, Free,
HD, THD, Seasons, lite, pro, Classic, enhanced and symbols like +,!,- which
are needed to removed before processing further. The preprocessor algorithm
removes these stop words and symbols from the app-documents thus aiding
the natural language processing for finding similarities between them. The
main steps involved in the preprocessing algorithm are:

• Checking English words- This checks whether the words appearing in
the app-documents are English or not. It achieves this by matching the
ascii value of letters and checking if they fall within the permissible ascii
key set of English alphabets.

50

4.3 Preliminaries

• Removing stop words- Stop word removal is a very common step in
applications that involve natural language processing. There are list of
common stop words available due to a lot of research in this domain. We
modified the stop word removal list to suit our application and domain.

• Removing punctuation- After the stop word removal, the algorithm re-
moves punctuation from the app-documents to make them more refined
and concentrated.

• Truncation of miscellaneous symbols- This step includes removal of mis-
cellaneous symbols like-(#,$,&...) and some other symbols which do not
have a straightforward ascii key value to match and truncate.

• Creating the tokens- Finally after all the preprocessing of the app-documents,
tokens are created so that they can be analysed and used for similarity
score generation.

Also an issue with the app names is the absence of white spaces between
words, for example - Fruit Ninja HD Lite and FruitNinja HD without the space
in between Fruit and Ninja. After removal of the stop words, these apps will be
named as Fruit Ninja and FruitNinja respectively. To address such scenario, we
tokenize these preprocessed app names based on the capital character along
with the white space characters, which will tokenize both the app names into
Fruit and Ninja.

Once the stop words are removed and app-documents are tokenized, app-
app pair similarity are calculated using the ling-pipe APIs (Alias 2008) TF-IDF
scheme between app-document pairs 1. This TF-IDF scheme is based on vector
similarity(using the cosine measure of angular similarity) over dampened and
discriminatively weighted term frequencies. The basic idea is that two strings
are more similar if they contain many of the same tokens with the same relative
number of occurrences. We identify all the app-pairs that cross a threshold
score value (our case =0.8).

1http://lingpipe.com

51

4.3 Preliminaries

4.3.4 App-App Similarity

A mobile app vector is now represented by 3 attributes: App Title, App Cate-
gory and App Description.

To compute the similarity between two apps we use the popular cosine
similarity using TF-IDF term weighting to computer similarity between their
attributes.Each App can be considered to be represented by a vector in a n-
dimension space where each dimension corresponds to a term appearing in
the overall vocabulary of words in the given textual information.

Figure 4.1 is a snapshot of the app-app Similarity Scores. As we can see,
every app is compared to every other app.

Figure 4.1: App-app similarity matrix

4.3.5 User Preference Representation

Now that the app representation has been discussed, this section will focus on
how the user information is incorporated.

For every user, we have a set of apps representing his taste. These set of
apps are set of applications already downloaded on the users phone. It is a
holistic view of the interest patterns of the user and provides a good foundation
for the user preference graph construction.
In this approach we are not taking any explicit input from true user in the form

52

4.4 System Architecture and Methodology

of reviews or rankings instead we are simply focussing on what he has on his
phone to serve as the window to his taste set as far as apps are concerned. This
is slightly di↵erent from popular recommender systems based on collabora-
tive filtering which rely on ratings and reviews to compare user profiles and
item profiles. For example, User1 is represented by list apps installed on his
phone.So is User2 and so on.

User1[AppId1,AppId2,AppId3,AppId4,AppId5...]
User2[AppId2,AppId3,AppId4...]
User3[AppId1,AppId2,AppId3...]

Figure 4.2 shows a preference matrix that can be constructed using the
information about downloaded apps on users phone. For every app that
is downloaded the corresponding cell has a value ”1” else ”0”. This is to
e↵ectively represent all the apps that the user has on his phone.

Figure 4.2: User preference similarity matrix

4.4 System Architecture and Methodology

After studying the principles and objectives of RSs this work proposes a recom-
mendation system based on item-item similarity graph. The system intends to
retrieve serendipitous recommendations from the graph for a particular user.
Their are 4 major components:

53

4.4 System Architecture and Methodology

(1) Similarity Calculation Module.

(2) App-Similarity Graph Construction Module.

(3) User preference Graph Construction Module.

(4) Recommendation Generation Module.

In Figure 4.3 we present the architecture of the proposed approach. The
first module generates the similarity scores between every pair of app by us-
ing metadata of each app. This information is used by second module which
generates an app-app similarity graph. The third module is responsible for
generating a user preference graph by finding apps that are already installed
in a user’s phone and the edges that connect them. The final module gener-
ates the recommendations by finding shortest paths amongst the installed apps.

Below is a table to follow the notations used in further sections. Please refer
Figure 4.2 for details.

54

4.4 System Architecture and Methodology

Figure 4.3: System architecture

55

4.4 System Architecture and Methodology

Table 4.2: Notation

Notation Meaning
App Data Data about Apps in the App

stores
User Data Data about Apps used by

users
S

n
A List of App ID’s in the App

Data
S

m
UID List of App ID’s in the User

Data
D

n
A List of App Documents in

the App Data
L

n(n�1)
A List of App-App Similarity

Scores
T

n
A List of App Titles of Apps in

App Data
S

m
U List of App Titles of Apps in

User Data
S P List of paths between apps in

User Data
E Ai,Aj List of edges between apps

in User Data
G(V,E) Graph of V vertices and E

edges
Simscore(Ai,Aj) Similarity score between two

apps
AddVertex(Vi) To add a vertex in graph
AddEdge(Ai,Aj) To add an edge between two

vertices
AddWeight(Edge) To add weight to an edge
TfIdf To calculate TfIdf score be-

tween two texts
n Total number of Apps in

App data
m Total number of Apps in

User data

56

4.4 System Architecture and Methodology

4.4.1 Similarity Calculation Module

ALGORITHM 1: Similarity Calculation
Input: List of AppID’s Sn

A = {A1,A2...An}
List of AppDocuments Dn

A = {D1,D2...Dn}
Output: List of App-App Similarity Score

LA =
S
8Ai,Aj2Sn

A,i, j SimScore{Ai,Aj}
Size |SA|
L ;
for i = 1; i <= Size � 1; i + + do

App1 Ai
Doc1 Di
for j = i + 1; j < Size; j + + do

App2 Aj
Doc2 Dj
SimScore(Ai,Aj)=t f Id f (Doc1,Doc2)
LA=LA [SimScore{App1,App2}

end
end
return LA

Algorithm 1: Similarity Calculation

This algorithm takes input as the list of app IDś and app Documents pre-
pared after the preprocessing stage. This information is then used to construct
the graph. The output is a list of similarity scores between every pair of apps.

All the App IDś are considered pairwise. For example, if the list contains
three apps, then pairs to consider for similarity calculation are:

(App1,App2),(App1,App3),(App2,App3)

After this step, app documents containing the textual data about each apps
are compared using TF-IDF. A function TfIdf.handle() creates token of textual
data passed as parameter and adds it to the handle. This is done for both the
apps and TfIdf.proximity() calculates the similarity score. This is stored in a
separate list which will be later used for graph construction.

57

4.4 System Architecture and Methodology

4.4.2 App Similarity Graph Construction Module

ALGORITHM 2: App-App Similarity Graph Construction
Input: List of AppID’s Sn

A = {A1,A2...An}
List of App-App Similarity Scores,
LA =

S
8Ai,Aj2Sn

A,i, j SimScore{Ai,Aj}
Output: Graph G(V,E), V = {A1,A2...An} and E = {E1,2,E1,3,E2,3...Enm}
Size |SA|
E ;
G ;
for i = 1; i <= Size; i + + do

Vi Ai
G.AddVertex(Vi)

end
for i = 1; i <= Size � 1; i + + do

App1 Ai
for j = i + 1; j < Size; j + + do

App2 Aj
G.AddEdge(App1,App2)
E{App1,App2} = S8Ai,Aj 2 Sn

A, i , jE{App1,App2}
G.AddWeight(SimScoreApp1,App2)

end
end
return G,E

This component is responsible for generating the base graph with all the
apps in the dataset as vertices and the edges with weight equivalent to the
similarity scores. This lays the foundation for generating the user preference
graph. Edges contained in this graph are above a certain threshold to allow
novel but serendipitous recommendation generated by the subsequent com-
ponents.

Given the app-app similarity matrix we define a graph ASG,

Definition 1: (ASG: App-App Similarity Graph)

Given a set of applications A = A1,A2...An, a graph G = (V,E) is an undi-
rected, fully connected weighted graph where V is node set such that each app

58

4.4 System Architecture and Methodology

is a node on the graph G. E is edge set, where an edge between Vi and Vj is
established if similarity between Vi and Vj is above a certain threshold. Thus,
each edge e 2 E has an edge weight 0 <Wij < 1, and Wij =Wji.

Algorithm 2: App-App Similarity Graph Construction

This algorithm takes input as list of app IDś and the similarity scores of all
the apps available in the dataset. All the app IDś are then added as vertices.
For adding the edges the algorithms checks whether there is a similarity score
above a certain threshold exists and then creates an edge between those two
apps. Also the similarity score is added a weight to that edge. The output
is a graph with vertices as the distinct app IDś and edges as similarity values
between then. These are typically called Item graphs since the node represents
the items and edges between them represent some sort of score between the
two.

Post this, all app pairs are considered one at a time and similarity scores are
calculated. Also (1 � similarityscore) is stored which is the dissimilarity score
which we aim to minimize(in turn maximizing similarity score).

4.4.3 User Preference Graph Construction Module

The user preferences are available in the form of list of app titles that are already
installed on a user’s phone. These app titles have to be mapped to one of the
apps in the dataset in order to work with the similarity scores. The following
algorithm compares each user app name with the existing apps in the dataset
and assigns the appId where cosine similarity is 1. We thus have a user pref-
erence matrix where every app that exists on user’s ozone corresponds to a 1
else 0. After the apps have been assigned an appId we can construct the user
preference graph.

Given the User Preference matrix we define a graph UPG,

Definition 2: (UPG: User Preference Graph)

59

4.4 System Architecture and Methodology

Given a set of applications A = A1,A2...An where Ai (1 < i < N) means a
downloaded item for a user U, a sub graph of app-app similarity graph com-
prising of maximum possible applications that a user already on his phone as
vertices. This sub graph is generated by finding out the max-weighted edges
amongst all vertices and including those edges. This will also include foreign
nodes into the graph since maximum weighted paths between two nodes can
be through other nodes as well. This helps us get our recommendations.

ALGORITHM 3: Getting User AppID’s
Input: List of AppID’s Sn

A = {A1,A2...An}
List of AppTitles Tn

A = {T1,T2...Tn}
List of UserAppTitles Sm

U = {U1,U2...Um}
Output: List of UserAppID’s Sm

UID = {UID1,UID2...UIDm}
Sm

UID ;
score ;
for i = 1; i <= m; i + + do

for j = 1; i <= n; j + + do
score = t f Id f (Ui,Tj)
if score = 1 then

UIDi = Aj
end

end
end
return ;

Algorithm 3: Getting User AppID

The user data is in the form of titles of the applications installed on the user
phone and thus they need to be resolved into app ID. Now since there are so
many application which have highly similar names it would not be easy map-
ping app Title to its exactly same name. Thus, we wish to find either the exact
match or the nearest match for the given app title. For this we calculate the
similarity score of every app title with all available app titles and the highest
match is found. The app title is thus assigned that particular app id. After this
algorithm we have the necessary data to construct the user preference graph
which uses the list of app id installed on the user phone as its vertex set and

60

4.4 System Architecture and Methodology

ALGORITHM 4: User Preference Graph Construction
Input: List of UserAppID’s Sm

UID = {UID1,UID2...UIDm} List of
Edges E=

S8Ai,Aj 2 Sn
A, i , jE{App1,App2} Graph G(V,E)

Output: Graph UserGraph(V,E), V = {UID1,UID2...UIDm} and
E = {E1,2,E1,3,E2,3...Enm}

Size |SUID|
G ;
for i = 1; i <= Size; i + + do

Vi UIDi
UserGraph.AddVertex(Vi)

end
for i = 1; i <= Size � 1; i + + do

for j = i + 1; j < Size; j + + do
if 9E{i, j 2 G(V,E)} then

UserGraph.AddEdge(UIDi,UIDj)
end

end
end
return UserGraph

the connecting edges between them as the edge set.

Algorithm 4: User Preference Graph Construction

In the previous algorithm, we got the list of app id installed on the user
phone. Using this data and the app-app similarity graph as our base graph
we construct the user preference graph. First of all, the app IDs are added as
vertex into the graph. Each pair of App is then checked for an existing edge
in the base graph which is the app-app similarity graph.If there exists an edge,
then this is included in the user subgraph as well. The output of this algorithm
is thus a representation of user’s interests on a graph.

4.4.4 Recommendation Generation Module

Algorithm 5: Recommendation Generation

This algorithm takes pairwise apps on the user phone to be considered as

61

4.4 System Architecture and Methodology

ALGORITHM 5: Recommendation Generation
Input: List of UserAppID’s Sm

UID = {UID1,UID2...UIDm} Graph
G(V,E)

Output: List of Recommendations Ruser, List of Paths
Sm⇤(m�1)

P = {P1,2,P1,3...Pm,n}
Size |SUID|
Ruseri ;
for i = 1; i <= Size � 1; i + + do

for j = i + 1; j < Size; j + + do
Paths FindPaths(UIDi,UIDj)
SP

S
8UIDi,UIDj2Sn

A,i, j Paths{Pi,Pj}
end

end
forall the Paths 2 SP do

Ruser CommonVertices(Paths)
end
return UserGraph,Ruser

source and destination. It then uses Bellman Ford Shortest Path method to
calculate shortest path between the source and destination. This is the final
step in the proposed method. As mentioned earlier the main idea behind this
approach is that on the user preference graph, if two apps are connected by a
higher weighted edge then these apps are similar. Alternatively,if there exists a
path connecting these two nodes and the weights on each edge that constitutes
this path are all su�ciently large then apps along this path which are not already
downloaded by a user are good candidates for surprise recommendation for
the user.

Banking on this assumption, we construct paths between all the app pairs
and create a path list. These paths are then explored to find out the common
vertices amongst them other than the source and destination and the ones
already downloaded on the user’s phone. They are then added to the final
recommendation lists and the UPG is updated by adding these new recom-
mendations. Since graph is acyclic and connects all of the vertices, it must
provide shortest path from every vertex to every other vertex.

By minimizing the dissimilarity function(thereby moving along a path if
high similarity) while using Bellman Ford shortest path(which minimizes the

62

4.5 Summary

edge weight to find shortest path between source and destination), we are
getting a path that connects user downloaded apps with some new apps that
are highly similar to these apps and thus are good candidates for serendipitous
recommendations.

Thus, the output of this module is a list of serendipitous recommendations
for a user on the basis of apps already installed in his phone.

4.5 Summary

This chapter illustrates the proposed system. The system integrates graph
based approach to solve to an extent the problem of over-specialization com-
mon with content based approaches by providing highly serendipitous recom-
mendations to the usser. The next chapter describes the experimental results
of the tests performed to evaluate the techniques presented in this chapter.

63

Chapter 5

Experiments and Results

5.1 Experiments and Results

This chapter describes the experimental results obtained in the form of an
illustration.

5.1.1 Test Data

In this section we first describe the datasets used for generating serendipitous
recommendations. The three main datasets used were:

• App Data- This dataset comprises of information about Apps like Ap-
pID(across all/local stores), Title of the App, Description of the App etc.

• App-App Similarity Scores- Using the App Data dataset, the similarity
scores are generated. This dataset is then further used for constructing
the similarity graphs.

• User App Data- This dataset contains the list of App IDs installed on a
user’s phone. It includes the user name, name of the App installed and
the App ID. Initially the data collected were only App Titles but later they
were resolved into App ID’s for further processing.

64

5.1 Experiments and Results

Table 5.1: App data about a single app

App Attributes Data
App ID 127
App Title ”Walt Disney World Guide”

Notescast
App Description ”This is a complete guide-

book in an app and a very
complete one at that.........

Combined Title and Description Walt Disney World Guide”
Notescast This is a complete
guidebook in an

In 5.1 are presented various attributes of an App that are considered for this
work. There is a lot of information about Apps these days but for this work the
main focus was on descriptive information rather than statistical information.
This attributes like Title and Description have been used. Using the combined
title and description in Figure 5.1, we calculate the similarity scores. To do so
we user TF/IDF. TF/IDF distance is based on vector similarity (using the cosine
measure of angular similarity) over dampened and discriminatively weighted
term frequencies. The basic idea is that two strings are more similar if they
contain many of the same tokens with the same relative number of occurrences
of each. Tokens are weighted more heavily if they occur in few documents.
Next section describes the details.

5.1.2 Implementation Details

This work uses LingPipe which an excellent library for various applications
of natural language processing. There are two interfaces at the very heart of
string comparisons in LingPipe, util.Distance< E > and util.Proximity< E >.
Their signatures are both very simple. The distance interface specifies a single
method which computes a distance between two objects of type E:

65

5.1 Experiments and Results

public interface Distance< E > public double distance(E e1, E e2);

The proximity interface also specifies a single method:

public interface Proximity< E > public double proximity(E e1, E e2);

String similarity can be specified in terms of distance. If two strings are more
similar, the distance between them will be less. Similarity can also be specified
in terms of proximity. If two strings are more similar, the proximity between
them will be greater. It’s always possible to convert a proximity into a distance
or vice-versa by either negation (additive inverse) or inversion (multiplicative
inverse). In our case we use the dissimilarity score by calculating (1-similarity)
score in order to minimize this while finding paths between pairs of apps.
Tokens are generated from the descriptions of the Apps and their document
frequency and inverse document frequency is calculated. Below is a simple
illustration.

String 1=”walt disney world guide notescastcomplete guidebook app complete one
app buy firsttuaw com 750 superb photos 300 pages information” String 2=”walt
disney world guide notescastcomplete guidebook app complete one app buy firsttuaw
com 750 superb photos 300 pages information”

Distance=0.00 Proximity=1.00 (This indicates the strings are exactly simi-
lar).

String 1=”walt disney world guide notescastcomplete guidebook app complete one
app buy firsttuaw com 750 superb photos 300 pages ” String 2=”walt disney world
secrets gold notescast now enjoy 250 magical walt disney world secrets 200 fun facts
200 original”

Distance=0.05 Proximity=0.95 (This indicates the strings are almost simi-
lar).
These values are calculated for all the app-app pairs. Using this information,
app-app similarity graph is constructed. The next step is to provide the user

66

5.1 Experiments and Results

Table 5.2: Sample user data showing username and apps installed on user’s
phone

UName AppName
User1 1001 Ringtones Lite
User1 ”10,500+ Cool Facts”
User2 97.9 The Box
User2 2011 World Factbook
User3 97.9 The Box
User3 2011 World Factbook
User4 97.9 The Box
User4 2011 World Factbook
User5 97.9 The Box
User5 100 Ways to Motivate Oth-

ers by Steve Chandler

dataset which comprises of apps installed on user’s phone and the recommen-
dations are generated. The next section presents the recommendations for a
UserA.

All modules were implemented in Java 1.7 and used MySQL v5.1 to store
the similarity scores and recommendation paths. All modules and the database
reside in the same computer (a quad processor machine equipped with a 2.33
GHz CPU and 8 GB RAM, and running the Windows operating system).

5.1.3 Results

Using the data about similarity scores between Apps, the App-App Similarity
graph is constructed. App ID’s are added as vertices and edges are added
with weight equivalent to the similarity score between them. Its not possible
to show the constructed graph with so many Apps so the recommendations
are presented directly.

After the graphs are constructed. Paths are calculated between each pair of
user app by minimizing the dissimilarity. In Figure, 5.3, we can see list of apps
installed by UserA along with their App ID’s. Using this data, recommendation
are generated. In Figure 5.4, serendipitous recommendations generated for
UserA can be seen.

The recommendation list includes obvious app recommendations like ”At-

67

5.1 Experiments and Results

Table 5.3: Apps installed by user A

AppID App Title
602510 97.9 The Box
3094 2011 World Factbook
1090360 100 Ways to Motivate Others

by Steve Chandler
1721 10BII Calc Financial Calcula-

tor
4990 5-0 Radio Police Scanner Lite

(Free)
1149536 80,000+Wallpapers HD Free

Table 5.4: Serendipitous recommendations for given user apps

User Apps Recommendations
97.9 The Box Lock Screen App
2011 World Factbook Awesome Note(To Do Di-

ary)
100 Ways to Motivate Others by Steve Chandler High Definition Wallpa-

pers
10BII Calc Financial Calculator Atlas 2012 Pro
5-0 Radio Police Scanner Lite (Free) US Weather Maps
80,000+Wallpapers HD Free Amazing Car Wallpapers

Google Apps Browser
ZipList of Top 100 iPhone
Apps
O�ce HD2

68

5.1 Experiments and Results

las 2012 Pro” since user had an installed app, ”2011 World Factbook”. Other
recommendations like ”High Definition Wallpapers” and ”Amazing Car Wallpa-
pers” can also be justified. The serendipitous recommendations are

• ”Awesome Note(To Do Diary)”, which maybe justified since the user uses
an app called ”Financial Calculator”. This may also be understood like
this, the user likes daily use based utility apps.

• ”Lock Screen App”, this is a good serendipitous recommendation for UserA
since it is an essential for iphone users, but the user has not explicitly
shown interest in it.

69

Chapter 6

Conclusion and Future Work

6.1 Conclusions and Future Work

This work provides a novel way to generate serendipitous recommendations
by using information about installed Apps on a user’s device. It is indepen-
dent of ratings/reviews information thus eliminating to an extent the problem
of ”over specialization” that accompanies content based recommendation sys-
tems. Graph based approaches have not been used a lot in serendipitous
recommendations thus this work is rather first in this domain. The analysis of
the recommendation lists with a larger user dataset needs to be conducted in
order to get more conclusive results.

6.1.1 Evaluating serendipitous Recommendations

Novelty in recommendations is often considered to be items that the user did
not know about previously and thus are a much welcome break from the
list of obvious recommendations. In many applications suggesting similar
items is not desirable since it takes longer time to find something useful for a
particular user. Thus there are evaluation measures for measuring novelty in
recommendations as well.

Very close to this concept is the concept of serendipitous recommenda-
tions.The idea of making ’surprise’ recommendations which are of likely inter-
est to a user is hard to evaluate. Also evaluating serendipity by comparing with

70

6.1 Conclusions and Future Work

accuracy would not be a good. Serendipity is a measure of how surprising the
successful recommendations are. For example, if the user has rated positively
many movies where a certain star actor appears, recommending the new movie
of that actor may be novel, because the user may not know of it, but is hardly
surprising. Of course, random recommendations may be very surprising, and
we therefore need to balance serendipity with accuracy.

The most explored method for measuring diversity/serendipity uses item-
item similarity, typically based on item content. Thus the diversity/serendipity
of items recommended can be calculated by considering the range of items rec-
ommended. The item-item similarity measurement used in evaluation can be
di↵erent from the similarity measurement used by the algorithm that computes
the recommendation lists.

This work can be further extended to find out the extent of serendipity in
the recommendation lists. Also more data about users need to be collected and
experiments need to be conducted to get more conclusive results. This work
thus provides a novel way to generate serendipitous recommendations by
using information about installed Apps and is independent of rating/reviews
thus eliminating to an extent the shortcoming of ”over specialization” usually
with content based recommendation systems.

71

Bibliography

[1] Evolving agents for personalized information filtering, 1993. 37

[2] E. Aktolga, I. Ros, and Y. Assogba. Detecting outlier sections in us con-
gressional legislation. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 235–
244, 2011. 43

[3] K. Ali and W. van Stam. Tivo: making show recommendations using a
distributed collaborative filtering architecture. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 394–401, 2004. 46

[4] P. André, J. Teevan, and S. T. Dumais. From x-rays to silly putty via uranus:
serendipity and its role in web search. In Proceedings of the 27th international
conference on Human factors in computing systems, CHI ’09, pages 2033–2036,
2009. 41

[5] C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: using
social and content-based information in recommendation. pages 714–720.
American Association for Artificial Intelligence, 1998. 13

[6] D. Billsus and M. J. Pazzani. A hybrid user model for news story classifi-
cation. In Proceedings of the seventh international conference on User modeling,
pages 99–108, 1999. 37

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. pages
993–1022, 2003. 34

72

BIBLIOGRAPHY

[8] R. Boim, T. Milo, and S. Novgorodov. Diversification and refinement
in collaborative filtering recommender. In Proceedings of the 20th ACM
international conference on Information and knowledge management, CIKM
’11, pages 739–744, 2011. 36

[9] R. Burke. The adaptive web. chapter Hybrid web recommender systems,
pages 377–408. 2007. 9

[10] O. Celma and P. Herrera. A new approach to evaluating novel recommen-
dations. In Proceedings of the 2008 ACM conference on Recommender systems,
RecSys ’08, pages 179–186, 2008. 43

[11] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan,
S. Büttcher, and I. MacKinnon. Novelty and diversity in information
retrieval evaluation. In Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval, SIGIR
’08, pages 659–666, 2008. 42

[12] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk compu-
tation of similarities between nodes of a graph with application to collabo-
rative recommendation. IEEE Trans. on Knowl. and Data Eng., 19(3):355–369,
2007. 18

[13] E. Frias-martinez, S. Y. Chen, and X. Liu. Evaluation of a personalized
digital library based on cognitive styles: Adaptivity vs. adaptability. 9

[14] E. Frias-Martinez, G. Magoulas, S. Chen, and R. Macredie. Automated
user modeling for personalized digital libraries. International Journal of
Information Management, 26:234–248, 2006. 9

[15] Gup. Technology and the end of serendipity. pages 48–50, 1998. 37

[16] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic
framework for performing collaborative filtering. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 230–237, 1999. 29, 37

73

BIBLIOGRAPHY

[17] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating
collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22:5–
53, 2004. 13

[18] N. Kawamae. Serendipitous recommendations via innovators. In Proceed-
ings of the 33rd international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 218–225, 2010. 17, 42

[19] J. K. Kim, H. K. Kim, H. Y. Oh, and Y. U. Ryu. A group recommenda-
tion system for online communities. International Journal of Information
Management, 30:212–219, 2010. 9

[20] N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal diversity in
recommender systems. In Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’10,
pages 210–217, 2010. 35

[21] L. Liu, N. Mehandjiev, and D.-L. Xu. Multi-criteria service recommen-
dation based on user criteria preferences. In Proceedings of the fifth ACM
conference on Recommender systems, RecSys ’11, pages 77–84, 2011. 34

[22] N. N. Liu, X. Meng, C. Liu, and Q. Yang. Wisdom of the better few:
cold start recommendation via representative based rating elicitation. In
Proceedings of the fifth ACM conference on Recommender systems, RecSys ’11,
pages 37–44, 2011. 33

[23] H. Luo, C. Niu, R. Shen, and C. Ullrich. A collaborative filtering framework
based on both local user similarity and global user similarity. Mach. Learn.,
72:231–245, 2008. 18

[24] T. Mahmood and F. Ricci. Improving recommender systems with adaptive
conversational strategies. In Proceedings of the 20th ACM conference on
Hypertext and hypermedia, HT ’09, pages 73–82, 2009. 9

[25] S. M. McNee, J. Riedl, and J. Konstan. Accurate is not always good: How
accuracy metrics have hurt recommender systems. In Extended Abstracts
of the 2006 ACM Conference on Human Factors in Computing Systems (CHI
2006), 2006. 43

74

BIBLIOGRAPHY

[26] P. Melville and V. Sindhwani. Recommender systems. In Encyclopedia of
Machine Learning, pages 829–838. 2010. 28

[27] D. Mladenic. Text-Learning and Related Intelligent Agents: A Survey. In
IEEE Intelligent Agents, pages 44–54, 1999. 22

[28] Y. Moshfeghi, B. Piwowarski, and J. M. Jose. Handling data sparsity
in collaborative filtering using emotion and semantic based features. In
Proceedings of the 34th international ACM SIGIR conference on Research and
development in Information Retrieval, SIGIR ’11, pages 625–634, 2011. 34

[29] M. Nakatsuji, Y. Fujiwara, A. Tanaka, T. Uchiyama, K. Fujimura, and
T. Ishida. Classical music for rock fans?: novel recommendations for
expanding user interests. In Proceedings of the 19th ACM international con-
ference on Information and knowledge management, pages 949–958, 2010. 36,
43

[30] P. Resnick and H. R. Varian. Recommender systems. Commun. ACM,
pages 56–58, 1997. 9, 10

[31] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods
and metrics for cold-start recommendations. In Proceedings of the 25th
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 253–260, 2002. 33

[32] M. Sinnema and S. Deelstra. Industrial validation of covamof. J. Syst.
Softw., pages 584–600, 2008. 46

[33] K. Sugiyama and M.-Y. Kan. Serendipitous recommendation for scholarly
papers considering relations among researchers. In Proceedings of the 11th
annual international ACM/IEEE joint conference on Digital libraries, JCDL ’11,
pages 307–310, 2011. 42

[34] N. Tintarev and J. Mastho↵. Recommender Systems Handbook. Springer US,
2011. 12, 17, 22, 24, 25, 26, 28, 29, 31, 32

[35] E. Toms. Serendipitous information retrieval. In In Proceedings of the First
DELOS Network of Excellence Workshop on Information Seeking, Searching and
Querying in Digital Libraries, pages 11–12, 2000. 38

75

BIBLIOGRAPHY

[36] S. Vargas and P. Castells. Rank and relevance in novelty and diversity
metrics for recommender systems. In Proceedings of the fifth ACM conference
on Recommender systems, RecSys ’11, pages 109–116, 2011. 44

[37] Wikipedia. 15

[38] M. Zhang and N. Hurley. Avoiding monotony: improving the diversity
of recommendation lists. In Proceedings of the 2008 ACM conference on
Recommender systems, RecSys ’08, pages 123–130, 2008. 35, 36, 37

[39] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for
cold-start recommendation. In Proceedings of the 34th international ACM
SIGIR conference on Research and development in Information Retrieval, SIGIR
’11, pages 315–324, 2011. 34

[40] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving
recommendation lists through topic diversification. In Proceedings of the
14th international conference on World Wide Web, WWW ’05, pages 22–32,
2005. 34, 38, 41, 43, 46

76

	1 Introduction
	1.1 Recommender Systems: What They are and Why are They Needed
	1.1.1 Data Source and Classification
	1.1.2 Content-based Filtering for Recommendations
	1.1.3 Collaborative Filtering for Recommendations

	1.2 Research Motivation
	1.2.1 Limitations with Existing Approaches
	1.2.2 What is Serendipity and its Scope in Content Based and Collaborative Filtering Approaches

	1.3 Research Objective
	1.3.1 Can Serendipitous Recommendations be Generated More Effectively Using Graph Based Recommendations?

	1.4 Proposed approach
	1.4.1 Graph Based Recommendations to Address Over-Specialization in Content Based Filtering

	1.5 Organization of Thesis
	1.6 Summary

	2 Basic Issues with Recommender Systems
	2.1 Content-based Filtering
	2.1.1 Content-based Filtering: Challenges and Advantages

	2.2 Collaborative Filtering
	2.2.1 Collaborative Filtering: Challenges and Advantages

	2.3 Neighborhood Based Recommendations
	2.4 Graph Based Recommendations
	2.4.1 Summary

	3 Literature Review
	3.1 Basic Approach to Recommendations
	3.2 "Accuracy Does Not Tell the Whole Story": Need for Serendipity in Recommendations
	3.3 Towards Serendipitous Recommendations
	3.4 Evaluation Metrics for Serendipitous Recommendations
	3.5 Summary

	4 Proposed Methodology
	4.1 Intuition: Why the Graph Approach is Employed?
	4.2 Existing Recommendation Techniques: Where They Lack.
	4.3 Preliminaries
	4.3.1 Data Collection
	4.3.2 App Representation
	4.3.3 Preprocessing of App data
	4.3.4 App-App Similarity
	4.3.5 User Preference Representation

	4.4 System Architecture and Methodology
	4.4.1 Similarity Calculation Module
	4.4.2 App Similarity Graph Construction Module
	4.4.3 User Preference Graph Construction Module
	4.4.4 Recommendation Generation Module

	4.5 Summary

	5 Experiments and Results
	5.1 Experiments and Results
	5.1.1 Test Data
	5.1.2 Implementation Details
	5.1.3 Results

	6 Conclusion and Future Work
	6.1 Conclusions and Future Work
	6.1.1 Evaluating serendipitous Recommendations

	 References

