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ABSTRACT 

 

In this project, a particle filter is implemented in a color model based 

framework to track the moving object in outdoor environment. firstly the 

initialisation of samples is done in first frame by drawing them randomly on the 

screen or drawing them based on the region where the object is expected to 

appear.  

 

Next the samples are predicted based on system model by propagating each 

sample based on this model. The samples are updated based on the 

observation model. In this report, we use color distribution of the object as the 

observation model. Then using the bhattacharya distance, the similarity 

between the color distribution of the target & the samples can be measured. 

Based on the bhattacharya distance weight of each sample is measured. The 

target state estimation is performed based on samples weight. The 

resampling is performed for the next sample iteration to generate a new 

sample set. During the resampling sample with a high weight are chosen 

leading to identical copies, while others with relatively low weights may be 

ignored & deleted.  
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CHAPTER 1 

INTRODUCTION: 

 

 OBJECT TRACKING 

 

Object tracking is the process of locating a moving object (or multiple objects) 

over time using a camera. It has a variety of uses, some of which are: human-

computer interaction, security and surveillance, video communication and 

compression, augmented reality, traffic control, medical imaging and video 

editining. Video tracking can be a time consuming process due to the amount 

of data that is contained in video. 

 

Objective 

 

The objective of video tracking is to associate target objects in consecutive 

video frames. The association can be especially difficult when the objects are 

moving fast relative to the frame rate. Another situation that increases the 

complexity of the problem is when the tracked object changes orientation over 

time. For these situations video tracking systems usually employ a motion 

model which describes how the image of the target might change for different 

possible motions of the object. 

 

Examples of simple motion models are: 

 

 When tracking planar objects, the motion model is a 2D transformation  

of an image of the object (e.g. the initial frame). 

 When the target is a rigid 3D object, the motion model defines its 

aspect depending on its 3D position and orientation. 

 

Algorithm 



 

To perform video tracking an algorithm analyzes sequential video frames and 

outputs the movement of targets between the frames. There are a variety of 

algorithms, each having strengths and weaknesses. Considering the intended 

use is important when choosing which algorithm to use. There are two major 

components of a visual tracking system: target representation and localization 

, filtering and data association. 

 

Target representation and localization is mostly a bottom-up process. These 

methods give a variety of tools for identifying the moving object. Locating and 

tracking the target object successfully is dependent on the algorithm. For 

example, using blob tracking is useful for identifying human movement 

because a person's profile changes dynamically. Typically the computational 

complexity for these algorithms is low. The following are some common target 

representation and localization algorithms: 

 

Blob tracking: segmentation of object interior (for example blob detec 

bloction, k-based correlation or optical flow). 

Kernel-based tracking (mean-shift tracking): an iterative localization 

procedure based on the maximization of a similarity measure (Bhattacharyya 

coefficient). 

 

 Contour tracking: detection of object boundary (e.g. active contours or 

Condensation algorithm) 

 

 Filtering and data association is mostly a top-down process, which 

involves incorporating prior information about the scene or object, 

dealing with object dynamics, and evaluation of different hypotheses. 

These methods allow the tracking of complex objects along with more 

complex object interaction like tracking objects moving behind 

obstructions.Additionally the complexity is increased if the video tracker 

(also named TV tracker or target tracker) is not mounted on rigid 

foundation (on-shore) but on a moving ship (off-shore), where typically 



an inertial measurement system is used to pre-stabilize the video 

tracker to reduce the required dynamics and bandwidth of the camera 

system. The computational complexity for these algorithms is usually 

much higher. The following are some common filtering algorithms: 

 Kalman filter: an optimal recursive Bayesian filter for linear functions 

subjected to Gaussian noise 

 Particle filter: useful for sampling the underlying state-space distribution 

of nonlinear and non-Gaussian processes. 

 

          Three key steps are there in object tracking 

 Detection of interesting moving objects 

 Tracking of such objects from frame to frame 

 Analysis of object tracks to recognize their behaviour 

 

Application of object tracking :  

 

 Motion based recognition, that is, human identification based on gait, 

automatic object detection, etc; 

 Automated surveillance, that is, monitoring a scene to detect 

suspicious activities or unlikely events; 

 Video indexing, that is, automatic annotation and retrieval of the videos 

in multimedia databases; 

 Human-computer interaction, that is, gesture recognition, eye gaze 

tracking for data input to computers, etc.; 

 Traffic monitoring, that is, real-time gathering of traffic statistics to direct 

traffic flow. 

 Vehicle navigation that is, video-based path planning and obstacle 

avoidance capabilities. 

 

 

 

 

 

 

 



 

 

Object representation 

 

In a tracking scenario, an object can be defined as anything that is of interest 

for further analysis. For instance, boats on the sea, fish inside an aquarium, 

vehicles on a road, planes in the air, people walking on a road, or bubbles in 

the water are a set of objects that may be important to track in a specific 

domain. Objects can be represented by their shapes and appearances. In this 

section, we will first describe the object shape representations commonly 

employed for tracking and then address the joint shape and appearance 

representations. 

 

Points:  The object is represented by a point, that is, the centroid by a set of 

points. In general, the point representation is suitable for tracking objects that 

occupy small regions in an image. 

 

Primitive geometric shapes:  Object shape is represented by a rectangle, 

ellipse. Though primitive geometric shapes are more suitable for representing 

simple rigid objects, they are also used for tracking no rigid objects. 

 

Object silhouette and contour: Contour representation defines the boundary of 

an object. The region inside the contour is called the silhouette of the object. 

 

 

There are a number of ways to represent the appearance features of objects. 

Note that shape representations can also be combined with the appearance 

representations for tracking. 

 

Some common appearance representations in the context of object tracking 

are: 

Probability densities of object appearance: The probability density estimates 

of the object appearance can either be parametric, such as Gaussian  



and a mixture of Gaussian or nonparametric, eg. histograms. The probability 

densities of object appearance features (color, texture) can be computed from 

the image regions specified by the shape models (interior region of an ellipse 

or a contour). 

 

Templates: Templates are formed using simple geometric shapes. An 

advantage of a template is that it carries both spatial and appearance 

information. Templates, however, only encode the object appearance 

generated from a single view. Thus, they are only suitable for tracking objects 

whose poses do not vary considerably during the course of tracking. 

 

 

Feature selection for tracking 

 

Selecting the right features plays a critical role in tracking. In general, the most 

desirable property of a visual feature is its uniqueness so that the objects can 

be easily distinguished in the feature space. Feature selection is closely 

related to the object representation. For example, color is used as a feature 

for histogram-based appearance representations, while for contour-based 

representation, object edges are usually used as features. In general, many 

tracking algorithms use a combination of these features. 

 

The details of common visual features are as follows. 

 

Color: The apparent color of an object is influenced primarily by two physical 

factors, the spectral power distribution of the illuminated, the surface 

reflectance properties of the object. In image processing, the RGB (red, 

green, blue) color space is usually used to represent color. However, the RGB 

space is not a perceptually uniform color space, that is, the differences 

between the colors in the RGB space do not correspond to the color 

differences perceived by humans. Additionally, the RGB dimensions are 

highly correlated while HSV (Hue, Saturation, Value) is an approximately 

uniform color space. However, these color spaces are sensitive to noise 

 



Edges: Object boundaries usually generate strong changes in image 

intensities. Edge detection is used to identify these changes. An important 

property of edges is that they are less sensitive to illumination changes 

compared to color features. Algorithms that track the boundary of the objects 

usually use edges as the representative feature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 2 

INTRODUCTION: 

 

POSTERIOR PROBABILITY DISTRIBUTION 

 

In Bayesian statistics, the posterior probability of a random event or an 

uncertain proposition is the conditional probability that is assigned after the 

relevant evidence is taken into account. Similarly, the posterior probability 

distribution is the distribution of an unknown quantity, treated as a random 

variable, conditional on the evidence obtained from an experiment or survey. 

The posterior probability is the probability of the parameters given the 

evidence )/(: xpx  . 

It contrasts with the likelihood function, which is the probability of the evidence 

given the parameters: )( xp . 

The two are related as follows: 

Let us have a prior belief that the probability distribution function is )(p  

and observations  with the likelihood )( xp , then the posterior probability 

is defined as 

 
)(

)()(
)(

xp

xpp
xp


    

The posterior probability can be written in the memorable form as 

 

 

Example 

Suppose there is a mixed school having 60% boys and 40% girls as students. 

The girl students wear trousers or skirts in equal numbers; the boys all wear 

trousers. An observer sees a (random) student from a distance; all the 



observer can see is that this student is wearing trousers. What is the 

probability this student is a girl? The correct answer can be computed using 

Bayes' theorem. 

The event A is that the student observed is a girl, and the event B is that the 

student observed is wearing trousers. To compute P(A|B), we first need to 

know: 

 P(A), or the probability that the student is a girl regardless of any other 

information. Since the observer sees a random student, meaning that 

all students have the same probability of being observed, and the  

 percentage of girls among the students is 40%, this probability equals 

0.4. 

 P(A'), or the probability that the student is a boy regardless of any other 

information (A' is the complementary event to A). This is 60%, or 0.6. 

 P(B|A), or the probability of the student wearing trousers given that the 

student is a girl. As they are as likely to wear skirts as trousers, this is 

0.5. 

 P(B|A'), or the probability of the student wearing trousers given that the 

student is a boy. This is given as 1. 

 P(B), or the probability of a (randomly selected) student wearing 

trousers regardless of any other information. Since P(B) = P(B|A)P(A) + 

P(B|A')P(A') (law of total probability), this is 0.5×0.4 + 1×0.6 = 0.8. 

Given all this information, the probability of the observer having spotted a girl 

given that the observed student is wearing trousers can be computed by 

substituting these values in the formula: 

(p )BA
)(

)()(

Bp

ApABp
  = (0.5 *0.4)/0.8 = 0.25 

Calculation 

The posterior probability distribution of one random variable given the value of 

another can be calculated with Bayes' theorem by multiplying the prior 



probability distribution by the likelihood function, and then dividing by the 

normalizing constant, as follows: 
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gives the posterior probability density function for a random variable X 

given the data Y = y, where 

  xf X is the prior density of X, 

 is the likelihood function as a function of x, 

    





xLxf

yyxX dx is the normalizing constant, and 

 )(xyf
yx
  is the posterior density of X given the data Y = y. 

 

1.3 BAYESIAN ESTIMATION THEORY 

Introduction 

In estimation theory and decision theory, a Bayes estimator or a Bayes 

action is an estimator or decision rule that minimizes the posterior expected 

value of a loss function (i.e., the posterior expected loss). Equivalently, it 

maximizes the posterior expectation of a utility function. An alternative way of 

formulating an estimator within Bayesian statistics is Maximum a posteriori 

estimation. 

 

Suppose an unknown parameter θ is known to have a prior distribution . Let 

)(x  be an estimator of θ (based on some measurements x), and let 

L(  , ) be a loss function, such as squared error. The Bayes risk of is 

defined as    ,L , where the expectation is taken over the probability 



distribution of : this defines the risk function as a function of . An estimator 

is said to be a Bayes estimator if it minimizes the Bayes risk among all 

estimators. Equivalently, the estimator which minimizes the posterior expected 

loss  xLE ),(   for each x also minimizes the Bayes risk and therefore is a 

Bayes estimator. 

If the prior is improper then an estimator which minimizes the posterior 

expected loss for each x is called a generalized Bayes estimator. 

Examples 

Minimum mean square error estimation 

The most common risk function used for Bayesian estimation is the mean 

square error (MSE), also called squared error risk. The MSE is defined by 

MSE = E  2))('(  x  

where the expectation is taken over the joint distribution of and . 

Posterior mean 

Using the MSE as risk, the Bayes estimate of the unknown parameter is 

simply the mean of the posterior distribution, 

     dxxEx ))('  

This is known as the minimum mean square error (MMSE) estimator. The 

Bayes risk, in this case, is the posterior variance. 

 

 

 

 

 

 



Recursive Bayesian estimation theory 

Recursive Bayesian estimation, also known as a Bayes filter, is a general 

probabilistic approach for estimating an unknown probability density function 

recursively over time using incoming measurements and a mathematical 

process model. 

In Robotics 

A Bayes filter is an algorithm used in computer science for calculating the 

probabilities of multiple beliefs to allow a robot to infer its position and 

orientation. Essentially, Bayes filters allow robots to continuously update their 

most likely position within a coordinate system, based on the most recently 

acquired sensor data. This is a recursive algorithm. It consists of two parts: 

prediction and innovation. If the variables are linear and normally distributed 

the Bayes filter becomes equal to the Kalman filter. 

In a simple example, a robot moving throughout a grid may have several 

different sensors that provide it with information about its surroundings. The 

robot may start out with certainty that it is at position (0,0). However, as it 

moves farther and farther from its original position, the robot has continuously 

less certainty about its position; using a Bayes filter, a probability can be 

assigned to the robot's belief about its current position, and that probability 

can be continuously updated from additional sensor information. 

MODEL 

The true state is assumed to be an unobserved Markov process, and the 

measurements are the observed states of a Hidden Markov Model (HMM). 

The following picture presents a Bayesian Network of a HMM. 



 

Xk-1 : Previous State 

Xk  :   Next State 

 

Zk-1: Measured Previos State 

Zk : Next Measured State 

Because of the Markov assumption, the probability of the current true state 

given the immediately previous one is conditionally independent of the other 

earlier states. 

P(Xk/xk-1, Xk-2,……X0) = p(Xk/Xk-1) 

Similarly, the measurement at the k-th timestep is dependent only upon the 

current state, so is conditionally independent of all other states given the 

current state. 

P(zk/ Xk,  Xk-1, Xk-2,……X0) = p(Xk/Xk-1) 

Using these assumptions the probability distribution over all states of the 

HMM can be written simply as: 

P(X0,……,Xk,Z1,……Zk) = p(X0)
   1

1


 ii

k

i
ii xxpxzp  

Xk-1 

Zk Zk-1 

Xk 



However, when using the Kalman filter to estimate the state x, the probability 

distribution of interest is associated with the current states conditioned on the 

measurements up to the current timestep. (This is achieved by marginalising 

out the previous states and dividing by the probability of the measurement 

set.) 

This leads to the predict and update steps of the Kalman filter written 

probabilistically. The probability distribution associated with the predicted state 

is the sum (integral) of the products of the probability distribution associated 

with the transition from the (k - 1)-th timestep to the k-th and the probability 

distribution associated with the previous state, over all possible . 

  )( 1kk zxp  =     111
1

1 


 kkk

k

i
kk dxzxpxxp  

The probability distribution of update is proportional to the product of the 

measurement likelihood and the predicted state. 

 kk zxp   = 
   

 1

1





kk

kkkk

zzp

zxpxzp
  =    1kkkk zxpxzp  

The denominator 

 )( 1kk zxp  =     kkkkk dxzxpxxp 1  

is constant relative to , so we can always substitute it for a coefficient , 

which can usually be ignored in practice. The numerator can be calculated 

and then simply normalized, since its integral must be unitary. 

APPLICATION 

 Kalman filter a recursive Bayesian filter for multivariate normal 

distributions 

 Particle filter, a sequential Monte Carlo (SMC) based technique, which 

models the PDF using a set of discrete points 

 Grid-based estimators, which subdivide the PDF into a discrete grid. 



Seuential bayesian filtering 

Sequential Bayesian filtering is the extension of the Bayesian estimation for 

the case when the observed value changes in time. It is a method to estimate 

the real value of an observed variable that evolves in time. It involves three 

steps. 

Filtering 

when we estimate the current value given past observations, 

Smoothing 

when estimating past values given present and past measures, and 

Prediction 

when estimating a probable future value. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

INTRODUCTION: 

 

MONTE CARLO SIMULATION 

Monte Carlo methods are a class of computational algorithms that rely on 

repeated random sampling to compute their results. Monte Carlo methods are 

often used in computer simulations of physical and mathematical systems. 

Monte Carlo simulation is a computerized mathematical technique that allows 

people to account for risk in quantitative analysis and decision making. The 

technique is used by professionals in such widely disparate fields as finance, 

project management, energy, manufacturing, engineering, research and 

development, insur2ance, oil & gas, transportation, and the environment. 

Monte Carlo simulation furnishes the decision-maker with a range of possible 

outcomes and the probabilities they will occur for any choice of action. The 

technique was first used by scientists working on the atom bomb; it was 

named for Monte Carlo, the Monaco resort town renowned for its casinos. 

Since its introduction in World War II, Monte Carlo simulation has been used 

to model a variety of physical and conceptual systems.  

Monte Carlo simulation is categorized as a sampling method because the 

inputs are randomly generated from probability distributions to simulate the 

process of sampling from an actual population. So, we try to choose a 

distribution for the inputs that most closely matches data we already have, or 

best represents our current state of knowledge. The data generated from the 

simulation can be represented as probability distributions (or histograms) or 

converted to error bars, reliability predictions, tolerance zones, and confidence 

intervals. 

Application 

 

They are widely used in mathematics, for example to evaluate 

multidimensional definite integrals with complicated boundary conditions 



.They are used to model phenomena with significant uncertainty in inputs, 

such as the calculation of risk in business.  

Monte Carlo methods vary, but tend to follow a particular pattern: 

1. Define a domain of possible inputs. 

2. Generate inputs randomly from a probability distribution over the 

domain. 

3. Perform a deterministic computation on the inputs. 

4. Aggregate the results. 

For example, consider a circle inscribed in a unit square. Given that the circle 

and the square have a ratio of areas that is π/4, the value of π can be 

approximated using a Monte Carlo method: 

1. Draw a square on the ground, then inscribe a circle within it. 

2. Uniformly scatter some objects of uniform size (grains of rice or sand) 

over the square. 

3. Count the number of objects inside the circle and the total number of 

objects. 

4. The ratio of the two counts is an estimate of the ratio of the two areas, 

which is π/4. Multiply the result by 4 to estimate π. 

In this procedure the domain of inputs is the square that circumscribes our 

circle. We generate random inputs by scattering grains over the square then 

perform a computation on each input (test whether it falls within the circle). 

Finally, we aggregate the results to obtain our final result, the approximation 

of π. 

If grains are purposefully dropped into only the center of the circle, they are 

not uniformly distributed, so our approximation is poor. Second, there should 

be a large number of inputs. The approximation is generally poor if only a few 

grains are randomly dropped into the whole square. On average, the 

approximation improves as more grains are dropped. 

 



Use in mathmatics 

In general, Monte Carlo methods are used in mathematics to solve various 

problems by generating suitable random numbers and observing that fraction 

of the numbers that obeys some property or properties. The method is useful 

for obtaining numerical solutions to problems too complicated to solve 

analytically. The most common application of the Monte Carlo method is 

Monte Carlo integration. 

 Integration 

 

Monte-Carlo integration works by comparing random points with the value of 

the function 

 

 

 

X axis  =  Samples 

Y axis = error(%) 

 

Errors reduce by a factor of  where N is the no. of samples taken. 

Deterministic numerical integration algorithms work well in a small number of 

dimensions, but encounter two problems when the functions have many 

variables. First, the number of function evaluations needed increases rapidly 

with the number of dimensions. For example, if 10 evaluations provide 

adequate accuracy in one dimension, then 10100 points are needed for 100 



dimensions—far too many to be computed. This is called the curse of 

dimensionality. Second, the boundary of a multidimensional region may be 

very complicated, so it may not be feasible to reduce the problem to a series 

of nested one-dimensional integrals. 100 dimensions is by no means unusual, 

since in many physical problems, a "dimension" is equivalent to a degree of 

freedom. 

Monte Carlo methods provide a way out of this exponential increase in 

computation time. As long as the function in question is reasonably well-

behaved, it can be estimated by randomly selecting points in 100-dimensional 

space, and taking some kind of average of the function values at these points. 

By the law of large numbers, this method displays convergence—i.e., 

quadrupling the number of sampled points halves the error, regardless of the 

number of dimensions. 

A refinement of this method, known as importance sampling in statistics, 

involves sampling the points randomly, but more frequently where the 

integrand is large. To do this precisely one would have to already know the 

integral, but one can approximate the integral by an integral of a similar 

function or use adaptive routines such as Stratified sampling, recursive 

stratified sampling, adaptive umbrella sampling or the VEGAS algorithm. 

A similar approach, the quasi-Monte Carlo method, uses low-discrepancy 

sequences. These sequences "fill" the area better and sample the most 

important points more frequently, so quasi-Monte Carlo methods can often 

converge on the integral more quickly. 

 

Variance Reduction 

 

In mathematics, more specifically in the theory of Monte Carlo methods, 

variance reduction is a procedure used to increase the precision of the 

estimates that can be obtained for a given number of iterations. Every output 

random variable from the simulation is associated with a variance which limits 



the precision of the simulation results. In order to make a simulation 

statistically efficient, i.e., to obtain a greater precision and smaller confidence 

intervals for the output random variable of interest, variance reduction 

techniques can be used. The main ones are: Common random numbers, 

antithetic variates, control variates, importance sampling and stratified 

sampling. Under these headings are a variety of specialized techniques; for 

example particle transport simulations make extensive use of "weight 

windows" and "splitting/Russian roulette" techniques, which is a form of 

importance sampling. 

 

Common Random Numbers (CRN) 

The common random numbers variance reduction technique is a popular and 

useful variance reduction technique which applies when we are comparing 

two or more alternative configurations (of a system) instead of investigating a 

single configuration. CRN has also been called Correlated sampling, Matched 

streams or Matched pairs. 

CRN requires synchronization of the random number streams, which ensures 

that in addition to using the same random numbers to simulate all 

configurations, a specific random number used for a specific purpose in one 

configuration is used for exactly the same purpose in all other configurations. 

For example, in queueing theory, if we are comparing two different 

configurations of tellers in a bank, we would want the (random) time of arrival 

of the Nth customer to be generated using the same draw from a random 

number stream for both configurations. 

 Underlying principle of the CRN technique 

Suppose jX 1  and jX 2 are the observations from the first and second 

configurations on the jth independent replication. 

We want to estimate 



   =  jXE 1   -  jXE 2   = 1  - 2  

If we perform n replications of each configuration and let 

jZ  =  jX 1   -  jX 2   for j=1,2,….,n, 

then  jZE =   and Z(n) = Σ Zj / n is an unbiased estimator of . 

And since the jZ 's are independent identically distributed random variables, 

 Var[Z(n)] =   nZVar j  

In case of independent sampling, i.e., no common random numbers used then 

Cov(X1j, X2j) = 0. But if we succeed to induce an element of positive 

correlation between X1 and X2 such that Cov(X1j, X2j) > 0, it can be seen from 

the equation above that the variance is reduced. 

It can also be observed that if the CRN induces a negative correlation, i.e., Cov(X1j, 

X2j) < 0, this technique can actually backfire, where the variance is increased and not 

decreased (as intended). 

IMPORTANCE SAMPLING 

Importance sampling is a variance reduction technique that can be used in the 

Monte Carlo method. The idea behind importance sampling is that certain 

values of the input random variables in a simulation have more impact on the 

parameter being estimated than others. If these "important" values are 

emphasized by sampling more frequently, then the estimator variance can be 

reduced. Hence, the basic methodology in importance sampling is to choose a 

distribution which "encourages" the important values. This use of "biased" 

distributions will result in a biased estimator if it is applied directly in the 

simulation. However, the simulation outputs are weighted to correct for the 

use of the biased distribution, and this ensures that the new importance 

sampling estimator is unbiased. The weight is given by the likelihood ratio, 

The fundamental issue in implementing importance sampling simulation is the 



choice of the biased distribution which encourages the important regions of 

the input variables. Choosing or designing a good biased distribution is the 

"art" of importance sampling. The rewards for a good distribution can be huge 

run-time savings; the penalty for a bad distribution can be longer run times 

than for a general Monte Carlo simulation without importance sampling. 

Basic theory 

More formally, let X : R  be a random variable in some probability space 

( PF,, ). We wish to estimate the expected value of X under P. If we have 

random samples , generated according to P, then an empirical 

estimate of E[X;P] is 

 ];[ PXE n



 = 


n

i

ix
n

1

1  

The basic idea of importance sampling is to change the probability P so that 

the estimation of E[X;P] is easier. Choose a random variable  such that 

E[L;P]=1 and that P-almost everywhere . The variate L defines 

another probability that satisfies 

         E[X;P] =   ];[ LP
L

X
E  

The variable X/L will thus be sampled under P(L) to estimate as 

above. This procedure will improve the estimation when  

  ];[\ LP
L

X
VarE   <  Var [X;P] 

 Another case of interest is when X/L is easier to sample under P(L) than X 

under P. 

When X is of constant sign over Ω, the best variable L would clearly be  



L* = 
 

0
;


PXE

X
, so that X/L* is the searched constant E[X;P] and a single 

sample under P(L*) suffices to give its value. Unfortunately we cannot take that 

choice, because E[X;P] is precisely the value we are looking for! However this 

theoretical best case L* gives us an insight into what importance sampling 

does: 
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to the right, a P( X  [a; a+da])   is one of the infinitesimal elements that sum 

up to E[X;P] =   






a

a

daaaXaP ;  

therefore, a good probability change P(L) in importance sampling will 

redistribute the law of X so that its samples' frequencies are sorted directly 

according to their weights in E[X;P]. Hence the name "importance 

sampling."Note that whenever is the uniform distribution and , we 

are just estimating the integral of the real function X:RR  so the method can 

also be used for estimating simple integral. 

Application to probabilistic inference 

Such methods are frequently used to estimate posterior densities or 

expectations in state and/or parameter estimation problems in probabilistic 

models that are too hard to treat analytically, for example in Bayesian 

networks. 

Mathematical approach 

Consider estimating by simulation the probability of an event , 

where is a random variable with distribution  and probability density 

function     f(x) =  F’(x),  where prime denotes derivative. A -length 

independent and identically distributed (i.i.d.) sequence is generated from 

the distribution , and the number of random variables that lie above the 



threshold are counted. The random variable is characterized by the 

Binomial distribution 

 P(k t  = k) = 
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  (1- tp  )/K, so in the limit 

K   we are able to obtain . Note that the variance is low if . 

Importance sampling is concerned with the determination and use of an 

alternate density function (for X), usually referred to as a biasing density, for 

the simulation experiment. This density allows the event X t to occur more 

frequently, so the sequence lengths Kgets smaller for a given estimator 

variance. Alternatively, for a given K, use of the biasing density results in a 

variance smaller than that of the conventional Monte Carlo estimate. From the 

definition of , we can introduce as below. 
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is a likelihood ratio and is referred to as the weighting function. The last 

equality in the above equation motivates the estimator.      

 



This is the importance sampling estimator of and is unbiased. That is, the 

estimation procedure is to generate i.i.d. samples from and for each sample 

which exceeds , the estimate is incremented by the weight evaluated at 

the sample value. The results are averaged over trials. The variance of the 

importance sampling estimator is easily shown to be 

 

     xWtX
K

 1var
1

var **  

 =      tpXWtX
K

222

* 1
1

  

 =      tpxWtX
K

21
1

  

 

Now, the importance sampling problem then focuses on finding a biasing 

density such that the variance of the importance sampling estimator is less 

than the variance of the general Monte Carlo estimate. For some biasing 

density function, which minimizes the variance, and under certain conditions 

reduces it to zero, it is called an optimal biasing density function. 

Conventional biasing methods 

Although there are many kinds of biasing methods, the following two methods 

are most widely used in the applications of importance sampling. 

Scaling 

Shifting probability mass into the event region by positive scaling of the 

random variable with a number greater than unity has the effect of 

increasing the variance (mean also) of the density function. This results in a 

heavier tail of the density, leading to an increase in the event probability. 

Scaling is probably one of the earliest biasing methods known and has been 



extensively used in practice. It is simple to implement and usually provides 

conservative simulation gains as compared to other methods. 

In importance sampling by scaling, the simulation density is chosen as the 

density function of the scaled random variable , where usually for 

tail probability estimation. By transformation, 
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and the weighting function is 
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While scaling shifts probability mass into the desired event region, it also 

pushes mass into the complementary region which is undesirable. If 

is a sum of random variables, the spreading of mass takes place in an 

dimensional space. The consequence of this is a decreasing importance 

sampling gain for increasing , and is called the dimensionality effect. 

 

Translation 

Another simple and effective biasing technique employs translation of the 

density function (and hence random variable) to place much of its probability 

mass in the rare event region. Translation does not suffer from a 

dimensionality effect and has been successfully used in several applications 

relating to simulation of digital communication systems. It often provides better 

simulation gains than scaling. In biasing by translation, the simulation density 

is given by 

    0,*  ccxfxf  



where is the amount of shift and is to be chosen to minimize the variance of 

the importance sampling estimator. 

Effects of system complexity 

 The fundamental problem with importance sampling is that designing 

good biased distributions becomes more complicated as the system 

complexity increases. Complex systems are the systems with long 

memory since complex processing of a few inputs is much easier to 

handle. 

In principle, the importance sampling ideas remain the same in these 

situations, but the design becomes much harder. A successful approach to 

combat this problem is essentially breaking down a simulation into several 

smaller, more sharply defined subproblems. Then importance sampling 

strategies are used to target each of the simpler subproblems. Examples of 

techniques to break the simulation down are conditioning and error-event 

simulation (EES) and regenerative simulation. 

Evaluation of importance sampling 

In order to identify successful importance sampling techniques, it is useful to be able 

to quantify the run-time savings due to the use of the importance sampling approach. 

The performance measure commonly used is , and this can be interpreted 

as the speed-up factor by which the importance sampling estimator achieves the same 

precision as the MC estimator. This has to be computed empirically since the 

estimator variances are not likely to be analytically possible when their mean is 

intractable. efficiency. 

Variance cost function 

Variance is not the only possible cost function for a simulation, and other cost 

functions, such as the mean absolute deviation, are used in various statistical 

applications. Nevertheless, the variance is the primary cost function 



addressed in the literature, probably due to the use of variances in confidence 

intervals and in the performance measure  
IS

MC 2

2


 . 

An associated issue is the fact that the ratio
IS

MC 2

2


 . overestimates the run-

time savings due to importance sampling since it does not include the extra 

computing time required to compute the weight function. Hence, some people 

evaluate the net run-time improvement by various means. Perhaps a more 

serious overhead to importance sampling is the time taken to devise and 

program the technique and analytically derive the desired weight function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 4 

INTRODUCTION: 

 

PARTICLE FILTER 

 Particle filter, also known as a sequential Monte Carlo method (SMC), is a 

sophisticated model estimation technique based on simulation. Particle filters 

are usually used to estimate Bayesian models in which the latent variables are 

connected in a Markov chain  similar to a hidden Markov model (HMM), but 

typically where the state space of the latent variables is continuous rather than 

discrete, and not sufficiently restricted to make exact inference tractable (as, 

for example, in a linear dynamical system, where the state space of the latent 

variables is restricted to Gaussian distributions and hence exact inference can 

be done efficiently using a Kalman filter). In the context of HMMs and related 

models, "filtering" refers to determining the distribution of a latent variable at a 

specific time, given all observations up to that time; particle filters are so 

named because they allow for approximate "filtering" (in the sense just given) 

using a set of "particles" (differently weighted samples of the distribution). 

 

A dynamic system can be modeled with two equations: 

 

3.1 State Transition or Evolution Equation 

 

 Xk= fk(xk−1,uk−1,vk−1) 

f (·, ·, ·) =  evolution function (possible non-linear) 

 

xk, xk−1 = current and previous state 

 

vk−1   = state noise (usually not Gaussian) 

 



uk−1   =  known input 

 

 

 Measurement Equation 

 

zk = hk(xk,uk,nk) 

 

h(·, ·, ·) = measurement function (possible non-linear) 

 

zk =  measurement 

 

xk =  state 

 

nk =  measurement noise (usually not Gaussian) 

 

uk =  known input 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

           

       Measurement (observed) 

           

              P(zk/xk)      

           

           

              States(estimated )     

          P(xk/xk-1) 

Zk-1 Zk 

Xk-1 

Zk+1 

Xk Xk+1 
 



 

 

 

 

Xk = current state 

 

Xk-1 = previous state 

 

Xk+1 = next state 

 

Zk = corresponding observed state 

 

P(xk/xk-1) = state transition probability for k>0 

 

P(zk/xk) = observation are conditionally dependent 

 

Bayesian Filters 

Estimating the Posterior 

 

Bayesian approach: We attempt to construct the posterior pdf of the state 

given all measurements. It can be termed a complete solution to the 

estimation 

Problem because all available information is used; from the pdf, an optimal 

estimate can theoretically be found for any criterion in detail: We seek 

estimates of Xk based on all available measurements up to time k 

(abbreviated as Z1:k) by constructing the posterior p(Xk|Z1:k). 

 

Assumption: initial state pdf (prior) p(X0) is given 

 

The Use of Knowing the Posterior 

 

Let fk : IR
(k+1)×nx   IR be any arbitrary (integrable) function that can depend on 

all components of the state x on the whole trajectory in state-space. 

 



Examples: This function can be an estimator for the current state or for future 

observations. 

Then we can compute its expectation using 

E[ fk(X0:k)] = ʃf (X0:k)p(X0:k|Z1:k)dx0:k 

 

MMSE estimate of state: X’ = E[Xk].  

 

Recursive Filters 

recursive filters (i.e. sequential update of previous estimate) means batch 

processing (computation with all data in one step). It is not only faster: allow 

on-line processing of data. It has lower storage costs, rapid adaption to 

changing signals characteristics) 

 

It essentially consist of two steps: 

 

Prediction step: p(Xk−1|Z1:k−1) = p(Xk| Z1:k−1) 

(Usually deforms / translates / spreads state PDF due to noise) 

 

Update step: p(Xk| Z1:k−1), Z1:k  =  p(Xk| Z1:k) 

(Combines likelihood of current measurement with predicted state; usually 

concentrates state PDF) 

 

General Prediction-Update Framework 

 

Assume that PDF p(Xk−1| Z1:k−1) is available at time k−1. 

 

Prediction step:  

p(Xk| Z1:k−1) = 

ʃp(Xk| Xk−1)p(Xk−1| Z1:k−1)d xk−1 (1) 

 

This is the prior of the state Xk at time k without knowledge of the 

measurement Zk, i.e. the probability given only previous measurements. 

 



Update step: (compute posterior pdf from predicted prior pdf and new 

measurement) 

p(Xk| Z1:k) = p(Zk| Xk)p(Xk| Z1:k−1)/ p(Zk| Z1:k−1) (2) 

 

Let us prove formula (2) (just in order to train calculations 

with joint and conditional probabilities. . . ) 

 

p(Xk| Z1:k) 

= p(z1:k| Xk)p(Xk)/p(Z1:k) 

 

=p(Z1:k−1, Z1:k−1| Xk)p(Xk)/p(zk,z1:k−1) 

 

= p(Z1:k| Z1:k−1, Xk)p(Z1:k−1| Xk)p(Xk) /p(Z1:k| Z1:k−1)p(Z1:k−1)) 

 

= p(Z1:k| Z1:k−1, Xk)p(Xk| Z1:k−1)p(Z1:k−1)p(Xk) /p(Z1:k| Z1:k−1)p(Z1:k−1)p(Xk) 

 

=p(Z1:k| Xk)p(Xk| Z1:k−1)/ p(Z1:k| Z1:k−1) 

(independence of observations; cancelling out terms) 

 

The Structure of the Update Equation 

p(Xk| Z1:k) = p(Z1:k| Xk) · p(Xk| Z1:k−1)/ p(Z1:k| Z1:k−1) 

 

posterior = likelihood · prior/ evidence 

 

 Prior: given by prediction equation 

 

 Likelihood: given by observation model 

 

 Evidence: the normalizing constant in the denominator 

 

p(Z1:k| Z1:k−1) =  ʃp(Z1:k| Xk)p(Xk| Z1:k−1)d Xk 

 



This theoretically allows an optimal Bayesian solution (in the sense of 

computing the posterior pdf). 

 

 

NOTE 

If we cannot solve the integrals required for a Bayesian recursive filter 

analytically. we represent the posterior probabilities by a set of randomly 

chosen weighted samples in particle filter. 

 

 Sequential Importance Sampling 

 

Sequential importance resampling (SIR), the original particle filtering algorithm  

is a very commonly used particle filtering algorithm, which approximates the 

filtering distribution   kk
yyxp ,,.........0 by a weighted set of P particles  

       PLxw
L

k

L
k ...,,.........1:,   

The importance weights
 L

kW   are approximations to the relative posterior 

probabilities (or densities) of the particles such that
 

1
1




P

L

L

kW . 

SIR is a sequential (i.e., recursive) version of importance sampling. As in 

importance sampling, the expectation of a function can be approximated k 

        L

k

P

L

L

kkkk xfWdxyyxpxf 



1

.....,,.........0  

 

choice of the proposal distribution 

 kkk yxx :01:0 ,  

The optimal proposal distribution is given as the target distribution 

 kkk yxx :01:0 , =  kkk yxxp ,1  



 

However, the transition prior is often used as importance function, since it is 

easier to draw particles (or samples) and perform subsequent importance 

weight calculations: 

 kkk yxx :01:0 , =  1kk xxp  

 

 

Resampling is used to avoid the problem of degeneracy of the 

algorithm, that is, avoiding the situation that all but one of the 

importance weights are close to zero. The performance of the algorithm 

can be also affected by proper choice of resampling method.  

 

A single step of sequential importance resampling is as follows: 

 For L = 1,……….,P draw samples from the proposal distribution 

    kk
L

k

L

k yxxx :0,1:0   

 

 

 For L = 1,………..,P update the importance weights up to a normalizing 

constant: 
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Note that when we use the transition prior as the importance function,  

    k

L

k

L

k yxx :01:0 ,  = 
    L

k

L

k xxp 1 , this simplifies to the following : 

   L

k

L

k WW 1' 
  L

kk xyp  

 

 



 For L = 1,……..,P compute the normalized importance weights: 
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 Compute an estimate of the effective nu mber of particles as 
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 If the effective number of particles is less than a given threshold  

effN


< Nthr then perform resampling: 

a) Draw P particles from the current particle set with probabilities 

proportional to their weights. Replace the current particle set with this 

new one. 

b) For set  L

kW = 1/P . 

The term Sampling Importance Resampling is also sometimes used when 

referring to SIR filters. 

 

 

 

 

 

 

 

 

 

     

 



 

     CHAPTER 4 

INTRODUCTION: 

 

RGB COLOR MODEL 

The RGB color model is an additive color model in which red, green, and blue 

light are added together in various ways to reproduce a broad array of colors. 

The name of the model comes from the initials of the three additive primary 

colors, red, green, and blue. 

The main purpose of the RGB color model is for the sensing, representation, 

and display of images in electronic systems, such as televisions and 

computers, though it has also been used in conventional photography. Before 

the electronic age, the RGB color model already had a solid theory behind it, 

based in human perception of colors. 

RGB is a device-dependent color model: different devices detect or reproduce 

a given RGB value differently, since the color elements (such as phosphors or 

dyes) and their response to the individual R, G, and B levels vary from 

manufacturer to manufacturer, or even in the same device over time. Thus an 

RGB value does not define the same color across devices without some kind 

of color management. 

Typical RGB input devices are color TV and video cameras, image scanners, 

and digital cameras. Typical RGB output devices are TV sets of various 

technologies (CRT, LCD, plasma, etc.), computer and mobile phone displays, 

video projectors, multicolor LED displays, and large screens such as 

JumboTron, etc. Color printers, on the other hand, are not RGB devices, but 

subtractive color devices (typically CMYK color model). 

Addictive primary color 

To form a color with RGB, three colored light beams (one red, one green, and 

one blue) must be superimposed (for example by emission from a black 



screen, or by reflection from a white screen). Each of the three beams is 

called a component of that color, and each of them can have an arbitrary 

intensity, from fully off to fully on, in the mixture. 

The RGB color model is additive in the sense that the three light beams are 

added together, and their light spectra add, wavelength for wavelength, to 

make the final color's spectrum. 

Zero intensity for each component gives the darkest color (no light, 

considered the black), and full intensity of each gives a white; the quality of 

this white depends on the nature of the primary light sources, but if they are 

properly balanced, the result is a neutral white matching the system's white 

point. When the intensities for all the components are the same, the result is a 

shade of gray, darker or lighter depending on the intensity. When the 

intensities are different, the result is a colorized hue, more or less saturated 

depending on the difference of the strongest and weakest of the intensities of 

the primary colors employed. 

When one of the components has the strongest intensity, the color is a hue 

near this primary color (reddish, greenish, or bluish), and when two 

components have the same strongest intensity, then the color is a hue of a 

secondary color (a shade of cyan, magenta or yellow). A secondary color is 

formed by the sum of two primary colors of equal intensity: cyan is 

green+blue, magenta is red+blue, and yellow is red+green. Every secondary 

color is the complement of one primary color; when a primary and its 

complementary secondary color are added together, the result is white: cyan 

complements red, magenta complements green, and yellow complements 

blue. 

The RGB color model itself does not define what is meant by red, green, and 

blue colorimetrically, and so the results of mixing them are not specified as 

absolute, but relative to the primary colors. When the exact chromaticities of 

the red, green, and blue primaries are defined, the color model then becomes 

an absolute color space, such as sRGB or Adobe RGB. 



 

Numerical Representation 

A color in the RGB color model is described by indicating how much of each 

of the red, green, and blue is included. The color is expressed as an RGB 

triplet (r,g,b), each component of which can vary from zero to a defined 

maximum value. If all the components are at zero the result is black; if all are 

at maximum, the result is the brightest representable white. 

These ranges may be quantified in several different ways: 

 From 0 to 1, with any fractional value in between. This representation is 

used in theoretical analyses, and in systems that use floating-point 

representations. 

 Each color component value can also be written as a percentage, from 

0% to 100%. 

 In computers, the component values are often stored as integer 

numbers in the range 0 to 255, the range that a single 8-bit byte can 

offer. These are often represented as either decimal or hexadecimal 

numbers. 

 High-end digital image equipment are often able to deal with larger 

integer ranges for each primary color, such as 0..1023 (10 bits), 

0..65535 (16 bits) or even larger, by extending the 24-bits (three 8-bit 

values) to 32-bit, 48-bit, or 64-bit units (more or less independent from 

the particular computer's word size). 

For example, brightest saturated red is written in the different RGB notations 

as: 

 

 

 

 



Notation RGB triplet 

Arithmetic (1.0, 0.0, 0.0) 

Percentage (100%, 0%, 0%) 

Digital 8-bit per channel 
(255, 0, 0) or sometimes 

#FF0000 (hexadecimal) 

Digital 16-bit per channel (65535, 0, 0) 

 

In many environments, the component values within the ranges are not 

managed as linear (that is, the numbers are nonlinearly related to the 

intensities that they represent), as in digital cameras and TV broadcasting and 

receiving due to gamma correction, for example. Linear and nonlinear 

transformations are often dealt with via digital image processing. 

Representations with only 8 bits per component are considered sufficient if 

gamma encoding is used. 

 

 



 
 
Object tracking using Particle filter 
 

The particle filter is a sequential Monte Carlo method used for Bayes filtering 

Point mass, or particles, with corresponding weights are used to form an 

approximation of a probability density function (PDF). The particles are 

propagated over time by Monte Carlo simulation to obtain new particles and 

weights (usually as new information are received), hence forming a series of 

PDF approximations over time. Conceptually, a particle filter-based tracker 

maintains a probability distribution over the state (location, scale, etc.) of the 

object being tracked. Particle filters represent this distribution as a set of 

weighted samples, or particles. Each particle represents a possible 

instantiation of the state of the object. In other words, each particle is a guess 

representing one possible location of the object being tracked. The set of 

particles contains more weight at locations where the object being tracked is 

more likely to be. This weighted distribution is propagated through time using 

a set of equations known as the Bayesian filtering equations, and we can 

determine the trajectory of the tracked object. 

As a Bayesian operator Particle filter has two main steps: 

 

 Prediction is done by propagating the sample based on system model. 

 

 The update step is done by measuring the weights of sample based on 

the observation model. 

 

The implementation of the particle filter can be described as follows 

 

Particle initialization 

 

Starting with a weighted set of samples at k-1 NiX i

k

i

k :1,, 11    

approximately distributed according to p(Xk−1/y1:k-1) as initial distribution p(x0), 

new samples are generated from a suitable proposal distribution, which may 

depend on the previous state & the new measurement. 



Prediction step 

 

Using the probabilistic system transition model p(Xk/ Xk−1), the particle are 

predicted at time k. it is done by propagating  each particle based on the 

transition or system model. 

                 Xk+1 = fk(Xk, Wk) = p(Xk/ Xk−1) 

 

Update step 

 

To maintain a consistent sample, the new importance weights are set to 
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It is done by measuring the likelihood of each sample based on the 

observation model. 

 

Resample  

 

This step is performed to generate a new sample set according     to their 

weights for the next iteration. The resample step will decrease the no. of 

samples with low weights & will increase the no. of high weight sample. The 

new particle set is resampled using normalized weights  as probabilities. This 

sample set represents the posterior at time k,  kk yxp :1
. 

 

Then the expectations can be approximated as 
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          Flow of procedure  

 

 

          

          

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Initialisation of the state sk 

for the first frame. 

Generation of set of N 

particles. 

 Initialisation of the state sk 

for the first frame. 
 Prediction based on system 

model.. 

Calculation of histogram 

distance based on 

bhattacharya distance. 

Particle update based on 

particle weight. 

Estimation of the state of the 

tracked object. 

Resampling of particle 

Target model update. 

End 

start 



 

Color Histogram 

 

A color histogram is a representation of the distribution of colors in an image. 

For digital images, a color histogram represents the number of pixels that 

have colors in each of a fixed list of color ranges, that span the image's color 

space, the set of all possible colors. 

The color histogram can be built for any kind of color space, although the term 

is more often used for three-dimensional spaces like RGB or HSV. For 

monochromatic images, the term intensity histogram may be used instead. 

For multi-spectral images, where each pixel is represented by an arbitrary 

number of measurements (for example, beyond the three measurements in 

RGB), the color histogram is N-dimensional, with N being the number of 

measurements taken. Each measurement has its own wavelength range of 

the light spectrum, some of which may be outside the visible spectrum. 

If the set of possible color values is sufficiently small, each of those colors 

may be placed on a range by itself; then the histogram is merely the count of 

pixels that 0have each possible color. Most often, the space is divided into an 

appropriate number of ranges, often arranged as a regular grid, each 

containing many similar color values. The color histogram may also be 

represented and displayed as a smooth function defined over the color space 

that approximates the pixel counts. 

 

A histogram of an image is produced first by discretization of the colors in the 

image into a number of bins, and counting the number of image pixels in each 

bin. For example, a Red–Blue chromaticity histogram can be formed by first 

normalizing color pixel values by dividing RGB values by R+G+B, then 

quantizing the normalized R and B coordinates into N bins each. A two-

dimensional histogram of Red-Blue chromaticity divide in to four bins (N=4) 

might yield a histogram that looks like this table: 

 



    

 

 

HISTOGRAM EQUALISATION 

 

This method usually increases the global contrast of many images, especially 

when the usable data of the image is represented by close contrast values. 

Through this adjustment, the intensities can be better distributed on the 

histogram. This allows for areas of lower local contrast to gain a higher 

contrast. Histogram equalization accomplishes this by effectively spreading 

out the most frequent intensity values. 

The method is useful in images with backgrounds and foregrounds that are 

both bright or both dark. In particular, the method can lead to better views of 

bone structure in x-ray images, and to better detail in photographs that are 

over or under-exposed. A key advantage of the method is that it is a fairly 

straightforward technique and an invertible operator. So in theory, if the 

histogram equalization function is known, then the original histogram can be 

recovered. The calculation is not computationally intensive. A disadvantage of 

the method is that it is indiscriminate. It may increase the contrast of 

background noise, while decreasing the usable signal. 

Consider a discrete grayscale image {x} and let ni be the number of 

occurrences of gray level i. The probability of an occurrence of a pixel of level 

i in the image is 

   
L

n
ixpip i

x    0< i< L 

 

 

 



L being the total number of gray levels in the image, n being the total number 

of pixels in the image, and  ipx being in fact the image's histogram for pixel 

value i, normalized to [0,1]. 

Let us also define the cumulative distribution function corresponding to px as 
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which is also the image's accumulated normalized histogram. 

We would like to create a transformation of the form y = T(x) to produce a new 

image {y}, such that its CDF will be linearized across the value range, i.e. 

xcdf (i) = ik 

for some constant K. The properties of the CDF allow us to perform such a 

transform ; it is defined as 

y = T(x) = xcdf (x) 

 

Notice that the T maps the levels into the range [0,1]. In order to map the 

values back into their original range, the following simple transformation 

needs to be applied on the result: 

 

      xxxyy minminmax   

 

 

eg. There is a 8 bit gray scale image (0-256) with its intensity level shown 

 

 

 

  



 

deternine its histogram & pixel count that have 0 value has been removed. 

 

 

  

 

now determine the cumulative histogram 

 

 

 

 

This cdf shows that the minimum value in the subimage is 52 and the 

maximum value is 154. The cdf of 64 for value 154 coincides with the number 

of pixels in the image. The cdf must be normalized to . The general 

histogram equalization formula is: 
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Where cdfmin is the minimum value of the cumulative distribution function (in 

this case 1), M × N gives the image's number of pixels (for the example above 

64, where M is width and N the height) and L is the number of grey levels 

used (in most cases, like this one, 256). The equalization formula for this 

particular example is: 
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For example, the cdf of 78 is 46. (The value of 78 is used in the bottom row of 

the 7th column.) The normalized value becomes 
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 roundroundh  

 

Once this is done then the values of the equalized image are directly taken 

from the normalized cdf to yield the equalized values: 

 

 

 

 

 

Notice that the minimum value (52) is now 0 and the maximum value (154) is 

now 255. 

 



 

 

 

 

(a) (b) 

 

 

(a) = After histogram equalisation 

(b) = Corresponding histogram(red) & cumulative histogram(black) 

 

 

 

 

 

 

 

 

 

 

 

  

Original Equalized 



 

 

 

Histogram Matching 

 

Histogram matching is a method in image processing of color adjustment of 

two images using the image histograms. 

It is possible to use histogram matching to balance detector responses as a 

relative detector calibration technique. It can be used to normalize two 

images, when the images were acquired at the same local illumination (such 

as shadows) over the same location, but by different sensors, atmospheric 

conditions or global illumination. 

Algorithm 

 

Given two images, the reference and the adjusted images, we compute their 

histograms. Following, we calculate the cumulative functions of the two 

images' histograms - for the reference image and for the target 

image. Then for each gray level , we find the gray level for 

which , and this is the result of histogram matching 

function: . Finally, we apply the function on each pixel of 

the reference image. 

 

  

 

This is an example of histogram matching.  

 

 

 



 

 

 

Observation Model  

 

The observation model is used to measure the observation likelihood of the 

samples. Many observation models have been built for particle filtering 

tracking. One of them is a contour based appearance template (Isard & Black, 

1998). The tracker based on a contour template gives an accurate description 

of the targets but performs poorly in clutter and is generally time-consuming. 

The initialization of the system is relatively difficult and tedious. In contrast, 

color-based trackers are faster and more robust, where the color histogram is 

typically used to model the targets to combat the partial occlusion, and non-

rigidity. 

 

In this article, the observation model is made based on color information of the 

target obtained by building the color histogram in the RGB color space. This 

section describes how the color features is modeled in a rectangular region R, 

where R can be a region surrounding the object to be tracked or region 

surrounding one of the hypothetical regions. A color histogram is commonly 

used for object tracking because they are robust to partial occlusion, rotation 

and scale invariant. They are also flexible in the types of object that they can 

be used to track, including rigid and non-rigid object. 

 

The color distribution is expressed by an m-bins histogram, whose 

components are normalized so that its sum of all bins equals one. For a 

region R in an image, given a set of n samples in R, denoted by X = {xi, i =1, 

2, … , n} ∈  R, the m-bins color histogram H(R) = {hj}, (j = 1, 2, . . . ,m) can be 

obtained by assigning each pixel xi to a bin, by the following equation: 
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Here b(xi) is the bin index where the color component at xi falls into, and δ is 

the Kronecker delta function. To increase the reliability of the target model,  

 



 

 

smaller weight are assigned to the pixels that are further away from region 

center by employing a weighting function 

  

g(r) = 


 

0

1 2r    

 

1-r2  when r<1 

0  otherwise 

r is the distance from the centre of the region. 

 

Using this weight, the color histogram  
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where m is number of bins, I is the number of pixels in the region R, xj is the 

position of pixels in the region R, δ is the Kronecker delta function, a is the 

normalization factor, f is the scaling factor to ensures that 
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 g(.) is weighting function, respectively. Fig. 7 shows an example of target 

histogram at time step k. In subsequent frames, at every time k, there are N 

particles that represent N hypothetical states need to be evaluated. The 

observation likelihood model is used to assign a weight associated to a 

specific particle (new observation) depending on how similar the model 

histogram q and the histogram p(xt) of object in the region described by the ith 

particle  xki are. 

 



The similarity between two color histograms can be calculated using 

Bhattacharya distance d = 1 − ρ[p,q] , where      u
m

u

u qpqp 



1

, . . Similar 

histogram will have a small Bhattacharya distance which corresponds to high 

sample weight. Based on the Bhattacharya distance, the weight π(i) of the 

sample state x(i) is calculated as, 
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Where p(x(i)) and q are the color histogram of the samples and target model, 

respectively. 

During the resample step, samples with a high weight may be chosen several 

times leading to identical copies, while others with relatively low weights may 

be ignored. 

 

Target object at time k 

 

 



 

 

 

 

 

 

X axis = Bin number 

 

Y axis = histogram at (t0) 

 

 

Histogram of target 

 

Fig.7 An example of color histogram distribution of a target model at time k 

 

 

 

 

 

 

 

 

 



 

 

 

RESULTS OF CODING 

 

 

+++ Showing Particles +++
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X axis = Vedio.Width (1280 in pixels) 

Y axis = Vedio.Height (720 in pixels) 

 

40000 samples are trcking the red color which the boy is wearing given by  

 

Xrgb_tgt = [ 255 0 0 ] 

 

Red = 255 

 

Blue = 0 

 



Green = 0 

 

Similarly for a boy wearing multi colour t-shirt eg.(yellow + Black) & we have 

given code for  

[255 165 0] 

 

particles will detect only yellow colour in t shirt 

 

 

 

 

 

This code can track any color defined by color codec formed from RGB color 

space. 

 

 

 



 

 

Video Parameters:  30.00 frames per second, RGB24 1280x720. 

                     668 total video frames available. 

 

Vedio at different parameters: 

 

Initially when the particles are distributed on the entire screen. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Conclusion   

 

This method can track any moving object  in conjunction with color information 

in both known & unknown initial position of the object & in the presence of 

occlusion with static object. The robust color likelihood is used to evaluate 

samples properly assosciated to the target which represents high appearance 

variability. We rely on bhattacharya coefficient between target & sample 

histogramto perform this task. Model updating is carried to update the object 

in presence of appearance change.  

 

Furthermore the performance of the objects tracking can be improved in 

several ways such as adding the background modelling information in the 

calculation of likelihood, detection of appearing object  & extend the method to 

track the multiple object in the presence of object occlusion & so on. Objects 

can be tracked withother techniques also like features , texture, motion based 

recognition, even with shapes & so on. 
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