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1. Introduction 

 The current cryptographic systems (e.g., DES, AES, RSA) have high theoretical 

(related to the complexity of the underlying building blocks in their construction) and 

proven security for containing the plain text data. Nevertheless, illegal key sharing (key 

management problem) is one of their major drawbacks: regardless of the security of the 

algorithms, if the keys that need to be known only to the legitimate parties in the 

communication are shared freely, it is trivial to convert cipher text back to plain text. 

Another limitation of the cryptographic systems is that they require the keys to be very 

long and random for high security. For example, AES requires at least 128-bits (which 

corresponds to a 19 character key from a 7-bit ASCII code). This makes it impossible 

for users to remember the keys. As a result, the cryptographic keys are stored within a 

physical medium (e.g., in a computer or on a smart card) and release based on some 

alternative authentication mechanism. If this mechanism succeeds, the released key can 

be used in encryption/decryption procedures. The most popular authentication 

mechanism used for this purpose is based on passwords, which are again cryptographic 

key-like strings but they are simple enough for users to remember (hence it is not 

necessary for users to store this information within a physical medium). But, passwords 

can be hacked by various forms of attacks and are not considered to be very safe. 

Furthermore, passwords are unable to provide non-repudiation: a subject may deny 

releasing the key using password authentication, claiming that her password was stolen 

and that a thief released the key. Many of the above limitations of password-based 

authentication can be eliminated by incorporating biometric authentication into the 

cryptographic system.  
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 Biometrics plays an important role in taking care of all these flaws. It 

completely depicts your identity and eliminates the case of non-repudiation. And also 

you don’t have to remember long passwords. The fingerprint based fuzzy vault scheme 

secures the cryptographic key by encoding it the help of fingerprint minutiae [16]. The 

project consists of two phases: (i) Feature extraction from fingerprint and, (ii) 

Alignment and fuzzy vault implementation. Our implementation improves the existing 

ones as it doesn’t need any helper data for aligning the fingerprints.  

 

1.1 Motivation 

 An improved fingerprint based fuzzy vault implementation has been proposed 

in this thesis. Securing the key is one of the major challenges of secret key 

cryptographic systems. Biometrics is one of the most reliable ways to accomplish this 

and fingerprint is the most widely used biometric feature. At the same time, we need to 

ensure that the features of the fingerprint are not exposed while sending the key 

encrypted with fingerprint. Fuzzy vault [18] can be used to accomplish this. We don’t 

have to find the exact match to unlock the vault as it is very difficult to exactly match 

two fingerprints. 

 

 Biometrics is being widely used in many places for authentication. The noisy 

nature of fingerprints due to dirt, sweat, physical wear and tear etc poses a lot of 

challenges in extracting the minutiae and the singularity points (core and delta). 

Although a lot of research has been done in this field, but there still is a lot of scope for 

improving the fingerprint image enhancement techniques and methods to find the 

singularity points. The existing fingerprint matching algorithms don’t need very strict 
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alignment of the fingerprint images. But, for fuzzy vault scheme we need to have an 

accurate alignment of the query and template minutiae.  

 

 The biometric cryptosystems is a very interesting field of research. The 

biometric features are extracted and transformed to some other form so that they can be 

used in cryptography. In fuzzy vault scheme, the secret key is broken down to form a 

polynomial which is then evaluated over the biometric features and are sent through 

unsecured channel after  adding CRC bits. Lagrange interpolation is used to reconstruct 

the polynomial and thus retrieve the secret key. Thus, the research work encompasses 

image processing, cryptography, mathematics and computation, making it a much 

diversified challenge.  

 

1.2 Related Work 

 A lot of work has been done in the field of biometric cryptosystems. Soutar et 

al. [43, 44] proposed a “key binding" algorithm for an optical correlation- based 

fingerprint matching system. This algorithm binds a cryptographic key with the user's 

fingerprint image at the time of enrollment. The key is then retrieved only upon 

successful authentication. The main criticism of Soutar et al.'s work in the literature [5] 

is that the method does not carry rigorous security guarantees. The authors do not 

explain how much entropy is lost at each stage of their algorithm. Further, the resulting 

FAR and FRR values associated with key re-lease are unknown. The authors also 

assume that the input and database fingerprint images are perfectly aligned. Even with 

a very constrained image acquisition system, it is unrealistic to acquire fingerprint 

images without any misalignment. Monrose et al. [45] proposed a method to make 

passwords more secure by combining keystroke biometrics with passwords. Their 
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technique was inspired by password “salting", where a user's password (pwd) is salted 

by prepending it with an s-bit random number (the “salt"), resulting in a hardened 

password (hpwd). In their “fuzzy commitment" scheme [6], Juels and Wattenberg 

generalized and significantly improved Davida et al.'s methods [46] to tolerate more 

intra-class variation in the biometric characteristics and to provide stronger security. 

The authors acknowledge that one of the major shortcomings of the fuzzy commitment 

scheme is that it requires the biometric representations X and Y to be ordered so that 

their correspondence is obvious. 

 

 Juels and Sudan's fuzzy vault scheme [5] is an improvement upon previous 

work by Juels and Wattenberg [6]. Assume Alice is a legitimate user of this scheme, 

and Bob is an attacker. In [5] Alice can place a secret K (e.g., secret encryption key) in 

a vault and lock (secure) it using an unordered set A. Here, an unordered set means that 

the relative positions of set elements do not change the characteristics of the set: e.g., 

the set {-2,-1, 3} conveys the same information as {3,-1,-2}. Bob, using an unordered 

set B, can unlock the vault (access K) only if B overlaps with A to a large extent. The 

procedure for constructing the fuzzy vault is as follows: First, Alice selects a 

polynomial p of variable x that encodes K (e.g., by fixing the coefficients of p 

according to K). She computes the polynomial projections, p(A), for the elements of 

A. She adds some randomly generated chaff points that do not lie on p, to arrive at the 

final point set R. When Bob tries to learn K (i.e., find p), he uses his own unordered set 

B. If B overlaps with A substantially, he will be able to locate many points in R that lie 

on p. Using error-correction coding (e.g., Reed-Solomon), it is assumed that he can 

reconstruct p (and hence K). A simple numerical example for this process is as follows: 

Assume Alice selects the polynomial p(x) = x2-3x+1, where the coefficients (1, -3, 1) 
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encode her secret K. If her unordered set is A = {-1,-2, 3, 2}, she will obtain the 

polynomial projections as {(A, p(A))} = {(-1, 5), (-2, 11), (3, 1), (2,-1)}. To this set, 

assume Alice adds two chaff points C = {(0, 2), (1, 0)} that do not lie on p, to find the 

final point set R = {(-1, 5), (-2, 11), (3, 1), (2,-1), (0, 2), (1, 0)}. Now, if Bob can 

separate at least 3 points from R that lie on p, he can reconstruct p, hence decode the 

secret represented as the polynomial coefficients (1, -3, 1). Otherwise, he will end up 

with an incorrect p, and he will not be able to access the secret K. The security of the 

scheme is based on the infeasibility of the polynomial reconstruction problem (i.e., if 

Bob does not locate many points that lie on p, he cannot feasibly find the parameters of 

p, hence he cannot access K). The scheme can tolerate some differences between the 

entities (unordered sets A and B) that lock and unlock the vault, so Juels and Sudan 

named their scheme fuzzy vault. The fuzzy vault scheme is expected to tolerate these 

intra-class variations. On the other hand, in traditional cryptography, if the keys are not 

exactly the same, the decryption operation will fail. Note that since the fuzzy vault can 

work with unordered sets (common in biometric templates, including fingerprint 

minutiae data), it is a promising candidate for biometric cryptosystems. Having said 

this, the fuzzy vault scheme requires pre-aligned biometric templates. Alignment is an 

essential requirement due to different types of distortion that can occur during 

biometric data acquisition. Further, the number of feasible operating points (where the 

vault operates with negligible complexity, e.g., measured via the number of required 

access attempts to reveal the secret for a genuine user and with considerable 

complexity for an imposter user) for the fuzzy vault is limited. 

 

 Dodis et al. [47] proposed theoretical foundations for generating keys from the 
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“key material" that is not exactly reproducible (e.g., passphrases, answers to 

questionnaires, biometric data that changes between enrollment and verification). They 

also propose a modification of the Juels and Sudan's fuzzy vault scheme [5]: instead of 

adding chaff points to the projections of the polynomial p, Dodis et al. [47] propose to 

use a polynomial p' (of degree higher than p) which overlaps with p only for the points 

from the genuine set A. The security of the scheme is based on the degree of this new 

polynomial p', which replaces the final point set R of Juels and Sudan's scheme [5]. 

Clancy et al. [48] propose a “fingerprint vault" based on the scheme of Juels and Sudan 

[5]. At the enrollment time, multiple (typically 5) fingerprints of users are acquired. 

The fingerprint representation (minutiae positions) is extracted from each fingerprint. 

Correspondence between feature points (minutiae) extracted from the multiple prints is 

established using a bounded nearest-neighbor algorithm. Yang and Verbauwhede [14] 

attempted to eliminate the pre-alignment requirement of Clancy et al.'s [48] algorithm. 

First, the enrollment fingerprint is analyzed to find a “reference minutia": it is defined 

as a minutia (i) that is present in all of the multiple (e.g., 3) fingerprint impressions, and 

(ii) whose local structure (based on its distance and orientation with respect to its two 

nearest-neighbor minutiae) does not change. The fingerprint that will lock the vault is 

registered with respect to this reference minutia (using the reference minutia as the 

origin of a new coordinate frame). 

 

 Uludag et al. [18] proposed a fuzzy vault for fingerprints without using the 

Reed Solomon encoding. Chung et al. [19] proposed an automatic alignment of 

fingerprint features for fuzzy fingerprint vault. While Sungji [20] gave a geometric 

hashing based technique for the fuzzy vault. Uludag et al. [20] modified their own 

scheme [18], to implement alignment with the help of helper data. Peng et al. [39] 
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proposed an alignment free system, while Xin et al. [40] proposed a topological 

structure based alignment. 

 

1.3 Problem Statement 

Finger print based fuzzy vault is a biometric cryptosystem which can be used to secure 

the secret key. The aim of this work is to study the various options available for 

implementing a fuzzy vault and propose an improved algorithm which doesn’t require 

any helper data to be sent for aligning the fingerprints. The work consists of two major 

sections: (i) Biometric image enhancement and feature extraction, and (ii) Alignment of 

fingerprints and fuzzy vault implementation.  

  

 We justify the efficiency of our method by applying it to two different finger 

print databases. We also explore different possibilities and compare the experimental 

results obtained. 

 

Our problem statement can be summarized as follows: 

“To develop a fingerprint based fuzzy vault which doesn’t require additional 

helper data for alignment” 

 

1.4 Scope of the Work 

 In this project, a fuzzy vault scheme has been implemented and its efficiency is 

compared to the existing implementations. Our work involves a detailed study of the 

biometric (fingerprints) feature extraction and various key generation and key release 

schemes based on biometrics. 
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 Our implementation of the fuzzy vault is tested on the publicly available 

fingerprint databases and some live samples taken by us. The accuracy of our 

implementation mainly depends on the alignment of the fingerprints. Broadly, the 

scope of this work can be summarized as: 

 

 To perform fingerprint image enhancement and extract features from it. 

 To extract the singularity points of the fingerprints accurately. 

 To explore various ways for aligning the fingerprint templates. 

 To improve the existing fuzzy vault implementation 

 To implement a modified fuzzy vault which doesn’t require helper data as we 

have developed a new method for finding the core point accurately. 

 To compare the performance with the existing methods by using some standard 

databases [7,8] and some live data. 

 

1.5 Organization of the Thesis 

The remainder part of this thesis is organized in the following chapters: 

Chapter 2: Biometrics 

This section consists of the introduction to biometrics and various techniques available 

for enhancement and extraction of features. A complete literature survey of fingerprint 

feature extraction is presented. 

 

Chapter 3: Biometric Cryptosystems 

This chapter discusses about the cryptographic techniques and the need for securing the 

secret keys. Various options available are discussed in this section and an overview of 

the fuzzy vault is presented. 



9  
 

Chapter 4: Our Fuzzy vault implementation 

This chapter discusses the step by step implementation of the entire system. The 

techniques used for biometric feature extraction, alignment and the fuzzy vault 

implementation details are discussed. The various options explored by us are discussed 

in this section. 

 

Chapter 5: Experiments and Results 

Here, we present the experimental results of our implementation and analyze and 

compare it with the other proposed methods. 

 

Chapter 6: Conclusion and Future Scope 

This chapter concludes the discussion in the thesis while opening up the new challenges 

that can be taken upon.  

 

References: This section gives the reference details used for completing this work. 
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2. Biometrics 

 This chapter covers the biometrics and the way it can be used for authenticating 

people. The various enhancement techniques and feature extraction is discussed in this 

chapter. [9] 

 

2.1 Introduction 

 Biometric recognition, or simply biometrics, refers to the use of distinctive 

anatomical and automatically recognizing a person. Questions such as “Is this person 

authorized to enter the facility?”, “Is this individual entitled to access the privileged 

information?”, and “Did this person previously apply for a passport?” are routinely 

asked in a variety of organizations in both person’s identity. Because biometric 

identifiers cannot be easily misplaced, forged, or shared, they are considered more 

reliable for person recognition than traditional token- (e.g., keys or ID cards) or 

knowledge- (e.g., password or PIN) based methods. Biometric recognition provides 

better security, higher efficiency, and, in many instances, increased user convenience. It 

is for these reasons that biometric recognition systems are being increasingly deployed 

in a large number of government (e.g., border crossing, national ID card, e-passports) 

and civilian (e.g., computer network logon, mobile phone, Web access, smartcard) 

applications.  

 A number of biometric technologies have been developed and several of them 

have been successfully deployed. Among these, fingerprints, face, iris, voice, and hand 

geometry are the ones that are most commonly used. Each biometric trait has its 

strengths and weaknesses and the choice of a particular trait typically depends on the 

requirements of the application. Various biometric identifiers can also be compared on 
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the following factors; universality, distinctiveness, permanence, collectability, 

performance, acceptability and circumvention. Because of the well-known 

distinctiveness (individuality) and persistence properties of fingerprints as well as cost 

and maturity of products, fingerprints are the most widely deployed biometric 

characteristics. It is generally believed that the pattern on each finger is unique. Given 

that there are about 6.5 billion living people on Earth and assuming each person has 10 

fingers, there are 65 billion unique fingers! In fact, fingerprints and biometrics are often 

considered synonyms! Fingerprints were first introduced as a method for person 

identification over 100 years back. Now, every forensics and law enforcement agency 

worldwide routinely uses automatic fingerprint identification systems (AFIS). While 

law enforcement agencies were the earliest adopters of the fingerprint recognition 

technology, increasing concerns about national security, financial fraud and identity 

fraud have created a growing need for fingerprint technology for person recognition in 

a number of non-forensic applications. 

 Fingerprint recognition system can be viewed as a pattern recognition system. 

Designing algorithms capable of extracting salient features from fingerprints and 

matching them in a robust way are quite challenging problems. This is particularly so 

when the users are uncooperative, the finger surface is dirty or scarred and the resulting 

fingerprint image quality is poor. There is a popular misconception that automatic 

fingerprint recognition is a fully solved problem since automatic fingerprint systems 

have been around for almost 40 years. On the contrary, fingerprint recognition is still a 

challenging and important pattern recognition problem because of the large intra-class 

variability and large inter-class similarity in fingerprint patterns.  
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2.2 Fingerprint Analysis 

 A fingerprint is the reproduction of the exterior appearance of the fingertip 

epidermis. The most evident structural characteristic of a fingerprint is a pattern of 

interleaved ridges and valleys (Ashbaugh, 1999); in a fingerprint image, ridges (also 

called ridge lines) are dark whereas valleys are bright (see Figure 2.1). Ridges vary in 

width from 100 μm, for very thin ridges, to 300 μm for thick ridges. Generally, the 

period of a ridge/valley cycle is about 500 μm. Most injuries to a finger such as 

superficial burns, abrasions, or cuts do not affect the underlying ridge structure, and the 

original pattern is duplicated in any new skin that grows.  

 

 

Figure 2.1. Ridges and valleys in a fingerprint image 

 

Ridge details are generally described in a hierarchical order at three different levels, 

namely, Level 1 (the overall global ridge flow pattern), Level 2 (minutiae points), and 

Level 3 (pores, local shape of ridge edges, etc.). 

 At the global level (Level 1), ridges often run smoothly in parallel but exhibit 

one or more regions where they assume distinctive shapes (characterized by high 

curvature, frequent ridge terminations, etc.). These regions, called singularities or 
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singular regions, may be broadly classified into three typologies: loop, delta, and whorl 

(see Figure 2.2). Singular regions belonging to loop, delta, and whorl types are 

typically characterized by ∩, Δ, and O shapes, respectively. Sometimes whorl 

singularities are not explicitly introduced because a whorl type can be described in 

terms of two loop singularities facing each other.  

 

 

Figure 2.2. Singular regions (white boxes) and core points (small circles) in fingerprint images 

 

 Fingerprint matching algorithms can pre-align fingerprint images according to a 

landmark or a center point, called the core. Henry (1900) defined the core point as “the 

north most point of the innermost ridge line.” In practice, the core point corresponds to 

the center of the north most loop type singularity. For fingerprints that do not contain 

loop or whorl singularities (e.g., those belonging to the Arch class in Figure 2.3), it is 

difficult to define the core. In these cases, the core is usually associated with the point 

of maximum ridge line curvature. Unfortunately, due to the high variability of 

fingerprint patterns, it is difficult to reliably locate a registration (core) point in all the 

fingerprint images. Singular regions are commonly used for fingerprint classification 

(see Figure 3.3), that is assigning a fingerprint to a class among a set of distinct classes, 

with the aim of simplifying search and retrieval. 
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Figure 2.3. One fingerprint from each of the five major classes defined by Henry (1900). 

 

 At the local level (Level 2), other important features, called minutiae can be 

found in the fingerprint patterns. Minutia means small detail; in the context of 

fingerprints, it refers to various ways that the ridges can be discontinuous (see Figure 

2.4). For example, a ridge can suddenly come to an end (ridge ending), or can divide 

into two ridges (bifurcation). Minutiae are the most commonly used features in 

automatic fingerprint matching. Although several types of minutiae can be considered 

(the most common types are shown in Figure 2.4), usually only a coarse minutiae 

classification is adopted to deal with the practical difficulty in automatically discerning 

the different types with high accuracy. The American National Standards Institute 

(ANSI/NIST-ITL 1, 2007) proposes a minutiae taxonomy based on four classes: ridge 

ending, bifurcations, compound (trifurcation or crossovers), and type undetermined.  

 

 

Figure 2.4. Seven most common minutiae types. 
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In ANSI/NIST-ITL 1 (2007) Type-9 records each minutia is denoted by its class, the x- 

and y-coordinates and the angle between the tangent to the ridge line at the minutia 

position and the horizontal axis (Figure 2.5). In practice, an ambiguity exists between 

ridge ending and bifurcation minutiae types; depending on the finger pressure against 

the surface where the fingerprint impression is formed, ridge endings may appear as 

bifurcations and vice versa. However, thanks to the convention used to define minutiae 

angle, there is no significant change in the angle if the minutia appears as a ridge 

ending in one impression and as a bifurcation in another impression of the same finger. 

 

 

Figure 2.5. a) a ridge ending minutia: [x0,y0] are the minutia coordinates; θ is the angle that the 

minutia tangent forms with the horizontal axis; b) a bifurcation minutia: θ is now defined by 

means of the ridge ending minutia corresponding to the original bifurcation that exists in the 

negative image. 

 

2.3 Fingerprint Enhancement Techniques 

 

 The performance of minutiae extraction algorithms and other fingerprint 

recognition techniques relies heavily on the quality of the input fingerprint images. In 

an ideal fingerprint image, ridges and valleys alternate and flow in a locally constant 

direction. In such situations, the ridges can be easily detected and minutiae can be 

precisely located in the image. Figure 2.6a shows an example of a good quality 
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fingerprint image. However, in practice, due to skin conditions (e.g., wet or dry, cuts, 

and bruises), sensor noise, incorrect finger pressure, and inherently low-quality fingers 

(e.g., elderly people, manual workers), a significant percentage of fingerprint images 

(approximately 10%, according to our experience) is of poor quality like those in 

Figures 2.6b, c. In many cases, a single fingerprint image contains regions of good, 

medium, and poor quality where the ridge pattern is very noisy and corrupted (Figure 

2.7). In general, there are several types of degradation associated with fingerprint 

images:  

1. The ridges are not strictly continuous; that is, the ridges have small breaks 

(gaps). 

2. Parallel ridges are not well separated. This is due to the presence of noise which 

links parallel ridges, resulting in their poor separation. 

3. Cuts, creases, and bruises on the finger. 

 

 

Figure 2.6. a) A good quality fingerprint; b) a medium quality fingerprint characterized by 

scratches and ridge breaks; c) a poor quality fingerprint containing a lot of noise. 
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 These three types of degradation make ridge extraction extremely difficult in 

the highly corrupted regions. This leads to the following problems in minutiae 

extraction: (i) a significant number of spurious minutiae are extracted, (ii) a large 

number of genuine minutiae are missed, and (iii) large errors in the location (position 

and orientation) of minutiae are introduced. In order to ensure good performance of the 

ridge and minutiae extraction algorithms in poor quality fingerprint images, an 

enhancement algorithm to improve the clarity of the ridge structure is necessary. 

 A fingerprint expert is often able to correctly identify the minutiae by using 

various visual clues such as local ridge orientation, ridge continuity, ridge tendency, 

and so on. In theory, it is possible to develop an enhancement algorithm that exploits 

these visual clues to improve image quality. Generally, for a given fingerprint image, 

the fingerprint areas resulting from the segmentation step may be divided into three 

categories (Figure 2.7): 

 Well-defined region: ridges can be clearly differentiated from each another. 

 Recoverable region: ridges are corrupted by a small amount of gaps, creases, 

smudges, links, and the like, but they are still visible and the neighboring 

regions provide sufficient information about their true structure. 

 Unrecoverable region: ridges are corrupted by such a severe amount of noise 

and distortion that no ridges are visible and the neighboring regions do not 

allow them to be reconstructed. 

 

 Good quality regions, recoverable, and unrecoverable regions may be identified 

according to several criteria; in general, image contrast, orientation consistency, ridge 

frequency, and other local features may be combined to define a quality index. Since 

the estimation of fingerprint quality is central for a number of algorithms and practical 
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applications, a section devoted to quality computation is provided at the end of this 

chapter. The goal of an enhancement algorithm is to improve the clarity of the ridge 

structures in the recoverable regions and mark the unrecoverable regions as too noisy 

for further processing. Usually, the input of the enhancement algorithm is a gray-scale 

image. The output may either be a gray-scale or a binary image, depending on the 

algorithm and goal. 

 

 

Figure 2.7. A fingerprint image containing regions of different quality: a) a well-defined region; 

b) a recoverable region; c) an unrecoverable region. 

 

2.3.1 Pixel-wise enhancement 

 In a pixel-wise image processing operation the new value of each pixel only 

depends on its previous value and some global parameters (but not on the value of the 

neighboring pixels). Pixel-wise techniques do not produce satisfying and definitive 

results for fingerprint image enhancement. However, contrast stretching, histogram 

manipulation, normalization, and Wiener filtering have been shown to be effective as 

initial processing steps in a more sophisticated fingerprint enhancement algorithm.  
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 The normalization approach determines the new intensity value of each pixel in 

an image as 

 

where m and v are the image mean and variance and m0 and v0 are the desired mean 

and variance after the normalization. Figure 2.8 shows an example. Since the mean and 

variance can change in different regions of a fingerprint image, the above global 

technique can be implemented in a local fashion: Kim and Park (2002) introduced a 

block-wise implementation of the above Equation where m and v are the block mean 

and variance, respectively, and m0 and v0 are adjusted for each block according to the 

block features. 

 

 

Figure 2.8. An example of normalization using (m0=100, vo=100) 

 

2.3.2 Contextual filtering 

 The most widely used technique for fingerprint image enhancement is based on 

contextual filters. In conventional image filtering, only a single filter is used for 

convolution throughout the image. In contextual filtering, the filter characteristics 

change according to the local context. Usually, a set of filters is pre-computed and one 
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of them is selected for each image region. In fingerprint enhancement, the context is 

often defined by the local ridge orientation and local ridge frequency. In fact, the 

sinusoidal-shaped wave of ridges and valleys is mainly defined by a local orientation 

and frequency that varies slowly across the fingerprint area. An appropriate filter that is 

tuned to the local ridge frequency and orientation can efficiently remove the undesired 

noise and preserve the true ridge and valley structure. 

 Several types of contextual filters have been proposed in the literature for 

fingerprint enhancement. Although they have different definitions, the intended 

behavior is almost the same: (1) provide a low-pass (averaging) effect along the ridge 

direction with the aim of linking small gaps and filling impurities due to pores or noise; 

(2) perform a bandpass (differentiating) effect in the direction orthogonal to the ridges 

to increase the discrimination between ridges and valleys and to separate parallel linked 

ridges. 

 

2.3.3 FFT Enhancement 

 Contextual filtering can be done in the Fourier domain; in fact, it is well-known 

that a convolution in the spatial domain corresponds to a point-by-point complex 

multiplication in the Fourier domain. The filter is defined in the frequency domain by 

the function: 

H(ρ ,θ ) = Hradial (ρ )⋅ Hangle (θ ), 

where Hradial depends only on the local ridge spacing ρ = 1/f and Hangle depends only on 

the local ridge orientation θ. Both Hradial and Hangle are defined as bandpass filters and 

are characterized by a mean value and a bandwidth. A set of n discrete filters is derived 

by their analytical definition. Actually, in the experiments, to reduce the number of 

filters, only a single value is used for the local ridge frequency and, therefore, the 
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context is determined only by the orientation. The Fourier transform Pi, i = 1 … n of 

the filters is pre-computed and stored. Filtering an input fingerprint image I is 

performed as follows (see Figure 2.9). 

 The FFT (Fast Fourier Transform) F of I is computed. 

 Each filter Pi is point-by-point multiplied by F, thus obtaining n filtered image 

transforms PFi, i = 1 … n (in the frequency domain). 

 Inverse FFT is computed for each PFi resulting in n filtered images PIi, i = 1 … 

n (in the spatial domain). 

The enhanced image Ienh is obtained by setting, for each pixel [x, y], Ienh[x, y] = PIk[x, 

y], where k is the index of the filter whose orientation is the closest to θxy. 

 

 

Figure 2.9. Enhancement of the fingerprint image I using FFT 

 

2.3.4 Gabor Filters 

 One of the most widely cited fingerprint enhancement techniques is the method 

employed by Hong et al. [49], which is based on the convolution of the image with 

Gabor filters tuned to the local ridge orientation and ridge frequency. The main stages 
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of this algorithm include normalisation, ridge orientation estimation, ridge frequency 

estimation and filtering.  

 The first step in this approach involves the normalisation of the fingerprint 

image so that it has a prespecified mean and variance. Due to imperfections in the 

fingerprint image capture process such as non-uniform ink intensity or non-uniform 

contact with the fingerprint capture device, a fingerprint image may exhibit distorted 

levels of variation in grey-level values along the ridges and valleys. Thus, 

normalisation is used to reduce the effect of these variations, which facilitates the 

subsequent image enhancement steps. 

 An orientation image is then calculated, which is a matrix of direction vectors 

representing the ridge orientation at each location in the image. The widely employed 

gradient-based approach is used to calculate the gradient [50], which makes use of the 

fact that the orientation vector is orthogonal to the gradient. Firstly, the image is 

partitioned into square blocks and the gradient is calculated for every pixel, in the x and 

y directions. The orientation vector for each block can then be derived by performing 

an averaging operation on all the vectors orthogonal to the gradient pixels in the block. 

Due to the presence of noise and corrupted elements in the image, the ridge orientation 

may not always be correctly determined. Given that the ridge orientation varies slowly 

in a local neighbourhood, the orientation image is then smoothed using a low-pass filter 

to reduce the effect of outliers. 

 The next step in the image enhancement process is the estimation of the ridge 

frequency image. The frequency image defines the local frequency of the ridges 

contained in the fingerprint. Firstly, the image is divided into square blocks and an 

oriented window is calculated for each block. For each block, an x-signature signal is 

constructed using the ridges and valleys in the oriented window. The x-signature is the 
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projection of all the grey level values in the oriented window along a direction 

orthogonal to the ridge orientation. Consequently, the projection forms a sinusoidal-

shape wave in which the centre of a ridge maps itself as a local minimum in the 

projected wave. The distance between consecutive peaks in the x-signature can then be 

used to estimate the frequency of the ridges. 

 Fingerprint enhancement methods based on the Gabor filter have been widely 

used to facilitate various fingerprint applications such as fingerprint matching and 

fingerprint classification. Gabor filters are bandpass filters that have both frequency-

selective and orientation-selective properties, which means the filters can be effectively 

tuned to specific frequency and orientation values. One useful characteristic of 

fingerprints is that they are known to have well defined local ridge orientation and 

ridge frequency. Therefore, the enhancement algorithm takes advantage of this 

regularity of spatial structure by applying Gabor filters that are tuned to match the local 

ridge orientation and frequency. 

 Based on the local orientation and ridge frequency around each pixel, the Gabor 

filter is applied to each pixel location in the image. The effect is that the filter enhances 

the ridges oriented in the direction of the local orientation, and decreases anything 

oriented differently. Hence, the filter increases the contrast between the foreground 

ridges and the background, whilst effectively reducing noise. The even symmetric two-

dimensional Gabor filter has the following form: 

 

where θ is the orientation of the filter, and [xθ, yθ] are the coordinates of [x, y] after a 

clockwise rotation of the Cartesian axes by an angle of (90°–θ ). 
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In the above expressions, f is the frequency of a sinusoidal plane wave, and σx and σy 

are the standard deviations of the Gaussian envelope along the x- and y-axes, 

respectively. 

 

 

Figure 2.10. Graphical representation (lateral view and top view) of the Gabor filter defined by 

the parameters θ = 135°, f = 1/5, and σx = σy = 3. 

 

To apply Gabor filters to an image, the four parameters (θ, f, σx, σy) must be specified. 

Obviously, the frequency of the filter is completely determined by the local ridge 

frequency and the orientation is determined by the local ridge orientation. The selection 

of the values σx and σy involves a tradeoff. The larger the values, the more robust the 

filters are to the noise in the fingerprint image, but they are also more likely to create 

spurious ridges and valleys. On the other hand, the smaller the values, the less likely 

the filters are to introduce spurious ridges and valleys but then they will be less 

effective in removing the noise. In fact, from the Modulation Transfer Function (MTF) 

of the Gabor filter, it can be shown that increasing σx and σy decreases the bandwidth of 

the filter and vice versa. 
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2.4 Core Point Detection 

 Most of the approaches proposed in the literature for singularity detection 

operate on the fingerprint orientation image. In this section, the main approaches are 

discussed. 

 

2.4.1 Poincaré index 

 An elegant and practical method based on the Poincaré index was proposed by 

Kawagoe and Tojo (1984). Let G be a vector field and C be a curve immersed in G; 

then the Poincaré index PG,C is defined as the total rotation of the vectors of G along C 

(see Figure 2.11). 

 

Figure 2.11. The Poincaré index computed over a curve C immersed in a vector field G. 

 

Let G be the discrete vector field associated with a fingerprint orientation image D and 

let [i,j] be the position of the element θij in the orientation image; then the Poincaré 

index PG,C(i,j) at [i,j] is computed as follows. 

 The curve C is a closed path defined as an ordered sequence of some elements 

of D, such that [i,j] is an internal point. 
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 PG,C(i,j) is computed by algebraically summing the orientation differences 

between the adjacent elements of C. Summing orientation differences requires a 

direction (among the two possible) to be associated at each orientation. A 

solution to this problem is to randomly select the direction of the first element 

and assign the direction closest to that of the previous element to each 

successive element. It is well known and can be easily shown that, on closed 

curves, the Poincaré index assumes only one of the discrete values: 0°, ± 180°, 

and ± 360°. In the case of fingerprint singularities: 

 

Figure 2.12 shows three portions of orientation image. The path defining C is the 

ordered sequence of the eight elements dk (k = 0...7) surrounding [i, j]. The direction of 

the elements dk is chosen as follows: d0 is directed upward; d (k = 1...7) is directed so 

that the absolute value of the angle between dk and dk-1 is less than or equal to 90°. The 

Poincaré index is then computed as 
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Figure 2.12. Examples of Poincaré index computation in the 8-neighborhood of points 

belonging (from left to right) to a whorl, loop, and delta singularity, respectively. 

 

2.4.2 Geometry of Region Technique (GR) 

The GR technique can be summarized as follows: 

1. Compute the smoothed orientation field θ′(i, j). 

2. Compute ε (i, j) , which is the sine component of θ ′(i, j) 

ε(i, j) = sin(θ′(i, j)) 

3. Initialize a label image A which is used to indicate the core point. 

4. Assign the corresponding pixel in A the value of the difference in integrated 

pixel intensity of each region 

  

 The region R1 and R2 were determined empirically and also their geometry are 

 designed to capture the maximum curvature in concave ridges. In practice, the 

 region is defined within the radius of 10-15 pixels (should cover at least 1 

 ridge). In addition R1 that is sandwiched R2 is expected to hold the maximum 

 point. 

5. Find the maximum value in A and assign its coordinate as the core point. 
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6. If the core point still cannot be located, the steps (1-5) could be iterated for a 

number of times while decreasing the window size used in step 1 above. For 

instance; w = 15,10 and 5 pixels respectively. 

 

2.4.3 Detection of Curvature Technique (DC) 

1. Compute the local orientation θ(i, j). The input block size could be small as w 

= 3 , ie, k × l = 3× 3 pixels. 

2. Smooth the orientation field θ′(i, j). 

3. In every progressive block, the difference of direction components is computed. 

 

4. The curvature point (X) could be located at the corresponding (i, j) where Diff X 

and Diff Y are negative. 

5. If can’t find core point of interesting location. We decrease size image and core 

point detect again, until find core point or nearby. 

 

 There are various other methods that have been proposed [28, 29, 31, 32, 35, 

36, 37]. We have developed our own method for locating the core point which will be 

discussed in chapter 4. 
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2.5 Minutiae Extraction 

 The fingerprint image is first binarized and then a thinning algorithm is applied 

on the binarized image to obtain one pixel wide ridges. 

 

 The Crossing Number (CN) method is used to perform minutiae extraction. 

This method extracts the ridge endings and bifurcations from the skeleton image by 

examining the local neighbourhood of each ridge pixel using a 3£3 window. The CN 

for a ridge pixel P is given by: 

 

where Pi is the pixel value in the neighbourhood of P. For a pixel P, its eight 

neighbouring pixels are scanned in an anti-clockwise direction as follows: 

 

 

 After the CN for a ridge pixel has been computed, the pixel can then be 

classified according to the property of its CN value. As shown in Figure 2.13, a ridge 

pixel with a CN of one corresponds to a ridge ending, and a CN of three corresponds to 

a bifurcation. For each extracted minutiae point, the following information is recorded: 

 x and y coordinates, 

 orientation of the associated ridge segment, and 

 type of minutiae (ridge ending or bifurcation). 
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Figure 2.13: Examples of a ridge ending and bifurcation pixel. (a) A Crossing Number of one 

corresponds to a ridge ending pixel. (b) A Crossing Number of three corresponds to a 

bifurcation pixel. 
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3. Biometric Cryptosystems 

 In this chapter we will discuss about the various biometric cryptosystems and 

the need for fuzzy vault. We will also explore about the fingerprint based fuzzy vault. 

 

3.1 Cryptography 

 In traditional cryptographic systems, one or more keys are used to convert the 

plain text (i.e. data to be encrypted: audio files) to cipher text (i.e. encrypted data: 

encrypted audio files). The encrypting key(s) maps the plain text to essentially a 

sequence of pseudo random bits (modern crypto algorithms are designed with this 

criteria), that can only be mapped back to the plain text using the appropriate 

decrypting key(s). Without the knowledge of the correct decrypting keys, the 

conversion of cipher text to the plain text is infeasible considering time and cost 

limitations. Hence, the cipher text is secured: even if an attacker obtains the cipher text, 

she cannot extract useful information (i.e. plain text) from it. Here, the plain text can be 

any data that needs to be stored or transmitted securely: financial transactions, e-mail 

communication, health records, fingerprint images, secret cryptographic keys, etc. 

 Fig. 3.1 shows block diagrams of symmetric and asymmetric key cryptographic 

systems, in the realm of two entities that want to communicate securely (denoted as 

Alice and Bob). In the symmetric system, the decrypting key is the same as the 

encrypting key (namely, Alice and Bob share the key KAB). Whereas in the asymmetric 

system, the decrypting key is not the same as the encrypting key, and it is only known 

to the recipient of the message: Alice can access Bob's public key (encrypting key) K+
B, 

but only Bob knows his private key (decrypting key) K--
B. 
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Figure 3.1: Traditional cryptography: (a) symmetric key system, (b) asymmetric key system. 

 

 Current cryptographic algorithms (e.g., symmetric key systems Advanced 

Encryption Standard (AES), Data Encryption Standard (DES), or asymmetric key 

system RSA) have high theoretical and proven security. That is, there are no publicly 

known feasible procedures to invert the associated cipher text back to the plain text, 

given the computational resources (processor speed, processor quantity, and storage 

capacity) available to attackers today. As a result, encryption of multimedia data (by 

the copyright owner or the data distributor) can be utilized to eliminate the problems of 

unauthorized copying and distribution: the data will be useless without the knowledge 

of the correct encrypting and decrypting keys. But this solution also has problems, as 

explained below. 
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3.1.1 Problem of Key Sharing 

 Illegal key sharing (key management problem) is one of their major drawbacks 

in the current cryptographic systems (e.g., DES, AES, RSA). Regardless of the security 

of the algorithms, if the keys that need to be known only to the legitimate parties in the 

communication are shared freely, it is trivial to convert cipher text back to plain text. 

Another limitation of the cryptographic systems is that they require the keys to be very 

long and random for high security. For example, AES requires at least 128-bits (which 

corresponds to a 19 character key from a 7-bit ASCII code). This makes it impossible 

for users to remember the keys. As a result, the cryptographic keys are stored within a 

physical medium (e.g., in a computer or on a smart card) and released based on some 

alternative authentication mechanism. If this mechanism succeeds, the released key can 

be used in encryption/decryption procedures. 

 The most popular authentication mechanism used for this purpose is based on 

passwords, which are again cryptographic key-like strings but they are simple enough 

for users to remember (hence it is not necessary for users to store this information 

within a physical medium). As an example, the string “CaDburY1990+" can be 

selected as a password by someone who was born in 1990 and has a cat named 

Cadbury; she can remember it easily and she hopes that it cannot be guessed by 

attackers. Hence, the plain text (e.g., e-mail records, financial records) protected by a 

cryptographic algorithm is only as secure as the password (the weakest link) that 

releases the correct decrypting keys. Simple passwords (e.g., “cadbury") compromise 

security: they can be guessed, either by using social engineering methods (observing 

the names of pets, relatives, favorite movies . . . ), or by brute force search. In fact, even 

though the theoretical password space can be quite large (for 8 character passwords 

from 7-bit ASCII code, there are 1288 ~ 7.2* 1016 different passwords), in an 
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experiment involving 13,797 Unix passwords, Klein [53] was able to crack 

approximately 25% of the passwords using a dictionary including just 62,727 words. 

As a natural remedy to this problem, complex passwords are, however, difficult to 

remember and expensive to maintain (e.g., due to calls to helpdesks to reset a password 

if the user forgets it). Furthermore, passwords are unable to provide non-repudiation: a 

subject may deny releasing the key using password authentication, claiming that natural 

remedy to this problem, complex passwords are, however, difficult to remember and 

pensive to maintain (e.g., due to calls to helpdesks to reset a password if the user 

forgets it). Furthermore, passwords are unable to provide non-repudiation: a subject 

may deny releasing the key using password authentication, claiming that her password 

was stolen and that a thief released the key. 

 Many of the above limitations of password-based authentication can be 

eliminated by incorporating biometric authentication into the cryptographic system. 

The next section discusses about the biometric cryptosystems. 

 

3.2 Biometric Cryptosystems: An Introduction 

 Biometric cryptosystems (BCSs) are designed to securely bind a digital key to a 

biometric or generate a digital key from biometrics, offering solutions to biometric-

dependent key-release and biometric template protection. Replacing password-based 

key-release, BCSs brings about substantial security benefits. It is significantly more 

difficult to forge, copy, share, and distribute biometrics compared to passwords. Most 

biometric characteristics provide an equal level of security across a user-group 

(physiological biometric characteristics are not user selected). Due to biometric 

variance, conventional biometric systems perform “fuzzy comparisons” by applying 

decision thresholds which are set up based on score distributions between genuine and 
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non-genuine subjects. In contrast, BCSs are designed to output stable keys which are 

required to match a 100% at authentication. Original biometric templates are replaced 

through biometric-dependent public information which assists the key-release process. 

 The majority of BCSs require the storage of biometric-dependent public 

information, applied to retrieve or generate keys, which is referred to as helper data. 

Due to biometric variance it is not feasible for most biometric characteristics to extract 

keys directly. Helper data, which must not reveal significant information about original 

biometric templates, assists in reconstructing keys. Biometric comparisons are 

performed indirectly by verifying key validities, where the output of an authentication 

process is either a key or a failure message. Since the verification of keys represents a 

biometric comparison in encrypted domain, BCSs are applied as a means of biometric 

template protection [54], in addition to providing biometric-dependent key-release. 

Based on how helper data are derived, BCSs are classified as key-release or key-

generation systems (see Figure 3.2). 

 

3.3 Fuzzy Vault 

 One of the most popular BCSs called fuzzy vault (see figure 3.3) was 

introduced by Juels and Sudan [5] in 2002. The key idea of the fuzzy vault scheme is to 

use an unordered set A to lock a secret key k, yielding a vault, denoted by VA. If 

another set B overlaps largely with A, k is reconstructed, i.e., the vault VA is unlocked. 

The vault is created applying polynomial encoding and error correction. During the 

enrollment phase a polynomial p is selected which encodes the key k in some way (e.g., 

the coefficients of p are formed by k), denoted by p ¬ k. Subsequently, the elements of 

A are projected onto the polynomial p, i.e., p (A) is calculated. Additionally, chaff  



36  
 

 

Figure 3.2: Two modes of combining biometrics with cryptography: (a) key release, (b) key generation. 

  

points are added in order to obscure genuine points of the polynomial. The set of all 

points, R, forms the template.  To achieve successful authentication another set B needs 

to overlap with A to a certain extent in order to locate a sufficient amount of points in R 

that lie on p. Applying error correction codes, p can be reconstructed and, thus, k. The 

security of the whole scheme lies within the infeasibility of the polynomial 

reconstruction and the number of applied chaff points. The main advantage of this 
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concept is the feature of order invariance, i.e., fuzzy vaults are able to cope with 

unordered feature set which is the case for several biometric characteristics (e.g., 

fingerprints). 

 

 

Figure 3.3:  Fuzzy vault scheme 
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4. Fuzzy Vault Implementation 

 In this chapter we will discuss our implementation of the fingerprint based 

fuzzy vault in detail, along with all the steps involved. After enhancing the fingerprint 

image, the minutiae points are extracted. Also, the core point of the fingerprint is 

determined and high curvature points are marked to transform the minutiae points to 

the new coordinate system. After that the biometric features are used to form the fuzzy 

vault as discussed in 3.3. 

 

4.1 Architecture of the Proposed System 

 In this section we present our implementation of the fuzzy vault, operating on 

fingerprint minutiae features. Note that first we find out the invariant features from the 

fingerprint and then use that for encoding/decoding the fuzzy vault. Fig. 4.1 shows the 

block diagram of the proposed fingerprint fuzzy vault system. 

 

Feature Extraction: 
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(b) 

 

 

(c) 

Figure 4.1: Flowchart of the proposed fuzzy fingerprint vault: (a) Feature Extraction, (b) vault 

encoding, (c) vault decoding. 
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 Fig. 4.2 shows the variables used in the system pictorially: the polynomial in 

Fig. 4.2(a) encodes the secret. It is evaluated at both genuine (black) and chaff (red) 

points in Fig. 4.2(b). Finally, the vault is the union of genuine and chaff points with no 

discriminating information (conveyed via color) attached to them. 

 

Figure 4.2: Pictorial representation of system variables: (a) polynomial, (b) evaluation of the 

polynomial (black: genuine points, red: chaff points), (c) final vault list. 

 

 

4.1 Fingerprint Enhancement 

 

 We perform gabor filtering to enhance the fingerprint image. As discussed in 

section 2.3, various methods exist for enhancing the fingerprint template. But, after 

some experimentation we concluded that gabor filter provided the best results. Before 

filtering, we have to do segmentation to find out the region of interest in the fingerprint. 

The application of gabor filtering involves the following steps: 

 normalisation, 

 orientation estimation, 

 ridge frequency estimation, and 

 Gabor filtering. 
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4.2.1 Segmentation 

 The first step of the fingerprint enhancement algorithm is image segmentation. 

Segmentation is the process of separating the foreground regions in the image from the 

background regions. The foreground regions correspond to the clear fingerprint area 

containing the ridges and valleys, which is the area of interest. The background 

corresponds to the regions outside the borders of the fingerprint area, which do not 

contain any valid fingerprint information. When minutiae extraction algorithms are 

applied to the background regions of an image, it results in the extraction of noisy and 

false minutiae. Thus, segmentation is employed to discard these background regions, 

which facilitates the reliable extraction of minutiae. 

 In a fingerprint image, the background regions generally exhibit a very low 

grey-scale variance value, whereas the foreground regions have a very high variance. 

Hence, a method based on variance thresholding can be used to perform the 

segmentation. Firstly, the image is divided into blocks and the grey-scale variance is 

calculated for each block in the image. If the variance is less than the global threshold, 

then the block is assigned to be a background region; otherwise, it is assigned to be part 

of the foreground. The grey-level variance for a block of size W x W is defined as: 

 

where V (k) is the variance for block k, I(I, j) is the grey-level value at pixel (I, j), and 

M(k) is the mean grey-level value for the block k.  In our implementation we have 

used W=8 and set the threshold value to 0.01. Figure 4.3 shows the output of 

segmentation. The region in white in fig 4.3 (b) is the region of interest. 
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    (a)    (b) 

Figure 4.3: Segmentation, (a) Input Image, (b) Segmentation boundary 

 

4.2.2 Normalisation 

 The next step in the fingerprint enhancement process is image normalisation. 

Normalisation is used to standardise the intensity values in an image by adjusting the 

range of grey-level values so that it lies within a desired range of values. Let I(i, j) 

represent the grey-level value at pixel (i, j), and N(i, j) represent the normalised grey-

level value at pixel (i, j). The normalised image is defined as:  

 

where M and V are the estimated mean and variance of I(i, j), respectively, and M0 and 

V0 are the desired mean and variance values, respectively. Normalisation does not 

change the ridge structures in a fingerprint; it is performed to standardise the dynamic 

levels of variation in grey-level values, which facilitates the processing of subsequent 

image enhancement stages. In our implementation, we have taken M0 and V0  as 50. 
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4.2.3 Orientation estimation 

 

Figure 4.4: The orientation of a ridge pixel in a fingerprint. 

 

 The orientation field of a fingerprint image defines the local orientation of the 

ridges contained in the fingerprint (see Figure 4.4). The orientation estimation is a 

fundamental step in the enhancement process as the subsequent Gabor filtering stage 

relies on the local orientation in order to effectively enhance the fingerprint image. The 

least mean square estimation method employed by Hong et al. is used to compute the 

orientation image. However, instead of estimating the orientation block-wise, I have 

chosen to extend their method into a pixel-wise scheme, which produces a finer and 

more accurate estimation of the orientation field. The steps for calculating the 

orientation at pixel (i, j) are as follows: 

1. Firstly, a block of size W x W is centred at pixel (i; j) in the normalised 

fingerprint image. 

2. For each pixel in the block, compute the gradients  x(i, j) and  y(i, j), which are 

the gradient magnitudes in the x and y directions, respectively. The horizontal 

Sobel operator is used to compute  x(i; j) : 
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 The vertical Sobel operator is used to compute  y(i, j) : 

 

3. The local orientation at pixel (i; j) can then be estimated using the following 

equations: 
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4.2.4 Ridge Frequency Estimation 

 In addition to the orientation image, another important parameter that is used in 

the construction of the Gabor filter is the local ridge frequency. The frequency image 

represents the local frequency of the ridges in a fingerprint. The first step in the 

frequency estimation stage is to divide the image into blocks of size W x W. The next 

step is to project the grey-level values of all the pixels located inside each block along a 

direction orthogonal to the local ridge orientation. This projection forms an almost 
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sinusoidal-shape wave with the local minimum points corresponding to the ridges in 

the fingerprint. An example of a projected waveform is shown in Figure 4.5. 

 

 

Figure 4.5: The projection of the intensity values of the pixels along a direction orthogonal to 

the local ridge orientation. (a) A 32 x 32 block from a fingerprint image. (b) The projected 

waveform of the block. 

 

 The ridge spacing S(i, j) is then computed by counting the median number of 

pixels between consecutive minima points in the projected waveform. Hence, the ridge 

frequency F(i, j) for a block centred at pixel (i, j) is defined as: 

 

 Given that the fingerprint is scanned at a fixed resolution, then ideally the ridge 

frequency values should lie within a certain range. However, there are cases where a 

valid frequency value cannot be reliably obtained from the projection. Examples are 
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when no consecutive peaks can be detected from the projection, and also when 

minutiae points appear in the block. For the blocks where minutiae points appear, the 

projected waveform does not produce a well-defined sinusoidal-shape wave, which can 

lead to an inaccurate estimation of the ridge frequency. Thus, the out of range 

frequency values are interpolated using values from neighbouring blocks that have a 

well-defined frequency.  

 

4.2.5 Gabor filtering 

 Once the ridge orientation and ridge frequency information has been 

determined, these parameters are used to construct the even-symmetric Gabor filter. A 

two-dimensional Gabor filter consists of a sinusoidal plane wave of a particular 

orientation and frequency, modulated by a Gaussian envelope. Gabor filters are 

employed because they have frequency-selective and orientation-selective properties. 

These properties allow the filter to be tuned to give maximal response to ridges at a 

specific orientation and frequency in the fingerprint image. Therefore, a properly tuned 

Gabor filter can be used to effectively preserve the ridge structures while reducing 

noise.  

 The even-symmetric Gabor filter is the real part of the Gabor function, which is 

given by a cosine wave modulated by a Gaussian (see Figure 4.6). An even-symmetric 

Gabor filter in the spatial domain is defined as [55]: 
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where   is the orientation of the Gabor filter, f is the frequency of the cosine wave,     

and     are the standard deviations of the Gaussian envelope along the x and y axes, 

respectively, and xµ and yµ define the x and y axes of the filter coordinate frame, 

respectively. 

 

Figure 4.6: An even-symmetric Gabor filter in the spatial domain. 

 

 The Gabor filter is applied to the fingerprint image by spatially convolving the 

image with the filter. The convolution of a pixel (i, j) in the image requires the 

corresponding orientation value O(i, j) and ridge frequency value F(i, j) of that pixel. 

Hence, the application of the Gabor filter G to obtain the enhanced image E is 

performed as follows:  

 

where O is the orientation image, F is the ridge frequency image, N is the normalised 

fingerprint image, and wx and wy are the width and height of the Gabor filter mask, 

respectively. 

 The filter bandwidth, which specifies the range of frequency the filter responds 

to, is determined by the standard deviation parameters     and   . Since the bandwidth 
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of the filter is tuned to match the local ridge frequency, then it can be deduced that the 

parameter selection of     and     should be related with the ridge frequency. However, 

we have empirically set     and    to fixed values of 4.0 and 4.0, respectively. Figure 

4.7 shows the fingerprint image after applying the gabor filter. 

 

 

    (a)     (b) 

Figure 4.7: Gabor filtering, (a) Original Fingerprint image, (b) After applying gabor filter 

 

4.3 Minutia Extraction 

 

4.3.1 Binarization 

 Our minutiae extraction algorithm operates on binary images where there are 

only two levels of interest: the black pixels that represent ridges, and the white pixels 

that represent valleys. Binarization is the process that converts a greylevel image into a 

binary image. This improves the contrast between the ridges and valleys in a fingerprint 

image, and consequently facilitates the extraction of minutiae. 
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 One useful property of the Gabor filter is that it has a DC component of zero, 

which means the resulting filtered image has a mean pixel value of zero. Hence, 

straightforward binarization of the image can be performed using a global threshold of 

zero. The binarization process involves examining the grey-level value of each pixel in 

the enhanced image, and, if the value is greater than the global threshold, then the pixel 

value is set to a binary value one; otherwise, it is set to zero. The outcome is a binary 

image containing two levels of information, the foreground ridges and the background 

valleys. 

 

4.3.2 Thinning 

 The final step typically performed prior to minutiae extraction is thinning. 

Thinning is a morphological operation that successively erodes away the foreground 

pixels until they are one pixel wide. A standard thinning algorithm is employed, which 

performs the thinning operation using two subiterations. This algorithm is accessible in 

MATLAB via the `thin' operation under the bwmorph function. Each subiteration 

begins by examining the neighbourhood of each pixel in the binary image, and based 

on a particular set of pixel-deletion criteria, it checks whether the pixel can be deleted 

or not. These subiterations continue until no more pixels can be deleted. 

 The application of the thinning algorithm to a fingerprint image preserves the 

connectivity of the ridge structures while forming a skeletonised version of the binary 

image. This skeleton image is then used in the subsequent extraction of minutiae. 

Figure 4.8 shows the effect of thinning. 
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   (a)      (b) 

Figure 4.8: Thinning, (a) Filterted image, (b) Thinned image 

 

4.3.3 Mark Minutiae 

 The Crossing Number (CN) method is used to perform minutiae extraction. 

This method extracts the ridge endings and bifurcations from the skeleton image by 

examining the local neighbourhood of each ridge pixel using a 3x3 window. The CN 

for a ridge pixel P is given by: 

 

where Pi is the pixel value in the neighbourhood of P. For a pixel P, its eight 

neighbouring pixels are scanned in an anti-clockwise direction as follows: 

 

 After the CN for a ridge pixel has been computed, the pixel can then be 

classified according to the property of its CN value. As shown in Figure 4.9, a ridge 
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pixel with a CN of one corresponds to a ridge ending, and a CN of three corresponds to 

a bifurcation. For each extracted minutiae point, the following information is recorded: 

 x and y coordinates, 

 type of minutia (ridge ending or bifurcation). 

 

 

Figure 4.9: Examples of a ridge ending and bifurcation pixel. (a) A Crossing Number of one 

corresponds to a ridge ending pixel. (b) A Crossing Number of three corresponds to a 

bifurcation pixel. 

 

After extracting the minutiae points we perform postprocessing: 

 If the minutia point is less w pixels inside the segmentation boundary, it is 

removed. (We have used w=12). 

 If the distance between a minutia point ‘a’ and ‘b’ is less than ‘d’, then all the 

minutia points which are at a distance less than ‘d’ from ‘a’ are iteratively 

removed. While doing this, we have ensured that if one of the points is a 

bifurcation, then it has been preserved. (we have used d=20). 

 

All the false minutiae have been removed during postprocessing. Figure 4.10 shows the 

minutiae points in a fingerprint image. 
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Figure 4.10 Minutia points 

 

4.4 Translation 

 The minutia points extracted during the previous stage are translated to a new 

coordinate system with origin at core point. The transformation and rotation factors 

have to be determined. We find out the high curvature points of the orientation field 

flow curves of the fingerprint template and the linear regression of all those points is 

chosen as one of the axes for the new coordinate system. We have explored the using 

this for cartesian system as well as the polar system. In cartesian system, the other axis 

would be orthogonal to the reference line we obtained. Whereas in polar system, the 

angle is calculated with reference to the axis obtained. The entire process has been 

explained step by step in this section. 
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4.4.1 Core Point Determination 

 Core point is one of the singularity points which can be located in most of the 

fingerprints. In practice, the core point corresponds to the center of the north most loop 

type singularity. For fingerprints that do not contain loop or whorl singularities, it is 

difficult to define the core. In these cases, the core is usually associated with the point 

of maximum ridge line curvature. Unfortunately, due to the high variability of 

fingerprint patterns, it is difficult to reliably locate a registration (core) point in all the 

fingerprint images. 

 We explored all the existing methods and then devised our own method which 

can detect the core point in most of the fingerprints with high accuracy. First of all, we 

have to calculate the following: 
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where    and    are the gradient values in x and y direction which are calculated 

using the sobel operator (section 4.2.3). Figure 4.11 shows the plot of the sign of   in 

the fingerprint image. The green region denotes positive   and the red region marks the 

region where   is negative. 
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Figure 4.11: Plot of sign( ). Positive is denoted by green and negative by red. 

 

 From the above figure we can see that the core point is the point where the 

positive and the negative regions intersect. We have designed an algorithm that 

determines this point. The steps are: 

1. Traverse in the upwards direction vertically as well as 450 in both directions to 

the vertical for ‘p’ pixels. While doing so, keep a count of the number of points 

where   is positive. Do the same for negative values. 

2. Repeat step 1 in downward direction as well. 

3. Traverse in the horizontal direction and 450 to it on both the sides for ‘p’ pixels. 

Again maintain the count of positive and negative  . 

4. Now, if any one of the verticals and horizontals have a total count of more than 

‘n’ with each one of them having opposite sign, then we have located the core 

point. 

We have chosen ‘p’ as 10 and ‘n’ as 38. We arrived at these values after performing 

some experiments on varied fingerprints. Figure 4.12 shows the core point marked in 

the fingerprint template. We have applied this algorithm on the filtered image as it 

doesn’t contain any noise and is continuous. 
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Figure 4.12: Core point (marked in red) 

 

4.4.2 High Curvature points 

 Orientation field flow curves of the fingerprint are obtained to mark the high 

curvature points. This is done to align the query and template fingerprints. The 

Orientation Field Flow Curves (OFFC) are sets of piecewise linear segments that 

represent the underlying flow of fingerprint ridges [2]. They are robust to noise arising 

from minutiae, islands, smudges, and cuts. These curves are obtained as follows. 

 Consider a site s in a fingerprint image I with r rows and c columns. The 

orientation field of I gives the direction of the ridge flow in a local neighborhood 

around s for all s € I. The value of the orientation at site s, os, is a vector (cos  s, 

sin  s)
T where  s is the angle of the flow with respect to the horizontal axis. Opposite 

flow directions are equivalent, and therefore,  s can only be determined uniquely in     

(-Π/2, Π/2). There are many algorithms in the literature that find orientations based on 

the gray intensities of a given image. 
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 The orientation field estimate is obtained for sites s = (x, y) in I where x and y 

are integers such that 1   x    r and 1   y    c. In order to obtain the value of the ridge 

orientation at any site s = (x, y) in I, we adopt an interpolation scheme. Let m and n be 

integers such that m = [x] and n = [y], where [g] stands for the greatest integer less than 

or equal to g. The orientation vector at site s = (x, y) is given by os = (cos  s, sin  s)
T 

where 

 

with u0 = m + 1 - x, u1 = 1 - u0, v0 = n + 1 - y, and v1 = 1 - v0. This interpolation scheme 

is a weighted average of orientation field values at the integer sites (m, n), (m, n + 1), 

(m + 1, n) and (m + 1, n + 1). The weights are given by uivj with (i, j) taking values in 

{0, 1}2. This interpolation scheme yields a value of orientation for all sites s € I while 

retaining the original values at the integer sites. 

 An OFFC with a starting point s0 € I can be defined iteratively as 

sj = sj-1 + dj * lj * OSj-1 

for j = 1, 2,. . . . , n; dj, with values in {-1, +1}, is the flow direction from sj-1 to sj, lj is 

the length of the line segment from sj-1 to sj, and OSj-1 is the orientation vector at site sj-

1. The point sn denotes the termination point of the OFFC curve, which is achieved 

when either (i) the boundaries of the image are reached, or (ii) when n exceeds a pre-

specified constant N0. The lengths lj specifies the sampling interval of the OFFC. Each 

point s0 generates two segments of an OFFC which are obtained by fixing dj first at +1, 

and then at -1, so that the points sj trace opposite directions. The starting points s0 are 

selected in the following way: Let rstart, rend, cstart and cend determine the top, 

bottom, left and right boundaries of the fingerprint pattern area, and w denote the 

sampling width. The points s0 are selected such that  
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s0 = [core(1,1), cstart + l*w] 

with l = 1, 2, . . . . , (cend - cstart) / (w). In other words, the starting points are sampled 

along the horizontal line passing the through the core point. Figure 4.13 shows the 

orientation field flow curves of a fingerprint image. 

 

4.13 Orientation field flow curves 

 

The next step is to find out the high curvature points of each of these curves. The 

highest curvature point would be the one whose neighbours subtend the minimum 

angle. The set of points on the piece-wise linear OFF curves are used to find the 

maximum curvature points locations. Namely, given a curve OFFC1, (i) the curvature 

angle is calculated for every point on the curve, (ii) the point with the maximum 

curvature (i.e. minimum angle) is identified, and (iii) its location is added to the set of 

high curvature points (H). 

 The angles subtended by multiple (10) neighbors of a point p, and a linearly 

weighted average of those angles is calculated, with more weight given to the farther 

neighbours. 
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1. For a point p, calculate the angles subtended by its 1-neighbors, 2- neighbors, . . 

. ., 10-neighbors (a1, a2,. . . . . , a10). 

2. Calculate the average curvature angle as 

   
                              

 

               
 

The weight vector used is 

                
                          

 

A point on each of the curves with minimum value of C is added to the set H. The set 

of high curvature points is marked with blue colour in figure 4.14. 

 

Figure 4.14 High Curvature Points 

 

  



59  
 

4.4.3 Determination of Axis 

 We have used the high curvature points obtained in the previous section to 

determine an axis for the new coordinate system. We have used linear regression to 

determine the closest line passing through most of the points and then refined it 

iteratively by applying learning technique. The steps are: 

1. Find the distance of all the high curvature points from the core point and 

remove the points which are at a distance greater than ‘thresh’. 

2. Add core point to the list of high curvature points (H) which was modified in 

the previous step. 

3. Find the centroid of all the points in the set H and remove the points which are 

at a distance greater than ‘dist’ from the centroid. 

4. The linear regression is calculated according to the formula: 
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And , y=m*x + c is the equation of the line. 

5. Calculate the correlation coefficient, r. It gives the degree of association 

between two variables. 
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6. Find the distance of all the points in H from the line of regression obtained. 

Remove the point having the maximum distance ‘d’ from H. 

7. Exit if abs(r) is greater than or equal to 0.93 or the number of points left in H is 

less than 20. Go to step 4 if ‘d’ is greater than 7, otherwise exit. 
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Thus, the line with slope, m, is the axis for the new coordinate system. Figure 4.15 

shows the axis obtained in a fingerprint image. 

 

Figure 4.15: Fingerprint image showing the axis 

 

4.4.4 Translation and Rotation 

 To find the minutia points in the new coordinate system, we need to apply 

translation and rotation on all the points. The origin is the core point and the slope is 

the slope (m) obtained in the previous section. 

Translated_point = Point – core 

 Next, we perform the rotation by using, 

          

 

[
  

  ]   [
          

            
] [

 
 ] 
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4.5 Fuzzy Vault Encoding  

 

 Secret S is any data that needs to be protected, but the size of S that can be 

feasibly protected is limited by the capacity of the entity used for locking and 

unlocking the vault. We have used two different features of minutia points for 

locking/unlocking the vault: 

1. x and y coordinates of minutia points (in the translated domain) 

2. Polar coordinates, r and   (in the translated domain) 

 

 The encoding operation secures S with fingerprint minutiae data: if a query 

minutiae set that is similar to the template minutiae set is presented during decoding, it 

indicates the presence of an authorized person, and S can be reconstructed accurately. 

Note that the vault operation is decoupled from any backend application (e.g., 

encryption/decryption using S): vault is only responsible for securing S with fingerprint 

data. The fingerprint template plays the role of a key. Note that this is not the key in 

traditional cryptosystems (e.g., AES) per se: rather, it has the role of a key for a new 

cryptographic construct, namely the fuzzy vault. In the current implementation, S is 

generated as a 128-bit random bit stream. This can simulate securing AES symmetric 

encryption keys. 

 Our current decoding implementation does not include any error-correction 

scheme, as proposed by Juels and Sudan [5], since realizing the necessary polynomial 

reconstruction via error-correction has not been demonstrated in the literature. Instead, 

our algorithm decodes many candidate secrets (as explained below). To identify which 

one of these candidates is the actual secret, we need to put some structure into the 
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initial secret S. By checking the validity of this structure during decoding, the algorithm 

can identify whether a given candidate secret is correct or not.  

 Cyclic Redundancy Check (CRC) is a generalization of simple parity bit 

checking. It is commonly used in communication channel applications for error 

detection, where the errors are introduced due to channel noise. In our case, using 

incorrect minutiae points during decoding will cause an incorrect polynomial 

reconstruction, resulting in errors. In our current implementation, we generate 16-bit 

CRC data from the initial secret S. Hence, the chance of a random error being 

undetected (i.e., failing to identify an incorrect decoding) is 2-16. The 16-bit primitive 

polynomial we use for CRC generation is called “CRC-16”: 

GCRC(a) = a16 + a12 + a5 + 1 

 Appending the CRC bits to the original secret S (128-bits), we construct 144-bit 

data SC. From this point on, all operations take place in Galois fields with cardinality 

65,536, namely GF(216). To obtain the 16-bit locking/unlocking data unit u, we have 

two different approaches: 

 

1. Cartesian Coordinates: 

We concatenate x and y coordinates of a minutia (8-bits each) as [x|y] to arrive at the 

16-bit locking/unlocking data unit u. To account for slight variations in minutiae data 

(due to nonlinear distortions), raw minutiae data are first quantized. We apply linear 

quantization separately on x and y coordinates, which allows for a variation of  10 

pixels. 
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2. Polar Coordinates: 

We apply a non linear quantization on r by using the  -law. This is done because the 

chance of error increases as the distance from the core increases. And, the overall angle 

of the circle, 2 , is divided into 16 equal sectors. Based upon the sector in which   lies, 

it is assigned one of the 16 discrete values. After that, r (9 bits) and  (7 bits), are 

concatenated to obtain the 16-bit locking/unlocking unit u. 

 

 SC is used to find the coefficients of the polynomial p: 144-bit SC can be 

represented as a polynomial with 9 (144/16) coefficients, with degree D = 8: 

p(u) = c8u
8 + c7u

7 +. . . . + c1u + c0 

Simply, SC is divided into non-overlapping 16-bit segments, and each segment is 

declared as a specific coefficient, ci, i = 0, 1, 2,. . . ., 8. Note that this mapping method 

(from SC to ci) should be known during decoding, where the inverse operation takes 

place: decoded coefficients (ci* ) are mapped back to decoded secret SC*. 

 Now, two sets composed of point pairs need to be generated. The first one, 

called genuine set G, is found by evaluating p(u) on the template minutiae features (T). 

Assuming that we have N template minutiae, u1, u2,. . . ., uN, we construct the set G 

 

 

Note that the template minutiae, u1, u2,. . . . , uN, are selected to be unique, namely, ui ≠ 

uk, if i ≠ k, where i = 1, 2, . . . . ,N, k = 1, 2,. . . . ,N. 
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 The second set, called the chaff set C, ensures the security of the system. 

Assuming we need to add M chaff points, we first generate M unique random points, c1, 

c2, . . . . , cM in the field GF(216), with the constraint that they do not overlap with u1, u2, 

. . . . , uN: 

cj ≠ ui , j = 1, 2, . . . . ,M, i = 1, 2, . . . . ,N 

 Then, we generate another set of M random points, d1, d2, . . . . , dM, with the 

constraint that the pairs (cj , dj ), j = 1, 2, . . . . ,M do not fall onto the polynomial p(u). 

The chaff set C is then 

 

where 

dj ≠ p(cj), j = 1, 2, . . . . ,M 

 The union of these two sets, G U C, is finally passed through a list scrambler 

that randomizes the list, with the aim of removing any stray information that can be 

used to separate chaff points from genuine points. This results in the vault set V S 

 

 Note that increasing M increases the security of the system (namely, it decreases 

FAR (False Accept Rate) but it also has the potential to increase FRR (False Reject 
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Rate), and N is limited by the maximum number of feature points that can be extracted 

from the fingerprint. Along with V S, the polynomial degree D forms the final vault, V. 

Note that V can be transferred over insecure communication channels (e.g., Internet), 

stored in a local computer or a smart card, etc.  

 

4.6 Decoding 

 

 Here, a user tries to unlock the vault V using the query minutiae features. 

Assuming that we have N (note that this number is the same as the number of genuine 

template minutiae in order to balance the complexity, e.g., measured via the number of 

required access attempts to reveal the secret for genuine and imposter users) query 

minutiae (Q), u1*, u2*, . . . . , uN*, the points to be used in polynomial reconstruction 

are found by comparing ui , i = 1, 2, . . . . , N with the abscissa values of the vault V , 

namely vl, l = 1, 2,. . . . , (N + M) if any ui , i = 1, 2, . . . . ,N is equal to vl, l = 1, 2, . . . . , 

(N + M), the corresponding vault point (vl;wl) is added to the list of points to be used 

during decoding. Assume that this list has K points, where K ≤ N. 

 Now, for decoding a degree D polynomial, (D+1) unique projections are 

necessary. We find all possible combinations of (D + 1) points, among the list with size 

K. Hence, we end up with kCD+1 combinations. For each of these combinations, we 

construct the Lagrange interpolating polynomial. For a specific combination set given 

as 
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the corresponding polynomial is 

 

This calculation is carried out in GF(216), and yields 

P*(u) = c8*u8 + c7*u7 + . . . . + c1*u + c0* 

 The coefficients are mapped back to the decoded secret SC*. For checking 

whether there are errors in this secret, we divide the polynomial corresponding to 

SC*with the CRC primitive polynomial, GCRC(a) = a16 + a12 + a5 + 1. Due to the 

definition of CRC, if the remainder is not zero, we are certain that there are errors. If 

the remainder is zero, with very high probability, there are no errors. For the latter case, 

SC* is segmented into two parts: the first 128-bits denote S* while the remaining 16- 

bits are CRC data. Finally, the system outputs S*. If the query minutiae list Q overlaps 

with template minutiae list T in at least (D + 1) points for some combinations, the 

correct secret will be decoded, namely, S* = S will be obtained. This denotes the 

desired outcome when query and template fingerprints are from the same finger.  

 Note that CRC is an error detection method, and it does not leak any 

information that can be utilized by an imposter attacker (e.g., Bob). He cannot learn 

which one of the polynomial projections is wrong; hence, he cannot separate genuine 

points from chaff points. 
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5. Experiments and Results 

 In this section we discuss about the experimental setup and the way we 

performed our experiments along with the challenges that we faced during the 

implementation and the way we overcame those challenges. 

 

5.1 Experimental Analysis 

 The first step in our implementation is to extract features from the fingerprint. 

To facilitate the process, we have used filtering to enhance the fingerprint template. 

First of all, we did histogram equalization and normalization. After that we tried FFT 

filtering and Gabor filtering. After performing the experiment on a set of fingerprints, 

we found that Gabor filter gave better results and a much smoother fingerprint. Though 

Gabor filtering takes considerable amount of time to run, we have chosen it as it gives 

superior results and efficiency can be improved with better algorithm and hardware. 

Minutiae extraction becomes a trivial task after filtering. We have used matlab 

functions to perform binarization and thinning of the fingerprint template, followed by 

the extraction of bifurcation and end point minutiae. Post-processing has been done to 

remove the false minutiae. The minutia points near the segmentation boundary were 

removed and mintia ponts that were very close to each other were also ignored.  

 Then we tried out various methods for extracting the core point of the 

fingerprint. Extracting the core is one of the most challenging tasks and many methods 

have been proposed earlier. We implemented the optimal core point technique [37] and 

the virtual core point technique [31]. While the optimal core point technique gave good 

results, but was not accurate and failed for certain types of fingerprints, like the arch 

type. The virtual core point technique didn’t give the exact core point, but some point 
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which was claimed to remain steady across various impressions of the same person. 

But its accuracy was very poor and hence couldn’t be used in our case. After going 

through many different methods, we devised our own method to find the core point. 

The detail of our method has been discussed in detail in 4.4.1. This was a major 

achievement, as we can now find out the core point in all types of fingerprints with 

complete accuracy. The core point was detected correctly in all the fingerprint 

templates that we used for our experiments.  

 After detecting the core point, we have to align the fingerprint templates. For 

that, we transformed the minutiae points to a new coordinate system, with core point as 

the origin. To find an axis, we used the orientation field flow curves and marked the 

highest curvature point on each of the flow curves. We then used linear regression to 

find a line passing through all the high curvature points which are near core point 

(distance<30). Further, learning has been applied to optimize the linear regression by 

removing the points far away from the line, one by one. By this process, we have 

obtained one of the axes and the origin for the new coordinate system. The translation 

and the rotation parameters were calculated and all the minutia points were transformed 

to the new coordinate system. We tried both Cartesian system as well as the polar 

coordinate system. In the Cartesian system, we used a quantization factor of 10 in both 

x and y direction. Whereas in the polar system, we divided the angle into 16 parts and 

non-linear quantization (  -law) was applied to the distance. After some experiments, 

we set   to 1.25 as that was the optimum value.  

 The two coordinates were concatenated, 8 bits each in Cartesian system and 

distance (9-bits) & angle (7-bits) in polar system. The value is then converted to 

GF(216). We have used a random number generator to obtain the 128-bit secret key 

which has to encoded. The 128-bit key is appended by a 16-bit CRC code for error 
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detection. The total 144 bit number is then divided into 9 parts of 16-bits each and these 

9 parts become the coefficients of the polynomial. All the values are then converted to 

GF(216) and further calculations are performed in this field. The transformed minutia 

points obtained above are applied on this polynomial to obtain the (u,v) pairs. Then 

random chaff points are added to the set to make it 1000 pairs. The chaff points are 

selected in such a manner that they do not lie on the polynomial and do not correspond 

with the minutia points. The list is then scrambled to obtain the fuzzy vault which can 

be sent through an unsecure network. 

 During decoding all the steps are same until the extraction of the transformed 

minutiae features. After that, the obtained values are compared with the abscissa values 

in the vault and the (u,v) pairs where a match occurs, are taken out. Lagrange 

interpolation is then applied to reconstruct the polynomial. All the calculations till now 

are done in galois field. CRC checking is then performed and if there are no errors 

detected, the key has been successfully retrieved. 

 

5.2 Experimental Setup 

 

 We used the publicly available database, DB1 and DB2 of FVC 2002 [7] and 

the UPEK fingerprints [33]. DB1 and DB2 had 8 impressions of 10 different people 

each. The UPEK fingerprints had 8 impressions of 16 different people. We used the 

fuzzy vault to encode a 128 bit key, with CRC-16 encoding for error detection.  We 

have included 1000 chaff points in our implementation. The testing environment: 

OS used:  Windows XP, SP2 

RAM: 1.25 GB 

Platform: Matlab 
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 We randomly selected one fingerprint of each person for encoding. The 

fingerprint is usable only if has more than 15 minutia points, otherwise it is rejected. 

After that, we randomly selected two more fingerprints for decoding the vault. Thus, 

we performed experiments on a total of 72 combinations of fingerprints. We also tried 

to unlock the vault by using many fingerprints of different people to see if there are any 

false accepts. 

 

5.3 Results 

 Out of the 40 combinations in in FVC2002 database that we tried, the vault was 

opened successfully on 26 occasions when Cartesian system was used and 28 occasions 

when polar system was used. Thus, it gives a genuine accept rate (GAR) of 70%. We 

also tried to open the vault with other fingerprints. Many such combinations were tried, 

but the vault was not opened by a wrong fingerprint. Thus the False accept Rate can be 

claimed to be almost zero with a very high probability. Also the false reject rate (FRR) 

is 30%. The fingerprint images were not of very high quality, but still we have got 

results comparable to [21]. 

  In UPEK database we had 32 genuine combinations, out of which the vault was 

successfully opened on 24 occasions in case of Cartesian system and 26 occasions in 

case of Polar system. Thus we got a Genuine accept rate (GAR) of 81.25%. And a 

False reject rate (FRR) of 18.75%. As in the previous case there were no false accepts. 

The fingerprint images were of better quality than the FVC database. Better results can 

be obtained if we carry out the experiments on a large database. We can also see that 

there is a slight improvement in the GAR when we used Polar system with non uniform 

quantization. Significant improvements can be seen if we perform the experiment on a 

larger database. 
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 Apart from that, we also performed some experiments on live fingerprints using 

the fingerprint sensor in the laboratory. In most of the cases, the vault was successfully 

decoded with the fingerprint of the same person.   

 

Database FVC 2002 (DB1 and DB2) UPEK Database 

No. of fingerprints 20 X 8 16 X 8 

No. of genuine 

combinations tried 

40 32 

No. of times vault 

opened successfully 

28 26 

Genuine Accept Rate 

(GAR) 

70% 81.25% 

False Reject Rate 

(FRR) 

30% 18.75% 

False Accept Rate 

(FAR) 

0 0 

 

Table 5.1 Experimental Results 

 

 We have achieved significant results without the need for transmitting any 

helper data. This was possible mainly because of the new technique that we developed 

for detecting the core point. This, along with the optimizations done while finding out 

the axis has provided us with these results. 

 The false rejects were due to (i) improper alignment  (ii) very poor quality 

images where the region near core point was completely distorted, and (iii) number of 

common minutiae between locking and unlocking prints is less than the required 

number. Note that majority of these errors can be eliminated with increased user 

cooperation and habituation. Moreover, with the latest sensors, we can have fingerprint 
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images of much better quality. The fuzzy vault worked well for all the fingerprints. The 

errors were due to the fingerprint features only.  We must also point out that the failure 

to enroll rate for fingerprint biometric can be as high as 4%: namely, nearly 4% of the 

population may not generate acceptable fingerprint images (either during vault 

encoding or decoding) with current sensors. Hence, the figures that we cite above 

implicitly assume that acceptable fingerprints can be acquired (ie., for approximately 

96% of the population). 
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6. Conclusion and Future Work 

 

 Given the rising magnitude of identity theft in our society, it is imperative to 

have reliable security mechanisms to protect information systems. Although 

cryptography is a powerful tool to achieve information security, the security of 

cryptosystems relies on the fact that cryptographic keys are secret and known only to 

the legitimate user. Biometric systems are being widely used to achieve reliable user 

authentication and these systems will proliferate into the core information infrastructure 

of the (near) future. When this happens, it is crucial that biometric authentication is 

secure. Fuzzy vault is one of the most comprehensive mechanisms for secure biometric 

authentication and cryptographic key protection. We have implemented a fully 

automatic and practical fuzzy vault system based on fingerprint minutiae that can easily 

secure secrets such as 128-b AES encryption keys. The main challenge in the 

implementation of a fingerprint-based fuzzy vault is the alignment of the query with the 

transformed template stored in the vault. We have used the high curvature points and 

the core point to obtain a new coordinate system, to which the minutia points are 

transformed. Evaluation on a public-domain fingerprint database demonstrates that our 

implementation has a very good GAR and a very low FAR. 

 The performance of the fuzzy vault can be further improved by using multiple 

biometric sources, such as multiple fingers or multiple modalities (e.g., fingerprint and 

iris). Apart from the location and orientation attributes of a minutia point, many 

minutiae-based fingerprint matchers use additional attributes, such as minutia type, 

ridge counts, ridge curvature, and ridge density to achieve high recognition rates. These 

attributes could also be incorporated into the fuzzy vault framework. The addition of 

new attributes will not only increase the number of possible chaff points that can added 
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to the vault but also decrease the decoding complexity for genuine users and reduce the 

FAR.  A well-known limitation of the fuzzy vault framework is its dependence on chaff 

points to achieve security. Therefore, fuzzy constructions that do not involve chaff 

points could be considered. Apart from this, we can use the biometric features obtained 

from the fingerprints to generate secret keys. It would be possible if we can obtain the 

same invariant features from the fingerprint every time. A better quantization strategy 

could also be devised so that we can minimize the errors due to points near the 

quantization boundaries. 
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