A Dissertation On

Fingerprint Based Fuzzy Vault

Submitted in partial Fulfilment of the requirement For the award of the Degree of

Master of Technology

In Computer Technology and Applications

By

J. JAYAKUMAR

Roll No. 08/CTA/2010

Under the guidance of

Dr. Daya Gupta

HOD, Computer Engineering Department, DTU, Delhi

DELHI TECHNOLOGICAL UNIVERSITY, 2012

CERTIFICATE

This is to certify that the dissertation titled "Fingerprint Based Fuzzy Vault" is a bonafide record of work done at Delhi Technological University, Delhi, by J Jayakumar for partial fulfilment of the requirements for degree of Master of Technology in Computer Technology and Applications.

This project was carried out at DRDO under the guidance of Mr. A K Bhateja, with my supervision and has not been submitted elsewhere, either in part or full, for the award of any other degree or diploma to the best of my knowledge and belief.

Dr. Daya Gupta, HOD, Computer Engineering Dept, DTU, Delhi

Acknowledgements

I would like to express our deepest gratitude to all the people who have supported and encouraged me during the course of this project without which, this work could not have been accomplished. First of all, I am very grateful to my project supervisors Mr. A K Bhateja and Dr. Daya Gupta for providing the opportunity of carrying out this project under their guidance. I am deeply indebted to them for their support, advice and encouragement without which the project could not have proceeded smoothly. I am highly thankful to all my friends and family for their continued support and encouragement throughout the research work.

I would like to make a special mention of Mr. A K Bhateja from DRDO under whose guidance I completed this work. I would like to thank him for his sparking ideas, inspiring discussions, his trust and belief, and his support throughout the process of the thesis. I gained a lot from his vast knowledge and skill in many areas (e.g., biometrics, image processing, cryptography, programming and optimizations, ethics, interaction with participants), and appreciate his assistance in writing this dissertation.

J. Jayakumar
Roll No. 08/CTA/2010
M.Tech (Computer Technology & Applications)
Department of Computer Engineering,
DTU, Delhi

Abstract

Through this project we intend to create a biometrics cryptosystem where one can send and receive secure information using just the biometric features like fingerprints, signatures etc. For this purpose we have used a fingerprint based fuzzy vault technique. Reliable information security mechanisms are required to combat the rising magnitude of identity theft in our society. While cryptography is a powerful tool to achieve information security, one of the main challenges in cryptosystems is to maintain the secrecy of the cryptographic keys. Though biometric authentication can be used to ensure that only the legitimate user has access to the secret keys, a biometric system itself is vulnerable to a number of threats. A critical issue in biometric systems is to protect the template of a user which is typically stored in a database or a smart card. The fuzzy vault construct is a biometric cryptosystem that secures both the secret key and the biometric template by binding them within a cryptographic framework. We present a fully automatic implementation of the fuzzy vault scheme based on fingerprint minutiae. The 128 bit secret key used in RSA and other cryptosystems are secured with the help of fingerprint minutiae. Since the fuzzy vault stores only a transformed version of the template, aligning the query fingerprint with the template is a challenging task. We extract high curvature points derived from the fingerprint orientation field and use them to obtain an intermediate coordinate system, with the fingerprint core point as the origin. Firstly, we have explored the possibility of using the high curvature points to create an axis for the Cartesian system and then we have used that as a reference axis for polar coordinate system. Finding the core point with accuracy is in itself a very challenging task. We have proposed a new algorithm which finds the core point for all the fingerprints with complete accuracy. Thus unlike the existing fuzzy vault implementation, we don't need to send the helper data for aligning the query and the template minutiae, which significantly reduces the overhead whilst hiding the details of the fingerprint completely. We demonstrate the performance of the vault implementation on two different fingerprint databases.

Contents

Certificateii			
Acknowledgementiii			
Abstractiv			
Contentsvi			
List of figuresviii			
List of Tablesxi			
1.Introduction			
1.1 Motivation			
1.2 Related work			
1.3 Problem Statement7			
1.4 Scope of the work7			
1.5 Organization of the Thesis			
2.Biometrics			
2.1 Introduction			
2.2 Fingerprint Analysis12			
2.3 Fingerprint Enhancement Techniques15			
2.3.1 Pixel-wise enhancement			
2.3.2 Contextual filtering			
2.3.3 FFT Enhancement			
2.3.4 Gabor Filters			
2.4 Core Point Detection			
2.4.1 Poincaré index			
2.4.2 Geometry of Region Technique (GR)27			
2.4.3 Detection of Curvature Technique (DC)			
2.4 Minutiae Extraction			
3. Biometric Cryptosystems			
3.1 Cryptography			
3.1.1 Problem of Key Sharing			
3.2 Biometric Cryptosystems: An Introduction			
3.3 Fuzzy Vault			

4. Fuzzy Vault Implementation	
4.1 Architecture of the Proposed System	
4.2 Fingerprint Enhancement	40
4.2.1 Segmentation	41
4.2.2 Normalization	42
4.2.3 Orientation estimation	43
4.2.4 Ridge Frequency Estimation	44
4.2.5 Gabor filtering	46
4.3 Minutia extraction	48
4.3.1 Binarization	
4.3.2 Thinning	49
4.3.3 Mark Minutiae	50
4.4 Translation	
4.4.1 Core Point Determination	53
4.4.2 High Curvature Points	55
4.4.3 Determination of Axis	59
4.4.4 Translation and Rotation	60
4.5 Fuzzy Vault Encoding	61
4.6 Decoding	65
5. Experiments and Results	67
5.1 Experimental Analysis	67
5.2 Experimental Setup	69
5.3 Results	70
6. Conclusion and Future work	73
References	75

List of figures

Figure 2.1 Ridges and valleys in a fingerprint image	12
Figure 2.2. Singular regions (white boxes) and core points (small circles) in fingerprin	nt
images	13
Figure 2.3 One fingerprint from each of the five major classes defined by Henry	
(1990)14	
Figure 2.4 Seven most common minutiae types14	
Figure 2.5 a) A ridge ending minutia	
b) A bifurcation minutia1	5
Figure 2.6 a) A good quality footprint	16
b) A medium quality fingerprint characterized by scratches and ridge	
breaks16	
c) A poor quality fingerprint containing a lot of noise1	5
Figure 2.7 A fingerprint image containing regions of different quality:	
a) A well-defined region	,
b) A recoverable region	3
c) An unrecoverable region	3
Figure 2.8 An example of normalization using $(m_0=100, v_0=100)$)
Figure 2.9 Enhancement of the fingerprint image I using FFT21	
Figure 2.10 Graphical representation (lateral view and top view) of the Gabor filter	
defined by the parameters $\theta = 135^{\circ}$, $f = 1/5$, and $\sigma_x = \sigma_y = 3$ 24	
Figure 2.11 The Poincaré index computed over a curve C immersed in a vector	
field G	
Figure 2.12 Examples of Poincaré index computation in the 8-neighborhood of point	S
belonging (from left to right) to a whorl, loop, and delta singularity,	
respectively	
Figure 2.13 Examples of a ridge ending and bifurcation pixel :	
(a) A Crossing Number of one corresponds to a ridge ending pixel3	0
(b) A Crossing Number of three corresponds to a bifurcation pixel3	0
Figure 3.1 Traditional cryptography:	
(a) Symmetric key system	32
(b) Asymmetric key system	32
Figure 2.2. Two modes of combining biometries with emptography:	

Figure 3.2 Two modes of combining biometrics with cryptography:

(a)	Key release	36
(b)	Key generation	36
Figure 3.3 Fuzz	y vault scheme	37
Figure 4.1 Flow	chart of the proposed fuzzy fingerprint vault:	
(a)	Feature Extraction	39
(b)	Vault Encoding	39
(c)	Vault Decoding	39
Figure 4.2 Pictor	rial representation of system variables:	
(a)	Polynomial	40
(b)	Evaluation of the polynomial (black: genuine points,	
	red: chaff points)	40
(c)	Final vault list	40
Figure 4.3 Segm	ientation:	
(a)	Input Image	42
(b)	Segmentation Boundary	42
Figure 4.4 The c	prientation of a ridge pixel in a fingerprint	43
Figure 4.5 The p	projection of the intensity values of the pixels along a direction	
orthog	onal to the local ridge orientation :	
(a)	A 32 x 32 block from a fingerprint image	45
(b)	The projected waveform of the block	45
Figure 4.6 An ev	ven-symmetric Gabor filter in the spatial domain	47
Figure 4.7 Gabo	r filtering:	
(a)	Original Fingerprint image	48
(b)	After applying gabor filter	48
Figure 4.8 Thinr	ning:	
(a)	Filtered image	50
(b)	Thinned image	50
Figure 4.9: Exar	nples of a ridge ending and bifurcation pixel:	
(a)	A Crossing Number of one corresponds to a ridge ending	
	pixel	51
(a)	A Crossing Number of three corresponds to a bifurcation	
	pixel	51
Figure 4.10 Min	utia points	52

igure 4.11 Plot of sign(\emptyset). Positive is denoted by green and negative by red54	
Figure 4.12 Core point (marked in red)	55
Figure 4.13 Orientation field flow curves	57
Figure 4.14 High Curvature Points	
Figure 4.15 Fingerprint image showing the axis	60

List of Tables

Table 5.1 Experimental Results. 71
