"PREPARATION AND EVALUATION OF CHITOSAN BASED POLYMERIC HYDROGELS"

A Major Dissertation Submitted To Faculty of Technology

Towards The Partial Fulfillment of the Requirement

For

The Award of the Degree

MASTER OF ENGINEERING

IN

POLYMER TECHNOLOGY

Submitted By

ANIL KUMAR

UNIVERSITY ROLL NO. 14001

COLLEGE ROLL NO. 01/POLY/09(P.T.)

Supervised By

Dr. A.P.GUPTA Professor

DEPARTMENT OF APPLIED CHEMISTRY

DELHI COLLEGE OF ENGINEERING New Campus, Bawana Road, New Delhi 110042

"PREPARATION AND EVALUATION OF CHITOSAN BASED POLYMERIC HYDROGELS"

A Major Dissertation Submitted To Faculty of Technology

Towards The Partial Fulfillment of the Requirement For The Award of the Degree

MASTER OF ENGINEERING

IN

POLYMER TECHNOLOGY

Submitted By

ANIL KUMAR UNIVERSITY ROLL NO. 14001 COLLEGE ROLL NO. 01/POLY/09(P.T.)

Supervised By

Dr. A.P.GUPTA

Professor
Department of Applied Chemistry
Delhi College of Engineering
University of Delhi

DEPARTMENT OF APPLIED CHEMISTRY

DELHI COLLEGE OF ENGINEERING New Campus, Bawana Road, New Delhi 110042

CERTIFICATE

This is to certify that the dissertation titled "Preparation And Evaluation Of Chitosan Based Polymeric Hydrogels" submitted by Mr. Anil Kumar to Faculty of Technology, University of Delhi, Delhi College of Engineering in Applied Chemistry and Polymer Technology is a record of bonafide work carried out by him. Mr. Anil Kumar has worked under the guidance and supervision to fulfill the requirement for the submission of this dissertation.

Supervisor

Professor A.P.Gupta
Department of Applied
Chemistry and polymer
Technology,Delhi College
of Engineering,Delhi.

H.O.D

Professor G.L.Verma Department of Applied Chemistry and Polymer Technology,Delhi College of Engineering,Delhi.

ACKNOWLEDGEMENTS

I am especially grateful to my supervisor Dr. A.P. Gupta Professor (Dept. of Applied Chemistry and Polymer Technology, Delhi College of Engineering, University of Delhi) for his guidance and support in the period of this study.

I am thankful to Professor G.L.Verma (Head of department, Dept. of Applied chemistry and Polymer Technology, Delhi College Of Engineering, University of Delhi) for allowing me to use resources during my project.

I want to thank Mr. S.G. Warkar (Faculty of Dept. of Applied chemistry and Polymer Technology, Delhi College of Engineering, University of Delhi) for his guidance and discussion in synthesis and characterization of Hydrogels.

I also want to thank Mr. Gopal Arora (Research Scholar, Dept. of Applied Chemistry and Polymer Technology, Delhi College Of Engineering, University of Delhi) for his kind cooperation.

I would like to thank Mr. Aman Kumar, Mr. Ankesh, Mr. Vinod Kumar, Mr. Manoj Sharma and Mr. Karan Singh for laboratory assistance.

I am thankful to Mr. Devender Pratap, Mr. Varun Katiyal, Mr. A.K Saikia, Mr. Manoj Verma, Mr. Sushil Kumar, Mr. Yashpal, Mr. Sanjeev Verma and Mr. Inderjeet for their timely help, motivation and cooperation.

I want to acknowledge my parents and family for their patience.

ANIL KUMAR
Master of Engineering(Polymer Technology)

CONTENTS

	CHAPTER 1	1-37
	INTRODUCTION	
1.1	Hydrogels	1
1.2	Composition Of Hydrogels	2
1.3	Classification Of Hydrogels	3
	1.3.1 Classification Based On Preparation Methods	3
	1.3.2 Classification Based On Ionic Charges	3
	1.3.3 Classification Based On Structures	3
	1.3.4 Classification Based On Stimuli Responses	4
	1.3.5 Classification Based On Cross-Linkings	4
	1.3.6 Classification Based On Origin	4
1.4	Chitosan Based Hydrogels	4
1.5	More About The Chitin And Chitosan	5
1.6 Applications Of Chitosan		8
	1.6.1 Industrial Applications Of Chitosan	8
	1.6.2 Cosmetics	8
	1.6.3 Water Engineering	9
	1.6.4 Paper Industry	9
	1.6.5 Textile Industry	9
	1.6.6 Food Processing	10
	1.6.7 Agriculture	10

1.6.8 In Dialysis	10
1.6.9 Tissue Engineering	10
1.6.10 Burn Treatment	11
1.6.11 Artificial Skin	11
1.6.12 Ophthalmology	12
1.6.13 Drug Delivery	12
1.7 Networks Of Chitosan Hydrogels	12
1.8 Covalently Cross-Linked Chitosan Hydrogels	16
1.9 Inter-Penetrating Polymeric Networks (IPNs)	18
1.9.1 Types of IPNs	19
1.9.1.1 Based On Synthesis	19
1.9.1.2 Based On Structure	21
1.9.2 Gradient IPNs	22
1.9.3 Thermoplastic IPNs	23
1.10 Characteristics Features of IPNs	23
1.11 Structure And Properties Of Poly(Vinyl Alcohol)	23
1.12 Properties Of Poly(Vinyl Alcohol) Hydrogels	24
1.13 Physical Cross-Linking Due To Crystallite Formation	25
1.14 Crystallization Of Poly(Vinyl Alcohol) Hydrogels	26
1.15 Hydrogels By Freezing And Thawing Of Poly(Vinyl A	Alcohol
Solution	27
1.16 Biomedical And Pharmaceutical Applications Of Pol	y(Viny
Alcohol)	32

1.17 Poly(Vinyl Alcohol)-Chitosan Hydrogels		
By Freeze Thaw Cycle	35	
CHAPTER 2	38-41	
LITERATURE REVIEW		
CHAPTER 3	42-44	
EXPERIMENTAL		
PREPARATION OF HYDROGELS		
CHAPTER 4	45-83	
CHARACTERISATION OF HYDROGELS		
4.1 Introduction	45	
4.2 Factors Affecting Swelling Behavior Of Hydrogels	46	
4.3 Structural Factors Affecting Swelling	47	
4.4 Environmental Factors Affecting Swelling	48	
4.5 Theory Of Swelling Behavior	48	
4.6 Water Absorption (%Swelling)	53	
4.7 Fat Absorption Characteristics Of Chitosan	57	
4.8 Fat Absorption Studies Of Hydrogels	59	
4.9 Swelling Of Hydrogels With Temperature	60	
4.10 De-Swelling Studies Of Hydrogels	61	
4.11 Sweliing Of Hydrogels In Different pH Medium	62	

4.12 Fourier Transform Infrared Spectroscopy(FTIR)			
Of Hydrogels	66		
4.13 Scanning Electron Microscopy(SEM) Of Hydrogels			
4.14 X-Ray Diffraction(XRD) Of Hydrogels	76		
CHAPTER 5	84-88		
RESULTS AND DISCUSSION			
5.1 FTIR Analysis	84		
5.2 Water Absorption(%Swelling)	85		
5.3 De-Swelling With Time	86		
5.4 Swelling With Temperature	86		
5.5 Swelling With pH	86		
5.6 Fat Absorption	87		
5.7 Scanning Electron Microscopy (SEM) Images	87		
5.8 X-Ray Diffraction Patterns (XRD)	88		
CHAPTER 6	89-90		
6.1 Applications Of Hydrogels	89		
6.2 Future Prospects Of Hydrogels	90		
CHAPTER 7	91-94		
References			

ABSTRACT

The present investigation was carried out with the objective to synthesize physically cross-linked Hydrogels without using any cross-linker to reduce cytotoxicity of the Hydrogels. The objective of the project is to study the effect of increase in concentration of Chitosan in Poly(Vinyl Alcohol) on water absorption, fat absorption, de-swelling and percent swelling in different pH mediums. This also includes characterization of the Hydrogels by Fourier Transform Infrared Spectroscopy(FTIR), Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD).

During the course of the project Hydrogels were synthesized by Freeze and Thaw Cycle. The number of cycles are confined to three only so that characteristics of the Hydrogels can be compared. The increase in water absorption was observed with decrease in Poly(Vinyl Alcohol) concentration. The absorption of water decreases after certain increase in concentration of Chitosan. The same behavior of Hydrogels is observed in case of fat absorption which decreased after certain optimum Chitosan concentration. The effect of deswelling of Hydrogels depends on surface characteristics which are compatible with SEM images. The Hydrogels are crystalline in nature which is clear from the X-Ray images of the Hydrogels due to use of method of Freeze and Thaw cycle in which crystallite formation takes place.