

TEST CASE PRIORITIZATION USING MACHINE
LEARNING TECHNIQUES

A dissertation submitted in the partial fulfilment for the award of Degree of

Master of Technology

in

Software Engineering

By

Abhishek Bharadwaj

Roll No. 01/SE/2010

Under the esteemed guidance of

Dr. Ruchika Malhotra

Department of Computer Engineering

Delhi Technological University, New Delhi

2011-2012

ii

DELHI TECHNOLOGICAL UNIVERSITY

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI – 110042

Date: ___________________

This is to certify that the thesis entitled ‘TEST CASE PRIORTIZATION USING MACHINE

LEARNING TECHNIQUES’ done by Abhishek Bharadwaj (01/SWE/2010), for the partial

fulfilment of the requirements for the award of the degree of Masters of Technology in Software

Engineering, is an authentic work carried out by him under my guidance. The matter embodied

in this thesis has not been submitted earlier for the award of any degree or diploma to the best of

my knowledge and belief.

Project Guide:

DR. RUCHIKA MALHOTRA

Assistant Professor, Department of Software Engineering

Delhi Technological University, Delhi 110042

iii

DELHI TECHNOLOGICAL UNIVERSITY

ACKNOWLEDGEMENT

I take this opportunity to express my profound sense of gratitude and respect to all those who

have helped me throughout the duration of this thesis.

I would like to thank Dr. Ruchika Malhotra, Assistant Professor, Department of Software

Engineering, DTU, Delhi for her benevolent guidance in completing my thesis titled “Test case

prioritization using machine learning techniques”. Her kindness and help have been the source of

encouragement for me, without which this thesis would have been a dream for me.

Also I would like to say a word of thanks to the whole faculty of the Department of Software

Engineering, DTU, Delhi for their valuable guidance wherever and whenever required.

I must not forget to give sincere regards to my revered parents for their constant support,

encouragement, understanding and love without which it would have been impossible for me to

achieve all that I have.

Last but not the least I like to thank all the concerned ones who directly or indirectly helped me

in completing this thesis.

Abhishek Bharadwaj

Masters of Technology (Software Engineering)

Enrolment No. 01/SWE/2010

Delhi Technological University, Delhi 110042

iv

DELHI TECHNOLOGICAL UNIVERSITY

ABSTRACT

Abstract

As the complexity of software is increasing, generating an effective test data has become a

necessity. This necessity has increased the demand for techniques that can generate test data

effectively. In this research work we propose prioritized test cases generation techniques on the

basis of machine learning algorithm. We have devised two test case prioritization technique

using Genetic algorithm and particle swarm optimization algorithm. Then we use the concept of

mutation analysis to check the adequacy of the prioritized sequence. This is the sequence of test

cases according to their ability to detect error. That means the test cases which is more likely to

find the more errors should be executed first. This technique saves significant amount of time in

regression testing.

v

DELHI TECHNOLOGICAL UNIVERSITY

HIGHLIGHTS OF THE THESIS

• We propose a test case prioritization technique based on the genetic algorithm.

• We proposed another technique for test case prioritization using particle swam

optimization technique.

• We evaluate our algorithm using two real time programs written in C language.

• Our algorithms produce an ordered sequence of the prioritize test cases.

• This prioritize sequence has the higher priority test cases followed by lower priority test

cases. Hence it recommends the order in which test cases must be executed.

vi

DELHI TECHNOLOGICAL UNIVERSITY

PAPER PUBLICATIONS

Paper Published in International Conference

Malhotra R., Bharadwaj A.: ‘Test Case Prioritization Using Genetic Algorithm’, International

conference of Computer Science and Engineering 2012, accepted for publication in May

2012. (ISBN: 978-93-81693-96-4)

vii

DELHI TECHNOLOGICAL UNIVERSITY

TABLE OF CONTENTS

CHAPTER 1..………………………….…………………….…….……………………......1

1. Introduction…………………………………………………………….…………….......1

1.1 What is Software Testing?…………..…...…………….………….…….……….2

 1.1.1 Functional Testing………………………………………...….………..3

 1.1.2 Structural Testing………………………………………………………4

1.2 Motivation of the Work …………………………………………………….……5

1.3 Goals of the Thesis ………………………………………………………………5

1.4 Organization of the Thesis ………………………………...…………………….6

CHAPTER 2………………………………………………………………..……………….8

2. Literature Survey………………………..…………………………………….…………8

 2.1 Studies carried out in Literature …………………………………………………8

 2.2 Summary of the Literature Survey………………………..…………………….15

CHAPTER 3………………………………………………………………………..............19

3. Research Background ………………………………….……………………………….19

3.1 Genetic Algorithms ……………………………..………………………………19

 3.1.1 Introduction to Genetic Algorithms ……………………………………19

viii

DELHI TECHNOLOGICAL UNIVERSITY

 3.1.2 Characteristics of Genetic Algorithms …………………………………22

 3.1.3 Block Diagram …………………………………………………………23

 3.1.4 Strengths and Limitations ……………………………………...............24

3.2 particle swarm optimization………………………………………………………25

 3.2.1Introduction to particle swarm optimization algorithm…………………25

 3.2.2 Block Diagram ………………………………………………………....27

 3.2.3 Strengths and Limitations …………………………………………...…28

3.3 Mutation Analysis……………………………………….……………………….29

CHAPTER 4……………...31

4. Proposed Test Cases Prioritization Technique………..……………..…………………31

 4.1 Prioritization based on Genetic Algorithm..……………………………………..31

 4.1.1. Proposed Genetic Algorithm Parameter………………………............31

 4.1.1.1Fitness Function ……………….…………………………..…32

 4.1.1.2 Crossover……………………………………………….……32

 4.1.1.3 Mutation……………………………………………….…….32

 4.1.2 Example ………………………………………..………………...........32

 4.2 Prioritization based on Particle Swarm Optimization …………..……..….........43

 4.2.1. Basics of the proposed algorithm…………………………..…………43

 4.2.2. PSO algorithm for test cases prioritization………………..………….46

 4.2.3. Example…………………………………………………...…………..48

 4.3 Validation of the proposed Technique……………………………...……………55

ix

DELHI TECHNOLOGICAL UNIVERSITY

CHAPTER 5 ………………………………………………………………...…………….57

5. Conclusion and Future Work…………………………………………………..……...57

 5.1 Review of the Thesis…………………………………………………………...57

 5.2 Summary of the Results…....……………………………….………………….59

 5.3 Application of the Work……………..…………………………...……………60

 5.4 Contribution to Published Literature ………………………………….……….61

 5.5 Future Work ……………………………………………………………….…...61

References ……..……………………………………………………………………..........63

Appendix I………..………………………………………………………………………...67

Appendix II………………………………………………………………………………...69

x

DELHI TECHNOLOGICAL UNIVERSITY

LIST OF TABLES

Table 2.1: Summary of literature survey…………………………………………..18

Table 4.1: Execution history of test cases………………………………………….33

Table 4.2: number of modified lines covered by test case…………………………34

Table 4.3: genetic algorithm on testing data…………………………………….....35

Table 4.4: test case with execution history for nature of quadratic equation………37

Table 4.5: test case with modified lines cover……………………………………..38

Table 4.6: genetic algorithm on test data…………………………………………..41

Table 4.7: test case with execution history for nature of quadratic equation ……..48

Table 4.8: test case with modified lines cover……………………………………..49

Table 4.9: Particles with their fitness value and velocity ………………………….50

Table 4.10: particle with their updated velocity……………………………………54

Table 4.11: parent and muted statements…………………………………………..55

Table 4.12: status of mutant………………………………………………………..56

xi

DELHI TECHNOLOGICAL UNIVERSITY

LIST OF FIGURES

Figure 3.1: Steps in genetic algorithm…………………………………………………23

Figure 3.2: Steps in particle swarm optimization algorithm…………………………..27

Figure 4.1: flow graph for the code in Appendix I…………………………………….39

Figure 4.2: DD path graph for the code in Appendix I…………………………………40

1

Chapter 1

Introduction:

Software is everywhere. It is written by human so it can’t be perfect. We have seen many

software failures like Intel Pentium Floating Point Division bug of 1994, NASA Mars Polar

Lander of 1999, Patriot Missile Defense System of 1991, Y2K Problem etc.

Human being is normally goal oriented. Thus, establishing a proper goal has an important

psychological effect. If our goal is to demonstrate that software is error free, then we shall

subconsciously work to achieve this; that is, we will try to use those inputs that have low

probability of causing a problem to fail. However if our goal is to demonstrate that a program

has an errors, then we will select those test cases which will have a higher probability of

finding errors. This approach will add more value to the program than the first one. Thus

testing should demonstrate that errors are present.

Software Testing is the process of executing a program with the intent of finding errors.

Software testing can be considered as combination of validation and verification activity.

Software testing is a very important activity in software development life cycle. It is one of the

most promising ways to ensure quality of the developed software. Software testing consumes

nearly 50% of the total development cost of the software. One cannot do exhaustive testing

under project deadline because it requires lots of effort and time. Thus, to limit the process of

testing, tester should know which test cases are effective for finding error quickly.

2

1.1 What is Software Testing?

Software testing is the process of executing a program with the intent of finding errors

(Aggarwal and Singh, 2006). It is an investigation that is conducted to provide stakeholders

the information about the quality of the product/service under test (Kaner, 2006). Testing is a

very important activity in SDLC. It is one of the most significant means to ensure software

quality. Software testing is required in software development life cycle for the following

reasons:

1. To check that the application satisfies its requirements

2. To build a quality product

3. To deliver a quality product

4. To instill confidence in developer and customer that software product will work

correctly in client environment.

5. To improve the quality of the software product

6. To reduce the maintenance cost

7. To avoid users to find bugs

8. To keep standing in competition

9. Poor testing can cost anything from life to money

Software testing is essentially defined as the combination of software verification and

validation testing. Verification testing involves testing the intermediate work products that are

produced during the process of software development. This type of testing includes reviews,

walkthroughs, inspections etc. Validation testing involves testing the final end product. It

involves functional (black box) and structural (white box) testing.

3

1.1.1 Functional Testing

Functional testing involves testing the functionality of the system in terms of input-output

relationship. It is also known as specification based testing that test the software product using

software specification or black box testing where the internal structure and behaviour of the

program under test is not considered. This type of testing involves equivalence class testing,

random testing etc. Functional testing focuses on testing the functionality of the system using

some functional test criteria such as equivalence classes (Duran and Ntafos, 1984), random

testing (Duran and Ntafos, 1984) etc. In this type of testing, test data for software are

constructed from its specification (Beizer, 1990; Ince, 1987; Frankl and Weiss, 1993). The

strength of black box testing is that tests can be derived early in the development cycle. This

can detect missing logic faults mentioned by Hamlet (1987). The software is treated as a black

box and its functionality is tested by providing it with various combinations of input test data.

1.1.2 Structural Testing

Structural testing deals with testing the structure of the system based on the information about

the source code of that system. It focuses on testing the structure of the system using some

structural test criteria such as paths, functions, conditions, branches etc. It is also known as

white box testing. In white box testing, the internal structure and behaviour of the program

under test is considered. The structure of the software is examined by execution of the code.

Test data are derived from the program's logic. This is also called program-based testing

(Roper, 1994). This method gives feedback e.g. on coverage of the software.

4

At a different aspect, regression testing is a very important activity in software development

life cycle. As we know that in this fast pace world the requirement of user is often changes. So

regression testing becomes more crucial in this environment to make sure that the changes

being done in the code do not have any adverse effect on the other part of the software and no

new errors are made in the previously tested code. Regression testing is usually performed in

maintenance phase.

1.2 Motivation of the Work

Software testing is the most important phase in the software development life cycle. It is an

investigation that is conducted to provide stakeholders the information about the quality of the

product/service under test (Kaner, 2006). Software tester is a middleman between the

developer and the customer and faces the pressure from both the sides. Software testing has

many challenges that need to be analysed, explored, and addressed. These challenges are the

ultimate source of inspiration that motivated us to choose testing as the research area.

Some of the most widely recognized challenges are:

• Exhaustive testing is not possible: We can never test software to the completion.

Hence, it is necessary to quantify the process of testing. One of the most common

ways to do this is to test those test cases which are most probable to identify faults.

Selection of appropriate test case is a bigger challenge in software testing.

• Testing is time consuming: Testing is a time consuming process and it alone

consumes about 50% of the total development time. Hence, some effective means to

5

perform testing is necessary to ensure on time delivery of product, simultaneously

maintaining the quality of the product.

• Poor testing increases maintenance cost: If testing is not done to a desirable extent,

then defects will arise during usage of the product. Hence, maintenance cost will

increase.

• Testing increase software quality: if product is tested well then it is less likely to

have bugs. Hence testing activity helps in improving software quality.

Keeping these above fact in mind this work proposes a test data prioritization technique that

uses machine learning techniques (genetic algorithms and particle swarm optimization

algorithm).

1.3 Goals of the Thesis

The overall aim of this thesis is to propose a new test data prioritization algorithm based on

genetic algorithm and particle swarm optimization algorithm and to investigate the

effectiveness of these techniques. The goals of the thesis are to:

• Use genetic algorithms (a heuristic based search procedure) and particle swarm

optimization algorithm in the process of test data generation because of their ability to

generate near global optimum solution and their widespread use in the literature of

heuristics.

6

• Apply and validate these techniques on a real time program developed in c language.

 The basic aim of this thesis is to generate prioritized test cases which will capable of finding

errors quickly or which will kill a pre-identified set of mutants, for a program under test.

1.4 Organization of the Thesis

Following this introductory chapter, Chapter 2 reviews various testing methods. This chapter

presents the related work that has been done in the field of test data prioritization and

minimization. It shows that different researchers have used different testing techniques for

prioritizing and minimizing test cases.

Chapter 3 describes the key concepts of this research work. The work presented in this thesis

uses two key concepts i.e. genetic algorithms and particle swarm optimization. The details of

these two concepts are provided in this chapter. An introduction to genetic algorithm and PSO

algorithm, how and why they work is explained. Different operators are explained which are

used in genetic algorithm and PSO algorithm. The strengths and limitations of genetic

algorithms and PSO algorithms are described. Also, the basic concept of mutation analysis

and rules for mutant generation are described.

Chapter 4 describes the proposed test cases prioritization algorithm in detail. The algorithm

along with the necessary details of each of its steps is provided in this chapter. A suitable

example is chosen to explain the steps of the algorithm clearly.

7

Chapter 5 provides an overall conclusion of the work done. The results of the work are

summarized in this chapter. Applications of the work are mentioned. Contributions to the

published literature are also included. Further, the future scope of the work is presented in this

chapter.

Chapter 5 is followed by the references of various research papers (published in national and

international conferences and journals) and books that have been gone through during the

course of this thesis. References are followed by appendix. Appendix I has C code for

determining the nature of root in a quadratic equation. Appendix II has the research paper

titled ‘Test Cases Prioritization Using Genetic Algorithm’. This research paper was

communicated in ‘International Conference on Computer Science and Engineering 2012’

during this research work.

8

Chapter 2

Literature survey

There has been a lot of research in the field of test cases prioritization. This chapter provides a

detailed view of the works done in the literature in the field of test cases prioritization using

different testing criteria. The result of the literature survey is summarized in the end of the

chapter.

2.1. Studies carried out in literature

In various research work carried out in the field of test data prioritization, different researchers

have used different techniques while generating test data.

Yu-Chi Huang, Chin-Yu Huang, Jun-Ru Chang and Tsan-Yuan Chen proposed a cost-

cognizant test case prioritization techniques using genetic algorithm. This technique uses

historic records of the test cases. In this technique they search for an order of existing test

suite which has the grater effectiveness in term of cost-cognizant test cases prioritisation.

Then they input the historic execution information of test cases to the genetic algorithm and

produce an order which has higher effectiveness in term of preceding regression result. It is

noticeable that this technique prioritizes test cases on the basis of their test costs and fault

severities without analysing the source code. This technique also avoid situation where test

cases with equivalent ability in the previous regression testing are given the same rank. Then

9

they run a controlled experiment to analyse performance of this technique. The experiment

result shows that this technique gives a higher average percentage of faults detected per cost.

Ruchika Malhotra, Arvinder Kaur and Yogesh Agrawal (June 2010) has proposed a

regression test selection and prioritization technique. In this test cases selection and

prioritization technique they have prioritize test cases in a test suite T and selects a subset T’

from the test suite T. They also prioritized the test cases of T’. This technique recommends

using higher priority test cases first and then low priority test cases and so on until the tester

achieve the desired level of confidence or the time permits. In this technique they have

proposed two algorithms (1) modification algorithm and (2) deletion algorithm. Modification

algorithm keeps the line of code modified in the source code in mind and prioritized the test

cases based on the modified lines covered by the test cases. Deletion algorithm keeps track on

the lines in the source code deleted. Then they applied this technique on two real time

program. The result shows that this technique reduces the test cases by a significant number.

Sangeeta Sabharwal, Ritu Sibal and Chayanika Sharma have proposed a genetic

algorithm based approach for prioritization of the test case scenario in static testing. In this

proposed work they have used the concepts of basic information flow (IF) metric and genetic

algorithm. This approach is developed for the static testing. As we know that white box testing

is basically of two types: static testing and structural testing.

The static testing is required only source codes of the product not the executable files, on the

other hand in structural testing tests are run on the product itself. So in this static testing test

case are derived from the source code of the program. Then this source code is converted in to

10

corresponding control flow graph (CFG). In this CFG each node represents a statement in the

source code or set of statement in the source code, and edges between the nodes represents the

control flow of the program. Then they assign the weight to the nodes of the CFG by applying

basic information flow model. They calculated information flow of a node using

IF(A)=FANIN(A) * FANOUT(A).

In this equation FANIN(A) is a count to the number of other node that can call A and

FANOUT(A) is the number of node that can be called by A. Then they form chromosome

using decision node of the CFG graph and using genetic algorithm they find the optimized

path in the CFG.

Li Bing and Chen Zi Li proposed a Pivotal technique for test cases generation for embedded

software by using Genetic algorithms. They used a lager embedded program and more

complex test adequacy criteria. they device a method that applied the improved genetic

algorithm that search the test case from overall space, and approach the best test cases in local

space. They prove with emulator that they have reached required covered path by less number

of test cases. They also developed “embedded software case generation system”, which

generate test case automatically for given embedded program unit.

Shen and Wang (2007) proposed the hybrid scheme of genetic algorithm and tabu search that

came to known as GATS algorithm. Function coverage is used as testing criteria. Tabu search

is a local search technique and in this work, it has been used as a mutation operator in the

genetic algorithm. The tabu search is a local search technique that searches in the

neighbourhood region of some candidate solution x. It iteratively traverses from one solution

11

x to another solution x’, in the neighbourhood region of x, until some termination criteria is

met. The termination criteria can be the time, or maximum number of iterations, etc. This

technique improves the performance of local search method by not allowing already traversed

solutions to be traversed again. It uses a memory structure known as ‘tabu list’. This list

contains the solutions that have been traversed in the recent past. These are marked as taboo.

By using tabu search as a mutation operator, it maintains diversity among the population, by

not allowing previously generated chromosomes to be generated again. This serves the

purpose of mutation. The GATS algorithm was compared with the normal genetic algorithm

and the results show that GATS performs better than genetic algorithm in terms of function

coverage.

Wegener (2001) focused on generating test data by using several structural test coverage

criteria using evolutionary approaches like genetic algorithms. They identified that all the test

data generation technique focus on single test criteria at a time. In his work, Wegener has

considered all the test coverage criteria and has provided an effective classification of the

structural test coverage criteria. This work classifies structural test criteria into four classes

viz. Node oriented methods, path oriented methods, Node-Path oriented methods, and Node-

Node oriented methods. Node oriented methods includes statement and branch coverage. Path

oriented methods includes path coverage. Node-Path oriented methods include execution of

some node and a specific path from that node. Node-Node oriented methods include all-def,

all-uses coverage criteria. This technique has several benefits: (1) An evolutionary approach to

generate test data is an effective method to solve testing problem as it provides a globally

optimum solution and has a better tendency to exhaustively explore the search space; (2) It

12

divides the overall aim into partial aims, each of which is solved one at a time. This simplifies

the testing process. For instance; if there are 3 target paths to follow, then generating test data

for each path is considered as a partial aim that is solved separately.

Ruchika Malhotra and Mohit Garg (June 2011) has proposed an adequacy based test data

generation technique using genetic algorithm. In this technique they proposed a test data

generation technique based on adequacy based testing criteria. They used the concept of

mutation analysis to check the adequacy of test data. In their work they applied mutation

analysis at the time of test data generation only, rather than after the test data has been

generated. Then they used the Genetic algorithm for exploring complete domain of the

program and for finding nearly optimum solution. This technique was validates against ten

real time program and result was compared against path based testing. The experiment results

shows the adequacy based proposed technique is better than the reliability based path testing

technique and number of test cases and time is reduced significantly.

Lin and Yeh (2001) discussed about automatic test data generation using ‘path testing

criteria’ and genetic algorithms.

Michael and McGraw (2001) proposed a technique for automated test data generation using

branch coverage as the testing criteria. They used genetic algorithm to generate the test cases.

Hamming distance was as the fitness function. Michael and McGraw generated a tool named

GADGET to generate test data. The tool makes use of a branch table that keeps a track of all

the branch conditions for both of their true and false parts. The technique works by

transforming the inequalities in the branch conditions into equalities by introducing auxiliary

variables. For instance, the condition a > b can be written as X=a-b. When some test case

13

value (including the values for program variables and auxiliary variables) is input to the

program, a pair of values containing the LHS and RHS of each branch condition is calculated

and is converted into binary format. The hamming distance is then calculated by taking the

sum of the positions where the corresponding bits differ. The technique was compared with

random testing and several heuristic search techniques. The results revealed that Genetic

algorithms achieved maximum branch coverage among all the other techniques. Moreover, the

time taken to generate test cases was also less in case of genetic algorithms as compared to

other techniques.

Sangeeta Sabharwal, Ritu Sibal and Chayanika Sharma have proposed a prioritizing

approach for test cases from activity diagram. They used concept of information flow (IF) and

genetic algorithm for optimization. In this approach they first convert activity diagram in to a

control flow graph (CFG). Then they assign the weights to node of the CFG using control

flow model. They represent the nodes of decision tree as chromosome. In this chromosome

each bit of string correspond a decision node in to control flow graph. Then they run genetic

algorithm to get the fittest chromosome. At last this chromosome gives the paths which should

be tested first.

Luciano S. de Souza, Pericles B. C. de Miranda, Ricardo B. C. Prudencio, Flavia de A.

Barros has proposed a multi-objective particle swarm optimization for test case selection

based on functional requirements coverage and execution effort. They developed a technique

for functional test case selection. In their methodology two objectives were considered

simultaneously: maximize requirements coverage and minimizing cost in terms of test cases

execution effort. Then this methodology was implemented as a multi-objective optimization

14

process based on Particle Swarm Optimization. They implemented two versions of PSO

(BMOPSO and BMOPSO-CDR). Then they performed experiments on two real test suites,

the experiment gave very satisfactory results (attesting the feasibility of the proposed

approach).

Khin Haymar Saw Hla, YoungSik Choi and Jong Sou Park have applied particle swarm

optimization to prioritizing test cases for embedded real time software retesting. As we know

that particle swarm optimization (PSO) is a multi-objective optimization technique, it is

capable of finding the best position of the objects. In this study they prioritize the test cases to

the new best order, based on modified software components. It gives the test cases with the

higher priority, which can be used in regression testing. In this technique they have used two

components.(1) code tokenizer (2) prioritization engine

Code tokenizer tokenizes the source codes line by line and save the code in the database.

Prioritize engine is used to find out the new position of the test cases. This prioritizes engine

takes the test cases which are affected by the modification in to account. Then they illustrated

the effective ness of this particle swarm optimization algorithm. By running 20 test cases from

Junit test suite. The experimental result shows that this can prioritize test cases in their test

suite with their best positions effectively and efficiently.

Arvinder kaur and Divya Bhatt has proposed particle swarm optimization technique for

prioritizing test cases in regression testing. In this approach they bland the particle swarm

optimization technique with genetic algorithm and proposed a hybrid prioritization algorithm.

They have mixed particle swarm optimization with crossover operator of genetic algorithm.

15

This crossover operator helps particle swarm optimization to look for a widen search space.

This application of crossover operator in particle swarm optimization increase population

diversity and allow PSO to avoid local maxima and makes search process fast. The effective

ness of this algorithm has been proved with the help of average percentage of fault detection

(APFD) and average percentage of condition coverage (APCC) values.

Arvinder Kaur and Divya Bhatt have proposed a hybrid particle swarm optimization for

regression testing. In this technique they bland the particle swarm optimization.

Ahmed S. ghiduk proposed a new software data flow testing approach using ant colony

optimization technique. This is the first research work using ant colony optimization in the

issue of data flow testing. In this they has present an ant colony optimization technique for

generating set of optimal path to cover all definition-use (du pair) in the program. Then this

technique again used the ACO algorithm for to generate suite of test data for satisfying the

generated path. This technique works in three modules. (1) Analysis module (2) path-cover

generation module (3) test data generation module.

16

2.2. Summary of the Literature Survey

The research in the field of test cases prioritization has been summarised in the table below:

Author Name

Testing Criteria / Testing

Strategy Focused

Yu-Chi Huang, Chin-Yu Huang, Jun-Ru

Chang and Tsan-Yuan Chen

Design and analysis of cost-

cognizant test case prioritization

using genetic algorithm with test

history

Ruchika Malhotra, Arvinder Kaur and Yogesh

Singh

A regression test selection and

prioritization technique

Sangeeta Sabharwal, Ritu Sibal, Chayanika

Sharma

A genetic algorithm based

approach for prioritization of test

case scenarios in static testing.

Ruchika Malhotra and Mohit Garg

An adequacy based test data

generation technique using

genetic algorithms

Li Bing and Chen ZiLi

Pivotal techniques of embedded

software testing case generation

by genetic algorithms

Sangeeta Sabharwal, Ritu Sibal, Chayanika

Sharma

Prioritization of test case

scenarios derived from activity

diagram using genetic algorithm

17

Author Name

Testing Criteria / Testing

Strategy Focused

Michael and McGraw

Branch coverage testing using

genetic algorithm. Hamming

distance the fitness function. A

tool GADGET was developed.

Wegener

Identified multiple test coverage

criteria. Four classes of test

criteria were identified:

Node oriented methods, path

oriented methods, Node-Path

oriented methods, and Node-

Node oriented methods.

Lin and Yeh

Path testing using genetic

algorithms.

Shen and Wang

Hybrid of genetic algorithm and

Tabu search. Tabu search is used

as mutation operator. Function

coverage is used as test criteria.

Ahmed S. ghiduk

A new software data flow testing

approach via ant colony algorithm

Arvinder Kaur and Divya Bhatt

Hybrid particle swarm

optimization for regression

18

Author Name

Testing Criteria / Testing

Strategy Focused

testing

Arvinder Kaur and Divya Bhatt

Particle swarm optimization with

cross-over operator for

prioritization in regression testing

Luciano S. de Souza, Pericles B. C. de

Miranda, Ricardo B. C. Prudencio, Flavia de

A. Barros

A multi-objective particle swarm

optimization for test case

selection based on functional

requirements coverage and

execution effort.

Khin Haymar Saw Hla, YoungSik Choi and

Jong Sou Park

Applying particle swarm

optimization to prioritizing test

cases for embedded real time

software retesting

Table 2.1 Summary of literature survey

19

Chapter 3

Key research concepts

Our research is based on the use of ‘Genetic Algorithm’ and ‘Particle Swarm Optimization

algorithm’. These two concepts are the main focus of this section.

3.1. Genetic Algorithm

Optimization problems arise in almost every field, especially in the engineering world. As a

consequence many different optimization techniques have been developed. However, these

techniques quite often have problems with functions which are not continuous or

differentiable everywhere, multi-modal (multiple peaks) and noisy. Therefore, more robust

optimization techniques are under development which may be capable of handling such

problems. In the past biological and physical approaches have become of increasing interest to

solve optimization problems, including for the former neural networks, genetic algorithms and

evolution strategies (ESs) and for the second simulated annealing (Hills and Barlow, 1994;

Rayward-Smith and Debuse, 1994; Bayliss, 1994; Hoffmann et al., 1991; Osborne and Gillett,

1991).

Other optimization techniques are:

• Tabu search (Glover, 1989; Reeves et al., 1994; Rayward-Smith and Debuse, 1994);

• Simplex method (Box, 1965);

• Hooke Jeeves (Hooke and Jeeves, 1961);

20

• Gradient method (Donne et al., 1994).

3.1.1. Introduction to Genetic Algorithm

Genetic algorithms are the heuristic search algorithms that are used to solve a variety of

optimization problems. Genetic algorithms mimic the process of natural biological evolution

and the Darwin’s principal of the survival of the fittest. The genetic algorithms cause a

population of individuals to evolve from one generation to another, each time allowing the

best characteristics of one generation to pass to the next generation. Genetic Algorithms are

heuristic in nature. They are generally good, but sometimes, they may not be better. But on

average, they improve the quality of the search that we perform.

The basic steps in the Genetic algorithm are shown below:

1. Generate the initial population

2. Evaluate the fitness of each individual

3. Apply selection for individuals

4. Apply crossover and mutation selected individuals

5. Evaluate and introduce the reproduced individuals.

The initial population is randomly generated and each chromosome in the population

represents a solution to the problem. Chromosome refers to a set of the values of the input

variables that are obtained from the input domain. The structure and length of chromosome

depends upon the number and the range of the input values. For example if there is an input

variable x ranging from 0 to 31 and if chromosomes are to be represented in a bit manner, then

chromosomes will represented by a 5 bit pattern. the initial population can also be generated

21

through seeding. In this technique some beneficial point is added in to the randomly generated

initial population based on the domain expertize.

The evaluation function is an important indicator and is used to decide how “good” or “fit” a

chromosome is under environmental conditions. The fitness of a chromosome is calculated by

using an objective function (fitness function). This function depends on the problem. This

fitness is a measure of goodness of each chromosome relative to the global optimum solution.

It measures how close a chromosome is towards a global optimum solution. The chromosome

with higher fitness value is more near to the global optimum as compared to the chromosome

with less fitness value.

The selection is applied to the population by using alternative technique such as a roulette

wheel tournament. Selection is simply a replication of some chromosomes from the current

population based upon their fitness value. In general, the selection is dependent upon the

fitness level of the individuals actually existing in the population. This ensures that only the

best chromosomes are transmitted from the current generation to the next generation. The

output of selection is a mating pool that contains the chromosomes that mate with each other

to generate offspring.

Once a mating pool is obtained, Crossover and mutation comes into play. Crossover and

mutation are highly efficient evolutionary operators to successful applications of GAs.

Crossover can maintain good common genes in the parents, and also search new possibilities

of recombining non common genes to converge to an optimal solution. The two parents are

randomly recombined to create a new offspring which will be inserted into a new population

22

in the next generation. Although it is said that mutation increases the diversity of the

population by exploring the entire solution space, rather than diversity it is used to rectify

infeasible chromosomes generated by a crossover operator (Hu and Di Paolo 2007). Crossover

is a 2 step process:

1. Mating: 2 chromosomes from the mating pool are selected at random. These are the pairs

that will be mating to produce off spring.

2. Exchange of genes: Once the chromosome mates are selected, these mates exchange a part

of their string as determined by a cross-over site.

Mutation is an occasional but an important concept of genetic algorithm. Mutation is a

random change of a bit in a chromosome i.e. flipping of a bit from 0 �1 or 1�0.

The termination criterion can be selected in different ways: reaching the predefined fitness

value, the number of generations, or a non-existent difference in the fitness value of each

generation.

3.1.2. Characteristics of Genetic Algorithms

GAs are quite successful in solving problems of the type that are too constrained for more

conventional strategies like hill climbing and derivative based techniques. A problem is to

maximize a function of the kind f(x1, x2, ..., xm) where (x1, x2, ..., xm) are variables which

have to be adjusted towards a global optimum. The bit strings of the variables are then

concatenated together to produce a single bit string (chromosome) which represents the whole

23

vector of the variables of the problem. In biological terminology, each bit position represents a

gene of the chromosome, and each gene may take on some number of values called alleles.

The following characteristics of GA’s differentiate them from other heuristic search

procedures:

• GA’s works on the encoding of the parameters (variables), not directly on the

parameter values.

• GA’s starts from an initial population of individuals, not from a single one. Initial

population, here, refers to the collection of input variable values that are selected

randomly from the search space or input domain of the program.

• GA’s does not require any knowledge of the search space, hence are considered to be

blind. The only information required is the fitness function and the parameter

encoding.

GA’s are random in nature rather than deterministic. They use the concept of random number

generation for making choices at various steps in the algorithm. Random numbers are used to

explore different choices, so as to provide a better performance on an average.

24

3.1.3. Block diagram

Figure 3.1: steps in genetic algorithm

25

3.1.4. Strengths and Limitations

Strengths:

� GA’s starts from a population of individuals rather than a single individual thus are

more likely to produce a global optimum solution.

� GA’s works on an encoding of parameter space. This makes them independent of the

problem.

� Deciding upon the encoding scheme and the fitness function is problem dependent.

Once these 2 parameters are decided, the Genetic Algorithm then performs

independently of the problem. This makes them suitable for every type of problem

(with continuous or non-continuous parameter space).

Limitations:

� The performance of the algorithm is highly dependent upon the derived fitness

function.

� Deciding upon a fitness function is a challenging task. If the fitness function is not

selected properly, the algorithm may not produce a global optimum solution.

� The values of pc (crossover probability) and pm (mutation probability) must be

selected appropriately. Since there are no specific criteria to decide for these values,

the values must be selected carefully. Selecting both too low and too high values are

inefficient for the algorithm.

26

3.2.Particle swam optimization

Particle swarm optimization technique was developed by Dr. Eberhart and Dr. Kennedy in

1995. It is a population based stochastic optimization technique. It has inspired by the social

behaviour of bird flocking or fish schooling.

About fish schooling –“in the theory at least individual member of the school can profit from

the discoveries and previous experience of all the other members of the school during the

search for the food”-(a sociobiological E.O. Wilson)

Particle swarm optimization technique is based on social intelligence which exists in

biological population. Social intelligence exhibits adaptive capabilities of people and animals

by implementing an ‘‘information sharing’’ approach, furthermore also contributes to the

creation, facilitation, and maintenance of critical behaviours.

PSO uses a population of particles for searching the optimum result. The population is called

swarm and the individuals are called particles.

3.2.1. Introduction to particle swarm optimization algorithm

A particle swarm represents a bird flock and researches a solution in D-dimensional space.

Each particle in the searching space has its own position vector, Xi .

The position of each particle is a possible solution and is calculated the particle's fitness by

putting its position into objective function. The particle's next action is decided by velocity

vector, Vi.

27

The PSO algorithm could be defined by the following equations (Shi et al. 2006)

��� + 1� = ���� + �1 ∗
 ∗ ���
�� − �����
��� + �2 ∗ � ∗ ���
�� − �����
���

��� + 1� = ���� + ��� + 1�

Where ��
�� denotes the best position of the particle, ��
�� is the best position among all

particles.c1 is the inertial weight factor, α and β is uniform random value in the interval [0,1],

k is the current generation number.

28

3.2.2. Block diagram

Figure 3.2 Steps in PSO algorithm

29

3.2.3. Strengths and Limitations

Particle swarm optimization has much property common with the genetic algorithm.

The difference is that PSO does not have genetic operator like crossover and mutation.

In PSO particles update themselves with help of its velocity.

Strengths:

� PSO starts from a population of individuals rather than a single individual thus are

more likely to produce a global optimum solution.

� PSO the particles follow to the best particles only.so it is one way information sharing

mechanism and looks for the best solution only.

� Compared to other evolutionary algorithm in PSO the particles try to converge to the

best solution quickly even in local version in most cases.

� As compared to genetic algorithm it is easier to implement and have few parameters to

adjust.

Limitations:

� The performance of the algorithm is highly dependent upon the derived fitness

function (objective function).

� Deciding upon a fitness function is a challenging task. If the fitness function is not

selected properly, the algorithm may not produce a global optimum solution.

30

3.3. Mutation Analysis

Mutation Analysis is basically a structural based approach to measure the adequacy of the test

data. It is also known as ‘Fault Seeding’ technique. The technique is basically based on

seeding or inserting certain faults in the program and then checking if the generated test cases

can find these faults or not. If it can, the test case is considered to be success.

Faults are introduced by making some changes to the original program. A changed copy of the

program is called a mutant.

3.3.1. Mutant Generation

In mutation analysis, faults are seeded in the program. This means that some syntactic changes

are made to the program statements. The changed program is called a mutant. “One most

important property of mutation analysis is that the mutant should follow different execution

path than the original program after the execution of the mutated statement”.

The mutants are generated using mutation operators. A variety of mutation operators have

been explored by researchers. Some of them include:

▪ Statement deletion

▪ Replace each arithmetic operation with another one, e.g. + with * and – with /.

▪ Replace each Boolean relation with another one, e.g. > with >=, ==, and <=) etc.

Rules for identifying mutants are as follows:

1. Only first order mutants are generated. First order mutants are mutants that contain a single

change. In general, only first order mutants are sufficient and are used in testing. Second and

31

higher order mutants (that contain multiple changes) make it difficult to manage the mutants,

thus adding to complexity. Thus, only first order mutants are generated in this research work.

2. In general, there are no limits on the number of mutants that can be generated. To

circumvent this problem, we restrict the domain of mutation operators. We generate mutants

by applying mutation operators from this domain only. The domain of mutation operators that

we use in our work are:

Operand Replacement Operator:

Replace a single operand with another operand or a constant.

Expression Modification Operator:

Replace an operator with some other operator or insert new operator.

E.g. if(x>y){} � original statement

if(5>y){}�mutated statement generated by replacing x by a constant 5

E.g. if(x==y){} � original statement

if(x>=y){}�mutated statement generated by replacing == by >=

Statement Modification Operator:

Delete the entire if-else statement.

Replace a line by a return statement, etc.

32

Chapter 4

Proposed Test Cases Prioritization Technique

In this section we present technique for test case prioritization using genetic algorithm and

particle swarm optimization algorithm.

4.1. Prioritization based on Genetic Algorithm

Let’s say a program has test case suite T, now if we make modification in the program P,

suppose modified program is P’, so in order to test program P’ we will generate a prioritize

sequence of test cases from test case suite T , on the basis of the line of code modified. Later

in this research work we will check adequacy of these test cases using mutant analysis.

4.1.1. Proposed Genetic Algorithm Parameter

In this technique the following genetic parameter will be used-

4.1.1.1.Fitness function

The following objective function (fitness function) will be used-

Fitness value (F) = ∑ {order * (number of modified lines covered by test cases)}

For example- a test case sequence is T1�T2�T3�T4 and T1, T2, T3 and T4 covers 2,1,5,3

modified lines of code respectively. Then fitness value for this sequence will be

F= (2*4) + (1*3) + (5*2) + (3*1)

33

In this T1 has order 4 and it covers 2 lines of code,T2 has order 3 and it contains 1 line of

code, T3 has order 2 and it covers 5 line of code and T4 has order 1 and it covers 3 lines of

code.

4.1.1.2.Crossover – In this proposed paper we will use one point cross over with crossover

probability Pc=0.33.

4.1.1.3.Mutation- In this paper we will use mutation probability Pm=0.2. it means that 20%

of the genes will be muted within a chromosome.

Example –Consider a program for classification of a triangle of 42 lines of code with a test

suite of 13 test cases. Its input is a triple of positive integers (say a, b, c). The program output

may have one of the following words: Acute angled triangle, Obtuse angled triangle, Right

angled triangle, Invalid triangle. Test cases are generated using data flow testing technique.

Test cases with execution history are shown below in the table:

Test case ID A B C Expected

Output

Execution

History

T1 30 20 40 Obtuse

angled

triangle

8, 9, 10, 11,

12, 13

T2 30 20 40 Obtuse

angled

triangle

8, 9, 10, 11,

12, 13, 14,

15,

16 , 20, 21,

22

34

T3 30 20 40 Obtuse

angled

triangle

10, 11, 12,

13

T4 30 20 40 Obtuse

angled

triangle

10, 11, 12,

13, 14, 15,

16,

20, 21, 22

T5 30 20 40 Obtuse

angled

triangle

12, 13, 14,

15, 16, 20,

21,

22

T6 30 40 50 Right angled

triangle

22, 23, 24,

25, 28

T7 30 20 40 Obtuse

angled

triangle

5, 6, 7, 8, 9,

10, 11, 12,

13,

14, 15, 16,

20, 21

T8 - - - - 15, 16,

20, 21, 35

T9 30 10 15 Invalid

triangle

5, 6, 7, 8, 9,

10, 11, 12,

14,

17, 18, 19,

20, 21

T10 30 10 15 Invalid

triangle

18, 19, 20,

21, 35

T11 30 20 40 Obtuse

angled

24, 25

35

triangle

T12 30 20 40 Obtuse

angled

triangle

15, 16, 20,

21

Table 4.1: Execution history of test cases

Assume that lines 5, 8,10,15,20,23,28,35 are modified and the modified lines of code

covered by each test case are shown in the table below-

Test case Number of modified lines

T1 2

T2 4

T3 1

T4 3

T5 2

T6 2

T7 5

T8 2

T9 4

T10 1

T11 0

T12 2

Table 4.2: number of modified lines covered by test case

36

Now we apply genetic algorithm, on this data.

Table 4.3: genetic algorithm on testing data

On the basis of this random number we got to know that the first random no recommends the

chromosome 1 that is (T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T11�T12)

because the selected random no lies between 0-0.342. Second random number recommends

the chromosome 2 that is (T2�T4�T6�T8�T10�T12�T1�T3�T5�T7�T9�T11)

because the random number lies between 0.342-0.671. The third random number recommends

the chromosome, i.e. (T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T11�T12)

because the selected random number lies between 0-0.342.

Chromosome Fitness

value

Normalized

value

Cumulative

probability

Selection of

random No

recommendation

T1�T2�T3�TT4�T

5�T6�T7�T8�T9

�T10�T11�T12

196 196/573=0.342 0.342 0.3 Chromosome 1

T2�T4�T6�T8�T1

0�T12�T1�T3�T5

�T7�T9�T11

189 189/573=0.329 0.671 0.4 Chromosome 2

T5�T6�T8�T9�T1

2�T1�T7�T11�T2

�T3�T4�T10

188 188/573=0.328 1 0.2 Chromosome 1

37

So now we have the following member in our mating pool:

T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T11�T12

T2�T4�T6�T8�T10�T12�T1�T3�T5�T7�T9�T11

T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T11�T12

Now we will apply the one point cross over on these chromosome and will generate the new

off springs

T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T11�T12

T2�T4�T6�T8�T10�T12�T1�T3�T5�T7�T9�T11

T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T11�T12

On applying one point cross over the selected population we will get the following off

springs-

T1�T2�T3�T4�T5�T6�T7�T9�T11�T8�T10�T12

T2�T4�T6�T8�T10�T12�T1�T9�T11�T3�T5�T7

T1�T2�T3�T4�T5�T6�T7�T9�T11�T8�T10�T12

Now suppose if the crossover probability is 0.3 then we select 2 chromosomes from the

offspring and one from the parents based on the fitness function value.

This process is repeated certain fixed number of iterations or till we get the desired fitness

level, on repeating this procedure multiple times, we will get the nearly optimum solution.

38

Example 2

Here the test data for the program in appendix I is given as –

Test case ID Execution history

T1 1,2,3,4,5,6,7,8,9,10,11,17,31,34,35,36,37,38,39

T2 1,2,3,4,5,6,7,8,9,10,11,17,31,32,33,37,38,39

T3 1,2,3,4,5,6,7,8,9,10,11,12,13,16,17,31,34,35,36,37,38,39

T4 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,31,32,33,37,38,39

T5 1,2,3,4,5,6,7,8,9,10,11,17,18,19,20,21,30,37,38,39

T6 1,2,3,4,5,6,7,8,9,10,11,17,18,19,22,23,24,25,30,37,38,39

T7 1,2,3,4,5,6,7,8,9,10,11,17,18,19,22,26,27,28,29,30,37,38,39

 Table 4.4: test case with execution history for nature of quadratic equation

Now suppose the modified lines are –

11,13,17,18,19,22,23,24,27,31

39

The modified lines of code covered by each test case is shown in the table below-

Test case ID Number of modified line cover

T1 3

T2 3

T3 4

T4 4

T5 4

T6 7

T7 6

Table 4.5: test case with modified lines cover

40

Flow graph for the code (appendix I) is shown below:

Figure 4.1: flow graph for the code in Appendix I

41

DD path graph corresponding to the above flow graph is as shown below:

Figure 4.2: DD path graph for the code in Appendix I

The independent paths are

a) ABGOQRS

b) ABGOPRS

c) ABCDFGOQRS

d) ABCDEFGOPRS

42

e) ABGHIJNRS

f) ABGHIKLNRS

g) ABGHIKMNRS

Now we can apply genetic algorithm to figure out the best possible ordering of the test

cases. Let’s assume that population size is 3 for this example.

Table 4.6: genetic algorithm on test data

Chromosome Fitness

value

Normalized

value

X

Cumulative

probability

Selection of

random

number

Recommendation

T1�T2�T3�

T4�T5�T6�

T7

107 107/328=0.

326

0.326 0.4 T2�T3�T4�T5�

T7�T1�T6

T2�T3�T4�

T5�T7�T1�

T6

112 112/328=0.

341

0.667 0.2 T1�T2�T3�T4�

T5�T6�T7

T3�T2�T1�

T4�T5�T6�

T7

109 109/328=

0.332

1 0.5 T2�T3�T4�T5�

T7�T1�T6

43

So we have the following recommended mating pool:

T2�T3�T4�T5�T7�T1�T6

T1�T2�T3�T4�T5�T6�T7

T2�T3�T4�T5�T7�T1�T6

Now we can apply the one point crossover on the above chromosome and will generate

new mating pool as we did in previous example.

On iterating these steps we will get most optimized solution. after a certain number of

fixed iteration we get this sequence (T6�T7�T3�T4�T5�T1�T2) its fitness value is

142, so this is a prioritized sequence.

44

4.2. Prioritization based on Particle Swarm Optimization

The following concepts are used in the particle swarm optimization algorithm.

4.2.1. Basics of particle swarm optimization algorithm

The following basic concepts are being used in the PSO proposed for the test case

prioritization -

4.2.1.1.Swap operator

Let’s suppose a sequence of the test case is S

(T1�T2�T3�T4�T5�T6�T7�T8�T9). Then a swap operator SO (i1, i2) can be

defined as exchanging the i1th and i2th test case in the solution sequence. So we define

new solution sequence as

S’=S+SO(i1,i2)

Here swap operator is applied on the sequence S. here + sign has different meaning.

For example – if S has sequence T1�T2�T3�T4�T5�T6�T7�T8�T9 and we

apply the swap operator SO(3,5) then the new sequence S’ can be calculated as-

S’=S+SO(3,5) = (T1�T2�T3�T4�T5�T6�T7�T8�T9) +SO(3,5)

= T1�T2�T5�T4�T3�T6�T7�T8�T9

4.2.1.2.Swap sequence

Swap sequence (SS) is a sequence of swap operators. In this swap sequence the

order swap operators has significant role in the calculation.

45

For example –

SS=(SO1, SO2, SO3 , SO4, SO5, SO6)

Here SO1, SO2, SO3 etc. are swap operator 1, swap operator 2 etc.

4.2.1.3. Manipulation of swap operator and swap sequence

When we apply a swap sequence (SS) on a solution then all the swap operator in the

swap sequence is get applied on the solution automatically.

Suppose S is a solution sequence on which a swap sequence (SS) is applied. if new

solution sequence is S’ then it can be written as-

 S’=S+SS

 S’=S+(SO1, SO2, SO3,…….SOn)

 S’=(((S+SO1) +SO2) +SO3) +……………..)SOn)

It is possible that different swap sequence acting on a solution can produce the same

new solution. If it happens then these swap sequence are named as equivalent set of

swap sequence. In other words we can say that an equivalent set of swap sequence has

a set of swap sequence which has equal effect on the solution.

In this equivalent set, the swap sequence with the less number of swap operator (SO) is

called basic swap sequence (BSS).

46

Multiple swap sequence can be merged in to a single swap sequence. Here we define a

operator (+) as merging two swap sequence in to a new swap sequence.

 SS’=SS1 (+) SS2

Here SS’ and SS1(+)SS2 are equivalent swap sequence. That means if we apply swap

sequence 1 (SS1) and then swap sequence 2(SS2) on a solution then we will get same

solution as when we apply swap sequence SS’ on the solution.

4.2.1.4. Construction of basic swap sequence

Suppose we have two solutions A and B, and we want to find the basic swap

sequence (BSS) which will convert B in to A. then we can say

 A=B+SS

 SS=A-B (here minus – has different meaning)

According to this we can swap the node of B from left to right according to A.

For example-

A= (T1�T2�T3�T4�T5)

B= (T3�T4�T1�T2�T5)

To transfer B in to A first swap operation will be SO(1,3), when we apply this

operation on B, we will get B=(T1�T4�T3�T2�T5).

The next swap operator will be SO(2,4). On applying this operator on the

intermediate result found after applying SO(1,3) we will get B=(

 T1�T2�T3�T4�T5).now we can observe that this sequence is

equivalent to the A. so the basic swap sequence (BSS) which transform B in to A is

sequence of swap operator as

47

BSS= (SO(1,3) , SO(2,4))

4.2.2. Particle swarm optimization algorithm for test case prioritization

PSO algorithm for test cases prioritization can be described as –

Step 1: initialize

a) Initialize each of the particle with a random solution of the problem(i.e.

position of the particle).

b) Initialize the swap sequences corresponding to each particle with random

swap sequences (i.e. velocity of the particle).

Step 2: if ending criteria reached go to step 5

Step 3: calculate the next position corresponding to every particle in the population set.

a) Calculate the difference between P _best and X_ current (according to method

described above)

A=(P_best) – (X_current)

Here P_best is the personal best sequence of the particle and X_current is the

current sequence of the particle.

Here A is basic swap sequence.

b) Calculate difference between global best (G_best) and current position (X_current

).

B=(G_best) – (X_current)

Here B is basic swap sequence (BSS).

c) Calculate new velocity V_new

48

V_new = V_previous + α . A + β . B

d) Calculate new position

X_new =X_previous + V_ new

If means that swap sequence (V_new) will act upon the previous

position(X_previous) to get a new solution.

e) Update the position if new position has higher fitness value than the previous

position.

Step 4: update the global best position (G_best) if there are the new best solution

which has higher fitness value than the previous global best solution. Go to step 2

Step 5: output the global best solution.

49

4.2.3. Example

Here the test data for the code in appendix-I is given as –

Test case ID Execution history

T1 1,2,3,4,5,6,7,8,9,10,11,17,31,34,35,36,37,38,39

T2 1,2,3,4,5,6,7,8,9,10,11,17,31,32,33,37,38,39

T3 1,2,3,4,5,6,7,8,9,10,11,12,13,16,17,31,34,35,36,37,38,39

T4 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,31,32,33,37,38,39

T5 1,2,3,4,5,6,7,8,9,10,11,17,18,19,20,21,30,37,38,39

T6 1,2,3,4,5,6,7,8,9,10,11,17,18,19,22,23,24,25,30,37,38,39

T7 1,2,3,4,5,6,7,8,9,10,11,17,18,19,22,26,27,28,29,30,37,38,39

Table 4.7: test case with execution history for nature of quadratic equation

Now suppose the modified lines are –

11,13,17,18,19,22,23,24,27,31

The modified lines of code covered by each test case is shown in the table below-

Test case ID Number of modified line cover

T1 3

T2 3

T3 4

T4 4

50

T5 4

T6 7

T7 6

Table 4.8: test case with modified lines cover

Now we can apply the proposed PSO algorithm on these test cases. Here we assume that the

population set has the 5 particles.

S

No.

Particles Position(X) Fitness

value

Velocity (V)

1. Particle 1 T1�T2�T3�T4�T5�T6�T7 107 {

(2,3),(1,2),(4,5),(5,6),(6,3),(3,2)

}

2. Particle 2 T7�T6�T3�T2�T1�T4�T5 137 {

(4,5),(1,3),(4,3),(2,6),(6,1),(1,3)

}

3. Particle 3 T3�T6�T1�T4�T5�T7�T2 128 {

(2,3),(5,4),(1,4),(4,2),(2,3),(3,6)

}

4. Particle 4 T2�T4�T7�T6�T5�T1�T3 125 {

(4,3),(3,1),(1,6),(6,2),(2,3),(3,6)

}

5. Particle 5 T7�T5�T1�T3�T2�T6�T4 124 {

51

(4,5),(5,3),(3,1),(1,6),(6,2),(3,2)

}

Table 4.9: Particles with their fitness value and velocity

The fitness value of each particle can be calculated as-

Particle 1: fitness value = 3*7 + 3*6 + 4*5 + 4*4 + 4*3 + 7*2 + 6*1

 = 21+18+20+16+12+14+6 =107

Particle 2: fitness value = 6*7 + 7*6 + 4*5 + 3*4 + 3*3 + 4*2 + 4*1

 = 42+42+20+12+9+8+4 =137

Particle 3: fitness value = 4*7 + 7*6 + 3*5 + 4*4 + 4*3 + 6*2 + 3*1

 = 28+42+15+16+12+12+3 =128

Particle 4: fitness value = 3*7 + 4*6 + 6*5 + 7*4 + 4*3 + 3*2 + 4*1

 = 21+24+30+28+12+6+4 =125

52

Particle 5: fitness value = 6*7 + 4*6 + 3*5 + 4*4 + 3*3 + 7*2 + 4*1

 = 42+24+15+16+9+14+4 =124

By observing the above table we can say that the global best of the population set is particle 2,

which has maximum fitness value.

Now according to the PSO algorithm, we will change the position of each particle.

For particle 1: A=(P_best) - (X_current) =NULL

 B=G_best – X_current , B is the swap sequence which converts the

particle 1 in to particle 2.

So swap sequence corresponding to B will be { (1,7) , (2,6) , (4,6) , (5,7) }

V_new corresponding to particle 1 will be :

V_new={ (2,3),(1,2),(4,5),(5,6),(6,3),(3,2) } + { (1,7) , (2,6) , (4,6) , (5,7) }

The basic swap sequence (BSS) corresponding to this sequence is {(1, 7), (3, 7), (5, 7), (6, 7)}

Now we apply V_new on the current position to get the new position of particle 1.

New position will be T7�T2�T1�T4�T3�T5�T6. (This has fitness value 118).

This new position has higher fitness value so the we will update the position of particle 1 by

new position and change its personal best position(P_best).

53

For particle 2: B and A both will be NULL.

We just apply the velocity vector on the current position and compare the fitness value of the

new position to previous one.

For particle 3: A will be NULL.

B=G_best – X_current , B is the swap sequence which converts the particle 3 in to particle

2(global best).

B={ (1,6),(3,6),(7,4),(5,6),(6,7) }

New velocity (V_new) corresponding to particle 3 will be –

V_new = { (2,3),(5,4),(1,4),(4,2),(2,3),(3,6) } + { (1,6),(3,6),(7,4),(5,6),(6,7) }

The basic swap sequence (BSS) corresponding to this sequence is { (3,5),(4,7),(5,6) }

On applying V_new on the current position we will get the new position as

T3�T6�T5�T2�T7�T1�T4. It has fitness value 130 which is larger than the previous

fitness value. So we will update the position of the particle 3 and record the new personal best

(P_best) 130.

For particle 4: A will be NULL.

B=G_best – X_current , B is the swap sequence which converts the particle 4 in to particle

2(global best).

B={ (1,3),(2,4),(3,7),(4,7),(5,6),(6,7) }

New velocity (V_new) corresponding to particle 3 will be –

54

V_new = { (4,3),(3,1),(1,6),(6,2),(2,3),(3,6) } + { (1,3),(2,4),(3,7),(4,7),(5,6),(6,7) }

The basic swap sequence (BSS) corresponding to this sequence is {

(1,2),(2,3),(3,7),(4,6),(5,6),(6,7) }

On applying V_new on the current position we will get the new position as

T4�T7�T3�T1�T6�T2�T5. It has fitness value 127 which is larger than the previous

fitness value. So we will update the position of the particle 4 and record the new personal best

(P_best) 127.

For particle 5:

 B={ (2,6),(3,4),(4,5),(6,7) }

 V_new= { (4,5),(5,3),(3,1),(1,6),(6,2),(3,2) } + { (2,6),(3,4),(4,5),(6,7) }

The basic swap sequence (BSS) corresponding to this sequence is { (1,6),(3,5),(4,5),(6,7) }

On applying V_new on the current position we will get the new position as

T6�T5�T2�T1�T3�T4�T7. (Fitness value 126). Now we will update its position.

The new positions and velocity after 1 iteration of the algorithm are shown below in the table-

S

No.

Particles Position(X) Fitness

value

Velocity (V)

1. Particle 1 T7�T2�T1�T4�T3�T5�T6 118 { (1,7),(3,7),(5,7),(6,7) }

2. Particle 2 T7�T6�T3�T2�T1�T4�T5 137 {

(4,5),(1,3),(4,3),(2,6),(6,1),(1,3)

}

55

3. Particle 3 T3�T6�T5�T2�T7�T1�T4 130 { (3,5),(4,7),(5,6) }

4. Particle 4 T4�T7�T3�T1�T6�T2�T5 127 {

(1,2),(2,3),(3,7),(4,6),(5,6),(6,7)

}

5. Particle 5 T6�T5�T2�T1�T3�T4�T7 126 { (1,6),(3,5),(4,5),(6,7) }

Table 4.10: particle with their updated velocity

On running this algorithm on a larger population set, fairly large number of time we will get

the most optimized sequence.

56

4.3. Validation of the proposed Technique

For validating the previously proposed techniques we have used mutation testing. In this

validation we have created a muted copy of the program under test and applied the

prioritized sequence generated by the proposed technique.(GA and PSO) in this validation

we observed that the prioritized sequence is capable of finding the mutant and kill those

mutant successfully.

Now we apply the mutation analysis-

Mutant table for the root of the quadratic equation-

Mutant_id Parent statement Muted statement status

M1:line 11 If((a>=0)&&(a<=0)&&(b>

=0)&&(b<=100)&&(c>=0)

&&(c<=100))

If((a<=0)&&(a<=0)&&(b>

=0)&&(b<=100)&&(c>=0

)&&(c<=100))

unprocessed

M2:line 18 d=b*b-4a*c d=b+b-4a*c unprocessed

Table 4.11: parent and muted statements

The prioritized sequence for the program in Appendix I is T6�T7�T3�T4�T5�T1�T2.

 Now this mutant copy will check against the prioritized order i.e.

T6�T7�T3�T4�T5�T1�T2

57

Test case Output with parent

copy(actual output)

Output with mutant

copy

Status

T6 Roots are real and are

R1and R2

Input belong to

invalid range

processed

T7 Roots are imaginary

and are R1and R2

Output belong to

invalid range

processed

Table 4.12: status of mutant

So from the above table, it is clear that parent copy and mutant copy has different output. That

means that mutant has been killed by test cases.

58

CHAPTER 5

Conclusion and Future Work

In this chapter, the detailed review of each chapter of the thesis is presented, the results of the

thesis are summarized, applications of the work are discussed, contributions to the published

literature are mentioned and the future directions of the work are described.

5.1 Review of the Thesis

Chapter 1 provided the basic introduction of the thesis. Motivation of the work, basics of

software testing, test data prioritization and goals of the thesis are presented in this chapter.

The basic motivation of the thesis is derived from the need to address the emerging challenges

in the field of software testing viz. non-exhaustiveness and time consuming nature of testing.

There has been a significant evolution in the field of test cases prioritization methods. Earlier

random testing was used, and then symbolic execution came into existence. After this the

concept of search based testing emerged. In its infancy, local search techniques were used to

search the input domain of the program for the desired test case values. But, since local

techniques are likely to be trapped in local minima or maxima, heuristic search techniques

were used to generate test cases. The overall goal of this thesis is to propose a new test cases

prioritization algorithm that uses genetic algorithm and PSO algorithm. We also aim to

investigate the effectiveness these generated prioritized sequence.

59

Chapter 2 presented the literature survey in the field of test cases prioritization using different

testing criteria. In the literature, different researchers have proposed different prioritization

technique while performing testing. This chapter described the work done by different

researchers for generating test data using one or the other testing criteria. All the works that

are presented are summarized in a tabular format that includes author name and the testing

criteria focused in the corresponding work.

Chapter 3 described the key research concepts of the work. These are genetic algorithms and

particle swarm optimization. Mutation analysis is used to check the adequacy of the test cases

sequence. It tells the tester that whether generated set of test cases are adequate or not. Genetic

algorithms are the heuristic search technique that searches the entire domain of search space

and provides the globally optimum solution. This chapter discussed the basic procedure of

genetic algorithm and particle swarm optimization. It also described steps in both algorithm

using block diagram and the strengths and limitations of the both techniques.

Chapter 4 described the proposed test cases prioritization algorithms based on machine

learning techniques in detail. We have used genetic algorithm and particle swarm optimization

algorithm for this purpose. The overview of the algorithms, steps of the algorithms and the

details of each step are provided in this chapter. Then these proposed algorithms are applied

on a real time c program and step by step working of the algorithm has been explained.

Mutants were identified following the rules for mutant generation. Then mutant copy is

checked against the generated prioritized sequence in order to validate that prioritized test

cases sequence is capable of killing mutants.

60

5.2 Summary of the Results

In this work, we have focused upon two machine learning techniques i.e. Genetic algorithm

and Particle Swarm Optimization algorithm. We have basically emphasized upon generating a

prioritized sequence of test cases using these two machine learning techniques. We have

applied genetic algorithms and PSO algorithm for generating the test cases in order to

incorporate the benefits of GA and PSO in our test case prioritization algorithm. We have

integrated the mutation analysis with the prioritizing sequence in order to validate the

generated test case order. Hence, by integrating mutation analysis with test case prioritization,

we reduce the additional effort that is required to guarantee the adequacy of the test cases.

Moreover, application of genetic algorithm and particle swarm optimization algorithm are also

promising as it provides the results that are globally optimum as compared to other local

techniques.

The results obtained from the analysis of the proposed algorithm can be summarized as

follows:

• The proposed algorithm generates a prioritized ordered sequence of the test cases. In this

sequence the test cases which come first should be executed first.

• There exist some programs for which the proposed algorithm offers little in terms of

savings. However, for most of the programs the results are very promising.

• The effectiveness of test data prioritization algorithms depends upon certain factors such

as fitness function used in algorithm (GA and PSO) lines covered by test cases, number of

test cases, program size, program structure, type of mutants introduced etc.

61

• The proposed algorithm can reduce the time in regression testing. This has significant

benefits as time is one of the very important factors to be considered while performing

testing and it is very important to test efficiently in as much minimum time as possible.

• In this work, we focus on recommending test cases prioritized sequence. We have

proposed a fitness function that is used to generate prioritized sequence.

The overall conclusion of this thesis is that the proposed algorithm is better than exhaustive

testing and other local searching algorithm for test cases prioritization. These algorithms

assign priority to the test cases and generate a prioritized sequence of the test cases, in these

sequence higher priority test cases is listed first. The order of a test case in the sequence

recommends the execution sequence of that test case in the regression testing. Hence the

software practitioners can use the test cases in the regression testing according to their

ordering in the sequence.

5.3. Application of the Work

After design and evaluation of the proposed algorithm for generating prioritized test cases, we

can conclude that the work in this thesis will allow researchers and software professionals to:

1. Use the proposed algorithm to efficiently and quickly generate a prioritized sequence of

test cases.

2. Reduce time and effort in regression testing.

3. Adequately generate effective and efficient test data.

4. Use and adapt genetic algorithm in test cases prioritization and minimization.

62

5. Use and adapt particle swarm optimization in test case generation and prioritization.

6. Meet the challenge of time bounds while testing by generating test cases in a reasonable

amount of time.

5.4. Contribution to Published Literature

During the period of the research, details and results of this investigation have been

communicated in the following conference:

Malhotra R., Bharadwaj A.: ‘Test Case Prioritization Using Genetic Algorithm’, International

conference on Computer Science and Engineering (ICCSE-2012), Accepted for publication in

May 2012. (ISBN: 978-93-81693-96-4)

5.5. Future Work

While the analysis results shown in this work are encouraging, further analysis would be

useful and would add to the strength of the proposed algorithm. Future directions involve

validating the proposed algorithms on more larger and complex applications and projects. In

general, there are no limits on the number of applications on which an algorithm may be

validated. Validating an algorithm on larger, complex and sophisticated real time projects and

applications would add to the strength of the algorithm and would increase the acceptability of

the algorithm among the clients. Though validating on all possible projects may not be

possible, but still validating the proposed algorithm on as many projects as possible, would

make the algorithm more trustworthy and acceptable for the users.

63

References

Aggarwal K.K., Singh Y.: ‘Software Engineering’, New Age International Publishers, 2006.

Yu-Chi Huang, Chin-Yu Huang, Jun-Ru Chang and Tsan-Yuan Chen.: ‘Design and analysis

of cost-cognizant test case prioritization using genetic algorithm with test history’, Annual

Computer Software and Applications Conference, 2010.

Ruchika Malhotra, Arvinder Kaur and Yogesh Singh.: ‘A regression test selection and

prioritization technique’, Journal of Information Processing Systems, Vol.6, No.2, June 2010.

Sangeeta Sabharwal, Ritu Sibal, Chayanika Sharma.: ‘A genetic algorithm based approach for

prioritization of test case scenarios in static testing’, International Conference on Computer &

Communication Technology, 2011.

Ruchika Malhotra and Mohit Garg.: ‘An adequacy based test data generation technique using

genetic algorithms’, Journal of Information Processing Systems, Vol.7, No.2, June 2011.

Li Bing Chen ZiLi.: ‘Pivotal techniques of embedded software testing case generation by

genetic algorithms’.

Sangeeta Sabharwal, Ritu Sibal, Chayanika Sharma.: ‘Prioritization of test case scenarios

derived from activity diagram using genetic algorithm’, International Conference on

Computer & Communication Technology, 2010.

Ahmed M.A., Hermadi I.: ‘GA based multiple paths test data generator’, Computers and

Operations Research, 2007.

64

James H. Andrews, Tim Menzies and Felix C.H. Li.: ‘Genetic algorithms for randomized unit

testing’, IEEE Transactions On Software Engineering, Vol. 37, No. 1, Jan 2011.

Mohsen Fallah Rad, Farshad Akbari, Ahmad Javan Bakht.: ‘Implementation of common

genetic and bacteriological algorithms in optimizing testing data in mutation testing’, IEEE

2010.

Zheng Li, Mark Harman, and Robert M. Hierons.: ‘Search algorithms for regression test case

prioritization’, IEEE Transaction on Software Engineering, Vol. 33, No. 4, April 2007.

Md. Imrul Kayes.: ‘Test case prioritization for regression testing based on fault dependency’,

IEEE 2011.

B. F. Jones, H. H. Sthamer and D. E. Eyres.: ‘Automatic structural testing using genetic

algorithms’, Software Engineering Journal September 1996.

Irman Hermadi, Chris Lokan, Ruhul Sarker.: ‘Genetic Algorithm Based Path Testing:

Challenges and Key Parameters’, World Congress on Software Engineering 2010.

Beizer B.: ‘Software Testing Techniques’, Second Edition, New York: van Nostrand

Rheinhold, ISBN 0442206720, 1990.

Ruchika Malhotra, Abhishek Bharadwaj.: ‘Test cases prioritization using genetic algorithm’,

International Conference on Computer Science and Engineering, ISBN 978-93-81693-96-4,

May 2012.

Luciano S. de Souza, Pericles B. C. de Miranda, Ricardo B. C. Prudencio, Flavia de A.

Barros.: ‘A multi-objective particle swarm optimization for test case selection based on

65

functional requirements coverage and execution effort’, 23rd IEEE International Conference

on Tools with Artificial Intelligence 2011.

Khin Haymar Saw Hla, YoungSik Choi, Jong Sou Park.: ‘Applying particle swarm

optimization to prioritizing test cases for embedded real time software retesting’, IEEE 8th

International Conference on Computer and Information Technology Workshops.

C.S.Siva Dharsana, Ms.A.Askarunisha.: ‘Java based test case generation and optimization

using evolutionary testing’, International Conference on Computational Intelligence and

Multimedia Applications 2007.

Arvinder Kaur, Divya Bhatt.: ‘Hybrid particle swarm optimization for regression testing’,

International Journal on Computer Science and Engineering, Vol. 3, No.5, May 2011.

Dr. Arvinder Kaur, Divya Bhatt.: ‘Particle swarm optimization with cross-over operator for

prioritization in regression testing’, International Journal of Computer Applications, Vol. 27,

No. 10, August 2011.

Gary Y. Chen, Jamie Rogers.: ‘Arranging software test cases through an optimization

method’.

Duran J.W., Ntafos S.C.: ‘An evaluation of random testing’, IEEE Transaction on Software

Engineering, 10(4): 438–443, 1984.

Frankl P. G., Weiss S. N.: ‘An experimental Comparison of the effectiveness of branch testing

and Data flow testing’, IEEE Transactions on Software Engineering, Vol. 19.

Hamlet R. G.: ‘Probable correctness theory’, Information Processing Letters, Vol. 25, pp.17-

25, 1987.

66

Kaner C.: ‘Exploratory Testing’, Quality Assurance Institute Worldwide Annual Software

Testing Conference Florida Institute of Technology, Orlando, FL, 2006.

Lin J. C., Yeh P. L.: ‘Automatic test data generation for path testing using Gas’, Information

Sciences, vol. 131, pp. 47-64, 2001.

Malhotra R., Garg M.: ‘Development and empirical validation of an efficient test data

generation algorithm based on adequacy based testing criteria’, Journal of Software and

Systems, Elsevier, April 2011.

Michael C., McGraw G., Schatz M.: ‘Generating software test data by evolution’, IEEE

Transactions on Software Engineering 27(12) 1085-1110, 2001.

Roper M.: ‘Software testing’, International software quality assurance Series, 1994.

Rothermel G., Harrold M.J.: ‘A safe, efficient regression test selection technique’, ACM

Transactions on Software Engineering and Methodology, Vol. 6, No. 2, Pages 173–210, 1997.

Shen X., Wang Q., Wang P., Zhou Bo.: ‘Automatic generation of test case based on GATS

Algorithm’, 2007AA04Z148, supported by Nation 863 Project, 2007.

Wegener J., Baresel A., Sthamer H.: ‘Evolutionary test environment for automatic structural

testing’, Information and Software Technology, 43:841–854, 2001.

Hu, X. B. and Di Paolo, E.: ‘An efficient genetic algorithm with uniform crossover for the

multi-objective airport gate assignment problem’, IEEE Congress on Evolutionary

Computation 55–62, 2007.

67

Appendix I

Program for determining the nature of the quadratic equation –

#include<stdio.h>

#include<conio.h>

#include<math.h>

1. int main()

2. {

3. Int a,b,c,validinput=0;d;

4. Double D;

5. Printf(“enter the ‘a’ value”);

6. Scanf(“%d”,&a);

7. Printf(“enter the ‘b’ value”);

8. Scanf(“%d”,&b);

9. Printf(“enter the ‘c’ value”);

10. Scanf(“%d”,&c);

11. If ((a>0=)&&(a<=100)&&(b>=0)&&(b<=100)&&(c>=0)&&(c<=100))

12. {validinput=1;

13. If(a==0){

14. Validinput=-1;

15. }

16. }

17. If(validinput==1){

18. D=b*b-4*a*c;

68

19. If(d==0){

20. Printf(“the root are equal and are R1=R2=%f\n”,-b/(2*(float)a));

21. }

22. Elseif(d<0){

23. D=Sqrt(d);

24. Printf(“the root are real and are R1=%d and R2=%f\n”,(-b-D)/(2*a), (-

b+D)/(2*a));

25. }

26. Else{

27. D=sqrt(-d)/(2*a);

28. Printf(“the roots are imaginary and are R1=(%f%f) and R2=(%f%f)\n”,-b/(2.0*a),D,-

b/(2.0*a),-D);

29. }

30. }

31. Elseif(validinput==-1)

32. {printf(“the value do not constitute a quadratic equation ”);

33. }

34. Else{

35. Printf(“the input belong to invalid range ”);

36. }

37. Getche();

38. Return 1;

39. }

69

Appendix II

Test Case Priortization Using Genetic Algorithm

Dr Ruchika Malhotra

Computer of engineering department

Delhi Technological University

(Formerly Delhi College of engineering)

New Delhi, India

Ruchikamalhotra2004@yahoo.com

Abhishek Bharadwaj

Computer of engineering department

Delhi Technological University

(Formerly Delhi College of engineering)

New Delhi, India

abhishek.bharadwaj@dtu.co.in

Abstract— Software is built by human so it cannot

be perfect. So in order to make sure that developed

software does not do any unintended thing we have

to test every software before launching it in the

operational world. Software testing is the major

part of software development lifecycle. Testing

involves identifying the test cases which can find

the errors in the program. Exhaustive testing is not

a good idea to follow. It is very difficult and time

consuming to perform. In this paper a technique

has been proposed to do prioritize test cases

according to their capability of finding errors. One

which is more likely to find the errors has been

assigned a higher priority and the one which is less

likely to find the errors in the program has been

assigned low priority. It is recommended to execute

the test cases according their priority to find the

errors.

Keywords-Genetic algorithm;testcase

priortization,test case minimization

I. INTRODUCTION

Software testing is the process of executing the

program with the intent of finding errors. [1]

When we test the software in the maintenance phase

after the change has been incorporate, this is called

regression testing. So regression testing is also quite

important for making sure that the new modifications

do not add any extra faults. This regression testing

requires lots of effort and time.

One straight forward approach is to re-run all the

existing test cases and detect if there are any errors. But

it is practically impossible under the project deadline

and required a lot of effort. Other alternative is to do

prioritize test cases according to their relevance for

error detection and find an ordered sequence of test

cases which contains the test cases first, which is more

likely to find errors.

Testing activity can be defined in two broad

categories-

a. Functional testing

b. Structural testing

Functional testing includes the functional part of the

software. It is used to assure that the software do what

it is expected to do. It includes the following testing

approaches-

1. Boundary value analysis

2. Robustness testing

3. Worst case testing

4. Equivalence class testing

5. Decision table based testing

6. Cause effect graph testing

Structural testing deals with the internal structure of

the programs. It concern with the code of the program.

It include the following approach-

1. Path testing

2. Flow graph testing

3. DD path graph testing

4. Data flow graph testing

In this paper we have proposed a technique to order

the test cases according to their priority to find faults.

A test case which is more likely to find an error will be

70

given more priority and hence kept first in the ordered

sequence and so on. This order will be generated using

genetic algorithm.

II. RELATED WORK

In various research work carried out in the field of test

data generation, different researchers have used

different technique while generating test data.

Yu-Chi Huang et al has proposed a cost cognizant test

case prioritization technique based on the use of

historic records and genetic algorithm [2]. They run a

controlled experiment to evaluate the proposed

technique’s effectiveness. This technique however

does not take care of the test cases similarity.

Sangeeta Sabharwal et al has proposed a technique for

prioritization test case scenarios derived from activity

diagram using the concept of basic information flow

matric and genetic algorithm.[3]

Sangeeta Sabharwal et al has generated prioritized test

case in static testing using genetic algorithm.[4] they

have applied a similar approach as [3] to prioritize test

case scenarios derived from source code in static

testing.

James H. Andrews et al has applied genetic algorithm

on randomized unit testing to figure out the best

suitable test cases.[5]

Mohsen Fallah Rad et al has applied common genetic

and bacteriological algorithm for optimizing testing

data in mutation testing.[6]

Ruchika Malhotra et al has developed a adequacy

based test data generation technique using genetic

algorithms.[7]

Ciyong Chen et al proposed a new method called

EPDG-GA which utilizes the Edge Partitions

Dominator Graph (EPDG) and Genetic Algorithm

(GA) for branch coverage testing.[8]

Dr Mukesh kumar, rohit et al has proposed unit testing

of object oriented software using genetic algorithm. In

their approach they proposed a method to generate the

test cases for classes in object oriented software using

a genetic programming approach. This method

represents a tree representation of statements in the

test cases. Strategies for encoding the test cases and

using the objective function to evolve them as suitable

test cases are proposed.[9]

Debasis Mohapatra et al has proposed automated test

case generation and its optimization for path testing

using genetic algorithm and sampling. In this approach

they have used genetic algorithm to optimize the test

cases that are generated using the category- partition

and test harness pattern.[10]

Md. Imrul Kayes proposed test case prioritization for

regression testing based on fault dependency[11]. He

present a metric APFDD which measure fault

dependency detection rate and presented an algorithm

to improve APFDD.

Zheng Li et al have applied search algorithm for

regression test case prioritization.[12]

Gregg Rothermel et al have performed a control

experiment to access prioritization techniques using

mutation faults.[13]

Gregg Rothermel et al have proposed several

techniques for developing prioritize test cases in

regression testing phase. They also rate of fault

detection of these techniques.[14]

III. KEY RESEARCH CONCEPT

Genetic algorithm

Genetic algorithm is stochastic search technique,

which is based on the idea of selection of the fittest

chromosome.

In genetic algorithm, population of chromosome is

represented by different codes such as binary, real

number, permutation etc. genetic operators(i.e.

selection, crossover, mutation) is applied on the

chromosome in order to find more fittest chromosome.

The fitness of a chromosome is defined by a suitable

objective function. As a class of stochastic method

genetic algorithm is different from a random search.

While genetic algorithm carry out a multidimensional

search by maintaining population of potential user,

random methods consisting of a combination of

iterative search methods and simple random search

methods can find a solution for a given problem. One

of the genetic method’s most attractive feature is to

explore the search space by considering the entire

population of the chromosome.[15]

The steps of genetic algorithm are as-

1. Generate population (chromosome)

71

2. Evaluate the fitness of generated population

3. Apply selection for individual

4. Apply crossover and mutation

5. Evaluate and reproduce the chromosome

1. Generate population(chromosome)-
Initially population is randomly selected and encoded.

Each chromosome represent the possible solution of

the problem.(in our case the sequence of test cases is

chromosome and our aim is to optimize this sequence).

For example- for 12 test cases T1, T2, T3……….T12

the sequence is

T1�T2�T4�T6�T9�T10�T12�T3�T5�T7�

T8�T11

2. Evaluate the fitness of generated population-

The fitness of a chromosome is defined by an

objective function. An objective function tells how

‘good’ or ‘bad’ a chromosome is. This objective

function generates a real number from the input

chromosome. Based on this number two or more

chromosome can be compared.

3. Apply selection for individual-
In general the selection is depend on the fitness value

of the chromosome. The chromosome with higher or

lower value will be selected base on the problem

definition.

4. Apply crossover and mutation-
Parents are choose and randomly combined. This

technique for generating random chromosome is called

crossover. There exist two type of crossover-

a. Single point crossover

b. Multiple point crossover

For example- suppose two sequences for test cases is

P1: T1�T2�T3�T4�T5�T6�T7�T8�T9 and

P2: T4�T2�T5�T7�T8�T1�T6�T9�T2

Then using one point crossover offspring will be-

C1: T1�T2�T3�T4�T8�T6�T9�T5�T7

C2: T4�T3�T5�T7�T6�T8�T9�T1�T2

For C1 write first part of the P1 as it is and then write

second part of P2 with constraint that a test case has

not been added in to C1.

For doing mutation two genes selected randomly along

the chromosome and swapped with each other.

For example- when T3 and T9 get selected randomly

T1�T2�T3�T4�T8�T6�T9�T5�T7

 MUTATION

T1�T2�T9�T4�T8�T6�T3�T5�T7

5. Termination criteria-
The termination criteria can be selected in the different

ways such as- reaching the predefined fitness value,

the number of generation or a non-existing difference

in the fitness values of each generation.

In our approach we used a fixed generation number as

a termination criteria.

Figure: steps in genetic algorithm [11]

IV. PROPOSED TECHNIQUE

In this section we present technique for test case

prioritization using genetic algorithm.

Let’s say a program has test case suite T, now if we

make modification in the program p, suppose modified

program is P’, so in order to test program P’ we will

generate a prioritize sequence of test cases from test

case suite T , on the basis of the line of code modified.

In this paper the following genetic parameter will be

used-

1. Fitness function

The following objective function (fitness function)

will be used-

Fitness value (F) = Σ {order * (number of modified

lines covered by test cases)}

72

For example- a test case sequence is T1_T2_T3_T4

and T1, T2, T3 and T4 covers 2,1,5,3 modified lines of

code respectively. Then fitness value for this sequence

will be

F= (2*4) + (1*3) + (5*2) + (3*1) 16

In this T1 has order 4 and it covers 2 lines of code,T2

has order 3 and it contains 1 line of code , T3 has order

2 and it covers 5 line of code and T4 has order 1 and it

covers 3 lines of code.

2. Crossover – In this proposed paper we will use one

point cross over with crossover probability Pc=0.33.

3. Mutation- In this paper we will use mutation

probability Pm=0.2. it means that 20% of the genes

will be muted within a chromosome.

Example -Test cases with execution history

[1].

Test

case

ID

A B C Expect

ed

Output

Execution

History

T1 30 20 40 Obtuse

angled

triangl

e

8, 9, 10, 11,

12, 13

T2 30 20 40 Obtuse

angled

triangl

e

8, 9, 10, 11,

12, 13, 14,

15,

16 , 20, 21,

22

T3 30 20 40 Obtuse

angled

triangl

e

10, 11, 12,

13

T4 30 20 40 Obtuse

angled

triangl

10, 11, 12,

13, 14, 15,

16,

e 20, 21, 22

T5 30 20 40 Obtuse

angled

triangl

e

12, 13, 14,

15, 16, 20,

21,

22

T6 30 40 50 22, 23, 24,

25, 28

T7 30 20 40 Obtuse

angled

triangl

e

5, 6, 7, 8, 9,

10, 11, 12,

13,

14, 15, 16,

20, 21, 15,

16,

20, 21, 35

T8 - - - -

T9 30 10 15 5, 6, 7, 8, 9,

10, 11, 12,

14,

17, 18, 19,

20, 21

T10 30 10 15 18, 19, 20,

21, 35

T11 30 20 40 Obtuse

angled

triangl

e

24, 25

T12 30 20 40 Obtuse

angled

triangl

e

15, 16, 20,

21

Assume that lines 5, 8,10,15,20,23,28,35 are modified

and the modified lines of code covered by each test

case are shown in the table below-

Test case Number of

modified lines

73

T1 2

T2 4

T3 1

T4 3

T5 2

T6 2

T7 5

T8 2

T9 4

T10 1

T11 0

T12 2

Table 2: number of modified lines covered by test case

Now we apply genetic algorithm, on this data.

Chromo

s-ome

Fitn

ess

valu

e

Norma

lized

value

Cummul

ative

probabil

ity

Sele

ctio

n of

rand

om

num

ber

Recom-

mendatio

n

T1�T2

�T3�

T4�T5

�T6�

T7�T8

�T9�

T10�T

11�T1

2

196 196/57

3=0.34

2

0.342 0.3 Chromos

ome 1

T2�T4

�T6�

T8�T1

0�T12

�T1�

T3�T5

189 189/57

3=0.32

9

0.671 0.4 Chromos

ome 2

�T7�

T9�T1

1

T5�T6

�T8�

T9�T1

2�T1

�T7�

T11�T

2�T3

�T4�

T10

188 188/57

3=0.32

8

1 0.2 Chromos

ome 1

On the basis of this random number we got to know

that the first random no recommends the chromosome

1 that is

(T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�

T11�T12) because the selected random no lies

between 0-0.342. Second random number recommends

the chromosome 2 that is

(T2�T4�T6�T8�T10�T12�T1�T3�T5�T7

�T9�T11) because the random number lies between

0.342-0.671. The third random number recommends

the chromosome

1(T1�T2�T3�T4�T5�T6�T7�T8�T9�T10

�T11�T12) because the selected random number

lies between 0-0.342.

So now we have the following member in our mating

pool:

T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T

11�T12

T2�T4�T6�T8�T10�T12�T1�T3�T5�T7�

T9�T11

T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T

11�T12

Now we will apply the one point cross over on these

chromosome and will generate the new off springs

74

T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T

11�T12

T2�T4�T6�T8�T10�T12�T1�T3�T5�T7�

T9�T11

T1�T2�T3�T4�T5�T6�T7�T8�T9�T10�T

11�T12

On applying one point cross over the selected

population we will get the following off springs-

T1�T2�T3�T4�T5�T6�T7�T9�T11�T8�T

10�T12

T2�T4�T6�T8�T10�T12�T1�T9�T11�T3

�T5�T7

T1�T2�T3�T4�T5�T6�T7�T9�T11�T8�T

10�T12

Now suppose if the crossover probability is 0.3 then

we select 2 chromosomes from the offspring and one

from the parents based on the fitness function value.

This process is repeated certain fixed number of

iterations, on repeating this procedure multiple times,

we will get the nearly optimum solution.

CONCLUSION

In this paper we applied genetic algorithm on the test

cases with their execution history. We used a fitness

function which gives higher value if a test case covers

more line of code, and a test case which has higher

fitness value is provide higher priority in ordered

sequence. When we applied genetic algorithm a large

number of time we will get a nearly optimized

solution. As we know that genetic algorithm does not

always gives optimum solution, but if we run this

algorithm fairly large number of time then we will get

nearly optimum solution.

References

[1] K.K. Aggarwal, Y. Singh, “Software

Engineering”, New Age International Publishers,

2006.

[2] Yu-Chi Huang, Chin-Yu Huang, Jun-Ru Chang

and Tsan-Yuan Chen “Design and Analysis of

Cost-Cognizant Test Case Prioritization Using

Genetic Algorithm with Test History”, IEEE 34th

Annual Computer Software and Applications

Conference 2010.

[3] Sangeeta Sabharwal, Ritu Sibal, Chayanika

Sharma “Prioritization of Test Case Scenarios

Derived from Activity Diagram Using Genetic

Algorithm”,international conference. on Computer

& Communication Technology[ICCCT 10].

[4] Sangeeta Sabharwal, Ritu Sibal, Chayanika

Sharma “A Genetic Algorithm Based Approach

For Prioritization of Test Case Scenarios in Static

Testing “, International Conference on Computer

& Communication Technology (ICCCT)-2011.

[5] James H. Andrews, Member, IEEE, Tim Menzies,

Member, IEEE, and Felix C.H. Li “Genetic

Algorithms for Randomized Unit Testing”, IEEE

transaction on software Engineering, vol. 37, no.

1, January/February 2011.

[6] Mohsen Fallah Rad, Farshad Akbari Ahmad

Javan Bakht “Implementation of Common Genetic

and Bacteriological Algorithms in Optimizing

Testing Data in Mutation Testing”.

[7] Ruchika malhotra and mohit garg “An Adequacy

Based Test Data Generation Technique Using

Genetic Algorithms” Journal of Information

Processing Systems, Vol.7, No.2, June 2011.

[8] Ciyong Chen , Xiaofeng Xu , Yan Chen ,

Xiaochao Li and Donghui Guo “A New Method of

Test Data Generation for Branch Coverage in

Software Testing Based on EPDG and Genetic

Algorithm”.

[9] Nirmal Kumar Gupta and Dr. Mukesh Kumar

Rohil “Using Genetic Algorithm for Unit Testing

of Object Oriented Software”, in First

International Conference on Emerging Trends in

Engineering and Technology.

[10] Debasis Mohapatra Prachet Bhuyan Durga P.

Mohapatra “Automated Test Case Generation and

Its Optimization for Path Testing Using Genetic

75

Algorithm and Sampling”, 2009 WASE

International Conference on Information

Engineering.

[11] Md. Imrul Kayes “Test Case Prioritization for

Regression Testing Based On Fault Dependency”.

[12] Zheng Li, Mark Harman and Robert M.

Hierons “Search Algorithm For Regression Test

Case Priortization”.

[13] Hyunsook Do and Gregg Rothermel “A

controlled Experiment Assessing Test Case

Prioritization via Mutation Faults”.

76

