

EMPIRICAL ASSESSMENT OF CODE SMELLS

FOR PREDICTING SOFTWARE CHANGE

PRONENESS

A dissertation submitted in the partial fulfilment for the award of Degree of

Master of Technology

in

Software Engineering

By

Nakul Pritam

Roll No. 09/SE/2010

Under the esteemed guidance of

Dr. Ruchika Malhotra

Department of Computer Engineering

Delhi Technological University, New Delhi

2011-2012

i

Certificate

Delhi Technological University

(Govt. of National Capital Territory of Delhi)

Bawana Road, Delhi – 110042

Date: ___________________

This is to certify that the thesis entitled ‘Empirical Assessment of Code Smells for Predicting

Software Change Proneness’ done by Nakul Pritam (09/SE/2010), for the partial fulfillment

of the requirements for the award of the degree of Masters of Technology in Software

Engineering, is an authentic work carried out by him under my guidance. The matter embodied

in this thesis has not been submitted earlier for the award of any degree or diploma to the best of

my knowledge and belief.

Project Guide:

Dr. Ruchika Malhotra

Assistant Professor, Department of Software Engineering

Delhi Technological University, Delhi 110042

ii

Acknowledgement

If you want to succeed you should strike out on new paths, rather than travel the worn paths of

accepted success.

- John D. Rockefeller

While it is always possible to travel a new path by yourself, having someone hold your hand

while you do so is better. As soon as I wrote that a lot of names came to my mind which I would

like to honor before I present to you my work.

I would first hand like to thank Delhi Technological University for giving me the opportunity

and the platform for showcasing my abilities and simultaneously molding my career in a shape

no other place possibly can. It always felt like home.

I would like express my gratitude to Prof P. B. Sharma, Vice Chancellor, DTU, Delhi for

giving me permission to undertake the project work at DTU, Delhi for partial fulfillment for the

degree of Master of Technology.

I also express my gratitude towards Prof. Daya Gupta, Dept. of Computer Engineering, Delhi

Technological University, for extending her support & valuable guidance.

The major force behind this work is Dr. Ruchika Malhotra, Assistant Professor, Department of

Software Engineering. I thank her profusely for her constant encouragement, guidance and moral

support during the course of project work. The way she instilled confidence and allowed me to

iii

make my own choices at critical points is something I will always remember. I could call her

anytime of the day and talk to her like I talk to my friends.

I would also extend my thanks to the Ph.D scholars of my department for their support. Ms.

Ankita Bansal for helping me while I was learning software tools, Ms. Poonam Goel for her

constant advice and Ms. Shruti Jaiswal for her laptop.

I would also like to thank my sister Shikha who helped me in preparing all the datasets, my

mother for serving food at my table and my father for getting prints of research papers.

Every member of my institution and all faculty members have contributed to my work. The lab

assistants who tolerated me while working late, guys at Nescafe for serving me at 5:00 PM and

all of my wonderful classmates without whom this project would have been a distant reality.

Nakul Pritam

09/SE/2010

M.Tech (Software Engineering)

4
th
 Semester

iv

ABSTRACT

Poor design choices called anti-patterns manifest themselves in the source code as code smells.

Code smell is a synonym for bad implementation and is assumed to make maintenance tasks

difficult to perform.

In our previous study we validated the fact that it is possible to determine the degree of change-

proneness for a class on the basis of certain code smells in an object-oriented system. The data

used for the assessment was source code of Quartz, an open source job scheduler, from two

versions 1.5.2 and 1.6.6. A total of 79 classes were examined and the results suggested a clear

relationship between code smells and change proneness of a class.

The dataset we used was very small to reach a strong conclusion so we extended our previous

work by examining a dataset consisting of 4120 classes spanning 14 software systems. The

dataset is created by preprocessing the class files that included removal of classes not common to

both versions of the systems used. This was followed by assessment of code smells which was

done on the basis of metrics. The dataset finally derived was then analyzed using Machine

Learning Methods and the results suggest that code smells can classify a change prone class with

a probability of .7 or more and a not change prone class with a probability of .67 or more using

Multilayer Perceptron model.

v

Table of Contents

Certificate i

Acknowledgement ii

Abstract iv

Table of Contents v

List of Figures viii

List of Tables xii

1. Introduction 1

1.1 Background 1

1.2 Motivation 2

1.3 Statement of work 2

1.4 Organization of thesis 3

2. Related Work 4

3. Research Background 6

3.1 Code Smells 6

3.1.1 ClassOneMethod 7

3.1.2 ChildClass 7

3.1.3 HasChildren 8

3.1.4 LargeCLass 8

3.1.5 LowCohesion 8

3.1.6 ComplexClassOnly 8

3.1.7 FewMethod 9

3.1.8 ManyAttributes 9

3.1.9 OneChildClass 9

3.1.10 NoInheritance 9

3.1.11 DataClass 9

3.1.12 TwoInheritance 10

3.1.13 NotComplex 10

3.2 Metrics Selected for Study 10

3.2.1 CountDeclMethod 11

3.2.2 CountLineCode 11

3.2.3 CountDeclInstanceVariable 11

3.2.4 CountClassDerived 11

vi

3.2.5 MaxInheritanceTree 11

3.2.6 AvgCyclomatic 12

3.2.7 PercentLackOfCohesion 12

3.3 Code Smells and their Relation to Metrics 12

3.4 Empirical Data Collection 13

3.4.1 AOI 13

3.4.2 CheckStyle 14

3.4.3 FreePlane 14

3.4.4 jKiwi 14

3.4.5 Joda 15

3.4.6 jStock 15

3.4.7 jText 15

3.4.8 LWJGL 16

3.4.9 ModBus 16

3.4.10 openGTS 16

3.4.11 openRocket 17

3.4.12 Quartz 17

3.4.13 Spring 18

3.4.14 SubSonic 18

3.5 Dependent and Independent Variables 20

4. Research Methodology 22

4.1 Methodology 22

4.1.1 Data Acquisition and Pre-Processing 23

4.1.2 Change and Smell Estimation 23

4.1.3 Analysis Using Machine Learning Methods 23

4.2 ClassSelector – A Tool to Pre-Process 23

4.2.1 Module 1 – FilesLoader 24

4.2.2 Module 2 – DataProcessor 24

4.3 Machine Learning Algorithms for Analysis 25

4.3.1 Naïve Bayes Classifier 25

4.3.2 Multilayer Perceptron 25

4.3.3 LogitBoost 28

4.3.4 Bagging 28

4.3.5 Random Forest 29

4.3.6 Decision Tree 31

vii

5. Results 33

5.1 Random Forest Analysis 34

5.2 Naïve Bayes Analysis 38

5.3 Bagging Analysis 42

5.4 Decision Tree Analysis 46

5.5 LogitBoost Analysis 50

5.6 Multilayer Perceptron Analysis 54

5.7 Model Evaluation 58

5.8 Discussion 59

6. Conclusion and Future Work 60

7. Publications 62

7.1 Communicated Papers 62

References 63

Appendix A 69

Appendix B 70

Appendix C 71

Appendix D 79

viii

List of Figures

S.No. Name of Figure Page No.

1 Distribution of change-prone and not change-prone classes 19

2 Outline of Research Methodology 22

3 Snapshot of Tool 24

4 Architecture of Multilayer Perceptron with 2 hidden layers 26

5 A Forest of Trees 29

6 A Decision Tree 31

7 ROC Curve for AOI – Random Forest 35

8 ROC Curve for CheckStyle – Random Forest 35

9 ROC Curve for FreePlane – Random Forest 35

10 ROC Curve for jKiwi – Random Forest 35

11 ROC Curve for Joda – Random Forest 36

12 ROC Curve for jStock – Random Forest 36

13 ROC Curve for jText – Random Forest 36

14 ROC Curve for Quartz – Random Forest 36

15 ROC Curve for LWJGL – Random Forest 37

16 ROC Curve for ModBus – Random Forest 37

17 ROC Curve for openGTS – Random Forest 37

18 ROC Curve for openRocket – Random Forest 37

19 ROC Curve for Spring – Random Forest 38

20 ROC Curve for SubSonic – Random Forest 38

21 ROC Curve for AOI – Naïve Bayes Classifier 39

22 ROC Curve for CheckStyle – Naïve Bayes Classifier 39

23 ROC Curve for FreePlane – Naïve Bayes Classifier 39

24 ROC Curve for jKiwi – Naïve Bayes Classifier 39

25 ROC Curve for Joda – Naïve Bayes Classifier 40

ix

26 ROC Curve for jStock – Naïve Bayes Classifier 40

27 ROC Curve for jText – Naïve Bayes Classifier 40

28 ROC Curve for Quartz – Naïve Bayes Classifier 40

29 ROC Curve for LWJGL – Naïve Bayes Classifier 41

30 ROC Curve for ModBus – Naïve Bayes Classifier 41

31 ROC Curve for openGTS – Naïve Bayes Classifier 41

32 ROC Curve for openRocket – Naïve Bayes Classifier 41

33 ROC Curve for Spring – Naïve Bayes Classifier 42

34 ROC Curve for SubSonic – Naïve Bayes Classifier 42

35 ROC Curve for AOI – Bagging 43

36 ROC Curve for CheckStyle – Bagging 43

37 ROC Curve for FreePlane – Bagging 43

38 ROC Curve for jKiwi – Bagging 43

39 ROC Curve for Joda – Bagging 44

40 ROC Curve for jStock – Bagging 44

41 ROC Curve for jText – Bagging 44

42 ROC Curve for Quartz – Bagging 44

43 ROC Curve for LWJGL – Bagging 45

44 ROC Curve for ModBus – Bagging 45

45 ROC Curve for openGTS – Bagging 45

46 ROC Curve for openRocket – Bagging 45

47 ROC Curve for Spring – Bagging 46

48 ROC Curve for SubSonic – Bagging 46

49 ROC Curve for AOI – Decision Tree 47

50 ROC Curve for CheckStyle – Decision Tree 47

51 ROC Curve for FreePlane – Decision Tree 47

52 ROC Curve for jKiwi – Decision Tree 47

53 ROC Curve for Joda – Decision Tree 48

54 ROC Curve for jStock – Decision Tree 48

55 ROC Curve for jText – Decision Tree 48

x

56 ROC Curve for Quartz – Decision Tree 48

57 ROC Curve for LWJGL – Decision Tree 49

58 ROC Curve for ModBus – Decision Tree 49

59 ROC Curve for openGTS – Decision Tree 49

60 ROC Curve for openRocket – Decision Tree 49

61 ROC Curve for Spring – Decision Tree 50

62 ROC Curve for SubSonic – Decision Tree 50

63 ROC Curve for AOI – LogitBoost 51

64 ROC Curve for CheckStyle – LogitBoost 51

65 ROC Curve for FreePlane – LogitBoost 51

66 ROC Curve for jKiwi – LogitBoost 51

67 ROC Curve for Joda – LogitBoost 52

68 ROC Curve for jStock – LogitBoost 52

69 ROC Curve for jText – LogitBoost 52

70 ROC Curve for Quartz – LogitBoost 52

71 ROC Curve for LWJGL – LogitBoost 53

72 ROC Curve for ModBus – LogitBoost 53

73 ROC Curve for openGTS – LogitBoost 53

74 ROC Curve for openRocket – LogitBoost 53

75 ROC Curve for Spring – LogitBoost 54

76 ROC Curve for SubSonic – LogitBoost 54

77 ROC Curve for AOI – Multilayer Perceptron 55

78 ROC Curve for CheckStyle – Multilayer Perceptron 55

79 ROC Curve for FreePlane – Multilayer Perceptron 55

80 ROC Curve for jKiwi – Multilayer Perceptron 55

81 ROC Curve for Joda – Multilayer Perceptron 56

82 ROC Curve for jStock – Multilayer Perceptron 56

83 ROC Curve for jText – Multilayer Perceptron 56

84 ROC Curve for Quartz – Multilayer Perceptron 56

85 ROC Curve for LWJGL – Multilayer Perceptron 57

xi

86 ROC Curve for ModBus – Multilayer Perceptron 57

87 ROC Curve for openGTS – Multilayer Perceptron 57

88 ROC Curve for openRocket – Multilayer Perceptron 57

89 ROC Curve for Spring – Multilayer Perceptron 58

90 ROC Curve for SubSonic – Multilayer Perceptron 58

xii

List of Tables

S.No. Name of Table Page No.

1 Code Smells and Criteria for Their Presence 7

2 Object Oriented Metrics Selected for Study 11

3 Code Smells and Related Metrics 13

4 Summary of the Dataset used 20

5 10-Cross validation results for Random Forest 34

6 10-cross validation results for Naïve Bayes Classifier 38

7 10-cross validation results for Bagging 42

8 10-cross validation results for Decision Tree 46

9 10-cross validation results for LogitBoost 50

10 10-cross validation results for Multilayer Perceptron 54

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 1

Chapter 1

INTRODUCTION

Change in software is one of the most unpredictable elements that a maintenance team

encounters over the lifespan of the system. Changing requirements, adaptation to new

environment, corrective maintenance and a host of other reasons trigger change in software.

1.1 Background

Research over the years has been able to quantify many attributes of a software system by

using patterns and metrics. By using these measures we can easily quantify good and bad

aspects of the software and are able to predict stuff that otherwise cannot be predicted. This

includes the work done by [3], [6] and [7] in presenting metric suites, each having its own

domain of application and speciality.

Even more recently, a quality factor called change proneness has emerged and is used to

quantify the amount of change a particular software system has undergone over two

successive releases. The quantification can be done at class level and hence the exact change

a class went through over two successive releases can be computed.

The most unpredictable component about change is that it is very much tied to software

design and the theories we have usually aim at suggesting best practices rather than

specifying exactly how a design must be made. Researchers have tried to club change

proneness to various other attributes like design patterns, code smells and metrics. [26]

analysed the ability of object-oriented metrics to predict change proneness of a class, [27] has

established a relationship between change proneness and anti-patterns while [22] has

Department of Computer Engineering, Delhi Technological University

2

empirically assessed the influence of patterns on the same. The results however are still in the

experiment phase.

1.2 Motivation

Using the work already done in this area, in our last study, we used the conclusions provided

by [1] and validated the ability of code smells to predict the degree of change proneness a

class exhibits. We used an open-source task scheduler called Quartz as the subject of our

study to find the error in classifications that occur in predictions of change proneness made

using code smells. Our dataset had 79 classes and the results showed that code smells have

more than 70% accuracy in such predictions. The motivation for this study comes from two

facts,

• The size of the data set was very small to come to a concrete conclusion.

• The study we conducted did not use any machine learning techniques.

1.3 Statement of Work

In this study, we extend our previous work by examining 14 software systems written in

JAVA programming language. The dataset is sufficiently large (contains in excess of 4,000

classes) to prove weather code smells have the ability of predicting the change a class could

undergo in subsequent releases.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 3

1.4 Organisation of Thesis

This report is organised in the following manner.

• Chapter 2 summarises the work done by us and other researchers in the field of study.

• Chapter 3 provides the detailed description of the research method. It starts off by

highlighting the dependent and independent variables and then moves on to the

process used to capture the empirical data used in the study.

• Chapter 4 explains our work in detail with each and every step shown conceptually

and diagrammatically.

• Chapter 5 summarises the results.

• Chapter 6 is devoted to conclusions and future work possible in this area.

• Finally, we list down the references for this work.

Department of Computer Engineering, Delhi Technological University

4

Chapter 2

RELATED WORK

Change proneness of a class is the odds of it undergoing change in the subsequent version.

Changes in a class can occur due to multiple reasons like requirements, adaptive

maintenance, corrective maintenance, detected or undetected faults, performance

enhancement, etc.

Usually change in a class in measured manually by comparing two versions of the software

but [1] has conducted an exploratory study and linked class change proneness to certain code

smells. Code smells [5] are bad implementation choices. Mostly, the roots of a code smell lie

in the design phase but only in the implementation do they manifest themselves completely.

Good implementation choices are called design patterns [8] while bad choices are called anti-

patterns. Apart from change proneness, code smells have also been used to study software

evolvability.

The first description of anti-patterns was given by [9]. In [10], Fowler defined 22 code smells

and suggests the areas where refactoring should be applied. And [11], [12] and [13] all define

different classifications of smells and anti-patterns.

A lot of existing work has focussed on detection of smells. Moha et al. proposed DECOR
[4]

for specification and detection of smells. Many other techniques exist for this purpose,

ranging from manual approaches [14], to heuristic based [15] and [16] and many others [17],

[18], [19] and [20].

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 5

In [21] code smells have been used to identify poorly evolvable structures in software. The

term software evolvability means “the ease of further developing a software element” [1].

The results of [1] provide a good foundation to explore further in the direction because if a

developer is able to estimate the degree to which a class is change prone the designs can be

rectified. The study conducted by [1] was empirically investigated by us in our previous work

and found to be correct with a probability of 0.70 or more.

The structure of a class can be analysed by studying the metric values it produces. The

earliest and most fundamentally strong metric suite was proposed by [3] where a total of 6

metrics were proposed. This was followed by [6] where a set of metrics that predict

maintainability were proposed. In [7] the author proposed a set of design quality metrics

which can be used directly at system level. Hence, a large number of metrics has been

proposed till date and each set has its own importance.

There has been a great deal of work in change proneness estimation by using object-oriented

metrics. Moha et al. have presented a method called DECOR in [4] which specifies and

detects code smells.

While it is possible to determine the presence of some code smells without using thresholds

like, HasChildren and ClassOneMethod, it is not possible to examine a class for all smells

without using a threshold. For example, the smell ChildClass cannot be determined without

using a threshold. It needs thresholds for three metrics, namely NOM, LOC and No. of

Variables.

Department of Computer Engineering, Delhi Technological University

6

Chapter 3

RESEARCH BACKGROUND

In this chapter we will discuss what code smells are and follow it up with the description of

smells we have used in our study. Second, we will touch upon the concept of metrics and

describe the various metrics selected for this study in detail. Third, we talk about code smells

and their relationship with object oriented metrics. We also explain how to use metrics to

estimate the presence of code smells in a class. Fourth, we explain the process of data

collection and highlight the important aspects of the dataset used in this study. Finally, we

point down the dependent and independent variables.

3.1 Code Smells

The number of code smells proposed till date is significantly high but only a few of those are

actually needed to do predictions in the domain of software maintainability. We will now

look at thirteen popular code smells in this regard. Table 3.1 summarizes the code smells and

the criteria for their presence in a class.

Smell Criteria for Presence

ClassOneMethod A class with one method only

ChildClass A class which declares large number of attributes & methods

HasChildren A class which has a large number of children

LargeClass A class with large measure of LOC

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 7

LowCohesion A class which lacks cohesion

ComplexClassOnly A class which declares highly complex methods

FewMethod A class which declares few methods

ManyAttributes A class which declares a large number of attributes

OneChildClass A class having only one direct ancestor

NoInheritance A class which uses little inheritance

DataClass A class which holds data but doesn’t do a lot of processing

TwoInheritance A class with a inheritance depth of two or more

NotComplex A class which is not doing much

Table 3.1 : Code Smells and Criteria for Their Presence

3.1.1 ClassOneMethod

This smell is present in classes which declare only one method. Presence of this code smell

means that the class is not doing much. Such a class in future could be modified to contain

more methods or could be completely removed from the system if possible. In other words,

the class is not complex enough to be part of a software system and could undergo change.

3.1.2 ChildClass

This smell is an indication of poor decomposition. ChildClass smell is present in classes

which declare a very high number of attributes and contains a high number of methods. This

means that the class should have been broken down further and does much more than what a

Department of Computer Engineering, Delhi Technological University

8

single class is supposed to do in a system. Such a class might be broken down into simpler

classes in future releases.

3.1.3 HasChildren

This code smell suggests that class has a large number of children. Such a class could limit

the maintainability of the system due to large number of classes directly depending on it.

Changing such a class could mean changing its child classes. The effect of such a smell could

propagate to all its children. The developers may avoid updates to such a class but in case a

bug is identified, the amount of changes needed could be huge.

3.1.4 LargeClass

This smell is present in classes with a high count of LOC. In other words, large sized classes

exhibit this smell. It is an indication of poor decomposition and high complexity. There is

every possibility that such class be decomposed in future versions, if not these classes will

see changes more frequently than others.

3.1.5 LowCohesion

This odour suggests lack of cohesion in the class. Low cohesion among classes is an indicator

of serious design flaws. The performance of such systems tends to be on the lower side.

3.1.6 ComplexClassOnly

This smell is present in classes which declare methods which are highly complex in nature

along with a large set of attributes. This indicates poor decomposition. Classes which are

more complex than other classes tend to more buggy than classes not so complex. This is

because of the fact that such classes do more than what a class is supposed to do.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 9

3.1.7 FewMethod

This smell is present in classes which declare very few methods. Declaring few methods

means that the class is not doing as much as it should. Having a large number of methods

points to very high complexity of the class while having a small number of methods

corresponds to low complexity.

3.1.8 ManyAttributes

Just like the number of methods is a useful indicator of design time issues so is the number of

attributes a class has. A large number of attributes means that the class is holding a lot of data

and carries the ManyAttribute odour.

3.1.9 OneChildClass

This smell is present in classes which have only one direct ancestor. It is an indicator of

improper use of inheritance. Sometimes it can also indicate use of inheritance where it was

not necessary.

3.1.10 NoInheritance

NoInheritance smell is present in classes which have an inheritance depth of zero. It can be

an indicator of lack of inheritance use.

3.1.11 DataClass

DataClass smell is present in classes which declare a large number of attributes while

declaring relatively few methods. Essentially this means that the class holds a lot of data but

doesn’t do much with it.

Department of Computer Engineering, Delhi Technological University

10

3.1.12 TwoInheritance

This odour is present in classes with a maximum inheritance depth of two or more.

3.1.13 NotComplex

This smell is present in classes which do very little. Presence of this smell means that the

class is not complex enough to be part of a software system. Such a class could be removed

in the subsequent versions or could undergo change to increase its use in the system.

3.2 Metrics Selected for Study

The class-level metrics are used to indicate the internal properties of a class (LOC, NOM,

etc) and the association between classes (CBO, NOC, etc).

In our last study we used only C & K metrics [3] given their simplicity and the amount of

information these 6 metrics can alone provide. This time however we use the metrics

provided by Understand. Understand is a static analysis tool for maintaining, measuring, &

analyzing critical or large code bases [29]. By using Understand we can calculate up to 22

complexity metrics [30], 42 count metrics [31] and 29 object-oriented metrics [32].

Out of these 93 metrics only 7 are required to examine a software system for the smells listed

above. Table 3.2 summarizes the metrics selected for this study and is followed by a brief

description of each metric.

Metric Estimation Made

CountDeclMethod Number of Local Methods Declared in Class

CountLineCode Lines of Code in the Class

CountDeclInstanceVariable Number of Instance Variables Declared

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 11

CountClassDerived Number of Direct Successors of a Class

MaxInheritanceTree Maximum Inheritance Depth, aka DIT

AvgCyclomatic Average Cyclomatic Complexity of Class

PercentLackOfCohesion Lack of Cohesion, aka LCOM

Table 3.2 : Object Oriented Metrics Selected for Study

3.2.1 CountDeclMethod

This metric estimates the total number of local methods in a class. The metric is essentially

identical to NOM (number of methods) metric proposed by [6]. The NOM value of a class

indicates its operational property.

3.2.2 CountLineCode

Number of lines containing source code, including inactive regions. It is essentially same as

counting the LOC in a class.

3.2.3 CountDeclInstanceVariable

It is the count of the total number of variables/attributes declared by a class.

3.2.4 CountClassDerived

CountClassDerived corresponds to the number of immediate subclasses for a particular class.

The metric CountClassDerived is the same as NOC proposed by C & K [3]. A high value for

CountClassDerived implies a high level of reuse for the class as inheritance is also reuse.

3.2.5 MaxInheritanceTree

MaxInheritanceTree corresponds to the maximum depth of inheritance tree for the class. It is

essentially the same as DIT proposed by C & K [3]. A high value of MaxInheritanceTree

Department of Computer Engineering, Delhi Technological University

12

signifies a very complex inheritance structure while a small value points to poor use of

inheritance.

3.2.6 AvgCyclomatic

AvgCyclomatic give us an estimate of the total class complexity. It is the average Cyclomatic

complexity of all nested methods for a class [30].

3.2.7 PercentLackOfCohesion

PercentLackOfCohesion is the same as LCOM. It estimates the degree of cohesion for a

class. PrecentLackOfCohesion is 100% minus the average cohesion for package entities [32].

If LCOM is low, the class is not very cohesive and vice versa.

3.3 Code Smells & Their Relation to Metrics

Essentially, code smells are just presence of certain metric values over or below a particular

threshold. For example, HasChildren code smell for a class can be estimated by taking into

account the value of NOC metric for that class. If NOC > 0 for the class under test, it carries

the HasChildren smell.

Once a suitable threshold is selected we can simply check the class for metric values. Every

smell has one or more metrics associated to its presence. Table 3.3 shows the odours along

with the metrics associated to it. All that is to be done is to check the corresponding metric(s)

beyond the specified threshold. If it is present, the odour exists, otherwise not.

Smell Metrics Used to Investigate Their Presence

ClassOneMethod CountDeclMethod

ChildClass CountDeclMethod, CountLineCode, CountDeclInstanceVariable

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 13

HasChildren CountClassDerived

LargeClass CountLineCode

LowCohesion PercentLackOfCohesion

ComplexClassOnly AvgCyclomatic

FewMethod CountDeclMethod

ManyAttributes CountDeclInstanceVariable

OneChildClass CountClassDerived

NoInheritance MaxInheritanceTree

DataClass CountDeclMethod, CountDeclInstanceVariable

TwoInheritance MaxInheritanceTree

NotComplex AvgCyclomatic

Table 3.3: Code Smells and Related Metrics

3.4 Empirical Data Collection

We investigate the results obtained over a set of 14 software systems.

3.4.1 AOI

Art of Illusion is a free, open source 3D modelling and rendering studio. Many of its

capabilities rival hose found in commercial programs. Highlights include subdivision surface

based modelling tools, skeleton based animation, and a graphical language for designing

procedural textures and materials. (artofillusion.com)

We considered versions 2.0 and 2.9 for this study which consisted of 249 common classes.

202 out of these exhibited change while 47 did not.

Department of Computer Engineering, Delhi Technological University

14

3.4.2 CheckStyle

CheckStyle is a development tool to help programmers write Java code that adheres to a

coding standard. It automates the process of checking Java code to spare humans of this

boring (but important) task. This makes it ideal for projects that want to enforce a coding

standard. (checkstyle.sourceforge.net)

We considered versions 5.2 and 5.5 for this study which consisted of 693 common classes.

145 out of these exhibited change while 548 did not.

3.4.3 FreePlane

FreePlane is free and open source software to support thinking, sharing information and

getting things done at work, in school and at home. The core of the software consists of

functions for mind mapping, also called concept mapping or information mapping, and tools

for using mapped information. FreePlane runs on any operating system on which a current

version of Java is installed and from USB. (freeplane.sourceforge.net)

We considered versions 1.1.1 and 1.1.3 for this study which consisted of 572 common

classes. 29 out of these exhibited change while 543 did not.

3.4.4 jKiwi

The aim of the jKiwi project is to bring to the open source community a software that simply

does not exist for free; that is an application capable of doing virtual makeup (concealer

paint, eye shadows, blush, contact lenses for eye colours, change lip colours, etc.) and virtual

hair styler (try different hair cuts in different colours), by using a given user's photo.

(jkiwi.com)

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 15

We considered versions 0.91 and 0.95 for this study which consisted of 45 common classes.

23 out of these exhibited change while 22 did not.

3.4.5 Joda

Joda-Time provides a quality replacement for the Java date and time classes. The design

allows for multiple calendar systems, while still providing a simple API. The 'default'

calendar is the ISO8601 standard which is used by XML. The Gregorian, Julian, Buddhist,

Coptic, Ethiopic and Islamic systems are also included, and we welcome further additions.

Supporting classes include time zone, duration, and parsing. (joda-time.sourceforge.net)

We considered versions 1.0 and 2.1 for this study which consisted of 135 common classes.

103 out of these exhibited change while 32 did not.

3.4.6 jStock

JStock makes it easy to track your stock investment. It provides well organized stock market

information, to help you decide your best investment strategy. (jstock.sourceforge.net)

We considered versions 1.0.5 and 1.0.6 for this study which consisted of 207 common

classes. 108 out of these exhibited change while 99 did not.

3.4.7 jText

Schoolprogramm for learning ten-finger-typing. The program is made for a class test. It sends

the text, written by the pupil, to the teacher, and checks the text for mistakes.

(sourceforge.net/projects/jtext)

We considered versions 5.0 and 5.1 for this study which consisted of 314 common classes.

181 out of these exhibited change while 133 did not.

Department of Computer Engineering, Delhi Technological University

16

3.4.8 LWJGL

The Lightweight Java Game Library (LWJGL) is a solution aimed directly at professional

and amateur Java programmers alike to enable commercial quality games to be written in

Java. LWJGL provides developers access to high performance cross platform libraries such

as OpenGL (Open Graphics Library), OpenCL (Open Computing Language) and OpenAL

(Open Audio Library) allowing for state of the art 3D games and 3D sound. Additionally

LWJGL provides access to controllers such as Gamepads, Steering wheel and Joysticks. All

in a simple and straight forward API. (lwjgl.org)

We considered versions 1.0 and 2.8 for this study which consisted of 31 common classes. 26

out of these exhibited change while 5 did not.

3.4.9 ModBus

A high-performance and ease-of-use implementation of the ModBus protocol written in Java

by Serotonin Software. Supports ASCII, RTU, TCP, and UDP transports as slave or master,

automatic request partitioning and response data type parsing.

(sourceforge.net/projects/modbus4j)

We considered versions 1.01 and 1.02 for this study which consisted of 86 common classes.

69 out of these exhibited change while 17 did not.

3.4.10 openGTS

OpenGTS™ ("Open GPS Tracking System") is the first available open source project

designed specifically to provide web-based GPS tracking services for a "fleet" of vehicles. To

date, OpenGTS™ has been downloaded and put to use in over 100 countries around the

world to track many 1000's of vehicles/assets around all 7 Continents. The types of vehicles

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 17

and assets tracked include taxis, delivery vans, trucks/trailers, farm equipment, personal

vehicles, service vehicles, containers, ships, ATVs, personal tracking, cell phones, and more.

(opengts.sourceforge.net)

We considered versions 2.1.6 and 2.4.0 for this study which consisted of 161 common

classes. 131 out of these exhibited change while 30 did not.

3.4.11 openRocket

OpenRocket is a free, fully featured model rocket simulator that allows you to design and

simulate your rockets before actually building and flying them. The main features include

six-degree-of-freedom flight simulation, automatic design optimization, real-time simulated

altitude, velocity and acceleration display, staging and clustering support, cross-platform.

(openrocket.sourceforge.net)

We considered versions 1.1.6 and 12.03 for this study which consisted of 83 common classes.

34 out of these exhibited change while 49 did not.

3.4.12 Quartz

Quartz is a full-featured, open source job scheduling service that can be integrated with, or

used alongside virtually any Java EE or Java SE application - from the smallest stand-alone

application to the largest e-commerce system. Quartz can be used to create simple or complex

schedules for executing tens, hundreds, or even tens-of-thousands of jobs; jobs whose tasks

are defined as standard Java components that may execute virtually anything you may

program them to do. The Quartz Scheduler includes many enterprise-class features, such as

JTA transactions and clustering. (quartz-scheduler.org)

Department of Computer Engineering, Delhi Technological University

18

We considered versions 1.5.2 and 1.6.6 for this study which consisted of 93 common classes.

83 out of these exhibited change while 10 did not.

3.4.13 Spring

The dominant application framework for Java, Spring solves core enterprise development and

runtime problems, offering configuration via Dependency Injection; declarative services via

AOP; and packaged enterprise services. (sourceforge.net/projects/springframework)

We considered versions 1.2 and 1.2.9 for this study which consisted of 1333 common classes.

588 out of these exhibited change while 745 did not.

3.4.14 SubSonic

Subsonic is a free, web-based media streamer, providing ubiquitous access to your music.

Use it to share your music with friends, or to listen to your own music while at work. You

can stream to multiple players simultaneously, for instance to one player in your kitchen and

another in your living room. Subsonic is designed to handle very large music collections

(hundreds of gigabytes). Although optimized for MP3 streaming, it works for any audio or

video format that can stream over HTTP, for instance AAC and OGG. By using transcoder

plug-ins, Subsonic supports on-the-fly conversion and streaming of virtually any audio

format, including WMA, FLAC, APE, Musepack, WavPack and Shorten. (subsonic.org)

We considered versions 2.8 and 4.6 for this study which consisted of 121 common classes. 95

out of these exhibited change while 26 did not.

The data collection for this study is twofold.

Firstly, we downloaded two stable releases of each system listed above. Each set of source

files is then pre-processed. Pre-processing included removing all Java files in either version

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 19

that are not present in the other version. In totality, all 14 systems combined had

approximately 10000 classes in two versions of each system out of which a little more than

8200 were left after pre-processing. This essentially means that we are left with around 4100

unique classes spanning over 14 software systems.

The next step in this process is to calculate the exact change a class has gone through in the

two stated versions. For this purpose, we use an open-source tool named CLOC. CLOC

examines two versions of the same file and gives as output the following data,

1. The number of lines unchanged.

2. The number of lines added to the prior version.

3. The number of lines deleted from the prior version.

4. The number of lines modified over the two versions.

These outputs are then used to calculate the amount of change as follows,

Total Change = No. of lines added + No. of lines deleted + 2*No. of lines modified

The number of lines modified is multiplied by 2 because modification is the same as deleting

one line and adding one line. Figure 3.1 shows the distribution of change in our dataset.

Figure 3.1: Distribution of change-prone and not change-prone classes

Classes with change

Classes with no change

Department of Computer Engineering, Delhi Technological University

20

Table 3.1 summarizes the dataset we will use for this study,

S.No Name Ver. 1 Ver. 2 P/L

Used

Total

LOC

Total

Classes

Classes

Exhibiting

Change

Classes

Without

Change

1 AOI 2.0 2.9 Java 58260 249 202 47

2 CheckStyle 5.2 5.5 Java 50461 693 145 548

3 FreePlane 1.1.1 1.1.3 Java 58286 572 29 543

4 jKiwi 0.91 0.95 Java 8851 45 23 22

5 Joda 1.0 2.1 Java 34705 135 103 32

6 jStock 1.0.5 1.0.6 Java 35205 207 108 99

7 jText 5.0 5.1 Java 67875 314 181 133

8 LWJGL 1.0 2.8 Java 2813 31 26 5

9 ModBus 1.01 1.02 Java 4212 86 69 17

10 openGTS 2.1.6 2.4.0 Java 60593 161 131 30

11 openRocket 1.1.6 12.03 Java 9279 83 34 49

12 Quartz 1.5.2 1.6.6 Java 19123 93 83 10

13 Spring 1.2 1.2.9 Java 111665 1333 588 745

14 SubSonic 2.8 4.6 Java 9162 121 95 26

Table 3.1: Summary of the Dataset used

Once we have calculated the exact change for each class we need to examine them for odours

of code smells discussed in the previous chapter. To do this we examine the classes for the

values of metrics. We use a commercial tool called Understand [29] for this purpose.

Understand allows us to estimate the metric values for each system and export the results as a

comma-separated-value list.

We then apply the thresholds selected for metrics and mark the truth value of each smell in

each class. The thresholds for all metrics along with the corresponding smell are given in

Appendix B.

3.5 Dependent & Independent Variables

The dependent variable in this study is change proneness. Our objective is to empirically

investigate the relationship between change proneness of a class and the code smells it

carries. The dataset contains 14 attributes per tuple, 13 of these are independent variables,

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 21

i.e. code smells while the 14
th

 attribute is dependent, i.e. change. The code smells which act

as independent variables have been discussed in section 3.1.

Department of Computer Engineering, Delhi Technological University

22

Chapter 4

RESEARCH METHODOLOGY

4.1 Methodology

Figure 4.1 provides an outline of the methodology used in this study.

Figure 4.1: Outline of Research Methodology

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 23

The entire process can be divided into three parts,

1. Data acquisition and processing.

2. Change and smell estimation.

3. Analysis using Machine Learning Methods.

4.1.1 Data acquisition and processing

In this step the empirical data is collected and processed. All the unnecessary files (files not

present in both versions of system, interface files) during this step.

4.1.2 Change and smell estimation

In this step the actual change a class undergoes in two versions is calculated. The details of

this calculation are already stated in chapter 3. Following this, we obtain the metric values for

each class in each system. These metrics are then used to analyse each class for code smells.

4.1.3 Analysis using Machine Learning Methods

The data obtained after step 2 is then used with six machine learning algorithms (described in

section 4.3) to assess the power of code smells in predicting change proneness.

4.2 Class Selector – A Tool to Pre-Process Source Files for Analysis of Change

The first step to estimate change is the selection of common classes in two versions of a

software system. Doing so manually is a tiresome process. While conducting this study we

found that it is important that we have a tool that automatically discards classes which are not

of interest so that the process can be quickened and the chances of error be minimized.

Figure 4.2 shows the home screen of the tool.

Department of Computer Engineering, Delhi Technological University

24

Figure 4.2: Snapshot of Tool

4.2.1 Module 1 – FilesLoader

The FilesLoader module interacts with the directories holding source files for the two

versions of the software system under examination. It gives as output two arrays holding the

file names of all .java files in the source directories specified.

4.2.2 Module 2 – DataProcessor

The DataProcessor module takes as input the arrays supplied by the FilesLoader module and

removes from each iteratively checks each file in each array for presence in the other array. If

the file is present in the other array it is left as it is, otherwise it is deleted using native system

calls.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 25

Since the system calls used in this tool are native to the Windows OS, it should not be used

on UNIX or Linux even when Java provides portability.

4.3 Machine Learning Algorithms for Analysis

4.3.1 Naive Bayes Classifier

Naïve Bayes classifier is a simple probabilistic classifier which is based on the Bayesian

theorem which represents a supervised learning method. It naively assumes

independence, it is only valid to multiply probabilities when the events are independent

[38]. Given a class variable, a Naive Bayes classifier assumes that the presence of a

particular feature of a class is not related to the presence of any other feature. Given the

set of variables � = {��, ��, ��, …	��}, a probabilistic classifier can be defined as

(�|��, ��, ��, …	��)

Where, � is a dependent class variable with a set of possible outcomes conditional on

several variables.

Using Bayes Theorem,

p(C)|p(��, ��, ��, …	��) = p(C)	p(��, ��, ��, …	��	|�)
p(��, ��, ��, …	��)

Thus, we want to construct the posterior probability of the event C. Thus, the equation

can be written as: ��������� = �����∗ �!" �#��$
%&�$"�'"

Naïve Bayes algorithm is quite accurate and very fast and therefore, is a popular

technique for classification. It is said that Naïve Bayes outperforms more sophisticated

classifiers on many datasets, achieving impressive results [37].

Department of Computer Engineering, Delhi Technological University

26

4.3.2 Multilayer Perceptron

A Multilayer Perceptron is a feed forward artificial neural network model that maps different

input data instances onto a set of appropriate output. An MLP consists of multiple layers of

nodes in a directed graph, with each layer fully connected to the next one. Each node in all

the layers is a neuron associated with a nonlinear activation function except for the input

nodes. MLP utilizes a supervised learning technique called back-propagation for training the

network. MLP is a modification of the standard linear perceptron, which can distinguish data

that is not linearly separable.

Fig. 4.3 shows the architecture of Multilayer Perceptron which contains one input layer, two

hidden layers and one output layer.

Figure 4.3: Architecture of Multilayer Perceptron with 2 hidden layers

4.3.2.1 The Algorithm

The training of MLP proceeds in 2 phases:

• In the forward phase, the synaptic weights are fixed and the values in the input pattern

are propagated through the network layer by layer until it reaches the output.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 27

• In the backward phase, an error is generated by comparing the observed output of the

network with the target response. The resulting error is propagated through the

network, layer by layer in the backward direction. In this phase successive

adjustments are applied to the synaptic weights.

4.3.2.2 Weight Training Calculation in Backward phase

Let the input pattern be E. Let the target and observed response for node ‘ i’ be ti(E) and

oi(E) respectively. Let wij to specify weight between node i and node j

1. The Error Term for output unit k is calculated first as:

()* 	= 	 �!(+)(1 − �!(+))(�!(+) − �!(+))

2. The Error Term for hidden unit k is:	

(.* 	= 	 ℎ!(+)(1 − ℎ!(+))	 0 1!�()2
�3	�456457

3. For each weight wij between input node i and hidden node j, calculate

∆�9= :(.;��

where, xi is the input to the network to the input node i for input pattern E and η is

learning rate.

4. For each weight wij between hidden node i and output node j, calculate:

∆�9= :(�;ℎ�(+)

where, hi(E) is the output from hidden node i for E.

5. Finally, add on each ∆ij on to wij

wij = wij + ∆ij

Department of Computer Engineering, Delhi Technological University

28

6. In this way, the error is propagated back through the MLP.

4.3.3 LogitBoost

Like AdaBoost, LogitBoost is also a boosting scheme which was proposed by Jerome

Friedman, Trevor Hastie and Robert Tibshirani. Boosting is a process of applying a

classification algorithm to the training instances, reweighting them again and again, and then

taking a majority vote of the number of classifiers thus produced. LogitBoost algorithm takes

AdaBoost algorithm as a additive model and applies the cost functional of logistic regression

[36]. LogitBoost is suitable for problems involving two class situations.

4.3.4 Bagging

Bagging is an acronym for Bootstrap Aggregating. It was proposed by Leo Breiman [35] in

1994 to improve the classification by combining classifications of randomly generated

training sets. It is a machine learning ensemble method to improve machine learning and

statistical classification of regression models in terms of stability and classification accuracy.

Bagging is a meta-algorithm which is based on averaging the results of various bootstrap

samples. It is usually applied to decision tree models, but it can be used with any type of

model.

Bagging = Bootstrapping + Aggregation

A learning set of L consists of data {(yn, xn), n = 1, 2, . . , N} where the y’s are either class

labels or a numerical response. Bagging is a procedure for using this learning set to form a

predictor ϕ (x, L) — if the input is x we predict y by ϕ (x, L).

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 29

4.3.4.1 Aggregation

Suppose we are given a sequence of learning sets {Lk} each consisting of N independent

observations from the same underlying distribution as L. Our mission is to use the {Lk} to get

a better predictor than the single learning set predictor ϕ (x, L). The restriction is that all we

are allowed to work with is the sequence of predictors {ϕ (x, L)}. If y is numerical, ϕ (x, L) is

replaced by average of ϕ (x, Lk) over k.

ϕA(x) = EL ϕ (x, L)

where EL denotes the expectation over L, and the subscript A in ϕA denotes aggregation.

4.3.5 Random Forest

Random forest is an ensemble classifier that is made up of many decision trees and outputs

the class that is the mode of the class's output by individual trees [33]. The algorithm for

inducing a random forest was developed by Leo Breiman

and Adele Cutler in 1999. The term

“Random Forest” came from “randomized decision forests” that was first proposed by Tin

Kam Ho of Bell Labs in 1995. The method combines idea of bagging and the random

selection of features, introduced independently by Ho and Amit and Geman in order to

construct a collection of decision trees with controlled variation. Breiman [34] defines

random forest as follows:

 “A random forest is a classifier consisting of a collection of tree-structured classifiers

{h(x,Θk), k = 1, . . .} where the Θk are independent identically distributed random vectors and

each tree casts a unit vote for the most popular class at input x.”

Department of Computer Engineering, Delhi Technological University

30

Figure 4.4: A Forest of Trees

4.3.5.1 The Algorithm

The Random Forest algorithm for both classification and regression can be described as

follows:

1. Choose T—number of trees to grow.

2. Choose m—number of variables used to split each node. m ≪ M, where M is the

number of input variables. m is hold constant while growing the forest.

3. Grow T trees. When growing each tree do the following:

a. Construct a bootstrap sample of size n sampled from Sn with replacement and

grow a tree from this bootstrap sample.

b. At each node, rather than choosing the best split among all predictor variables,

select m variables at random and use them to find the best split.

4. Grow the tree to a maximal extent. There is no pruning.

(Bagging: special case of random forests obtained when m, number of randomly

sampled variables = M, total number of variables)

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 31

5. Predict the new data by aggregating the predictions of the T trees (i.e., majority votes

for classification, average for regression).

In standard decision trees, each node is split on the basis of the best split among all variables.

In a random forest, each node is split using the best among a subset of predictors randomly

chosen at that node. This counterintuitive strategy turns out to perform very well when

compared to many other classifiers, including discriminant analysis, support vector machines

and neural networks, and is robust against over fitting.

4.3.6 Decision Tree

Decision tree learning uses a decision tree as a predictive model whose goal is to create a

model that predicts the value of a target variable based on several input variables or

attributes.

Figure 4.5: A Decision Tree

Department of Computer Engineering, Delhi Technological University

32

A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the

output. In these tree structures, leaves represent class labels and branches

represent conjunctions of attributes that lead to that class labels. ID3 is one of the decision

tree algorithms that we have used for our data analysis.

4.3.6.1 The Algorithm

The ID3 algorithm can be summarized as follows:

1. Take all unused attributes and count their entropy concerning test samples

2. Choose attribute for which entropy is minimum (or, equivalently, information gain is

maximum)

3. Make node containing that attribute

The algorithm is as follows:

1. Create a root node for the tree

2. If all examples are positive, Return the single-node tree Root, with label = +.

3. If all examples are negative, Return the single-node tree Root, with label = -.

4. If number of predicting attributes is empty, then Return the single node tree Root, with

label = most common value of the target attribute in the examples.

5. Otherwise Begin

a. A = The Attribute that best classifies examples.

b. Decision Tree attribute for Root = A.

c. For each possible value, , of A,

i. Add a new tree branch below Root, corresponding to the test A = .

ii. Let Examples() be the subset of examples that have the value for A

iii. If Examples() is empty

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 33

1. Then below this new branch add a leaf node with label = most

common target value in the examples

iv. Else below this new branch add the subtree ID3 (Examples(),

Target_Attribute, Attributes – {A})

6. End

7. Return Root

Department of Computer Engineering, Delhi Technological University

34

Chapter 5

RESULTS

In this chapter, we analyze the effectiveness of code smells in predicting weather a class will

undergo change in the subsequent versions or not. The analysis is done on results of a dataset

containing 4120 classes from 14 software systems; we have employed 6 machine learning

algorithms explained in the previous chapter to predict the model best suited for evaluation

the change in software. The measures are used to evaluate the performance of each predicted

model are given below:

1. Sensitivity and Specificity: The sensitivity and specificity predict the correctness of the

model. The percentage of classes correctly predicted to undergo change is called the

sensitivity (True Positive Rate i.e. TPR) of the model. The percentage of classes correctly

predicted not to change is called specificity (False Positive Rate i.e. FPR) of the model.

Ideally, both the sensitivity and specificity should be high.

2. Receiver Operating Characteristic (ROC) analysis: The performance of the outputs of

the predicted models are evaluated using ROC analysis. It is an efficient method for

evaluation of the performance of models.

The ROC curve is defined as a plot of sensitivity (on the y-coordinate) versus its 1-

specificity (on the x coordinate). It is also known as a Relative Operating Characteristic

curve, because it is a comparison of two operating characteristics (TPR & FPR). The

construction of ROC curves enables us to select cutoff points between 0 and 1, and to

determine sensitivity and specificity at each cut off point. The optimal cutoff point is the

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 35

one that maximizes both sensitivity and specificity. This point can be selected from the

ROC curve.

The accuracy of the model can be determined by applying it to the different data sets. We

therefore, performed a 10-cross validation of the models [33]. In 10-cross validation, each

dataset is divided into 10 equal subsets. One of the subsets is used as the test set and the other

9 subsets are used to form a training set.

5.1 Random Forest Analysis

For each of the software systems, a random forest of 10 trees is constructed and each

constructed while considering 4 random independent variables at each node. Table 5.1 shows

the 10-cross validation results of all the 14 software systems.

Sensitivity Specificity Cutoff Point AUC

AOI 0.809 0.851 0.301500 0.893

CheckStyle 0.531 0.889 0.187000 0.769

FreePlane 0.724 0.670 0.034000 0.740

jKiwi 0.739 0.682 0.346000 0.786

Joda 0.719 0.738 0.162000 0.691

jStock 0.889 0.667 0.350000 0.777

jText 0.915 0.602 0.379500 0.786

LWJGL 1.000 0.885 0.226500 0.915

ModBus 0.647 0.797 0.251000 0.756

openGTS 0.700 0.908 0.425000 0.790

openRocket 0.824 0.837 0.622000 0.866

Quartz 0.800 0.795 0.143000 0.747

Spring 0.701 0.636 0.560500 0.732

SubSonic 0.731 0.958 0.649000 0.848

Table 5.1: 10-Cross validation results for Random Forest

Department of Computer Engineering, Delhi Technological University

36

Fig 5.1: ROC Curve for AOI

Fig 5.2: ROC Curve for CheckStyle

Fig 5.3: ROC Curve for FreePlane

Fig 5.4: ROC Curve for jKiwi

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 37

Fig 5.5: ROC Curve for Joda

Fig 5.6: ROC Curve for jStock

Fig 5.7: ROC Curve for jText

Fig 5.8: ROC Curve for Quartz

Department of Computer Engineering, Delhi Technological University

38

Fig 5.9: ROC Curve for LWJGL

Fig 5.10: ROC Curve for ModBus

Fig 5.11: ROC Curve for openGTS

Fig 5.12: ROC Curve for openRocket

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 39

Fig 5.13: ROC Curve for Spring

Fig 5.14: ROC Curve for SubSonic

5.2 Naïve Bayes Analysis

Table 5.2 shows the 10-cross validation results of Naïve Bayes classifier for all the 14

software systems.

 Sensitivity Specificity Cutoff Point AUC

AOI 0.830 0.856 0.345000 0.902

CheckStyle 0.538 0.863 0.185000 0.757

FreePlane 0.759 0.746 0.043000 0.784

jKiwi 0.826 0.727 0.259000 0.834

Joda 0.813 0.641 0.156000 0.738

jStock 0.889 0.667 0.338500 0.758

jText 0.931 0.564 0.531500 0.703

LWJGL 1.000 0.885 0.292500 0.912

ModBus 0.765 0.754 0.158000 0.690

openGTS 0.767 0.931 0.403500 0.836

openRocket 0.824 0.816 0.521500 0.874

Quartz 0.900 0.687 0.735000 0.796

Spring 0.650 0.639 0.552500 0.715

SubSonic 0.731 0.937 0.586000 0.862

Table 5.2: 10-cross validation results for Naïve Bayes Classifier

Department of Computer Engineering, Delhi Technological University

40

Fig 5.15: ROC Curve for AOI

Fig 5.16: ROC Curve for CheckStyle

Fig 5.17: ROC Curve for FreePlane

Fig 5.18: ROC Curve for jKiwi

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 41

Fig 5.19: ROC Curve for Joda

Fig 5.20: ROC Curve for jStock

Fig 5.21: ROC Curve for jText

Fig 5.22: ROC Curve for Quartz

Department of Computer Engineering, Delhi Technological University

42

Fig 5.23: ROC Curve for LWJGL

Fig 5.24: ROC Curve for ModBus

Fig 5.25: ROC Curve for openGTS

Fig 5.26: ROC Curve for openRocket

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 43

Fig 5.27: ROC Curve for Spring

Fig 5.28: ROC Curve for SubSonic

5.3 Bagging Analysis

Table 5.3 shows the 10-cross validation result of bagging for all the 14 software systems.

 Sensitivity Specificity Cutoff Point AUC

AOI 0.830 0.837 0.287500 0.903

CheckStyle 0.510 0.949 0.221500 0.750

FreePlane 0.517 0.836 0.048500 0.689

jKiwi 0.826 0.818 0.378000 0.821

Joda 0.688 0.689 0.201500 0.711

jStock 0.907 0.687 0.329500 0.766

jText 0.931 0.591 0.514000 0.759

LWJGL 1.000 0.985 0.145000 0.908

ModBus 0.647 0.783 0.150000 0.655

openGTS 0.767 0.931 0.346500 0.799

openRocket 0.882 0.857 0.504500 0.833

Quartz 0.400 0.783 0.112000 0.543

Spring 0.723 0.628 0.520500 0.732

SubSonic 0.731 0.937 0.383000 0.791

Table 5.3: 10-cross validation results for Bagging

Department of Computer Engineering, Delhi Technological University

44

Fig 5.29: ROC Curve for AOI

Fig 5.30: ROC Curve for CheckStyle

Fig 5.31: ROC Curve for FreePlane

Fig 5.32: ROC Curve for jKiwi

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 45

Fig 5.33: ROC Curve for Joda

Fig 5.34: ROC Curve for jStock

Fig 5.35: ROC Curve for jText

Fig 5.36: ROC Curve for Quartz

Department of Computer Engineering, Delhi Technological University

46

Fig 5.37: ROC Curve for LWJGL

Fig 5.38: ROC Curve for ModBus

Fig 5.39: ROC Curve for openGTS

Fig 5.40: ROC Curve for openRocket

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 47

Fig 5.41: ROC Curve for Spring

Fig 5.42: ROC Curve for SubSonic

5.4 Decision Tree Analysis

In the Decision Tree method, an independent variable is selected at each node of the tree. The

tree is traversed during classification from the root until a leaf node is reached. Each leaf

node is associated with a decision or classification. ID3 algorithm is used to create the

decision tree. Table 5.4 shows the 10-cross validation results of all the 14 systems.

 Sensitivity Specificity Cutoff Point AUC

AOI 0.809 0.856 0.296000 0.889

CheckStyle 0.510 0.878 0.185000 0.752

FreePlane 0.586 0.820 0.091500 0.741

jKiwi 0.654 0.864 0.583500 0.802

Joda 0.699 0.687 0.882000 0.650

jStock 0.889 0.697 0.370500 0.752

jText 0.923 0.619 0.387500 0.790

LWJGL 1.000 0.885 0.250000 0.904

ModBus 0.647 0.739 0.225000 0.743

openGTS 0.700 0.924 0.550000 0.766

openRocket 0.853 0.857 0.568000 0.858

Quartz 0.600 0.819 0.198500 0.658

Department of Computer Engineering, Delhi Technological University

48

Spring 0.622 0.725 0.438000 0.731

SubSonic 0.731 0.937 0.471000 0.840

Table 5.4: 10-cross validation results for Decision Tree

Fig 5.43: ROC Curve for AOI

Fig 5.44: ROC Curve for CheckStyle

Fig 5.45: ROC Curve for FreePlane

Fig 5.46: ROC Curve for jKiwi

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 49

Fig 5.47: ROC Curve for Joda

Fig 5.48: ROC Curve for jStock

Fig 5.49: ROC Curve for jText

Fig 5.50: ROC Curve for Quartz

Department of Computer Engineering, Delhi Technological University

50

Fig 5.51: ROC Curve for LWJGL

Fig 5.52: ROC Curve for ModBus

Fig 5.53: ROC Curve for openGTS

Fig 5.54: ROC Curve for openRocket

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 51

Fig 5.55: ROC Curve for Spring

Fig 5.56: ROC Curve for SubSonic

5.5 LogitBoost Analysis

Table 5.5 shows the 10-cross validation results of all the 14 systems.

 Sensitivity Specificity Cutoff Point AUC

AOI 0.809 0.847 0.318000 0.907

CheckStyle 0.531 0.876 0.175500 0.756

FreePlane 0.724 0.790 0.085500 0.759

jKiwi 0.783 0.682 0.232500 0.848

Joda 0.813 0.660 0.123000 0.752

jStock 0.907 0.677 0.442500 0.749

jText 0.923 0.409 0.473000 0.756

LWJGL 1.000 0.885 0.254500 0.900

ModBus 0.647 0.174 0.249000 0.646

openGTS 0.767 0.901 0.209500 0.833

openRocket 0.794 0.878 0.676500 0.878

Quartz 0.900 0.819 0.135000 0.797

Spring 0.619 0.704 0.604500 0.722

SubSonic 0.731 0.937 0.229500 0.866

Table 5.5: 10-cross validation results for LogitBoost

Department of Computer Engineering, Delhi Technological University

52

Fig 5.57: ROC Curve for AOI

Fig 5.58: ROC Curve for CheckStyle

Fig 5.59: ROC Curve for FreePlane

Fig 5.60: ROC Curve for jKiwi

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 53

Fig 5.61: ROC Curve for Joda

Fig 5.62: ROC Curve for jStock

Fig 5.63: ROC Curve for jText

Fig 5.64: ROC Curve for Quartz

Department of Computer Engineering, Delhi Technological University

54

Fig 5.65: ROC Curve for LWJGL

Fig 5.66: ROC Curve for ModBus

Fig 5.67: ROC Curve for openGTS

Fig 5.68: ROC Curve for openRocket

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 55

Fig 5.69: ROC Curve for Spring

Fig 5.70: ROC Curve for SubSonic

5.6 Multilayer Perceptron Analysis

The result of 10-cross validation over multilayer perceptron technique over the data is shown

below. We have used only 1 hidden layer. There is only 1 output node in output layer whose

value greater than a threshold (cutoff point) shows weather the class undergoes change or not.

 Sensitivity Specificity Cutoff Point AUC

AOI 0.830 0.748 0.213000 0.888

CheckStyle 0.531 0.870 0.189500 0.767

FreePlane 0.724 0.807 0.051000 0.790

jKiwi 0.609 0.955 0.738500 0.790

Joda 0.750 0.689 0.103500 0.725

jStock 0.889 0.677 0.424000 0.757

jText 0.900 0.624 0.439000 0.778

LWJGL 1.000 0.885 0.277500 0.896

ModBus 0.588 0.884 0.308000 0.749

openGTS 0.700 0.916 0.507000 0.827

openRocket 0.853 0.857 0.548000 0.847

Quartz 0.800 0.819 0.169000 0.797

Spring 0.650 0.651 0.552000 0.728

SubSonic 0.731 0.947 0.516000 0.852

Table 5.6: 10-cross validation results for Multilayer Perceptron

Department of Computer Engineering, Delhi Technological University

56

Fig 5.71: ROC Curve for AOI

Fig 5.72: ROC Curve for CheckStyle

Fig 5.73: ROC Curve for FreePlane

Fig 5.74: ROC Curve for jKiwi

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 57

Fig 5.75: ROC Curve for Joda

Fig 5.76: ROC Curve for jStock

Fig 5.77: ROC Curve for jText

Fig 5.78: ROC Curve for Quartz

Department of Computer Engineering, Delhi Technological University

58

Fig 5.79: ROC Curve for LWJGL

Fig 5.80: ROC Curve for ModBus

Fig 5.81: ROC Curve for openGTS

Fig 5.82: ROC Curve for openRocket

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 59

Fig 5.83: ROC Curve for Spring

Fig 5.84: ROC Curve for SubSonic

5.7 Model Evaluation

We have not selected any arbitrary cutoff point and to obtain a balance between the number

of classes predicted as change prone and not, the cutoff point of the predicton model is

determined by ROC analysis. Area under the ROC Curve (AUC) is a combined measure of

sensitivity and specificity. Hence, we have used the AUC metric for computing the accuracy

of the predicted models. The models are applied on the same dataset from which they are

derived using 10-cross validation of all the models.

The AUC of all the models predicted using Multilayer Perceptron technique is greater than

the AUC of all the other models predicted using the other machine learning techniques

(Naïve Bayes, Random Forest, Bagging, LogitBoost, Decision Table). The details of AUC

can be checked from Table and the authenticity of the same can be verified.

Department of Computer Engineering, Delhi Technological University

60

Both the sensitivity and specificity should be high to predict good and bad websites. The

models predicted with the Naïve Bayes, Random Forest and Multilayer Perceptron techniques

have higher accuracy in terms of sensitivity and specificity.

Overall, in terms of sensitivity, specificity and AUC, the best model suitable for predicting

weather a class in change prone or not is determined to be Multilayer Perceptron.

5.8 Discussion

For a technique to be effective in making predictions a probability of correct classification

should be at least 70%. We use two different measures to evaluate the correctness of a model,

i.e., sensitivity and specificity. Sensitivity is the number of correctly classified true instances

while specificity is the number of correctly classified false instances. For a model to be

effective, both these values should be high. This would mean that the model makes correct

classifications for both true and false values. In other words, the model performs well for

both true and false values.

From the results it is clear that the Multilayer Perceptron model performs best in comparison

to all other models. In our dataset of 14 software systems it exhibited a sensitivity of .70 or

more in most cases and specificity of .67 or more. This means that over the dataset of 4120

classes, the multilayer perceptron was able to correctly classify 1272 change prone classes

out of 1817 and 1544 classes as not change prone out of 2303. A very encouraging number.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 61

Chapter 6

CONCLUSION & FUTURE WORK

The aim of this study was to determine the prediction power of code smells for class level

change proneness. We also constructed prediction models based on machine learning

methods for the same.

We started by collecting data in form of classes in open-source software systems. A total of

4120 classes were selected for this study after pre-processing. The data hence obtained is then

parsed through Understand in order to estimate metric values for all the 4120 classes. The

metric values were then used to find which code smells persisted in which class. This step

was followed by estimation of exact change a class went through. This was done by making

use of an open-source tool called CLOC. Finally we applied machine learning methods to

assess the effect of code smells on class level change proneness.

In the process we developed a tool to pre-process software systems and make them ready for

estimation of exact change.

We conclude this study by stating that,

• The use of code smells to predict change proneness for a class is a step in the right

direction. The percentage of correct classification for this method is pretty good.

• The Multilayer Perceptron technique provides the best results and prediction power in

comparison or other machine learning models.

Department of Computer Engineering, Delhi Technological University

62

We also came across some problems that interested people can take up in the future,

1. The threshold determining technique we used is trial and error. This technique is good

enough for conducting studies but to make this method more repeatable and usable,

we need to establish some kind of mathematical relations to estimate thresholds on the

fly.

2. We used only 13 code smells in this study. One of the limitations of our previous

study was a small dataset which has been taken care of in this attempt, but the number

of code smells proposed till date and the number of smells examined by us has a huge

difference.

3. The dataset we considered is based on open-source software where the systems are

built by communities. Such prediction methods should be tested over closed source

systems developed by professional developers in a real life software engineering

situation.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 63

Chapter 7

PUBLICATIONS

7.1 Communicated Papers

The work done by us in this area has been communicated to an International Journal for review.

The details of the paper are provided below,

Journal Name: Software Quality Professional

Web URL: http://asq.org/pub/sqp/

Paper Title: Empirical Validation of Code Smells for Predicting Software Change Proneness

Authors: Ruchika Malhotra, Nakul Pritam

Department of Computer Engineering, Delhi Technological University

64

REFERENCES

[1] Foutse Khomh, Massimiliiano Di Penta, Yann-Gaël Guéhéneuc, “An Exploratory Study

of the Impact of Code Smells on Software Change Proneness”, Proceedings of the 16th

Working Conference on Reverse Engineering, IEEE Computer Society, 2009.

[2] Tuming Zhou, Hareton Leung, “Examining the Potentially Confounding Effect of Class

Size on the Associations between Object Oriented Metrics and Change-Proneness”, IEEE

Transactions on Software Engineering, Vol. 35, No. 5, September 2009.

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design, IEEE

Transactions on Software Engineering”, Vol. 20, No. 6, pp 476-493, June 1994.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F Le Meur, “DECOR: A method for the

specification and detection of code and design smells”, IEEE Transactions on Software

Engineering, vol. 36, no. 1, January 2010.

[5] M. Fowler, Refactoring – Improving the Design of Existing Code, 1st ed. Addison-

Wesley, June 1999.

[6] Li. W. and Henry, S., “Object Oriented Metrics that Predict Maintainability”, J. Systems

and Software, Vol. 23, pp. 111-122, 1993.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 65

[7] Abreu, F. B., Miguel Coulao, and Rita Esteves, “Towards the design quality evaluation of

object-oriented software systems”. In Proceedings of the 5th International Conference on

Software Quality, Austin, Texas, USA, October 1995.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1st edition, 1994.

[9] B. F. Webster. Pitfalls of Object Oriented Development. M & T Books, 1st edition,

February 1995.

[10] M. Fowler. Refactoring – Improving the Design of Existing Code. Addison-Wesley, 1st

edition, June 1999.

[11] M. Mantyla. Bad Smells in Software - a Taxonomy and an Empirical Study. PhD thesis,

Helsinki University of Technology, 2003.

[12] W. C.Wake. Refactoring Workbook. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2003.

[13] W. J. Brown, R. C.Malveau,W. H. Brown, H.W.McCormick III, and T. J. Mowbray.

Anti Patterns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley and

Sons, 1st edition, March 1998.

[14] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili. Detecting defects in object-

oriented designs: using reading techniques to increase software quality. In Proceedings of the

Department of Computer Engineering, Delhi Technological University

66

14th Conference on Object-Oriented Programming, Systems, Languages, and Applications,

pages 47–56. ACM Press, 1999.

[15] R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In

Proceedings of the 20th International Conference on Software Maintenance, pages 350–359.

IEEE Computer Society Press, 2004.

[16] M. J. Munro. Product metrics for automatic identification of “bad smell” design

problems in java source-code. In F. Lanubile and C. Seaman, editors, Proceedings of the 11th

International Software Metrics Symposium. IEEE Computer Society Press, September 2005.

[17] E. H. Alikacem and H. Sahraoui. Generic metric extraction framework. In Proceedings

of the 16th International Workshop on Software Measurement and Metrik Kongress (IWSM/

MetriKon), pages 383–390, 2006.

[18] K. Dhambri, H. Sahraoui, and P. Poulin. Visual detection of design anomalies. In

Proceedings of the 12th European Conference on Software Maintenance and Reengineering,

Tampere, Finland, pages 279–283. IEEE CS, April 2008.

[19] F. Simon, F. Steinbr¨uckner, and C. Lewerentz. Metrics based refactoring. In

Proceedings of the Fifth European Conference on Software Maintenance and Reengineering

(CSMR’01), page 30, Washington, DC, USA, 2001. IEEE Computer Society.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 67

[20] G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization based analysis of quality for

large-scale software systems. In proceedings of the 20th international conference on

Automated Software Engineering. ACM Press, Nov 2005.

[21] Mika V. Mantyla, Casper Lassenius. Subjective evaluation of software evolvability

using code smells: A empirical study. Empirical Software Engineering (2006) 11: 395-431.

[22] Daryl Posnett, Christian Bird, Prem Devanbu. An empirical study on the influence of

pattern roles on change proneness. Empirical Software Engineering (2011) 16: 396-423.

[23] Taghi M. Khoshgoftaar, Naeem Seliya. Comparative Assesment of Software Quality

Classification Techniques: An Empirical Case Study. Empirical Software Engineering (2004)

9: 229-257.

[24] Du Zhang, Jefferey J.P Tsai. Machine Learning and Software Engineering. Software

Quality Journal 11, 87-119, 2003.

[25] Wolfgang Holz, Rahul Premraj, Thomas Zimmermann, Andreas Zeller. Predicting

Software Metrics at Design Time. PROFES 2008, LNCS 5089, pp. 34-44, 2008.

[26] Hongmin Lu, Yuming Zhou, Baowen Xu, Hareton Leung, Lin Chen. The ability of

object-oriented metrics to predict change-proneness: a meta-analysis. Empirical Software

Engineering (2012) 17: 200-242.

Department of Computer Engineering, Delhi Technological University

68

[27] Foutse Khomh, Massimiliano Di Penta, Yann-Gael Guehaneuc, Guiliano Antoniol. An

exploratory study of the impact of anti-patterns on class change- and fault-proneness.

Empirical Software Engineering (2012) 17: 243-275.

[28] http://www.spinellis.gr/sw/ckjm/doc/index.html The Official Documentation of CKJM

[29] Understand Your Code – Official Website http://www.scitools.com

[30] Understand Your Code – List of Complexity Metrics Available

http://www.scitools.com/documents/metricsList.php?metricGroup=complex

[31] Understand Your Code – List of Count Metrics Available

http://www.scitools.com/documents/metricsList.php?metricGroup=count

[32] Understand Your Code – List of Object Oriented Metrics Available

http://www.scitools.com/documents/metricsList.php?metricGroup=oo

[33] M. Stone, “Cross-validatory choice and assessment of statistical predictions,” In Journal of the

Royal Statistical Society, Series B (Methodological), 36, 111–147, 1974.

[34] Y. Singh, R. Malhotra, and P. Gupta, “Empirical Validation of Web Metrics for

Improving the Quality of Web Page,” In International Journal of Advanced Computer

Science and Applications (IJASCA), Vol. 2, No. 5, 2011.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 69

[35] Weka 3: Data Mining Software in Java. Available from

http://www.cs.waikato.ac.nz/ml/weka/. Accessed 5 December 2011.

[36] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view

of boosting,” In The Annals of Statistics, Vol. 28, No. 2, 337-407, 2000.

[37] I. H. Witten, E. Frank, and M.A. Hall, “Data Mining: Practical Machine Learning Tools

and Techniques,” Morgan Kaufmann, San Francisco, 3 edition, 2011.

[38] K. P. Murphy, “Naive Bayes Classifiers,” Technical Report, October 2006.

Department of Computer Engineering, Delhi Technological University

70

Appendix A

NO. OF CLASSES IN SYSTEMS

S.No. Name of System No. of Common Classes

1 AOI 249

2 CheckStyle 693

3 FreePlane 572

4 jKiwi 45

5 Joda 135

6 jStock 207

7 jText 314

8 LWJGL 31

9 ModBus 86

10 openGTS 161

11 openRocket 83

12 Quartz 93

13 Spring 1333

14 SubSonic 121

Total Classes = 4120*2 = 8240

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 71

Appendix B

THRESHOLDS FOR METRICS

Parameter Threshold

WMC 4

LCOM 10

Private Variables 3

Public Variables 5

NOM 5

Long Parameter List 4

Department of Computer Engineering, Delhi Technological University

72

Appendix C

CHANGE DISTRIBUTION

0

200

400

600

800

1000

1200

Total Change Distribution - AOI

Total Change

0

20

40

60

80

100

120

140

160

180

Total Change Distribution - CheckStyle

Total Change

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 73

0

20

40

60

80

100

120

140

160

180

200

Total Change Distribution - FreePlane

Total Change

0

10

20

30

40

50

60

70

80

90

Total Change Distribution - jKiwi

Total Change

Department of Computer Engineering, Delhi Technological University

74

0

100

200

300

400

500

600

700

800

Total Change Distribution - Joda

Total Change

0

200

400

600

800

1000

1200

1400

Total Change Distribution - jStock

Total Change

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 75

0

100

200

300

400

500

600

700

800

900

1000

Total Change Distribution - jText

Total Change

0

100

200

300

400

500

600

700

Total Change Distribution - LWJGL

Total Change

Department of Computer Engineering, Delhi Technological University

76

0

20

40

60

80

100

120

140

160

180

200

Total Change Distribution - ModBus

Total Change

0

500

1000

1500

2000

2500

3000

Total Change Distribution - openGTS

Total Change

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 77

0

50

100

150

200

250

300

Total Change Distribution - openRocket

Total Change

0

200

400

600

800

1000

1200

1400

1600

1800

Total Change Distribution - Quartz

Total Change

Department of Computer Engineering, Delhi Technological University

78

0

100

200

300

400

500

600

700

800

Total Change Distribution - Spring

Total Change

0

100

200

300

400

500

600

700

Total Change Distribution - SubSonic

Total Change

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 79

Appendix C

Communicated Research Paper

Assessment of Code Smells for Predicting

Class Change Proneness
Ruchika Malhotra, Nakul Pritam

Department of Software Engineering, Delhi Technological University, Delhi

ruchikamalhotra2004@yahoo.com, nakul.pritam@gmail.com

Abstract- Poor design choices called anti-patterns manifest themselves in the source code as code smells. Code smell is a

synonym for bad implementation and is assumed to make maintenance tasks difficult to perform. In this study we

attempt to empirically validate whether it is possible to determine the degree of change-proneness for a class on the

basis of certain code smells in an object-oriented system. In this study, we develop a tool to detect the presence of 13

different code smells in a Java class using thresholds. The data used for assessment is source code of Quartz, an open

source job scheduler, from two versions 1.5.2 and 1.6.6. A total of 79 classes are examined in this study. The results

suggest a clear relationship between code smells and change proneness of a class.

Keyword- Code Smells, Change Proneness, Software Maintenance

1. INTRODUCTION

As the complexity of software being developed is increasing so is the cost of maintaining it. With so many

factors like time to market, budget and shortage of skilled labour limiting the development process it has

become very difficult to built quality software. However, maintenance is something that every developer has to

worry about because it is not possible to satisfy future requirements or to test the system inside out. Since it is

not possible to predict the changes that a particular software system may invite, the maintenance costs and

manpower for a software system remain a mystery till the time they realize themselves.

Recently, a quality factor called change proneness has emerged and is used to quantify the amount of change a

particular software system has undergone over two successive releases. The quantification is done at class level

so the exact change a class went through over successive releases can be computed.

Researchers over the globe have tried to club change proneness to various other attributes like design patterns,

code smells and metrics. But the results however are still in the experiment phase. The most unpredictable

component about change is that it is very much tied to software design and since software design is more of an

art, it is not possible to confine it in theories. The theories we have till date usually aim at suggesting best

practices rather than specifying exactly how a design must be made.

There has been tremendous success in estimation of some parameters of software as early as in the design stage

using patterns and metrics. These measures allow us to quantify certain aspects of the software and predict

things that otherwise cannot be predicted till the implementation phase. This includes the work done by [3], [6]

and [7] in presenting metric suites, each having its own domain of application and speciality.

The motivation for this work comes from [1], where the authors have established a link between change

proneness of a class and some code smells it carries. They tried out multiple versions of Eclipse and Azures and

found out a relationship between code smells and change proneness.

Department of Computer Engineering, Delhi Technological University

80

In this study we empirically validate the ability of code smells to predict the degree of change proneness a class

exhibits. We use a data set containing 79 classes obtained from an open-source task scheduler called Quartz as

the subject of our study. We find the error in classifications that occur in predictions of change proneness made

using code smells. Two versions of the system are used for this study, 1.5.2 and 1.6.6. We use the study

conducted in [1] as the foundation and assess the presence of 13 code smells in each class in order to predict the

degree of change proneness.

The paper is organized as follows: Section 2 summarizes the work done in the field of metrics and quality.

Section 3 explains the research background. Section 4 presents the methodology followed in this study. The

analysis of results is discussed in Section 5. Finally, in Section 6 we summarize the conclusion and the future

work that can be done in this area.

2. RELATED WORK

A lot of existing work has focussed on detection of smells. Moha et al. proposed DECOR
[4]

 for specification and

detection of smells, [1] has established a relationship between code-smells in a class and the probability of it

undergoing change in subsequent releases (change-proneness of a class).

Theoretically, code smells [5] are the manifestation of bad implementation choices on the source code.

Practically, they occur between design and implementation phases but their effects are visible most strongly in

the source code.

The structure of a class can be analysed by studying the metric values it produces. The earliest and most

fundamentally strong metric suite was proposed by [3] with a total of 6 metrics. This was followed by [6] where

a set of metrics that predict maintainability were proposed. In [7] the author proposed a set of design quality

metrics which can be used directly at system level. Hence, a large number of metrics has been proposed till date

and each set has its own importance. The class-level metrics are used to indicate the internal properties of a class

(LOC, NOM, etc) and the association between classes (CBO, NOC, etc). We use C & K metrics [3] because of

their simplicity and the broad range of coverage they have on the entire software system with inter-class and

intra-class measures.

Code smells [5] are bad implementation choices. Mostly, the roots of a code smell lie in the design phase but

only in the implementation do they manifest themselves completely. Good implementation choices are called

design patterns [8] while bad choices are called anti-patterns. The first description of anti-patterns was given by

[9]. In [10], Fowler defined 22 code smells and suggests the areas where refactoring should be applied. And

[11], [12] and [13] all define different classifications of smells and anti-patterns.

Moha et al. have presented a method called DECOR in [4] which specifies and detects code smells. Many other

techniques exist for this purpose, ranging from manual approaches [14], to heuristic based [15] and [16] and

many others [17], [18], [19] and [20].

Change proneness of a class is the odds of it undergoing change in the subsequent version. Changes in a class

can occur due to multiple reasons like change in requirements, adaptive maintenance, corrective maintenance,

detected or undetected faults, performance enhancement, etc. Usually change in a class in measured manually

by comparing two versions of the software but [1] has conducted an exploratory study and linked class change

proneness to certain code smells. The results of [1] provide a good foundation to explore further in the direction.

3. RESEARCH BACKGROUND

3.1 Code Smells Selected For Study

Table 1 summarizes the code smells selected to conduct this study. We selected this set of smells because in [1]

all of the smells mentioned below affected the change proneness of at least one of the software systems

considered by good measure.

Smell Criteria for Presence

ClassOneMethod A class with one method only

ChildClass A class which declares large number of attributes & methods

FieldPrivate A class which declares large number of private fields

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 81

FieldPublic A class which declares public attributes

HasChildren A class which has a large number of children

LargeClass A class with large measure of LOC

LongMethod A class which declares method(s) with large measure of LOC

LowCohesion A class which lacks cohesion

LongParameterListClass A class which declares method(s) which take large number of attributes

ComplexClassOnly A class which declares method(s) highly complex methods

MethodNoParameter A class which declares method(s) which take no parameter

MultipleInterface A class which implements large number of interfaces

NotComplex A class which is not doing much.

TABLE 5: CODE SMELLS SELECTED FOR STUDY

We have developed a CodeSniffer in JAVA to examine JAVA Classes for presence of the above code smells.

The tool analyses two sets of data for that class, these are discussed below.

3.2 Object-Oriented Metrics Selected for Study

Table 2 summarizes the object oriented metrics used in this study. We use C & K [3] metrics for estimation of

some of the code smells used in this study. The reason for using C & K metrics is availability of open-source

tools to calculate them for certain software systems.

We use CJKM [21] in the backend of our tool to estimate metric values for Java classes and use the following

metrics for our study,

Metric Description

WMC Estimate of total class complexity

DIT Estimates the maximum depth of inheritance

NOC Number of immediate subclasses

CBO Number of classes the given class is coupled to

RFC Number of methods a particular class can call

LCOM Estimates the degree of cohesion for a class

TABLE 6: OBJECT ORIENTED METRICS SELECTED FOR STUDY

3.3 Source Parameters Selected for Study

Apart from using C & K [3] metrics, we use some parameters derived directly from Java source files to calculate

some of the code smells and at the same time improve our estimation of smells derived from C & K metrics.

Table 3 summarizes the 8 parameters used in this study,

Parameters Description

Number of Private Fields The count of total private fields declared in a class

Number of Public Fields The count of total public fields declared in a class

LOC for Class Lines of Code for a class

Number of Interfaces Implemented This count estimates the number of interfaces implemented by a class

Number of Long Methods The count of the number of long methods present in a class.

Number of Methods Implemented The number of methods declared in a class.

Number of Methods without

Parameters

The number of methods that take no parameters.

Number of Methods with Long

Parameter List

The total number of methods in a class which take more than 4

parameters.

TABLE 7: SOURCE PARAMETERS SELECTED FOR STUDY

3.4 Empirical Data Collection

Quartz is an open-source job scheduler that can be used to develop schedules for simple to complex industrial

problems. The tasks in Quartz are defined as Java components and can be executed virtually. The reason for

choosing Quartz is its size. We downloaded two subsequent stable releases (1.5.2 and 1.6.6) of Quartz which

contain more than 120 source files each. This allows us to ensure that the data collected for this study is as

accurate as possible.

Department of Computer Engineering, Delhi Technological University

82

Since Quartz is average sized software we can manually pre-processed the source files. Pre-processing included

removing all Java files in either version that are not present in the other version. Quartz 1.5.2 contained 132 Java

files while Quartz 1.6.6 contained 183 Java files. Out of these, 129 Java files were present in both versions.

Since a lot of files are also dedicated to UI implementations are redundant we remove them too. Finally we are

left with exactly 79 Java files which we are going to process further. After selecting the 79 classes, we calculate

the amount of change in each class.

The data collection for this study is twofold. The first step is to estimate the exact change the classes in 1.5.2

undergo when upgraded to 1.6.6. This is done by using an open source tool called CLOC. The amount of change

is accurately calculated using the following rules,

1. If a line is added or deleted it is counted as one change.

2. If a line is modified, it is counted as two changes.

Once we have the LOC change for each class we normalize the results by dividing them by the LOC count for

the class in the prior version. By normalizing the results we ensure that we get a factor similar to percentage

change. Finally, we select a threshold and classify the change in classes as either HIGH or LOW. Figure 1

shows the percent distribution of HIGH and LOW change prone classes.

FIGURE 1: PERCENT DISTRIBUTION OF HIGHLY CHANGE PRONE CLASSES AND LOW CHANGE

PRONE CLASSES.

The second set of data we collect is of the predicted change by using code smells. To get this data we first pass

the Java files of the prior version (1.5.2) through the tool we developed and note down the smells present in

each class. A very crucial step in this process is setting of thresholds for various metrics in order to enable the

algorithm to detect the presence of a particular smell in the class. In this study we set the thresholds manually.

Table 4 show the different thresholds used in this study for various metrics and their values. Selection of

thresholds can impact the study deeply so selection has been done without any extravagant assumptions.

Parameter Threshold

WMC 4

LCOM 10

Private Variables 3

81%

19%

Actual Distribution of Change Proneness

Change Proneness - High

Change Proneness - Low

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 83

Public Variables 5

NOM 5

Long Parameter List 4

LOC 50

TABLE 4: VARIOUS THRESHOLDS USED IN PREDICTION PROCESS.

4. RESEARCH METHODOLOGY

We employ object oriented metrics and source parameters to examine software systems for code smells and to

predict the category of a class as highly change prone or low change prone. Figure 2 shows the flowchart of

methodology used in this study.

FIGURE 2: FLOWCHART OF METHODOLOGY

4.1 Description of Tool

We have developed a tool to analyse Java source code for presence of 13 code smells. The tool is designed in a

way that the users have the freedom to set their own thresholds for the metrics and statistics used for estimation

of smells. The tool takes as input the raw .java files as well as .class files. Object oriented metric values are

obtained by using CKJM [21] in the background while other estimates are made directly from the source code.

Below shown is a snapshot of the interface of the tool,

Obtain Two Subsequent

Versions of Quartz

Select Classes That Are

Common to Both Versions

Eliminate Any UI or

Interface Specification

Classes

Collect Data Corresponding

to Actual Change In-

Between Versions By

Examining Both Versions of

Quatrz

Extract Metric Values From

Source Files

Extract other Stats From

Source

Set Thresholds for Metric

Values

Calculate Predicted Change

Factor

Classify The Predicted

Change As High or Low

(Threshold Based)

Compare Results to Actual

Change and Report Error

(if Any)

Department of Computer Engineering, Delhi Technological University

84

FIGURE 1: SNAPSHOT OF CODESNIFFER

The tool is organized into four modules, these are,

1) Module 1 - CKM_Loader

The CKM_Loader module interacts with the .CLASS files to software to calculate the C & K metrics array.

According to [3], the C & K metrics are one of the most accurate identifiers of certain code smells like

ComplexClass and NoInheritance, etc.

The CKM_Loader uses a very popular and efficient tool called CKJM running at the backend to estimate the

metrics. The result of processing the .CLASS files with CKM_Loader generates two arrays.

a. A 2D matrix containing the actual metrics.

b. A class name vector.

Working of The Module – The module uses the standard CKJM command to run CKJM on the system console

and retrieves the output into a buffer. This output is then processed in the following manner to construct the two

arrays.

2) Module 2 - DataProcessor

The DataProcessor module pre-processes the source files to make it fit for the SourceStatCalculator module to

work upon.

This module conducts the following pre-processing on the source,

a. Remove all standard C Style comments.

b. Tokenize the sources and organize separate classes as separate arrays.

c. Organize different symbols like), (, int, char, float, for, while, if, else and ; as separate tokens

as those are very important in measuring statistics.

3) Module 3 - SourceStatCalculator

This module uses the pre-processed source code tokens to calculate statistics that are used in parallel to C & K

metrics for estimating the presence of code smells in the class.

There are a total of eight statistic values that are needed for further estimation. These are,

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 85

a. Number of Private Fields

b. Number of Public Fields

c. LOC for Class

d. Number of Interfaces Implemented

e. Number of Long Methods

f. Number of Methods Implemented

g. Number of Methods Without Parameters

h. Number of Methods With Long Parameter List

4) Module 4 - SmellCalculator

The smell calculator takes uses the source statistics and the C & K metrics to estimate weather any of the 17

code smells is present in the class under consideration.

The module takes as input,

a. The C & K metrics array.

b. The SourceStat array

c. The source file name vector.

d. The class name vector.

The output of this module is a 17 element vector containing the number of classes carrying the corresponding

code smell.

4.2 Comparison of Data

The two sets of data we obtained above are compared to each other class by class and a count of correct and

incorrect classifications is kept. We use SPSS to conduct this analysis and determine the probability of correct

classification and error in classification.

5. ANALYSIS RESULTS

In this section, we analyse the relationship between code smells and change proneness of a class.

5.1 Sensitivity and Specificity

Sensitivity and specificity are used to predict the correctness of a model. The percentage of classes with HIGH

change proneness correctly classified as HIGH is called sensitivity (True Positive Rate i.e. TPR) of the model.

The percentage of classes with LOW change proneness correctly classified LOW is called specificity (False

Positive Rate i.e. FPR) of the model. Ideally, both the sensitivity and specificity should be high.

5.2 Receiver Operating Characteristic (ROC) analyses

The performance of the outputs of the predicted models is evaluated using ROC analysis. It is an effective

method of evaluating the quality or performance of predicted models.

The ROC curve is a plot of sensitivity (y-axis) versus its 1-specificity (x-axis). It is called Relative Operating

Characteristic curve, because it is a comparison of two operating characteristics (TPR & FPR). The ROC curve

allows us to select cut-off points between 0 and 1, and to calculate sensitivity and specificity at each cut-off

point. The optimal cut-off point maximizes both sensitivity and specificity.

The model has sensitivity of 75%, specificity of 73.3%. The results of the study are shown in Table 6 and Table

7. The probability of correct classification is well above 70 % which means the code smell based technique is

good at classifying the supplied classes are change prone or not. The following observation is made from the

analysis shown in table:

1. Out of 65 classes with HIGH change proneness, 49 are correctly classified, and 16 HIGHLY

change prone classes are incorrectly classified.

2. Similarly, out of 14 classes with low change proneness, 10 are classified correctly, while 5 are

classified incorrectly.

Department of Computer Engineering, Delhi Technological University

86

Parameter Actual

Values

Estimated

Values

Total Classes (Total No. of Selected Classes Common to Both Versions) 132(79) 183 (79)

Classes With High Change Proneness 65 53

Classes With Low Change Proneness 14 26

TABLE 6: RESULTS OF ESTIMATION CONTRASTING ACTUAL AND ESTIMATED VALUES OF

CHANGE PRONE CLASSES

We noted that the prediction method has a tendency of misclassifying the LOW possibility classes as HIGH.

The accuracy for HIGH is much more compared to the accuracy of LOW. This can be explained from the fact

that most of the classes in the system exhibited an actual change proneness factor in the higher side and

relatively fewer classes were on the LOWER side. The algorithm was able to classify almost all the classes with

HIGH probability while the LOW change prone classes were frequently misclassified.

Parameter Value

No. of Classes With High Change Proneness Classified Correctly 49

No. of Classes With High Change Proneness Classified Incorrectly 16

No. of Classes With Low Change Proneness Classified Correctly 10

No. of Classes With Low Change Proneness Classified Incorrectly 5

TABLE 7: TABLE SPECIFYING DATA FOR SENSITIVITY AND SPECIFICITY OF PREDICTIONS

The analysis shows that this method for predicting change proneness is good enough to be explored further.

Below shown is the ROC curve for the analysis,

FIGURE 2: ROC CURVE

6. CONCLUSION & FUTURE WORK

We conclude this study by stating that the use of code smells to predict change proneness for a class is a step in

the right direction. The percentage of correct classification for this method is pretty good considering it is still in

infancy.

We found out some important results and came across problems that interested people can take up in the future,

1. The threshold determining technique we used is trial and error. This technique is good enough for

conducting studies but to make this method more repeatable and usable, we need to establish some kind

of mathematical relations to estimate thresholds on the fly.

2. We used only 13 code smells in this study over a system with 79 classes to process; this method should

be applied over a much larger system, perhaps a system from a completely different domain like

embedded or real time to check its applicability across domains.

Nakul Pritam, “Empirical Assessment of Code Smells For

Predicting Software Change Proneness” 87

3. The area of experiment till date has been in open-source where the systems are built by communities.

Such methods should be tested over closed source systems by developers.

REFERENCES

[1] Foutse Khomh, Massimiliiano Di Penta, Yann-Gaël Guéhéneuc, “An Exploratory Study of the Impact of

Code Smells on Software Change Proneness”, Proceedings of the 16th Working Conference on Reverse

Engineering, IEEE Computer Society, 2009.

[2] Tuming Zhou, Hareton Leung, “Examining the Potentially Confounding Effect of Class Size on the

Associations between Object Oriented Metrics and Change-Proneness”, IEEE Transactions on Software

Engineering, Vol. 35, No. 5, September 2009.

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design, IEEE Transactions on

Software Engineering”, Vol. 20, No. 6, pp 476-493, June 1994.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F Le Meur, “DECOR: A method for the specification and

detection of code and design smells”, IEEE Transactions on Software Engineering, vol. 36, no. 1, January 2010.

[5] M. Fowler, Refactoring – Improving the Design of Existing Code, 1st ed. Addison-Wesley, June 1999.

[6] Li. W. and Henry, S., “Object Oriented Metrics that Predict Maintainability”, J. Systems and Software, Vol.

23, pp. 111-122, 1993.

[7] Abreu, F. B., Miguel Coulao, and Rita Esteves, “Towards the design quality evaluation of object-oriented

software systems”. In Proceedings of the 5th International Conference on Software Quality, Austin, Texas,

USA, October 1995.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1st edition, 1994.

[9] B. F. Webster. Pitfalls of Object Oriented Development. M & T Books, 1st edition, February 1995.

[10] M. Fowler. Refactoring – Improving the Design of Existing Code. Addison-Wesley, 1st edition, June 1999.

[11] M. Mantyla. Bad Smells in Software - a Taxonomy and an Empirical Study. PhD thesis, Helsinki

University of Technology, 2003.

[12] W. C.Wake. Refactoring Workbook. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2003.

[13] W. J. Brown, R. C.Malveau,W. H. Brown, H.W.McCormick III, and T. J. Mowbray. Anti Patterns:

Refactoring Software, Architectures, and Projects in Crisis. John Wiley and Sons, 1st edition, March 1998.

[14] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili. Detecting defects in object-oriented designs: using

reading techniques to increase software quality. In Proceedings of the 14th Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 47–56. ACM Press, 1999.

[15] R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In Proceedings of the

20th International Conference on Software Maintenance, pages 350–359. IEEE Computer Society Press, 2004.

[16] M. J. Munro. Product metrics for automatic identification of “bad smell” design problems in java source-

code. In F. Lanubile and C. Seaman, editors, Proceedings of the 11th International Software Metrics

Symposium. IEEE Computer Society Press, September 2005.

[17] E. H. Alikacem and H. Sahraoui. Generic metric extraction framework. In Proceedings of the 16th

International Workshop on Software Measurement and Metrik Kongress (IWSM/

MetriKon), pages 383–390, 2006.

[18] K. Dhambri, H. Sahraoui, and P. Poulin. Visual detection of design anomalies. In Proceedings of the 12th

European Conference on Software Maintenance and Reengineering, Tampere, Finland, pages 279–283. IEEE

CS, April 2008.

[19] F. Simon, F. Steinbr¨uckner, and C. Lewerentz. Metrics based refactoring. In Proceedings of the Fifth

European Conference on Software Maintenance and Reengineering (CSMR’01), page 30, Washington, DC,

USA, 2001. IEEE Computer Society.

[20] G. Langelier, H. A. Sahraoui, and P. Poulin. Visualizationbased analysis of quality for large-scale software

systems. In proceedings of the 20th international conference on Automated Software Engineering. ACM Press,

Nov 2005.

[21] http://www.spinellis.gr/sw/ckjm/doc/index.html The Official Documentation of CKJM

Department of Computer Engineering, Delhi Technological University

88

ABOUT THE AUTHORS

Ruchika Malhotra. She is an assistant professor at the Department of Software

Engineering, Delhi Technological University (formerly known as Delhi College of

Engineering), Delhi, India, She was an assistant professor at the University School of

Information Technology, Guru Gobind Singh Indraprastha University, Delhi, India. Prior

to joining the school, she worked as full-time research scholar and received a doctoral

research fellowship from the University School of Information Technology, Guru Gobind

Singh Indraprastha Delhi, India. She received her master’s and doctorate degree in

software engineering from the University School of Information Technology, Guru

Gobind Singh Indraprastha University, Delhi, India. Her research interests are in software

testing, improving software quality, statistical and adaptive prediction models, software metrics, neural nets

modeling, and the definition and validation of software metrics. She has published more for than 50 research

papers in international journals and conferences. Malhotra can be contacted by e-mail at

ruchikamalhotra2004@yahoo.com.

Nakul Pritam. He received his B.Tech degree in Computer Science & Engineering from Uttar Pradesh Technical

University, Lucknow India in 2010. He is now pursuing his M.Tech at Delhi Technological University

(formerly Delhi College of Engineering), Delhi, India. His research interests are Software Engineering, Software

Metrics and Software Quality Analysis using Metrics. Nakul can be contacted by e-mail at

nakul.pritam@gmail.com.

