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ABSTRACT 

 

Poor design choices called anti-patterns manifest themselves in the source code as code smells. 

Code smell is a synonym for bad implementation and is assumed to make maintenance tasks 

difficult to perform.  

In our previous study we validated the fact that it is possible to determine the degree of change-

proneness for a class on the basis of certain code smells in an object-oriented system. The data 

used for the assessment was source code of Quartz, an open source job scheduler, from two 

versions 1.5.2 and 1.6.6. A total of 79 classes were examined and the results suggested a clear 

relationship between code smells and change proneness of a class. 

The dataset we used was very small to reach a strong conclusion so we extended our previous 

work by examining a dataset consisting of 4120 classes spanning 14 software systems. The 

dataset is created by preprocessing the class files that included removal of classes not common to 

both versions of the systems used. This was followed by assessment of code smells which was 

done on the basis of metrics. The dataset finally derived was then analyzed using Machine 

Learning Methods and the results suggest that code smells can classify a change prone class with 

a probability of .7 or more and a not change prone class with a probability of .67 or more using 

Multilayer Perceptron model. 

 

 



v 

 

Table of Contents 

  

Certificate i 

Acknowledgement ii 

Abstract iv 

Table of Contents v 

List of Figures viii 

List of Tables xii 

  

1. Introduction 1 

1.1 Background 1 

1.2 Motivation 2 

1.3 Statement of work 2 

1.4 Organization of thesis 3 

  

2. Related Work 4 

  

3. Research Background 6 

3.1 Code Smells 6 

3.1.1 ClassOneMethod 7 

3.1.2 ChildClass 7 

3.1.3 HasChildren 8 

3.1.4 LargeCLass 8 

3.1.5 LowCohesion 8 

3.1.6 ComplexClassOnly 8 

3.1.7 FewMethod 9 

3.1.8 ManyAttributes 9 

3.1.9 OneChildClass 9 

3.1.10 NoInheritance 9 

3.1.11 DataClass 9 

3.1.12 TwoInheritance 10 

3.1.13 NotComplex 10 

3.2 Metrics Selected for Study 10 

3.2.1 CountDeclMethod 11 

3.2.2 CountLineCode 11 

3.2.3 CountDeclInstanceVariable 11 

3.2.4 CountClassDerived 11 



vi 

 

3.2.5 MaxInheritanceTree 11 

3.2.6 AvgCyclomatic 12 

3.2.7 PercentLackOfCohesion 12 

3.3 Code Smells and their Relation to Metrics 12 

3.4 Empirical Data Collection 13 

3.4.1 AOI 13 

3.4.2 CheckStyle 14 

3.4.3 FreePlane 14 

3.4.4 jKiwi 14 

3.4.5 Joda 15 

3.4.6 jStock 15 

3.4.7 jText 15 

3.4.8 LWJGL 16 

3.4.9 ModBus 16 

3.4.10 openGTS 16 

3.4.11 openRocket 17 

3.4.12 Quartz 17 

3.4.13 Spring 18 

3.4.14 SubSonic 18 

3.5 Dependent and Independent Variables  20 

  

4. Research Methodology 22 

4.1 Methodology 22 

4.1.1 Data Acquisition and Pre-Processing 23 

4.1.2 Change and Smell Estimation 23 

4.1.3 Analysis Using Machine Learning Methods 23 

4.2 ClassSelector – A Tool to Pre-Process 23 

4.2.1 Module 1 – FilesLoader 24 

4.2.2 Module 2 – DataProcessor 24 

4.3 Machine Learning Algorithms for Analysis 25 

4.3.1 Naïve Bayes Classifier 25 

4.3.2 Multilayer Perceptron 25 

4.3.3 LogitBoost 28 

4.3.4 Bagging 28 

4.3.5 Random Forest 29 

4.3.6 Decision Tree 31 



vii 

 

5. Results 33 

5.1 Random Forest Analysis 34 

5.2 Naïve Bayes Analysis 38 

5.3 Bagging Analysis 42 

5.4 Decision Tree Analysis 46 

5.5 LogitBoost Analysis 50 

5.6 Multilayer Perceptron Analysis 54 

5.7 Model Evaluation 58 

5.8 Discussion 59 

  

6.  Conclusion and Future Work 60 

  

7. Publications 62 

7.1 Communicated Papers 62 

  

References 63 

  

Appendix A 69 

Appendix B 70 

Appendix C 71 

Appendix D 79 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Figures 

 

S.No. Name of Figure Page No. 

1 Distribution of change-prone and not change-prone classes 19 

2 Outline of Research Methodology 22 

3 Snapshot of Tool 24 

4 Architecture of Multilayer Perceptron with 2 hidden layers 26 

5 A Forest of Trees 29 

6 A Decision Tree 31 

7 ROC Curve for AOI – Random Forest 35 

8 ROC Curve for CheckStyle – Random Forest 35 

9 ROC Curve for FreePlane – Random Forest 35 

10 ROC Curve for jKiwi – Random Forest 35 

11 ROC Curve for Joda – Random Forest 36 

12 ROC Curve for jStock – Random Forest 36 

13 ROC Curve for jText – Random Forest 36 

14 ROC Curve for Quartz – Random Forest 36 

15 ROC Curve for LWJGL – Random Forest 37 

16 ROC Curve for ModBus – Random Forest 37 

17 ROC Curve for openGTS – Random Forest 37 

18 ROC Curve for openRocket – Random Forest 37 

19 ROC Curve for Spring – Random Forest 38 

20 ROC Curve for SubSonic – Random Forest 38 

21 ROC Curve for AOI – Naïve Bayes Classifier 39 

22 ROC Curve for CheckStyle – Naïve Bayes Classifier 39 

23 ROC Curve for FreePlane – Naïve Bayes Classifier 39 

24 ROC Curve for jKiwi – Naïve Bayes Classifier 39 

25 ROC Curve for Joda – Naïve Bayes Classifier 40 



ix 

 

26 ROC Curve for jStock – Naïve Bayes Classifier 40 

27 ROC Curve for jText – Naïve Bayes Classifier 40 

28 ROC Curve for Quartz – Naïve Bayes Classifier 40 

29 ROC Curve for LWJGL – Naïve Bayes Classifier 41 

30 ROC Curve for ModBus – Naïve Bayes Classifier 41 

31 ROC Curve for openGTS – Naïve Bayes Classifier 41 

32 ROC Curve for openRocket – Naïve Bayes Classifier 41 

33 ROC Curve for Spring – Naïve Bayes Classifier 42 

34 ROC Curve for SubSonic – Naïve Bayes Classifier 42 

35 ROC Curve for AOI – Bagging 43 

36 ROC Curve for CheckStyle – Bagging 43 

37 ROC Curve for FreePlane – Bagging 43 

38 ROC Curve for jKiwi – Bagging 43 

39 ROC Curve for Joda – Bagging 44 

40 ROC Curve for jStock – Bagging 44 

41 ROC Curve for jText – Bagging 44 

42 ROC Curve for Quartz – Bagging 44 

43 ROC Curve for LWJGL – Bagging 45 

44 ROC Curve for ModBus – Bagging 45 

45 ROC Curve for openGTS – Bagging 45 

46 ROC Curve for openRocket – Bagging 45 

47 ROC Curve for Spring – Bagging 46 

48 ROC Curve for SubSonic – Bagging 46 

49 ROC Curve for AOI – Decision Tree 47 

50 ROC Curve for CheckStyle – Decision Tree 47 

51 ROC Curve for FreePlane – Decision Tree 47 

52 ROC Curve for jKiwi – Decision Tree 47 

53 ROC Curve for Joda – Decision Tree 48 

54 ROC Curve for jStock – Decision Tree 48 

55 ROC Curve for jText – Decision Tree 48 



x 

 

56 ROC Curve for Quartz – Decision Tree 48 

57 ROC Curve for LWJGL – Decision Tree 49 

58 ROC Curve for ModBus – Decision Tree 49 

59 ROC Curve for openGTS – Decision Tree 49 

60 ROC Curve for openRocket – Decision Tree 49 

61 ROC Curve for Spring – Decision Tree 50 

62 ROC Curve for SubSonic – Decision Tree 50 

63 ROC Curve for AOI – LogitBoost 51 

64 ROC Curve for CheckStyle – LogitBoost 51 

65 ROC Curve for FreePlane – LogitBoost 51 

66 ROC Curve for jKiwi – LogitBoost 51 

67 ROC Curve for Joda – LogitBoost 52 

68 ROC Curve for jStock – LogitBoost 52 

69 ROC Curve for jText – LogitBoost 52 

70 ROC Curve for Quartz – LogitBoost 52 

71 ROC Curve for LWJGL – LogitBoost 53 

72 ROC Curve for ModBus – LogitBoost 53 

73 ROC Curve for openGTS – LogitBoost 53 

74 ROC Curve for openRocket – LogitBoost 53 

75 ROC Curve for Spring – LogitBoost 54 

76 ROC Curve for SubSonic – LogitBoost 54 

77 ROC Curve for AOI – Multilayer Perceptron 55 

78 ROC Curve for CheckStyle – Multilayer Perceptron 55 

79 ROC Curve for FreePlane – Multilayer Perceptron 55 

80 ROC Curve for jKiwi – Multilayer Perceptron 55 

81 ROC Curve for Joda – Multilayer Perceptron 56 

82 ROC Curve for jStock – Multilayer Perceptron 56 

83 ROC Curve for jText – Multilayer Perceptron 56 

84 ROC Curve for Quartz – Multilayer Perceptron 56 

85 ROC Curve for LWJGL – Multilayer Perceptron 57 



xi 

 

86 ROC Curve for ModBus – Multilayer Perceptron 57 

87 ROC Curve for openGTS – Multilayer Perceptron 57 

88 ROC Curve for openRocket – Multilayer Perceptron 57 

89 ROC Curve for Spring – Multilayer Perceptron 58 

90 ROC Curve for SubSonic – Multilayer Perceptron 58 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

List of Tables 

S.No. Name of Table Page No. 

1 Code Smells and Criteria for Their Presence 7 

2 Object Oriented Metrics Selected for Study 11 

3 Code Smells and Related Metrics 13 

4 Summary of the Dataset used 20 

5 10-Cross validation results for Random Forest 34 

6 10-cross validation results for Naïve Bayes Classifier 38 

7 10-cross validation results for Bagging 42 

8 10-cross validation results for Decision Tree 46 

9 10-cross validation results for LogitBoost 50 

10 10-cross validation results for Multilayer Perceptron 54 

 



 

Nakul Pritam, “Empirical Assessment of Code Smells For 

Predicting Software Change Proneness”  1 

 

Chapter 1 

INTRODUCTION 

 

Change in software is one of the most unpredictable elements that a maintenance team 

encounters over the lifespan of the system. Changing requirements, adaptation to new 

environment, corrective maintenance and a host of other reasons trigger change in software. 

1.1 Background 

Research over the years has been able to quantify many attributes of a software system by 

using patterns and metrics. By using these measures we can easily quantify good and bad 

aspects of the software and are able to predict stuff that otherwise cannot be predicted. This 

includes the work done by [3], [6] and [7] in presenting metric suites, each having its own 

domain of application and speciality. 

Even more recently, a quality factor called change proneness has emerged and is used to 

quantify the amount of change a particular software system has undergone over two 

successive releases. The quantification can be done at class level and hence the exact change 

a class went through over two successive releases can be computed. 

The most unpredictable component about change is that it is very much tied to software 

design and the theories we have usually aim at suggesting best practices rather than 

specifying exactly how a design must be made. Researchers have tried to club change 

proneness to various other attributes like design patterns, code smells and metrics. [26] 

analysed the ability of object-oriented metrics to predict change proneness of a class, [27] has 

established a relationship between change proneness and anti-patterns while [22] has 
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empirically assessed the influence of patterns on the same. The results however are still in the 

experiment phase.  

1.2 Motivation 

Using the work already done in this area, in our last study, we used the conclusions provided 

by [1] and validated the ability of code smells to predict the degree of change proneness a 

class exhibits. We used an open-source task scheduler called Quartz as the subject of our 

study to find the error in classifications that occur in predictions of change proneness made 

using code smells. Our dataset had 79 classes and the results showed that code smells have 

more than 70% accuracy in such predictions. The motivation for this study comes from two 

facts, 

• The size of the data set was very small to come to a concrete conclusion. 

 

• The study we conducted did not use any machine learning techniques. 

 

1.3 Statement of Work 

In this study, we extend our previous work by examining 14 software systems written in 

JAVA programming language. The dataset is sufficiently large (contains in excess of 4,000 

classes) to prove weather code smells have the ability of predicting the change a class could 

undergo in subsequent releases. 
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1.4 Organisation of Thesis 

This report is organised in the following manner. 

• Chapter 2 summarises the work done by us and other researchers in the field of study. 

• Chapter 3 provides the detailed description of the research method. It starts off by 

highlighting the dependent and independent variables and then moves on to the 

process used to capture the empirical data used in the study. 

• Chapter 4 explains our work in detail with each and every step shown conceptually 

and diagrammatically. 

• Chapter 5 summarises the results. 

• Chapter 6 is devoted to conclusions and future work possible in this area.  

• Finally, we list down the references for this work. 
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Chapter 2 

RELATED WORK 

 

Change proneness of a class is the odds of it undergoing change in the subsequent version. 

Changes in a class can occur due to multiple reasons like requirements, adaptive 

maintenance, corrective maintenance, detected or undetected faults, performance 

enhancement, etc. 

Usually change in a class in measured manually by comparing two versions of the software 

but [1] has conducted an exploratory study and linked class change proneness to certain code 

smells. Code smells [5] are bad implementation choices. Mostly, the roots of a code smell lie 

in the design phase but only in the implementation do they manifest themselves completely. 

Good implementation choices are called design patterns [8] while bad choices are called anti-

patterns. Apart from change proneness, code smells have also been used to study software 

evolvability. 

The first description of anti-patterns was given by [9]. In [10], Fowler defined 22 code smells 

and suggests the areas where refactoring should be applied. And [11], [12] and [13] all define 

different classifications of smells and anti-patterns.  

A lot of existing work has focussed on detection of smells. Moha et al. proposed DECOR
[4]

 

for specification and detection of smells. Many other techniques exist for this purpose, 

ranging from manual approaches [14], to heuristic based [15] and [16] and many others [17], 

[18], [19] and [20]. 
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In [21] code smells have been used to identify poorly evolvable structures in software. The 

term software evolvability means “the ease of further developing a software element” [1].  

The results of [1] provide a good foundation to explore further in the direction because if a 

developer is able to estimate the degree to which a class is change prone the designs can be 

rectified. The study conducted by [1] was empirically investigated by us in our previous work 

and found to be correct with a probability of 0.70 or more.  

The structure of a class can be analysed by studying the metric values it produces. The 

earliest and most fundamentally strong metric suite was proposed by [3] where a total of 6 

metrics were proposed. This was followed by [6] where a set of metrics that predict 

maintainability were proposed. In [7] the author proposed a set of design quality metrics 

which can be used directly at system level. Hence, a large number of metrics has been 

proposed till date and each set has its own importance. 

There has been a great deal of work in change proneness estimation by using object-oriented 

metrics. Moha et al. have presented a method called DECOR in [4] which specifies and 

detects code smells. 

While it is possible to determine the presence of some code smells without using thresholds 

like, HasChildren and ClassOneMethod, it is not possible to examine a class for all smells 

without using a threshold. For example, the smell ChildClass cannot be determined without 

using a threshold. It needs thresholds for three metrics, namely NOM, LOC and No. of 

Variables. 
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Chapter 3 

RESEARCH BACKGROUND 

 

In this chapter we will discuss what code smells are and follow it up with the description of 

smells we have used in our study. Second, we will touch upon the concept of metrics and 

describe the various metrics selected for this study in detail. Third, we talk about code smells 

and their relationship with object oriented metrics. We also explain how to use metrics to 

estimate the presence of code smells in a class. Fourth, we explain the process of data 

collection and highlight the important aspects of the dataset used in this study. Finally, we 

point down the dependent and independent variables. 

3.1 Code Smells 

The number of code smells proposed till date is significantly high but only a few of those are 

actually needed to do predictions in the domain of software maintainability. We will now 

look at thirteen popular code smells in this regard. Table 3.1 summarizes the code smells and 

the criteria for their presence in a class. 

Smell Criteria for Presence 

ClassOneMethod A class with one method only 

ChildClass A class which declares large number of attributes & methods 

HasChildren A class which has a large number of children 

LargeClass A class with large measure of LOC 
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LowCohesion A class which lacks cohesion 

ComplexClassOnly A class which declares highly complex methods 

FewMethod A class which declares few methods 

ManyAttributes A class which declares a large number of attributes 

OneChildClass A class having only one direct ancestor 

NoInheritance A class which uses little inheritance 

DataClass A class which holds data but doesn’t do a lot of processing 

TwoInheritance A class with a inheritance depth of two or more 

NotComplex A class which is not doing much 

Table 3.1 : Code Smells and Criteria for Their Presence 

3.1.1 ClassOneMethod 

This smell is present in classes which declare only one method. Presence of this code smell 

means that the class is not doing much. Such a class in future could be modified to contain 

more methods or could be completely removed from the system if possible. In other words, 

the class is not complex enough to be part of a software system and could undergo change.  

3.1.2 ChildClass 

This smell is an indication of poor decomposition. ChildClass smell is present in classes 

which declare a very high number of attributes and contains a high number of methods. This 

means that the class should have been broken down further and does much more than what a 
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single class is supposed to do in a system. Such a class might be broken down into simpler 

classes in future releases.  

3.1.3 HasChildren 

This code smell suggests that class has a large number of children. Such a class could limit 

the maintainability of the system due to large number of classes directly depending on it. 

Changing such a class could mean changing its child classes. The effect of such a smell could 

propagate to all its children. The developers may avoid updates to such a class but in case a 

bug is identified, the amount of changes needed could be huge.  

3.1.4 LargeClass 

This smell is present in classes with a high count of LOC. In other words, large sized classes 

exhibit this smell. It is an indication of poor decomposition and high complexity. There is 

every possibility that such class be decomposed in future versions, if not these classes will 

see changes more frequently than others.  

3.1.5 LowCohesion 

This odour suggests lack of cohesion in the class. Low cohesion among classes is an indicator 

of serious design flaws. The performance of such systems tends to be on the lower side. 

3.1.6 ComplexClassOnly 

This smell is present in classes which declare methods which are highly complex in nature 

along with a large set of attributes. This indicates poor decomposition. Classes which are 

more complex than other classes tend to more buggy than classes not so complex. This is 

because of the fact that such classes do more than what a class is supposed to do.  
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3.1.7 FewMethod 

This smell is present in classes which declare very few methods. Declaring few methods 

means that the class is not doing as much as it should. Having a large number of methods 

points to very high complexity of the class while having a small number of methods 

corresponds to low complexity. 

3.1.8 ManyAttributes 

Just like the number of methods is a useful indicator of design time issues so is the number of 

attributes a class has. A large number of attributes means that the class is holding a lot of data 

and carries the ManyAttribute odour.  

3.1.9 OneChildClass 

This smell is present in classes which have only one direct ancestor. It is an indicator of 

improper use of inheritance. Sometimes it can also indicate use of inheritance where it was 

not necessary. 

3.1.10 NoInheritance 

NoInheritance smell is present in classes which have an inheritance depth of zero. It can be 

an indicator of lack of inheritance use. 

3.1.11 DataClass 

DataClass smell is present in classes which declare a large number of attributes while 

declaring relatively few methods. Essentially this means that the class holds a lot of data but 

doesn’t do much with it. 
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3.1.12 TwoInheritance 

This odour is present in classes with a maximum inheritance depth of two or more. 

3.1.13 NotComplex 

This smell is present in classes which do very little. Presence of this smell means that the 

class is not complex enough to be part of a software system. Such a class could be removed 

in the subsequent versions or could undergo change to increase its use in the system. 

3.2 Metrics Selected for Study 

The class-level metrics are used to indicate the internal properties of a class (LOC, NOM, 

etc) and the association between classes (CBO, NOC, etc). 

In our last study we used only C & K metrics [3] given their simplicity and the amount of 

information these 6 metrics can alone provide. This time however we use the metrics 

provided by Understand. Understand is a static analysis tool for maintaining, measuring, & 

analyzing critical or large code bases [29]. By using Understand we can calculate up to 22 

complexity metrics [30], 42 count metrics [31] and 29 object-oriented metrics [32]. 

Out of these 93 metrics only 7 are required to examine a software system for the smells listed 

above. Table 3.2 summarizes the metrics selected for this study and is followed by a brief 

description of each metric. 

Metric Estimation Made 

CountDeclMethod Number of Local Methods Declared in Class 

CountLineCode Lines of Code in the Class 

CountDeclInstanceVariable Number of Instance Variables Declared 
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CountClassDerived Number of Direct Successors of a Class 

MaxInheritanceTree Maximum Inheritance Depth, aka DIT 

AvgCyclomatic Average Cyclomatic Complexity of Class 

PercentLackOfCohesion Lack of Cohesion, aka LCOM 

Table 3.2 : Object Oriented Metrics Selected for Study 

3.2.1 CountDeclMethod 

This metric estimates the total number of local methods in a class. The metric is essentially 

identical to NOM (number of methods) metric proposed by [6]. The NOM value of a class 

indicates its operational property. 

3.2.2 CountLineCode 

Number of lines containing source code, including inactive regions. It is essentially same as 

counting the LOC in a class. 

3.2.3 CountDeclInstanceVariable 

It is the count of the total number of variables/attributes declared by a class. 

3.2.4 CountClassDerived 

CountClassDerived corresponds to the number of immediate subclasses for a particular class. 

The metric CountClassDerived is the same as NOC proposed by C & K [3]. A high value for 

CountClassDerived implies a high level of reuse for the class as inheritance is also reuse. 

3.2.5 MaxInheritanceTree 

MaxInheritanceTree corresponds to the maximum depth of inheritance tree for the class. It is 

essentially the same as DIT proposed by C & K [3]. A high value of MaxInheritanceTree 
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signifies a very complex inheritance structure while a small value points to poor use of 

inheritance. 

3.2.6 AvgCyclomatic 

AvgCyclomatic give us an estimate of the total class complexity. It is the average Cyclomatic 

complexity of all nested methods for a class [30]. 

3.2.7 PercentLackOfCohesion 

PercentLackOfCohesion is the same as LCOM. It estimates the degree of cohesion for a 

class. PrecentLackOfCohesion is 100% minus the average cohesion for package entities [32]. 

If LCOM is low, the class is not very cohesive and vice versa. 

3.3 Code Smells & Their Relation to Metrics 

Essentially, code smells are just presence of certain metric values over or below a particular 

threshold. For example, HasChildren code smell for a class can be estimated by taking into 

account the value of NOC metric for that class. If NOC > 0 for the class under test, it carries 

the HasChildren smell. 

Once a suitable threshold is selected we can simply check the class for metric values. Every 

smell has one or more metrics associated to its presence. Table 3.3 shows the odours along 

with the metrics associated to it. All that is to be done is to check the corresponding metric(s) 

beyond the specified threshold. If it is present, the odour exists, otherwise not. 

Smell Metrics Used to Investigate Their Presence 

ClassOneMethod CountDeclMethod 

ChildClass CountDeclMethod, CountLineCode, CountDeclInstanceVariable 



 

Nakul Pritam, “Empirical Assessment of Code Smells For 

Predicting Software Change Proneness”  13 

 

HasChildren CountClassDerived 

LargeClass CountLineCode 

LowCohesion PercentLackOfCohesion 

ComplexClassOnly AvgCyclomatic 

FewMethod CountDeclMethod 

ManyAttributes CountDeclInstanceVariable 

OneChildClass CountClassDerived 

NoInheritance MaxInheritanceTree 

DataClass CountDeclMethod, CountDeclInstanceVariable 

TwoInheritance MaxInheritanceTree 

NotComplex AvgCyclomatic 

Table 3.3: Code Smells and Related Metrics 

3.4 Empirical Data Collection 

We investigate the results obtained over a set of 14 software systems. 

3.4.1 AOI 

Art of Illusion is a free, open source 3D modelling and rendering studio. Many of its 

capabilities rival hose found in commercial programs. Highlights include subdivision surface 

based modelling tools, skeleton based animation, and a graphical language for designing 

procedural textures and materials. (artofillusion.com) 

We considered versions 2.0 and 2.9 for this study which consisted of 249 common classes. 

202 out of these exhibited change while 47 did not. 
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3.4.2 CheckStyle 

CheckStyle is a development tool to help programmers write Java code that adheres to a 

coding standard. It automates the process of checking Java code to spare humans of this 

boring (but important) task. This makes it ideal for projects that want to enforce a coding 

standard. (checkstyle.sourceforge.net) 

We considered versions 5.2 and 5.5 for this study which consisted of 693 common classes. 

145 out of these exhibited change while 548 did not. 

3.4.3 FreePlane 

FreePlane is free and open source software to support thinking, sharing information and 

getting things done at work, in school and at home. The core of the software consists of 

functions for mind mapping, also called concept mapping or information mapping, and tools 

for using mapped information. FreePlane runs on any operating system on which a current 

version of Java is installed and from USB. (freeplane.sourceforge.net) 

We considered versions 1.1.1 and 1.1.3 for this study which consisted of 572 common 

classes. 29 out of these exhibited change while 543 did not. 

3.4.4 jKiwi 

The aim of the jKiwi project is to bring to the open source community a software that simply 

does not exist for free; that is an application capable of doing virtual makeup (concealer 

paint, eye shadows, blush, contact lenses for eye colours, change lip colours, etc.) and virtual 

hair styler (try different hair cuts in different colours), by using a given user's photo. 

(jkiwi.com) 
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We considered versions 0.91 and 0.95 for this study which consisted of 45 common classes. 

23 out of these exhibited change while 22 did not. 

3.4.5 Joda 

Joda-Time provides a quality replacement for the Java date and time classes. The design 

allows for multiple calendar systems, while still providing a simple API. The 'default' 

calendar is the ISO8601 standard which is used by XML. The Gregorian, Julian, Buddhist, 

Coptic, Ethiopic and Islamic systems are also included, and we welcome further additions. 

Supporting classes include time zone, duration, and parsing. (joda-time.sourceforge.net) 

We considered versions 1.0 and 2.1 for this study which consisted of 135 common classes. 

103 out of these exhibited change while 32 did not. 

3.4.6 jStock 

JStock makes it easy to track your stock investment. It provides well organized stock market 

information, to help you decide your best investment strategy. (jstock.sourceforge.net) 

We considered versions 1.0.5 and 1.0.6 for this study which consisted of 207 common 

classes. 108 out of these exhibited change while 99 did not. 

3.4.7 jText 

Schoolprogramm for learning ten-finger-typing. The program is made for a class test. It sends 

the text, written by the pupil, to the teacher, and checks the text for mistakes. 

(sourceforge.net/projects/jtext) 

We considered versions 5.0 and 5.1 for this study which consisted of 314 common classes. 

181 out of these exhibited change while 133 did not. 
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3.4.8 LWJGL 

The Lightweight Java Game Library (LWJGL) is a solution aimed directly at professional 

and amateur Java programmers alike to enable commercial quality games to be written in 

Java. LWJGL provides developers access to high performance cross platform libraries such 

as OpenGL (Open Graphics Library), OpenCL (Open Computing Language) and OpenAL 

(Open Audio Library) allowing for state of the art 3D games and 3D sound. Additionally 

LWJGL provides access to controllers such as Gamepads, Steering wheel and Joysticks. All 

in a simple and straight forward API. (lwjgl.org) 

We considered versions 1.0 and 2.8 for this study which consisted of 31 common classes. 26 

out of these exhibited change while 5 did not. 

3.4.9 ModBus 

A high-performance and ease-of-use implementation of the ModBus protocol written in Java 

by Serotonin Software. Supports ASCII, RTU, TCP, and UDP transports as slave or master, 

automatic request partitioning and response data type parsing. 

(sourceforge.net/projects/modbus4j) 

We considered versions 1.01 and 1.02 for this study which consisted of 86 common classes. 

69 out of these exhibited change while 17 did not. 

3.4.10 openGTS 

OpenGTS™ ("Open GPS Tracking System") is the first available open source project 

designed specifically to provide web-based GPS tracking services for a "fleet" of vehicles. To 

date, OpenGTS™ has been downloaded and put to use in over 100 countries around the 

world to track many 1000's of vehicles/assets around all 7 Continents. The types of vehicles 
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and assets tracked include taxis, delivery vans, trucks/trailers, farm equipment, personal 

vehicles, service vehicles, containers, ships, ATVs, personal tracking, cell phones, and more. 

(opengts.sourceforge.net) 

We considered versions 2.1.6 and 2.4.0 for this study which consisted of 161 common 

classes. 131 out of these exhibited change while 30 did not. 

3.4.11 openRocket 

OpenRocket is a free, fully featured model rocket simulator that allows you to design and 

simulate your rockets before actually building and flying them. The main features include 

six-degree-of-freedom flight simulation, automatic design optimization, real-time simulated 

altitude, velocity and acceleration display, staging and clustering support, cross-platform. 

(openrocket.sourceforge.net) 

We considered versions 1.1.6 and 12.03 for this study which consisted of 83 common classes. 

34 out of these exhibited change while 49 did not. 

3.4.12 Quartz 

Quartz is a full-featured, open source job scheduling service that can be integrated with, or 

used alongside virtually any Java EE or Java SE application - from the smallest stand-alone 

application to the largest e-commerce system. Quartz can be used to create simple or complex 

schedules for executing tens, hundreds, or even tens-of-thousands of jobs; jobs whose tasks 

are defined as standard Java components that may execute virtually anything you may 

program them to do. The Quartz Scheduler includes many enterprise-class features, such as 

JTA transactions and clustering. (quartz-scheduler.org) 
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We considered versions 1.5.2 and 1.6.6 for this study which consisted of 93 common classes. 

83 out of these exhibited change while 10 did not. 

3.4.13 Spring 

The dominant application framework for Java, Spring solves core enterprise development and 

runtime problems, offering configuration via Dependency Injection; declarative services via 

AOP; and packaged enterprise services. (sourceforge.net/projects/springframework) 

We considered versions 1.2 and 1.2.9 for this study which consisted of 1333 common classes. 

588 out of these exhibited change while 745 did not. 

3.4.14 SubSonic 

Subsonic is a free, web-based media streamer, providing ubiquitous access to your music. 

Use it to share your music with friends, or to listen to your own music while at work. You 

can stream to multiple players simultaneously, for instance to one player in your kitchen and 

another in your living room. Subsonic is designed to handle very large music collections 

(hundreds of gigabytes). Although optimized for MP3 streaming, it works for any audio or 

video format that can stream over HTTP, for instance AAC and OGG. By using transcoder 

plug-ins, Subsonic supports on-the-fly conversion and streaming of virtually any audio 

format, including WMA, FLAC, APE, Musepack, WavPack and Shorten. (subsonic.org) 

We considered versions 2.8 and 4.6 for this study which consisted of 121 common classes. 95 

out of these exhibited change while 26 did not. 

The data collection for this study is twofold. 

Firstly, we downloaded two stable releases of each system listed above. Each set of source 

files is then pre-processed. Pre-processing included removing all Java files in either version 



 

Nakul Pritam, “Empirical Assessment of Code Smells For 

Predicting Software Change Proneness”  19 

 

that are not present in the other version. In totality, all 14 systems combined had 

approximately 10000 classes in two versions of each system out of which a little more than 

8200 were left after pre-processing. This essentially means that we are left with around 4100 

unique classes spanning over 14 software systems. 

The next step in this process is to calculate the exact change a class has gone through in the 

two stated versions. For this purpose, we use an open-source tool named CLOC. CLOC 

examines two versions of the same file and gives as output the following data, 

1. The number of lines unchanged. 

2. The number of lines added to the prior version. 

3. The number of lines deleted from the prior version. 

4. The number of lines modified over the two versions. 

These outputs are then used to calculate the amount of change as follows, 

Total Change = No. of lines added + No. of lines deleted + 2*No. of lines modified 

The number of lines modified is multiplied by 2 because modification is the same as deleting 

one line and adding one line. Figure 3.1 shows the distribution of change in our dataset. 

 

Figure 3.1: Distribution of change-prone and not change-prone classes 

 

Classes with change

Classes with no change
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Table 3.1 summarizes the dataset we will use for this study, 

S.No Name Ver. 1 Ver. 2 P/L 

Used 

Total 

LOC 

Total 

Classes 

Classes 

Exhibiting 

Change 

Classes 

Without 

Change 

1 AOI 2.0 2.9 Java 58260 249 202 47 

2 CheckStyle 5.2 5.5 Java 50461 693 145 548 

3 FreePlane 1.1.1 1.1.3 Java 58286 572 29 543 

4 jKiwi 0.91 0.95 Java 8851 45 23 22 

5 Joda 1.0 2.1 Java 34705 135 103 32 

6 jStock 1.0.5 1.0.6 Java 35205 207 108 99 

7 jText 5.0 5.1 Java 67875 314 181 133 

8 LWJGL 1.0 2.8 Java 2813 31 26 5 

9 ModBus 1.01 1.02 Java 4212 86 69 17 

10 openGTS 2.1.6 2.4.0 Java 60593 161 131 30 

11 openRocket 1.1.6 12.03 Java 9279 83 34 49 

12 Quartz 1.5.2 1.6.6 Java 19123 93 83 10 

13 Spring 1.2 1.2.9 Java 111665 1333 588 745 

14 SubSonic 2.8 4.6 Java 9162 121 95 26 

Table 3.1: Summary of the Dataset used 

Once we have calculated the exact change for each class we need to examine them for odours 

of code smells discussed in the previous chapter. To do this we examine the classes for the 

values of metrics. We use a commercial tool called Understand [29] for this purpose. 

Understand allows us to estimate the metric values for each system and export the results as a 

comma-separated-value list. 

We then apply the thresholds selected for metrics and mark the truth value of each smell in 

each class. The thresholds for all metrics along with the corresponding smell are given in 

Appendix B. 

3.5 Dependent & Independent Variables 

The dependent variable in this study is change proneness. Our objective is to empirically 

investigate the relationship between change proneness of a class and the code smells it 

carries.  The dataset contains 14 attributes per tuple, 13 of these are independent variables, 
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i.e. code smells while the 14
th

 attribute is dependent, i.e. change. The code smells which act 

as independent variables have been discussed in section 3.1. 
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Chapter 4 

RESEARCH METHODOLOGY 

 

4.1 Methodology 

Figure 4.1 provides an outline of the methodology used in this study.  

 

  

Figure 4.1: Outline of Research Methodology 
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The entire process can be divided into three parts, 

1. Data acquisition and processing. 

2. Change and smell estimation. 

3. Analysis using Machine Learning Methods. 

4.1.1 Data acquisition and processing 

In this step the empirical data is collected and processed. All the unnecessary files (files not 

present in both versions of system, interface files) during this step. 

4.1.2 Change and smell estimation 

In this step the actual change a class undergoes in two versions is calculated. The details of 

this calculation are already stated in chapter 3. Following this, we obtain the metric values for 

each class in each system. These metrics are then used to analyse each class for code smells. 

4.1.3 Analysis using Machine Learning Methods 

The data obtained after step 2 is then used with six machine learning algorithms (described in 

section 4.3) to assess the power of code smells in predicting change proneness. 

4.2 Class Selector – A Tool to Pre-Process Source Files for Analysis of Change 

The first step to estimate change is the selection of common classes in two versions of a 

software system. Doing so manually is a tiresome process. While conducting this study we 

found that it is important that we have a tool that automatically discards classes which are not 

of interest so that the process can be quickened and the chances of error be minimized. 

Figure 4.2 shows the home screen of the tool. 
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Figure 4.2: Snapshot of Tool 

4.2.1 Module 1 – FilesLoader 

The FilesLoader module interacts with the directories holding source files for the two 

versions of the software system under examination. It gives as output two arrays holding the 

file names of all .java files in the source directories specified. 

4.2.2 Module 2 – DataProcessor 

The DataProcessor module takes as input the arrays supplied by the FilesLoader module and 

removes from each iteratively checks each file in each array for presence in the other array. If 

the file is present in the other array it is left as it is, otherwise it is deleted using native system 

calls. 



 

Nakul Pritam, “Empirical Assessment of Code Smells For 

Predicting Software Change Proneness”  25 

 

Since the system calls used in this tool are native to the Windows OS, it should not be used 

on UNIX or Linux even when Java provides portability. 

4.3 Machine Learning Algorithms for Analysis 

4.3.1 Naive Bayes Classifier 

Naïve Bayes classifier is a simple probabilistic classifier which is based on the Bayesian 

theorem which represents a supervised learning method. It naively assumes 

independence, it is only valid to multiply probabilities when the events are independent 

[38]. Given a class variable, a Naive Bayes classifier assumes that the presence of a 

particular feature of a class is not related to the presence of any other feature. Given the 

set of variables � = {��, ��, ��, …	��}, a probabilistic classifier can be defined as 

(�|��, ��, ��, …	��)  

Where, �  is a dependent class variable with a set of possible outcomes conditional on 

several variables.  

Using Bayes Theorem,  

p(C)|p(��, ��, ��, …	��) = p(C)	p(��, ��, ��, …	��	|�)
p(��, ��, ��, …	��)  

Thus, we want to construct the posterior probability of the event C. Thus, the equation 

can be written as:                                ��������� = �����∗ �!" �#��$
%&�$"�'"  

 

Naïve Bayes algorithm is quite accurate and very fast and therefore, is a popular 

technique for classification. It is said that Naïve Bayes outperforms more sophisticated 

classifiers on many datasets, achieving impressive results [37]. 



 

 

Department of Computer Engineering, Delhi Technological University 

26 

 

4.3.2 Multilayer Perceptron 

A Multilayer Perceptron is a feed forward artificial neural network model that maps different 

input data instances onto a set of appropriate output. An MLP consists of multiple layers of 

nodes in a directed graph, with each layer fully connected to the next one. Each node in all 

the layers is a neuron associated with a nonlinear activation function except for the input 

nodes. MLP utilizes a supervised learning technique called back-propagation for training the 

network. MLP is a modification of the standard linear perceptron, which can distinguish data 

that is not linearly separable. 

Fig. 4.3 shows the architecture of Multilayer Perceptron which contains one input layer, two 

hidden layers and one output layer. 

 

Figure 4.3: Architecture of Multilayer Perceptron with 2 hidden layers 

4.3.2.1 The Algorithm 

The training of MLP proceeds in 2 phases: 

• In the forward phase, the synaptic weights are fixed and the values in the input pattern 

are propagated through the network layer by layer until it reaches the output. 
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• In the backward phase, an error is generated by comparing the observed output of the 

network with the target response. The resulting error is propagated through the 

network, layer by layer in the backward direction. In this phase successive 

adjustments are applied to the synaptic weights.   

4.3.2.2 Weight Training Calculation in Backward phase 

Let the input pattern be E. Let the target and observed response for node ‘ i’ be ti(E) and 

oi(E) respectively. Let wij to specify weight between node i and node j 

1. The Error Term for output unit k is calculated first as: 

()* 	= 	 �!(+)(1 − �!(+))(�!(+) − �!(+)) 

2. The Error Term for hidden unit k is:	 

(.* 	= 	 ℎ!(+)(1 − ℎ!(+))	 0 1!�()2
�3	�456457

 

3. For each weight wij between input node i and hidden node j, calculate  

∆�9= :(.;�� 

where, xi is the input to the network to the input node i for input pattern E and η is 

learning rate. 

4. For each weight wij between hidden node i and output node j, calculate: 

∆�9= :(�;ℎ�(+) 

where, hi(E) is the output from hidden node i for E. 

5. Finally, add on each ∆ij on to  wij  

wij = wij + ∆ij 
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6. In this way, the error is propagated back through the MLP. 

4.3.3 LogitBoost 

Like AdaBoost, LogitBoost is also a boosting scheme which was proposed by Jerome 

Friedman, Trevor Hastie and Robert Tibshirani. Boosting is a process of applying a 

classification algorithm to the training instances, reweighting them again and again, and then 

taking a majority vote of the number of classifiers thus produced. LogitBoost algorithm takes 

AdaBoost algorithm as a additive model and applies the cost functional of logistic regression 

[36]. LogitBoost is suitable for problems involving two class situations. 

4.3.4 Bagging 

Bagging is an acronym for Bootstrap Aggregating. It was proposed by Leo Breiman [35] in 

1994 to improve the classification by combining classifications of randomly generated 

training sets. It is a machine learning ensemble method to improve machine learning and 

statistical classification of regression models in terms of stability and classification accuracy. 

Bagging is a meta-algorithm which is based on averaging the results of various bootstrap 

samples. It is usually applied to decision tree models, but it can be used with any type of 

model. 

Bagging = Bootstrapping + Aggregation 

A learning set of L consists of data {(yn, xn), n = 1, 2, . . , N} where the y’s are either class 

labels or a numerical response. Bagging is a procedure for using this learning set to form a 

predictor ϕ (x, L) — if the input is x we predict y by ϕ (x, L).  
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4.3.4.1 Aggregation 

Suppose we are given a sequence of learning sets {Lk} each consisting of N independent 

observations from the same underlying distribution as L. Our mission is to use the {Lk} to get 

a better predictor than the single learning set predictor ϕ (x, L). The restriction is that all we 

are allowed to work with is the sequence of predictors {ϕ (x, L)}. If y is numerical, ϕ (x, L) is 

replaced by average of ϕ (x, Lk) over k. 

ϕA(x) = EL ϕ (x, L) 

where EL denotes the expectation over L, and the subscript A in ϕA denotes aggregation. 

4.3.5 Random Forest 

Random forest is an ensemble classifier that is made up of many decision trees and outputs 

the class that is the mode of the class's output by individual trees [33]. The algorithm for 

inducing a random forest was developed by Leo Breiman
 
and Adele Cutler in 1999. The term 

“Random Forest” came from “randomized decision forests” that was first proposed by Tin 

Kam Ho of Bell Labs in 1995. The method combines idea of bagging and the random 

selection of features, introduced independently by Ho and Amit and Geman in order to 

construct a collection of decision trees with controlled variation. Breiman [34] defines 

random forest as follows: 

 “A random forest is a classifier consisting of a collection of tree-structured classifiers 

{h(x,Θk), k = 1, . . .} where the Θk are independent identically distributed random vectors and 

each tree casts a unit vote for the most popular class at input x.”  
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Figure 4.4: A Forest of Trees 

4.3.5.1 The Algorithm 

The Random Forest algorithm for both classification and regression can be described as 

follows: 

1. Choose T—number of trees to grow. 

2. Choose m—number of variables used to split each node. m ≪ M, where M is the 

number of input variables. m is hold constant while growing the forest.  

3. Grow T trees. When growing each tree do the following: 

a. Construct a bootstrap sample of size n sampled from Sn with replacement and 

grow a tree from this bootstrap sample. 

b. At each node, rather than choosing the best split among all predictor variables, 

select m variables at random and use them to find the best split. 

4. Grow the tree to a maximal extent. There is no pruning. 

(Bagging: special case of random forests obtained when m, number of randomly 

sampled variables = M, total number of variables) 



 

Nakul Pritam, “Empirical Assessment of Code Smells For 

Predicting Software Change Proneness”  31 

 

5. Predict the new data by aggregating the predictions of the T trees (i.e., majority votes 

for classification, average for regression). 

In standard decision trees, each node is split on the basis of the best split among all variables. 

In a random forest, each node is split using the best among a subset of predictors randomly 

chosen at that node. This counterintuitive strategy turns out to perform very well when 

compared to many other classifiers, including discriminant analysis, support vector machines 

and neural networks, and is robust against over fitting.  

4.3.6 Decision Tree  

Decision tree learning uses a decision tree as a predictive model whose goal is to create a 

model that predicts the value of a target variable based on several input variables or 

attributes. 

 

Figure 4.5: A Decision Tree 
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A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the 

output. In these tree structures, leaves represent class labels and branches 

represent conjunctions of attributes that lead to that class labels. ID3 is one of the decision 

tree algorithms that we have used for our data analysis. 

4.3.6.1 The Algorithm 

The ID3 algorithm can be summarized as follows: 

1. Take all unused attributes and count their entropy concerning test samples 

2. Choose attribute for which entropy is minimum (or, equivalently, information gain is 

maximum) 

3. Make node containing that attribute 

The algorithm is as follows: 

1. Create a root node for the tree 

2. If all examples are positive, Return the single-node tree Root, with label = +. 

3. If all examples are negative, Return the single-node tree Root, with label = -. 

4. If number of predicting attributes is empty, then Return the single node tree Root, with 

label = most common value of the target attribute in the examples. 

5. Otherwise Begin 

a. A = The Attribute that best classifies examples. 

b. Decision Tree attribute for Root = A. 

c. For each possible value, , of A, 

i. Add a new tree branch below Root, corresponding to the test A = . 

ii. Let Examples() be the subset of examples that have the value  for A 

iii. If Examples() is empty 
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1. Then below this new branch add a leaf node with label = most 

common target value in the examples 

iv. Else below this new branch add the subtree ID3 (Examples(), 

Target_Attribute, Attributes – {A}) 

6. End 

7. Return Root 
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Chapter 5 

RESULTS 

 

In this chapter, we analyze the effectiveness of code smells in predicting weather a class will 

undergo change in the subsequent versions or not. The analysis is done on results of a dataset 

containing 4120 classes from 14 software systems; we have employed 6 machine learning 

algorithms explained in the previous chapter to predict the model best suited for evaluation 

the change in software. The measures are used to evaluate the performance of each predicted 

model are given below: 

1. Sensitivity and Specificity: The sensitivity and specificity predict the correctness of the 

model. The percentage of classes correctly predicted to undergo change is called the 

sensitivity (True Positive Rate i.e. TPR) of the model. The percentage of classes correctly 

predicted not to change is called specificity (False Positive Rate i.e. FPR) of the model. 

Ideally, both the sensitivity and specificity should be high. 

2. Receiver Operating Characteristic (ROC) analysis: The performance of the outputs of 

the predicted models are evaluated using ROC analysis. It is an efficient method for 

evaluation of the performance of models.  

The ROC curve is defined as a plot of sensitivity (on the y-coordinate) versus its 1-

specificity (on the x coordinate). It is also known as a Relative Operating Characteristic 

curve, because it is a comparison of two operating characteristics (TPR & FPR). The 

construction of ROC curves enables us to select cutoff points between 0 and 1, and to 

determine sensitivity and specificity at each cut off point. The optimal cutoff point is the 
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one that maximizes both sensitivity and specificity. This point can be selected from the 

ROC curve. 

The accuracy of the model can be determined by applying it to the different data sets. We 

therefore, performed a 10-cross validation of the models [33]. In 10-cross validation, each 

dataset is divided into 10 equal subsets. One of the subsets is used as the test set and the other 

9 subsets are used to form a training set. 

5.1 Random Forest Analysis 

For each of the software systems, a random forest of 10 trees is constructed and each 

constructed while considering 4 random independent variables at each node. Table 5.1 shows 

the 10-cross validation results of all the 14 software systems. 

 

 

 
Sensitivity Specificity Cutoff Point AUC 

AOI 0.809 0.851 0.301500 0.893 

CheckStyle 0.531 0.889 0.187000 0.769 

FreePlane 0.724 0.670 0.034000 0.740 

jKiwi 0.739 0.682 0.346000 0.786 

Joda 0.719 0.738 0.162000 0.691 

jStock 0.889 0.667 0.350000 0.777 

jText 0.915 0.602 0.379500 0.786 

LWJGL 1.000 0.885 0.226500 0.915 

ModBus 0.647 0.797 0.251000 0.756 

openGTS 0.700 0.908 0.425000 0.790 

openRocket 0.824 0.837 0.622000 0.866 

Quartz 0.800 0.795 0.143000 0.747 

Spring 0.701 0.636 0.560500 0.732 

SubSonic 0.731 0.958 0.649000 0.848 

Table 5.1: 10-Cross validation results for Random Forest 
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Fig 5.1: ROC Curve for AOI 

 

Fig 5.2: ROC Curve for CheckStyle 

 

Fig 5.3: ROC Curve for FreePlane 

 

Fig 5.4: ROC Curve for jKiwi 



 

Nakul Pritam, “Empirical Assessment of Code Smells For 

Predicting Software Change Proneness”  37 

 

 

Fig 5.5: ROC Curve for Joda 

 

Fig 5.6: ROC Curve for jStock 

 

Fig 5.7: ROC Curve for jText 

 

Fig 5.8: ROC Curve for Quartz 
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Fig 5.9: ROC Curve for LWJGL 

 

Fig 5.10: ROC Curve for ModBus 

 

Fig 5.11: ROC Curve for openGTS 

 

Fig 5.12: ROC Curve for openRocket 
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Fig 5.13: ROC Curve for Spring 

 

Fig 5.14: ROC Curve for SubSonic 

 

5.2 Naïve Bayes Analysis 

Table 5.2 shows the 10-cross validation results of Naïve Bayes classifier for all the 14 

software systems. 

 Sensitivity Specificity Cutoff Point AUC 

AOI 0.830 0.856 0.345000 0.902 

CheckStyle 0.538 0.863 0.185000 0.757 

FreePlane 0.759 0.746 0.043000 0.784 

jKiwi 0.826 0.727 0.259000 0.834 

Joda 0.813 0.641 0.156000 0.738 

jStock 0.889 0.667 0.338500 0.758 

jText 0.931 0.564 0.531500 0.703 

LWJGL 1.000 0.885 0.292500 0.912 

ModBus 0.765 0.754 0.158000 0.690 

openGTS 0.767 0.931 0.403500 0.836 

openRocket 0.824 0.816 0.521500 0.874 

Quartz 0.900 0.687 0.735000 0.796 

Spring 0.650 0.639 0.552500 0.715 

SubSonic 0.731 0.937 0.586000 0.862 

Table 5.2: 10-cross validation results for Naïve Bayes Classifier 
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Fig 5.15: ROC Curve for AOI 

 

Fig 5.16: ROC Curve for CheckStyle 

 

Fig 5.17: ROC Curve for FreePlane 

 

Fig 5.18: ROC Curve for jKiwi 
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Fig 5.19: ROC Curve for Joda 

 

Fig 5.20: ROC Curve for jStock 

 

Fig 5.21: ROC Curve for jText 

 

Fig 5.22: ROC Curve for Quartz 
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Fig 5.23: ROC Curve for LWJGL 

 

Fig 5.24: ROC Curve for ModBus 

 

Fig 5.25: ROC Curve for openGTS 

 

Fig 5.26: ROC Curve for openRocket 
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Fig 5.27: ROC Curve for Spring 

 

Fig 5.28: ROC Curve for SubSonic 

 

5.3 Bagging Analysis 

Table 5.3 shows the 10-cross validation result of bagging for all the 14 software systems. 

 Sensitivity Specificity Cutoff Point AUC 

AOI 0.830 0.837 0.287500 0.903 

CheckStyle 0.510 0.949 0.221500 0.750 

FreePlane 0.517 0.836 0.048500 0.689 

jKiwi 0.826 0.818 0.378000 0.821 

Joda 0.688 0.689 0.201500 0.711 

jStock 0.907 0.687 0.329500 0.766 

jText 0.931 0.591 0.514000 0.759 

LWJGL 1.000 0.985 0.145000 0.908 

ModBus 0.647 0.783 0.150000 0.655 

openGTS 0.767 0.931 0.346500 0.799 

openRocket 0.882 0.857 0.504500 0.833 

Quartz 0.400 0.783 0.112000 0.543 

Spring 0.723 0.628 0.520500 0.732 

SubSonic 0.731 0.937 0.383000 0.791 

Table 5.3: 10-cross validation results for Bagging 
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Fig 5.29: ROC Curve for AOI 

 

Fig 5.30: ROC Curve for CheckStyle 

 

Fig 5.31: ROC Curve for FreePlane 

 

Fig 5.32: ROC Curve for jKiwi 
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Fig 5.33: ROC Curve for Joda 

 

Fig 5.34: ROC Curve for jStock 

 

Fig 5.35: ROC Curve for jText 

 

Fig 5.36: ROC Curve for Quartz 
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Fig 5.37: ROC Curve for LWJGL 

 

Fig 5.38: ROC Curve for ModBus 

 

Fig 5.39: ROC Curve for openGTS 

 

Fig 5.40: ROC Curve for openRocket 
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Fig 5.41: ROC Curve for Spring 

 

Fig 5.42: ROC Curve for SubSonic 

 

5.4 Decision Tree Analysis 

In the Decision Tree method, an independent variable is selected at each node of the tree. The 

tree is traversed during classification from the root until a leaf node is reached. Each leaf 

node is associated with a decision or classification. ID3 algorithm is used to create the 

decision tree. Table 5.4 shows the 10-cross validation results of all the 14 systems. 

 Sensitivity Specificity Cutoff Point AUC 

AOI 0.809 0.856 0.296000 0.889 

CheckStyle 0.510 0.878 0.185000 0.752 

FreePlane 0.586 0.820 0.091500 0.741 

jKiwi 0.654 0.864 0.583500 0.802 

Joda 0.699 0.687 0.882000 0.650 

jStock 0.889 0.697 0.370500 0.752 

jText 0.923 0.619 0.387500 0.790 

LWJGL 1.000 0.885 0.250000 0.904 

ModBus 0.647 0.739 0.225000 0.743 

openGTS 0.700 0.924 0.550000 0.766 

openRocket 0.853 0.857 0.568000 0.858 

Quartz 0.600 0.819 0.198500 0.658 
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Spring 0.622 0.725 0.438000 0.731 

SubSonic 0.731 0.937 0.471000 0.840 

Table 5.4: 10-cross validation results for Decision Tree 

 

 

Fig 5.43: ROC Curve for AOI 

 

Fig 5.44: ROC Curve for CheckStyle 

 

Fig 5.45: ROC Curve for FreePlane 

 

Fig 5.46: ROC Curve for jKiwi 
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Fig 5.47: ROC Curve for Joda 

 

Fig 5.48: ROC Curve for jStock 

 

Fig 5.49: ROC Curve for jText 

 

Fig 5.50: ROC Curve for Quartz 
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Fig 5.51: ROC Curve for LWJGL 

 

Fig 5.52: ROC Curve for ModBus 

 

Fig 5.53: ROC Curve for openGTS 

 

Fig 5.54: ROC Curve for openRocket 
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Fig 5.55: ROC Curve for Spring 

 

Fig 5.56: ROC Curve for SubSonic 

 

5.5 LogitBoost Analysis 

Table 5.5 shows the 10-cross validation results of all the 14 systems. 

 Sensitivity Specificity Cutoff Point AUC 

AOI 0.809 0.847 0.318000 0.907 

CheckStyle 0.531 0.876 0.175500 0.756 

FreePlane 0.724 0.790 0.085500 0.759 

jKiwi 0.783 0.682 0.232500 0.848 

Joda 0.813 0.660 0.123000 0.752 

jStock 0.907 0.677 0.442500 0.749 

jText 0.923 0.409 0.473000 0.756 

LWJGL 1.000 0.885 0.254500 0.900 

ModBus 0.647 0.174 0.249000 0.646 

openGTS 0.767 0.901 0.209500 0.833 

openRocket 0.794 0.878 0.676500 0.878 

Quartz 0.900 0.819 0.135000 0.797 

Spring 0.619 0.704 0.604500 0.722 

SubSonic 0.731 0.937 0.229500 0.866 

Table 5.5: 10-cross validation results for LogitBoost 
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Fig 5.57: ROC Curve for AOI 

 

Fig 5.58: ROC Curve for CheckStyle 

 

Fig 5.59: ROC Curve for FreePlane 

 

Fig 5.60: ROC Curve for jKiwi 
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Fig 5.61: ROC Curve for Joda 

 

Fig 5.62: ROC Curve for jStock 

 

Fig 5.63: ROC Curve for jText 

 

Fig 5.64: ROC Curve for Quartz 
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Fig 5.65: ROC Curve for LWJGL 

 

Fig 5.66: ROC Curve for ModBus 

 

Fig 5.67: ROC Curve for openGTS 

 

Fig 5.68: ROC Curve for openRocket 



 

Nakul Pritam, “Empirical Assessment of Code Smells For 

Predicting Software Change Proneness”  55 

 

 

Fig 5.69: ROC Curve for Spring 

 

Fig 5.70: ROC Curve for SubSonic 

 

5.6 Multilayer Perceptron Analysis 

The result of 10-cross validation over multilayer perceptron technique over the data is shown 

below. We have used only 1 hidden layer. There is only 1 output node in output layer whose 

value greater than a threshold (cutoff point) shows weather the class undergoes change or not.  

 Sensitivity Specificity Cutoff Point AUC 

AOI 0.830 0.748 0.213000 0.888 

CheckStyle 0.531 0.870 0.189500 0.767 

FreePlane 0.724 0.807 0.051000 0.790 

jKiwi 0.609 0.955 0.738500 0.790 

Joda 0.750 0.689 0.103500 0.725 

jStock 0.889 0.677 0.424000 0.757 

jText 0.900 0.624 0.439000 0.778 

LWJGL 1.000 0.885 0.277500 0.896 

ModBus 0.588 0.884 0.308000 0.749 

openGTS 0.700 0.916 0.507000 0.827 

openRocket 0.853 0.857 0.548000 0.847 

Quartz 0.800 0.819 0.169000 0.797 

Spring 0.650 0.651 0.552000 0.728 

SubSonic 0.731 0.947 0.516000 0.852 

Table 5.6: 10-cross validation results for Multilayer Perceptron 
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Fig 5.71: ROC Curve for AOI 

 

Fig 5.72: ROC Curve for CheckStyle 

 

Fig 5.73: ROC Curve for FreePlane 

 

Fig 5.74: ROC Curve for jKiwi 
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Fig 5.75: ROC Curve for Joda 

 

Fig 5.76: ROC Curve for jStock 

 

Fig 5.77: ROC Curve for jText 

 

Fig 5.78: ROC Curve for Quartz 
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Fig 5.79: ROC Curve for LWJGL 

 

Fig 5.80: ROC Curve for ModBus 

 

Fig 5.81: ROC Curve for openGTS 

 

Fig 5.82: ROC Curve for openRocket 
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Fig 5.83: ROC Curve for Spring 

 

Fig 5.84: ROC Curve for SubSonic 

 

5.7 Model Evaluation 

We have not selected any arbitrary cutoff point and to obtain a balance between the number 

of classes predicted as change prone and not, the cutoff point of the predicton model is 

determined by ROC analysis. Area under the ROC Curve (AUC) is a combined measure of 

sensitivity and specificity. Hence, we have used the AUC metric for computing the accuracy 

of the predicted models. The models are applied on the same dataset from which they are 

derived using 10-cross validation of all the models. 

The AUC of all the models predicted using Multilayer Perceptron technique is greater than 

the AUC of all the other models predicted using the other machine learning techniques 

(Naïve Bayes, Random Forest, Bagging, LogitBoost, Decision Table). The details of AUC 

can be checked from Table and the authenticity of the same can be verified. 



 

 

Department of Computer Engineering, Delhi Technological University 

60 

 

Both the sensitivity and specificity should be high to predict good and bad websites. The 

models predicted with the Naïve Bayes, Random Forest and Multilayer Perceptron techniques 

have higher accuracy in terms of sensitivity and specificity. 

Overall, in terms of sensitivity, specificity and AUC, the best model suitable for predicting 

weather a class in change prone or not is determined to be Multilayer Perceptron. 

5.8 Discussion 

For a technique to be effective in making predictions a probability of correct classification 

should be at least 70%. We use two different measures to evaluate the correctness of a model, 

i.e., sensitivity and specificity. Sensitivity is the number of correctly classified true instances 

while specificity is the number of correctly classified false instances. For a model to be 

effective, both these values should be high. This would mean that the model makes correct 

classifications for both true and false values. In other words, the model performs well for 

both true and false values. 

From the results it is clear that the Multilayer Perceptron model performs best in comparison 

to all other models. In our dataset of 14 software systems it exhibited a sensitivity of .70 or 

more in most cases and specificity of .67 or more. This means that over the dataset of 4120 

classes, the multilayer perceptron was able to correctly classify 1272 change prone classes 

out of 1817 and 1544 classes as not change prone out of 2303. A very encouraging number. 
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Chapter 6 

CONCLUSION & FUTURE WORK 

 

The aim of this study was to determine the prediction power of code smells for class level 

change proneness. We also constructed prediction models based on machine learning 

methods for the same. 

We started by collecting data in form of classes in open-source software systems. A total of 

4120 classes were selected for this study after pre-processing. The data hence obtained is then 

parsed through Understand in order to estimate metric values for all the 4120 classes. The 

metric values were then used to find which code smells persisted in which class. This step 

was followed by estimation of exact change a class went through. This was done by making 

use of an open-source tool called CLOC. Finally we applied machine learning methods to 

assess the effect of code smells on class level change proneness. 

In the process we developed a tool to pre-process software systems and make them ready for 

estimation of exact change. 

We conclude this study by stating that, 

• The use of code smells to predict change proneness for a class is a step in the right 

direction. The percentage of correct classification for this method is pretty good. 

• The Multilayer Perceptron technique provides the best results and prediction power in 

comparison or other machine learning models. 
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We also came across some problems that interested people can take up in the future, 

1. The threshold determining technique we used is trial and error. This technique is good 

enough for conducting studies but to make this method more repeatable and usable, 

we need to establish some kind of mathematical relations to estimate thresholds on the 

fly. 

2. We used only 13 code smells in this study. One of the limitations of our previous 

study was a small dataset which has been taken care of in this attempt, but the number 

of code smells proposed till date and the number of smells examined by us has a huge 

difference. 

3. The dataset we considered is based on open-source software where the systems are 

built by communities. Such prediction methods should be tested over closed source 

systems developed by professional developers in a real life software engineering 

situation. 
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Chapter 7 

PUBLICATIONS 

 

7.1 Communicated Papers 

The work done by us in this area has been communicated to an International Journal for review. 

The details of the paper are provided below, 

Journal Name: Software Quality Professional 

Web URL: http://asq.org/pub/sqp/ 

Paper Title: Empirical Validation of Code Smells for Predicting Software Change Proneness 

Authors: Ruchika Malhotra, Nakul Pritam 
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Appendix A 

NO. OF CLASSES IN SYSTEMS 

 

S.No. Name of System No. of  Common Classes 

1 AOI 249 

2 CheckStyle 693 

3 FreePlane 572 

4 jKiwi 45 

5 Joda 135 

6 jStock 207 

7 jText 314 

8 LWJGL 31 

9 ModBus 86 

10 openGTS 161 

11 openRocket 83 

12 Quartz 93 

13 Spring 1333 

14 SubSonic 121 

 

Total Classes = 4120*2 = 8240 
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Appendix B 

THRESHOLDS FOR METRICS 

 

Parameter Threshold 

WMC 4 

LCOM 10 

Private Variables 3 

Public Variables 5 

NOM 5 

Long Parameter List 4 
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Appendix C 

CHANGE DISTRIBUTION 
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Communicated Research Paper  

 

Assessment of Code Smells for Predicting 

Class Change Proneness 
Ruchika Malhotra, Nakul Pritam 

Department of Software Engineering, Delhi Technological University, Delhi 

ruchikamalhotra2004@yahoo.com, nakul.pritam@gmail.com 

 

Abstract- Poor design choices called anti-patterns manifest themselves in the source code as code smells. Code smell is a 

synonym for bad implementation and is assumed to make maintenance tasks difficult to perform. In this study we 

attempt to empirically validate whether it is possible to determine the degree of change-proneness for a class on the 

basis of certain code smells in an object-oriented system. In this study, we develop a tool to detect the presence of 13 

different code smells in a Java class using thresholds. The data used for assessment is source code of Quartz, an open 

source job scheduler, from two versions 1.5.2 and 1.6.6. A total of 79 classes are examined in this study. The results 

suggest a clear relationship between code smells and change proneness of a class. 

Keyword- Code Smells, Change Proneness, Software Maintenance 

1. INTRODUCTION 

As the complexity of software being developed is increasing so is the cost of maintaining it. With so many 

factors like time to market, budget and shortage of skilled labour limiting the development process it has 

become very difficult to built quality software. However, maintenance is something that every developer has to 

worry about because it is not possible to satisfy future requirements or to test the system inside out. Since it is 

not possible to predict the changes that a particular software system may invite, the maintenance costs and 

manpower for a software system remain a mystery till the time they realize themselves. 

Recently, a quality factor called change proneness has emerged and is used to quantify the amount of change a 

particular software system has undergone over two successive releases. The quantification is done at class level 

so the exact change a class went through over successive releases can be computed. 

Researchers over the globe have tried to club change proneness to various other attributes like design patterns, 

code smells and metrics. But the results however are still in the experiment phase. The most unpredictable 

component about change is that it is very much tied to software design and since software design is more of an 

art, it is not possible to confine it in theories. The theories we have till date usually aim at suggesting best 

practices rather than specifying exactly how a design must be made. 

There has been tremendous success in estimation of some parameters of software as early as in the design stage 

using patterns and metrics. These measures allow us to quantify certain aspects of the software and predict 

things that otherwise cannot be predicted till the implementation phase. This includes the work done by [3], [6] 

and [7] in presenting metric suites, each having its own domain of application and speciality. 

The motivation for this work comes from [1], where the authors have established a link between change 

proneness of a class and some code smells it carries. They tried out multiple versions of Eclipse and Azures and 

found out a relationship between code smells and change proneness. 
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In this study we empirically validate the ability of code smells to predict the degree of change proneness a class 

exhibits. We use a data set containing 79 classes obtained from an open-source task scheduler called Quartz as 

the subject of our study. We find the error in classifications that occur in predictions of change proneness made 

using code smells. Two versions of the system are used for this study, 1.5.2 and 1.6.6. We use the study 

conducted in [1] as the foundation and assess the presence of 13 code smells in each class in order to predict the 

degree of change proneness. 

The paper is organized as follows: Section 2 summarizes the work done in the field of metrics and quality. 

Section 3 explains the research background. Section 4 presents the methodology followed in this study. The 

analysis of results is discussed in Section 5. Finally, in Section 6 we summarize the conclusion and the future 

work that can be done in this area. 

2. RELATED WORK 

A lot of existing work has focussed on detection of smells. Moha et al. proposed DECOR
[4]

 for specification and 

detection of smells, [1] has established a relationship between code-smells in a class and the probability of it 

undergoing change in subsequent releases (change-proneness of a class). 

Theoretically, code smells [5] are the manifestation of bad implementation choices on the source code. 

Practically, they occur between design and implementation phases but their effects are visible most strongly in 

the source code. 

The structure of a class can be analysed by studying the metric values it produces. The earliest and most 

fundamentally strong metric suite was proposed by [3] with a total of 6 metrics. This was followed by [6] where 

a set of metrics that predict maintainability were proposed. In [7] the author proposed a set of design quality 

metrics which can be used directly at system level. Hence, a large number of metrics has been proposed till date 

and each set has its own importance. The class-level metrics are used to indicate the internal properties of a class 

(LOC, NOM, etc) and the association between classes (CBO, NOC, etc). We use C & K metrics [3] because of 

their simplicity and the broad range of coverage they have on the entire software system with inter-class and 

intra-class measures. 

Code smells [5] are bad implementation choices. Mostly, the roots of a code smell lie in the design phase but 

only in the implementation do they manifest themselves completely. Good implementation choices are called 

design patterns [8] while bad choices are called anti-patterns. The first description of anti-patterns was given by 

[9]. In [10], Fowler defined 22 code smells and suggests the areas where refactoring should be applied. And 

[11], [12] and [13] all define different classifications of smells and anti-patterns. 

Moha et al. have presented a method called DECOR in [4] which specifies and detects code smells. Many other 

techniques exist for this purpose, ranging from manual approaches [14], to heuristic based [15] and [16] and 

many others [17], [18], [19] and [20]. 

Change proneness of a class is the odds of it undergoing change in the subsequent version. Changes in a class 

can occur due to multiple reasons like change in requirements, adaptive maintenance, corrective maintenance, 

detected or undetected faults, performance enhancement, etc. Usually change in a class in measured manually 

by comparing two versions of the software but [1] has conducted an exploratory study and linked class change 

proneness to certain code smells. The results of [1] provide a good foundation to explore further in the direction. 

3. RESEARCH BACKGROUND 

3.1 Code Smells Selected For Study 

Table 1 summarizes the code smells selected to conduct this study. We selected this set of smells because in [1] 

all of the smells mentioned below affected the change proneness of at least one of the software systems 

considered by good measure. 

Smell Criteria for Presence 

ClassOneMethod A class with one method only 

ChildClass A class which declares large number of attributes & methods 

FieldPrivate A class which declares large number of private fields 



 

Nakul Pritam, “Empirical Assessment of Code Smells For 

Predicting Software Change Proneness”  81 

 

FieldPublic A class which declares public attributes 

HasChildren A class which has a large number of children 

LargeClass A class with large measure of LOC 

LongMethod A class which declares method(s) with large measure of LOC 

LowCohesion A class which lacks cohesion 

LongParameterListClass A class which declares method(s) which take large number of attributes 

ComplexClassOnly A class which declares method(s) highly complex methods 

MethodNoParameter A class which declares method(s) which take no parameter 

MultipleInterface A class which implements large number of interfaces 

NotComplex A class which is not doing much. 

TABLE 5: CODE SMELLS SELECTED FOR STUDY 

We have developed a CodeSniffer in JAVA to examine JAVA Classes for presence of the above code smells. 

The tool analyses two sets of data for that class, these are discussed below. 

3.2 Object-Oriented Metrics Selected for Study 

Table 2 summarizes the object oriented metrics used in this study. We use C & K [3] metrics for estimation of 

some of the code smells used in this study. The reason for using C & K metrics is availability of open-source 

tools to calculate them for certain software systems. 

We use CJKM [21] in the backend of our tool to estimate metric values for Java classes and use the following 

metrics for our study, 

Metric Description 

WMC Estimate of total class complexity 

DIT Estimates the maximum depth of inheritance 

NOC Number of immediate subclasses 

CBO Number of classes the given class is coupled to 

RFC Number of methods a particular class can call 

LCOM Estimates the degree of cohesion for a class 

TABLE 6: OBJECT ORIENTED METRICS SELECTED FOR STUDY 

3.3 Source Parameters Selected for Study 

Apart from using C & K [3] metrics, we use some parameters derived directly from Java source files to calculate 

some of the code smells and at the same time improve our estimation of smells derived from C & K metrics. 

Table 3 summarizes the 8 parameters used in this study, 

Parameters Description 

Number of Private Fields The count of total private fields declared in a class 

Number of Public Fields The count of total public fields declared in a class 

LOC for Class Lines of Code for a class 

Number of Interfaces Implemented This count estimates the number of interfaces implemented by a class 

Number of Long Methods The count of the number of long methods present in a class. 

Number of Methods Implemented The number of methods declared in a class. 

Number of Methods without 

Parameters 

The number of methods that take no parameters. 

Number of Methods with Long 

Parameter List 

The total number of methods in a class which take more than 4 

parameters. 

TABLE 7: SOURCE PARAMETERS SELECTED FOR STUDY 

3.4 Empirical Data Collection 

Quartz is an open-source job scheduler that can be used to develop schedules for simple to complex industrial 

problems. The tasks in Quartz are defined as Java components and can be executed virtually. The reason for 

choosing Quartz is its size. We downloaded two subsequent stable releases (1.5.2 and 1.6.6) of Quartz which 

contain more than 120 source files each. This allows us to ensure that the data collected for this study is as 

accurate as possible. 
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Since Quartz is average sized software we can manually pre-processed the source files. Pre-processing included 

removing all Java files in either version that are not present in the other version. Quartz 1.5.2 contained 132 Java 

files while Quartz 1.6.6 contained 183 Java files. Out of these, 129 Java files were present in both versions. 

Since a lot of files are also dedicated to UI implementations are redundant we remove them too. Finally we are 

left with exactly 79 Java files which we are going to process further. After selecting the 79 classes, we calculate 

the amount of change in each class. 

The data collection for this study is twofold. The first step is to estimate the exact change the classes in 1.5.2 

undergo when upgraded to 1.6.6. This is done by using an open source tool called CLOC. The amount of change 

is accurately calculated using the following rules, 

1. If a line is added or deleted it is counted as one change. 

2. If a line is modified, it is counted as two changes. 

 

Once we have the LOC change for each class we normalize the results by dividing them by the LOC count for 

the class in the prior version. By normalizing the results we ensure that we get a factor similar to percentage 

change. Finally, we select a threshold and classify the change in classes as either HIGH or LOW. Figure 1 

shows the percent distribution of HIGH and LOW change prone classes. 

 

FIGURE 1: PERCENT DISTRIBUTION OF HIGHLY CHANGE PRONE CLASSES AND LOW CHANGE 

PRONE CLASSES. 

The second set of data we collect is of the predicted change by using code smells. To get this data we first pass 

the Java files of the prior version (1.5.2) through the tool we developed and note down the smells present in 

each class. A very crucial step in this process is setting of thresholds for various metrics in order to enable the 

algorithm to detect the presence of a particular smell in the class. In this study we set the thresholds manually. 

Table 4 show the different thresholds used in this study for various metrics and their values. Selection of 

thresholds can impact the study deeply so selection has been done without any extravagant assumptions. 

Parameter Threshold 

WMC 4 

LCOM 10 

Private Variables 3 

81% 

19% 

Actual Distribution of Change Proneness 

Change Proneness - High

Change Proneness - Low
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Public Variables 5 

NOM 5 

Long Parameter List 4 

LOC 50 

TABLE 4: VARIOUS THRESHOLDS USED IN PREDICTION PROCESS. 

4. RESEARCH METHODOLOGY 

We employ object oriented metrics and source parameters to examine software systems for code smells and to 

predict the category of a class as highly change prone or low change prone. Figure 2 shows the flowchart of 

methodology used in this study. 

 

FIGURE 2: FLOWCHART OF METHODOLOGY 

4.1 Description of Tool 

We have developed a tool to analyse Java source code for presence of 13 code smells. The tool is designed in a 

way that the users have the freedom to set their own thresholds for the metrics and statistics used for estimation 

of smells. The tool takes as input the raw .java files as well as .class files. Object oriented metric values are 

obtained by using CKJM [21] in the background while other estimates are made directly from the source code. 

Below shown is a snapshot of the interface of the tool, 

Obtain Two Subsequent 

Versions of Quartz 

Select Classes That Are 

Common to Both Versions 

Eliminate Any UI or 

Interface Specification 

Classes 

Collect Data Corresponding 

to Actual Change In-

Between Versions By 

Examining Both Versions of 

Quatrz 

Extract Metric Values From 

Source Files 

Extract other Stats From 

Source 

Set Thresholds for Metric 

Values 

Calculate Predicted Change 

Factor 

Classify The Predicted 

Change As High or Low 

(Threshold Based) 

Compare Results to Actual 

Change and Report Error 

(if Any) 
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FIGURE 1: SNAPSHOT OF CODESNIFFER 

The tool is organized into four modules, these are, 

1) Module 1 - CKM_Loader 

The CKM_Loader module interacts with the .CLASS files to software to calculate the C & K metrics array. 

According to [3], the C & K metrics are one of the most accurate identifiers of certain code smells like 

ComplexClass and NoInheritance, etc. 

The CKM_Loader uses a very popular and efficient tool called CKJM running at the backend to estimate the 

metrics. The result of processing the .CLASS files with CKM_Loader generates two arrays. 

a. A 2D matrix containing the actual metrics. 

b. A class name vector. 

Working of The Module – The module uses the standard CKJM command to run CKJM on the system console 

and retrieves the output into a buffer. This output is then processed in the following manner to construct the two 

arrays. 

2) Module 2 - DataProcessor 

The DataProcessor module pre-processes the source files to make it fit for the SourceStatCalculator module to 

work upon. 

This module conducts the following pre-processing on the source, 

a. Remove all standard C Style comments. 

b. Tokenize the sources and organize separate classes as separate arrays. 

c. Organize different symbols like ), (, int, char, float, for, while, if, else and ; as separate tokens 

as those are very important in measuring statistics. 

3) Module 3 - SourceStatCalculator 

This module uses the pre-processed source code tokens to calculate statistics that are used in parallel to C & K 

metrics for estimating the presence of code smells in the class. 

There are a total of eight statistic values that are needed for further estimation. These are, 
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a. Number of Private Fields 

b. Number of Public Fields 

c. LOC for Class 

d. Number of Interfaces Implemented 

e. Number of Long Methods 

f. Number of Methods Implemented 

g. Number of Methods Without Parameters 

h. Number of Methods With Long Parameter List 

4) Module 4 - SmellCalculator 

The smell calculator takes uses the source statistics and the C & K metrics to estimate weather any of the 17 

code smells is present in the class under consideration. 

The module takes as input, 

a. The C & K metrics array. 

b. The SourceStat array 

c. The source file name vector. 

d. The class name vector. 

The output of this module is a 17 element vector containing the number of classes carrying the corresponding 

code smell. 

4.2 Comparison of Data 

The two sets of data we obtained above are compared to each other class by class and a count of correct and 

incorrect classifications is kept. We use SPSS to conduct this analysis and determine the probability of correct 

classification and error in classification. 

5. ANALYSIS RESULTS 

In this section, we analyse the relationship between code smells and change proneness of a class. 

5.1 Sensitivity and Specificity 

Sensitivity and specificity are used to predict the correctness of a model. The percentage of classes with HIGH 

change proneness correctly classified as HIGH is called sensitivity (True Positive Rate i.e. TPR) of the model. 

The percentage of classes with LOW change proneness correctly classified LOW is called specificity (False 

Positive Rate i.e. FPR) of the model. Ideally, both the sensitivity and specificity should be high. 

5.2 Receiver Operating Characteristic (ROC) analyses 

The performance of the outputs of the predicted models is evaluated using ROC analysis. It is an effective 

method of evaluating the quality or performance of predicted models.  

The ROC curve is a plot of sensitivity (y-axis) versus its 1-specificity (x-axis). It is called Relative Operating 

Characteristic curve, because it is a comparison of two operating characteristics (TPR & FPR). The ROC curve 

allows us to select cut-off points between 0 and 1, and to calculate sensitivity and specificity at each cut-off 

point. The optimal cut-off point maximizes both sensitivity and specificity. 

The model has sensitivity of 75%, specificity of 73.3%. The results of the study are shown in Table 6 and Table 

7. The probability of correct classification is well above 70 % which means the code smell based technique is 

good at classifying the supplied classes are change prone or not. The following observation is made from the 

analysis shown in table: 

1. Out of 65 classes with HIGH change proneness, 49 are correctly classified, and 16 HIGHLY 

change prone classes are incorrectly classified. 

2. Similarly, out of 14 classes with low change proneness, 10 are classified correctly, while 5 are 

classified incorrectly. 
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Parameter Actual 

Values 

Estimated 

Values 

Total Classes (Total No. of Selected Classes Common to Both Versions) 132(79) 183 (79) 

Classes With High Change Proneness 65 53 

Classes With Low Change Proneness 14 26 

TABLE 6: RESULTS OF ESTIMATION CONTRASTING ACTUAL AND ESTIMATED VALUES OF 

CHANGE PRONE CLASSES 

We noted that the prediction method has a tendency of misclassifying the LOW possibility classes as HIGH. 

The accuracy for HIGH is much more compared to the accuracy of LOW. This can be explained from the fact 

that most of the classes in the system exhibited an actual change proneness factor in the higher side and 

relatively fewer classes were on the LOWER side. The algorithm was able to classify almost all the classes with 

HIGH probability while the LOW change prone classes were frequently misclassified. 

Parameter Value 

No. of Classes With High Change Proneness Classified Correctly 49 

No. of Classes With High Change Proneness Classified Incorrectly 16 

No. of Classes With Low Change Proneness Classified Correctly 10 

No. of Classes With Low Change Proneness Classified Incorrectly 5 

TABLE 7: TABLE SPECIFYING DATA FOR SENSITIVITY AND SPECIFICITY OF PREDICTIONS 

The analysis shows that this method for predicting change proneness is good enough to be explored further. 

Below shown is the ROC curve for the analysis, 

 

FIGURE 2: ROC CURVE 

6. CONCLUSION & FUTURE WORK 

We conclude this study by stating that the use of code smells to predict change proneness for a class is a step in 

the right direction. The percentage of correct classification for this method is pretty good considering it is still in 

infancy. 

We found out some important results and came across problems that interested people can take up in the future, 

1. The threshold determining technique we used is trial and error. This technique is good enough for 

conducting studies but to make this method more repeatable and usable, we need to establish some kind 

of mathematical relations to estimate thresholds on the fly. 

2. We used only 13 code smells in this study over a system with 79 classes to process; this method should 

be applied over a much larger system, perhaps a system from a completely different domain like 

embedded or real time to check its applicability across domains. 
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3. The area of experiment till date has been in open-source where the systems are built by communities. 

Such methods should be tested over closed source systems by developers. 
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