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Abstract 

 

 

IIR filter design is considered very important and difficult task in digital signal processing. One 

of the disadvantages of IIR filters is their non linear phase characteristics. Evolutionary 

algorithms are introduced in recent past into IIR filter design methods. IIR filter design requires 

concurrent minimization of order of filter, magnitude response error and linear phase response 

error. The proposed method designs an IIR filter with minimum order, linear phase and 

minimum magnitude response error. The algorithm finds the coefficients of the transfer function 

of desired filter. The filter is designed using Pareto based multi-objective optimization approach 

minimizing three objective functions simultaneously. In this thesis Multi Objective problem is 

solved using Pareto based Multi Objective Particle Swarm Optimization (MOPSO). Pareto based 

algorithms produces a set of non-dominated solutions called Pareto optimal set in one run of 

algorithm. It is left to the decision maker to select one solution from Pareto optimal set based on 

application of the filter. In literature, only Genetic based algorithms have been used in IIR filter 

design. PSO results in a better convergence rate. Results of proposed approach are compared 

with conventional approaches. Different filter types namely Low pass, High pass, Band pass and 

Band stop are designed. Performance of the approach depend upon some factors like number of 

iterations, size of repository, population size and other parameters of swarm. Experimental 

results show that proposed approach result in better magnitude response and have more linear 

phase than other approaches.  
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Chapter 1: INTRODUCTION 

 

1.1 Background 

 

In recent years, application of evolutionary algorithms to the design of digital Infinite impulse 

response (IIR) filters has gained much significance. IIR filter design is considered a very difficult 

task in digital signal processing. Classical techniques for IIR filter design are based on designing 

a prototype analog filter. Specifications of desired IIR filter are used to construct the analog filter 

prototype. Designed analog filters can be Butterworth filters, Chebyshev type I filters, 

Chebyshev type II filters or Elliptical filters [1, 2, 3, and 4]. These filters differ in terms of 

ripples present in passband or stopband. Butterworth filters are also known as ‘maximally flat 

magnitude response’ passband filters, Chebyshev type I filters have equal ripples in the 

passband, Chebyshev type II filters have equal ripples in the stopband and elliptical filters have 

equal ripples both in passband as well as stopband. Analog filter obtained from any of the above 

method is then converted to an equivalent digital filter. Two most commonly known methods for 

converting a filter from analog to digital domain are bilinear transformation and impulse 

invariance [5]. IIR filters designed using these methods suffer from a few disadvantages in terms 

of accuracy, filter order (and hence computational cost), stability and phase linearity [6]. This 

initiated the use of evolutionary algorithms in digital IIR filter design. There are several 

advantages of using evolutionary algorithms. First, inefficiency caused by transforming filter 

from analog to digital domain is removed. Second, multiple objectives can be dealt with 

simultaneously [7]. Etter et al. [8] introduced the use of Genetic algorithms (GA) for IIR filter 

design. Results were not very impressive due to novelty of GA at that time. Tang et al. [9] 
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proposed the use of Hierarchical Genetic Algorithm (HGA) to achieve multiple objectives of 

minimum magnitude response error and filter order. However linear phase requirement was still 

not met. Wang et al [10] minimized three objective functions namely magnitude response error, 

order of the filter and linear phase response error simultaneously to obtain an optimal IIR filter. 

It can be observed from the above literature review that most of the existing methods are based 

on genetic algorithms to achieve optimal filter design. The approach proposed in this thesis 

introduces multi objective particle Swarm optimization (MOPSO) in the design of digital IIR 

filter. PSO has an advantage of high speed of convergence and can be considered more suitable 

for multi-objective optimization problems [11]. In PSO, instead of using mutation and selection 

operators in a random way as in GA, particles are directed to move towards promising areas as 

they learn from their own local best positions as well as from best positions of other particles in 

the search space.  

1.2 Motivation 

 

IIR filter design can be viewed as a multi objective optimization problem which requires 

simultaneous minimization of three objective functions namely magnitude response error, order 

of the filter and linear phase response error. The main motivation behind using MOPSO for IIR 

filter design is that Pareto based Multi objective evolutionary algorithms (MOEAs) provide a set 

of solutions in a single run of the algorithm. This set of solution is called Pareto front and can be 

explored for a single solution based on application of the filter. For example, if the filter is 

required to process speech signals then linear phase may not be an important characteristic. In 

case of single objective optimization algorithms separate run is needed to find a solution for each 

application. Another reason for using MOPSO instead of GA is its high speed of convergence to 

find a set of solutions. In GA mutation and crossover operators are random in nature and thus 
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search is not a directed one. However in PSO, each particle’s position is calculated based on its 

own previous best position and global best position of all the particles in the space. Thus each 

particle is directed towards a promising region to find a solution resulting in higher rate of 

convergence.  

1.3 Present work 

 

This thesis proposes an algorithm for digital IIR filter design based on pareto based multi 

objective particle swarm optimization (MOPSO).  Filter transfer function is realized in cascade 

form. This approach does not require analog to digital conversion. Coefficients of transfer 

function are obtained using MOPSO. Low pass, high pass, band pass and band stop filter types 

are designed. Since the minimum possible order for low pass and high pass filters is three and for 

band pass and band stop filters is four, the proposed approach fixes the filter order to minimum 

possible values to reduce the complexity. MOPSO has to deal with two objective functions 

namely magnitude response error and linear phase response error.  Results of the proposed 

approach are compared with classical methods such as Butterworth filters, Chebyshev I filters, 

Chebyshev II filters and elliptical filters [1, 2, 3, 4].  

1.4 Thesis organization 

Chapter 1: Introduction 

Chapter 2: IIR Filters: This chapter discusses the basics of digital filters, followed by IIR filters, 

IIR transfer function, filter specifications, IIR filter design methods and advantages of IIR filters. 

Chapter 3: Multi objective evolutionary Algorithms: This chapter briefly describes the theory 

of evolutionary algorithms. We have also presented single objective and multi objective 
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optimizations along with the terminology used for them.  Single objective PSO algorithm is first 

given briefly to facilitate good understanding of multi objective PSO which is discussed at the 

end of the chapter. 

Chapter 4: Proposed Approach: This chapter presents the algorithm proposed for IIR filter 

design using MOPSO. Objective functions are defined in this chapter. Filter specifications and 

stability conditions used are also given. 

Chapter 5: Results and Discussions: Results of the proposed approach are discussed and 

compared with the existing classical methods. Comparison is done in terms of filter order, 

magnitude response error and linear phase response error. 

Chapter 6: Conclusion and future work: Conclusion of the thesis is presented in this chapter. 

Also the scope and areas in which future investigation can be done are discussed. 
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Chapter 2: IIR FILTERS 

 

2.1 Digital filters 

 

A filter is a device that removes undesirable part of a signal such as noise or extracts significant 

part of a signal such as a particular range of frequencies. Filters have applications in almost all 

fields including signal processing, audio and video processing, medical areas, image processing 

and many more [12]. Basic block diagram of a filter is shown in fig 2.1. 

 

Fig 2.1: Block diagram of a filter 

Filters can be classified as analog or digital filters based on the type of signals they operate upon. 

Digital filters offer several advantages over analog filters and hence they have nearly replaced 

analog filters. Some of the advantages of digital filters over analog filters are: 

 Programmable: Digital filters are programmable i.e. they can be changed without 

changing the underlying hardware. Whereas changing an analog filter requires 

corresponding changes in the circuit. 

 Easy to design, implement and test on a computer. 

 Invariant to time, temperature and humidity whereas analog filters are unstable with 

respect to these factors.  

 Free from aging and variations in manufacturing. 

Although digital filters are expensive than analog filters, their benefits increase performance-to-

cost ratio of digital filters [14]. Therefore digital filters are being widely used in digital signal 
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processing. Digital filters can be classified as Finite impulse response (FIR) filters and Infinite 

impulse response (IIR) filters. IIR filters are filters with a feedback. They are recursive in nature. 

Hence present output is a function of present and past inputs as well as past outputs. FIR filters 

are non-recursive in nature. They are also known as feed forward filters. Block diagrams of FIR 

and IIR filters are shown in fig 2.2. 

 

Fig 2.2: Block diagram of FIR and IIR filters 

Basic properties of FIR filters are include phase linearity, stability and higher filter order. IIR 

filters may become unstable, have lower filter order resulting in less complexity and possess 

non-linear phase. This thesis focuses on IIR filters. IIR filter basics are discussed in further 

sections. 

2.2 IIR Filters 

IIR filters are filters with a feedback and hence provide better frequency response than FIR filter 

of equal order. IIR filters provide excellent solutions in applications where phase linearity is not 

of much importance. The effect of feedback in the filter is that when an impulse signal is applied 

to the filter, it results in a response that never decays to zero, hence it is named Infinite Impulse 
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response filter. As discussed in section 2.1, output of the filter depends on previous and present 

input as well as past output. Transfer function of the filter in Z-domain can be expressed as [13]: 
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where ak and bk are filter coefficients. 

IIR filter can also be expressed in cascade form as: 

H (z) = K ∏
     

  

     
  

 
    ∏

       
        

  

       
        

  
 
         (2.2) 

Where K is the filter gain, ai and bi for i=1, 2… n are first order coefficients, cj1, cj2, dj1, and dj2 

for j=1, 2… m are the second order coefficients. Once all the filter coefficients are calculated, 

filter gain K is calculated so that magnitude response is normalized in the range [0, 1].  

2.3 Filter specifications 

While designing any filter, the first step is to determine the filter specifications. Filter 

specification includes the passband and stopband frequencies as well as attenuation permitted in 

passband and stopband. The range of frequencies in which signal is allowed to pass is called 

passband. On the other hand, the range of frequencies in which signal is not allowed to pass or is 

rejected is called stopband. Practically signals get distorted in both passband and stopband [19]. 

There is a limit on the amount of attenuation allowed in both the bands and is known as passband 
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attenuation and stopband attenuation respectively. Filter specifications [16] for low pass, high 

pass, band pass and band stop filters are discussed in this section. 

2.3.1 Low pass filter specifications 

Low pass filters allow low frequency components of the signal to pass through them and reject 

the higher frequency components. Ideal low pass filter [18] is shown in fig 2.3. 

 

Fig 2.3: Ideal low pass filter 

Where wc is the cut off frequency. Ideal low pass filters cannot be realized in practicality as the 

transition from passband to stopband is discontinuous. Thus realizable low pass filter contains a 

transition band as well. This is shown in fig 2.4. 

 

Fig 2.4: Practical low pass filter 

Where [0, wp] is the passband, [wp, ws] is the transition band, [ws, ∞] is the stopband, δp is 

maximum passband attenuation and δs is minimum stopband attenuation.  
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2.3.2 High pass filter specifications 

High pass filters allow higher frequency components of a signal to pass through them and reject 

lower frequency components. Ideal high pass filter [18] is shown in fig 2.5  

 

Fig 2.5: Ideal high pass filter 

Where wc is the cut off frequency. Ideal high pass filters cannot be realized in practicality as the 

transition from stopband to passband is discontinuous. Thus realizable high pass filter contains a 

transition band as well. This is shown in fig 2.6. 

 

Fig 2.6: Practical high pass filter 

Where [0, ws] is the passband, [ws, wp] is the transition band, [wp, ∞] is the stopband, δp is 

maximum passband attenuation and δs is minimum stopband attenuation.  
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2.3.3 Band pass filter specifications 

Band pass filters allow only those frequency components of a signal to pass through them that lie 

within a particular range. Components lying outside that range are rejected. Ideal band pass filter 

[18] is shown in fig 2.7.  

 

Fig 2.7: Ideal bandpass filter 

Where wc1 and wc2 are the cut off frequencies. Like low pass and high pass filters, ideal band 

pass filters also cannot be realized practically [19]. Thus realizable band pass filter contains two 

transition bands as shown in fig 2.8. 

 

Fig 2.8: Practical bandpass filter 

Where [0, ws1] and [ws2, ∞] are the stop bands, [wp1, wp2] is the passband, [ws1, wp1] and 

[wp2,ws2] are transition bands, δp is maximum passband attenuation and δs is minimum stopband 

attenuation.  



11 
 

2.3.4 Band stop filter specifications 

Band pass filters reject frequency components of a signal that lie within a particular range. 

Components lying outside that range are accepted. Ideal band stop filter [18] is shown in fig 2.9.  

 

Fig 2.9: Ideal bandstop filter 

Where wc1 and wc2 are the cut off frequencies. Like other filters discussed in previous sections, 

ideal band stop filters are also practically not possible to realize. Thus realizable band stop filter 

contains two transition bands as shown in fig 2.10. 

 

Fig 2.10: practical bandstop filter 
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Where [0, wp1] and [wp2, ∞] are the pass bands, [ws1, ws2] is the stopband, [wp1, ws1] and [ws2, 

wp2] are the transition bands, δp is maximum passband attenuation and δs is minimum stopband 

attenuation.  

2.4 IIR filter stability 

In IIR filters, stability is determined by using poles of z-transform of the transfer function. Poles 

can be calculated by determining roots of the denominator of transfer function. If all the poles of 

the filter lie within the unit circle in z-domain, then the filter is a stable one [17]. Poles lying  

outside the unit circle leads to instability in IIR filters. An example of stable IIR filter is shown 

in fig 2.11.  

 

Fig 2.11: A stable IIR filter 

In the above figure small crosses denote the poles and small circles denote the zeros of the 

transfer function. Re and Im denote real and imaginary axis respectively. It can be seen from the 
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figure that all the poles of the filter lie within the unit circle providing it stability. It can be seen 

that one zero of the filter is lying outside the circle but zeros don’t affect the stability of the filter. 

An unstable IIR filter is shown in fig 2.12. 

Fig 2.12:  An unstable IIR filter 

Two poles lying outside the unit circle in above figure depict the instability of the filter.  Since 

FIR filters are non-recursive in nature all the poles lie on the origin resulting in stability of the 

filter. Thus poles are used to test the stability of IIR filters only. FIR filters are always stable. 
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2.5 IIR filter design: Classical approaches 

Classical techniques for IIR filter design are based on designing a prototype analog filter. 

Specifications of desired IIR filter are used to construct the analog filter prototype. Designed 

analog filters can be Butterworth filters, Chebyshev type I filters, Chebyshev type II filters or 

Elliptical filters. These filters are then converted back to digital filters using of the following 

techniques. 

 Bilinear transformation method 

 Impulse invariance method 

The evolutionary algorithm based techniques for IIR filter design do not depend on analog 

prototype for the filter design. Digital filter is designed directly by defining a transfer function 

and optimizing its coefficients to meet the filter specifications. Since the results of Butterworth, 

Chebyshev I, Chebyshev II and elliptical filters are compared with the proposed approach, these 

filters are briefly discussed in this section. 

2.5.1 Butterworth filter 

Butterworth filters possess flat magnitude response in the passband [1]. There are no ripples 

present in passband or stopband. This results in a very high transition width between passband 

and stopband. Design specifications of Butterworth filter includes filter order and cut-off 

frequency [19]. If transition width is reduced it may result in increase of filter order. Fig 2.13 

compares 7
th

 order and 12
th

 order Butterworth filters. 
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Fig 2.13: 7
th

 and 12
th

 order Butterworth filters 

2.5.2 Chebyshev Type I filters 

Chebyshev type I filters allow presence of ripples in the passband whereas the stopband has flat 

magnitude response. Transition width can be reduced as compared to Butterworth filter but with 

the introduction of ripples in the passband. Fig 2.14 compares Chebyshev I filter with the 

Butterworth filter. 
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Fig 2.14: Chebyshev and Butterworth filter of same order 

It can be observed from the above figure that Chebyshev type I filter has smaller transition width 

as compared to Butterworth filter of same order [15]. This is achieved by allowing ripples in the 

passband.  

2.5.3 Chebyshev type II filters 

Chebyshev type II filters have flat magnitude response [15] in the passband and equiripple in the 

stopband. These filters are preferred over both the filters discussed in previous sections. 

Chebyshev II filters are also called inverse Chebyshev filters and allow for a lower transition 

width. 

2.5.4 Elliptical filters 

Elliptical filters allow ripples in passband as well as stopband [20]. They can be viewed as a 

generalization of Chebyshev and Butterworth filters. Fig 2.15 shows elliptic and Chebyshev II 

filters. 
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Fig 2.15: Chebyshev type II and Elliptic filters 

2.6 IIR vs FIR filters 

While designing a filter it is difficult to decide which type of filter i.e. IIR or FIR should be 

designed [19]. Depending upon the requirements of the application, a desired filter type is 

chosen. The factors that affect this decision are given in table 2.1. 

Table 2.1: IIR vs FIR filters 

Property FIR IIR 

Phase linearity Linear in phase Non linear phase 

Order High filter order Low filter order 

Stability Always stable May become unstable 

Derivation No analog prototype required Analog prototype designed first 

Computational resources  More number required Less number required 
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The use of evolutionary algorithms can provide phase linearity and stability to IIR filters without 

the need of designing an analog prototype. Thus such IIR filters can be used for almost any 

application and provide more performance to cost ratio. 

2.7 Summary 

This chapter contains the basic definitions and concepts related to IIR filters. Filter specifications 

for Low pass, high pass, band pass and band stop types are discussed. Some classical approaches 

to IIR filter design are also explained briefly. Chapter is concluded with a comparison of FIR and 

IIR filter properties. 
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Chapter 3: MULTI-OBJECTIVE OPTIMIZATION 

 

3.1 Introduction 

 

Most of the real world problems deal with simultaneous objective functions. Single objective 

optimization differs from multi-objective optimization as concept of ‘optimum’ has to be re-

defined. Multi objective optimization algorithms generate more than one trade-off solutions in 

single run of the algorithm [22]. Decision maker selects one of these solutions depending upon 

the application. Classical approaches to achieve multiple objectives simultaneously involve 

conversion of multi-objective problem into a single objective problem [21]. The drawback of this 

approach is that algorithm has to be run many times to generate pareto-optimal set of solutions. 

Solutions which are not worse than other solutions in terms of all objective functions are said to 

be acceptable optimal trade-off solutions. These solutions form a set called pareto-optimal 

solutions [23]. Section 3.2 discusses some of the definitions related to the multi objective 

optimization. 

3.2 Definitions 

 

3.2.1 Multi-objective optimization 

 

Multi-objective optimization problems deal with k objective functions simultaneously. These 

problems deal with minimization of all functions, maximization of all functions or a combination 

of minimization and maximization of these functions [24]. Let P € Rn be an n-dimensional search 

space, and fi (x), i=1, 2… k be k objective functions. Then mathematically F(x) can be given as: 
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( )F x Minimize 

1

2

( )

( )

:

( )k

f x

f x

f x

 
 
 
 
 
                       (3.1)

 

Subject to some constraints that depend upon the application. Multi objective algorithms 

generate multiple solutions with the use of Pareto optimal theory [23].  

3.2.2 Pareto optimality 

A solution x ∈   is said to be Pareto optimal wrt universe   iff there exists no x′ ∈   for 

which s1 = F (x′) = (f1 (x′) . . . fk (x′)) dominates s2 = F(x) = (f1(x) . . . fk(x)) [25]. In other words, 

x’ is said to be Pareto optimal if there is no vector x which would decrease some objective 

function value without causing a simultaneous increase in at least one objective function 

value(assuming all objectives need to be minimized). 

3.2.3 Pareto dominance 

A solution 
1 11 12 1( , ... )ks s s s  is said to dominate another solution 

2 21 22 2( , ... )ks s s s (denoted by s1 

 s2) iff s1 is partially less than s2, i.e. [26] 

    
1 2{1,2... },i k s s   

    
1 2{1,2... },i k s s 

          (3.2)
 

3.2.4 Pareto optimal set 

For a given Multi objective problem F(x), the Pareto Optimal Set, P*, is defined as: 

   * { | ' , ( ') ( )}P x x F x F x         (3.3) 

Pareto optimal solutions are those solutions in decision space, whose objective function values 

cannot be further minimized simultaneously (assuming minimization). This entire set of 
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solutions is represented by P
*
 and are also known as admissible, efficient, non-inferior or 

nondominated solutions [23]. 

3.2.5 Pareto Front 

For a given Multi objective problem, F(x), and Pareto Optimal set, P*, the Pareto Front PF* is 

defined as: 

    * { ( ) | *}PF u F x x P         (3.4) 

All the solutions in Pareto optimal set when plotted in objective function space constitute Pareto 

front. In fig 3.1 one example of Pareto front is shown. Single objective optimization problems 

have a single optimal solution, whereas multi objective problems have uncountable set of 

solutions on a Pareto front [26]. 

                    

Fig 3.1: Pareto front of MOP with 2 objective functions: Cost and efficiency 

 

Each point in the Pareto front corresponds to a solution in the decision space. This solution in the 

decision space represents tradeoffs in the decision space. The MOPs evaluation function, 
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:f  maps variables in decision space 
1 2( , ... )nx x x x  to the vectors 

1 2( , ... )ky a a a in 

solution space. 

 

Fig 3.2: mapping from decision variable space to objective function space 

3.3 Multi objective evolutionary algorithms 

Evolutionary algorithms belong to a class of algorithms that are inspired by natural evolution of 

particles. In recent years, these algorithms have been applied to various optimization problems. 

Real world problems are often subject to constraints and may have many conflicting objectives. 

Many multi objective evolutionary algorithms (MOEAs) have been proposed in past for such 

applications. These algorithms generate a set of solutions rather than a single solution as in single 

objective optimization problems. There are various ways in which multiple objectives can be 

achieved based on which MOEAs can be classified into 3 broad categories.  

 Weighted sum approach: This approach converts multiple objectives into a single 

objective function by taking weighted sum of these objective functions. Sum of weights 

is equal to one. Problem is then solved similar to single objective optimization problem 

[27]. 
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 Lexographical approach: in this approach each objective function is assigned a priority. 

Most important objective functions are assigned higher priorities than other ones. 

Objective functions are thus optimized according to the priorities assigned. 

 Pareto based approach: This approach aims at finding multiple nondominated solutions in 

a single run of the algorithm. Selecting one solution from the Pareto front requires some 

previous problem knowledge. Some of these approaches include Multi-objective 

(MOGA) proposed by Fonseca and Fleming in 1993 [28], Non-dominated Sorting GA 

(NSGA) proposed by Srinivas and Deb in 1994[29, 30].  

MOEA used in this thesis belongs to third category of algorithms. Pareto Based multi 

objective particle swarm optimization (MOPSO) has been used to achieve multiple 

objectives in the filter design process. Section 3.4 first briefly describes single objective PSO 

followed by MOPSO algorithm.  

3.4 Multi objective Particle Swarm Optimization 

  

Kennedy and Eberhart proposed Particle Swarm Optimization (PSO) algorithm in 1995 as an 

extension of animal’s cognitive and social behavior system [21]. PSO is inspired by behavior of 

group of particles like flocking of birds and schooling of fishes. As other evolutionary 

algorithms, PSO also deals with a population (called swarm) of possible solutions (called 

particles) which are updated at each iteration of the algorithm. However, the updation of swarm 

is different in case of PSO. PSO follows a cooperative rather than a competitive approach. 

Instead of using random crossover, selection and mutation operators to update the population and 

favor those individuals that are performing best, PSO updates velocity of particles at each 

iteration adaptively. The particles move towards promising areas in the search space by learning 

exploiting from their own experience, as well as the experience of other particles. In MOPSO a 
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separate memory called external repository is used to store each particle’s best position it has 

ever visited in the search space. Section 3.4.1 discusses single objective PSO briefly. 

3.4.1 Single objective Particle Swarm Optimization 

Algorithm consists of a number of particles moving in search space with the aim to reach a 

global minimum value of fitness function. Each particle in the search space represents a 

candidate solution and has some velocity according to which it moves in the search space. It also 

possesses memory to keep information about its previously visited space. Hence movement of 

each particle is influenced by two factors: local best solution due to itself and global best solution 

due to all the particles in the solution space. During an iteration of the algorithm, local and global 

best positions of the particle are updated if better solution is found. The process is repeated until 

the desired result is achieved or specified number of iterations have completed. In N-dimensional 

space, position of i
th

 particle is denoted as Si = (si1, si2... siN); velocity is denoted as Vi= (vi1, vi2... 

viN); particle’s local and global best positions are denoted as Pbesti = (pi1, pi2... piN) and gbest = 

(pg1, pg2... pgN) respectively. Velocity of particle [15] at i
th

 iteration is given by eqn 3.5. 

 Vi
k+1

 = ωVi
k
 +α*rand1* (pbesti-si

k
) + β*rand2* (gbest-si

k
)      (3.5) 

Position of particle [15] at i
th

 iteration is given by eqn 3.6. 

si
k+1

 = si
k 

+ Vi
k+1 

          (3.6)  

Where i=1, 2 ...M; M is the number of particles; d=1, 2...N; N is the number of dimensions; α is 

cognitive parameter; β is social parameter; rand1 and rand2 are random numbers between 0 and 1; 

ω is inertia weight; k = 1, 2, 3... ; are iteration steps. 
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3.4.2 Multi objective Particle Swarm Optimization 

Coello et al [31] proposed the first Pareto based Multi-objective PSO (MOPSO). In MOPSO, the 

nondominated solutions called leaders are stored in an external repository. The search space is 

divided into Hypercubes. Each hypercube has a fitness that is assigned with a value inversely 

proportional to the number of particles in the hypercube. One leader is selected from a hypercube 

with best fitness value. There are different approaches to select a leader. Thus, the velocity 

update for the i-th particle [32] becomes 

1 2[ 1] [ ] ( [ ] [ ]) ( [ ] [ ])vel i vel i r pbest i pos i r rep h pos i        
     (3.7) 

Where   is the inertia weight, 
1r  and 

2r are random numbers between [0, 1], [ ]pbest i  is the 

local best position of particle i, [ ]rep h  is the global best position in the external repository. After 

calculating velocity of the particle [32] using equation 3.8, its position can be updated as: 

[ 1] [ ] [ 1]pos i pos i vel i             (3.8) 

Where [ 1]pos i   and [ ]pos i  are the positions of particle at (i+1)
st   

and i
th

 iteration respectively. 

[ 1]vel i    is the velocity of particle at (i+1)
 st

 iteration calculated using equation 3.7. The external 

repository has limited size. When it becomes full better solutions are inserted into it based on 

some criterion discussed in next section. 

3.4.2.1 Main algorithm 

The algorithm of MOPSO is given as follows: 

Step 1) Initialize the position of each particle in the population pop. 

Step 2) Initialize the velocity of each particle vel. 

Step 3) Evaluate objective function values for each of the particles in pop. 

Step 4) Store the position values of nondominated particles in the external repository rep. 
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Step 5) Create hyper cubes of the search space exploited till now, and assuming this hypercube 

system to be a coordinate system, locate each particles position wrt its objective function values. 

Step 6) Update each particle’s memory values. This memory can be used to guide the particles to 

fly towards promising regions. These values are also stored in external repository. 

Step 7) WHILE maximum number of iterations 

DO 

a) Compute the speed of each particle using equation 3.7. Rep[h] represents global best position 

that is taken from the external repository. Each hypercube is assigned a fitness value inversely 

proportional to the number of particles it contains. Thus hyper cubes with more number of 

particles have greater fitness as compared to hyper cubes with less number of particles. One 

hypercube is then selected using roulette-wheel selection [31]. After selecting the hypercube, a 

particle is selected randomly from that hypercube.  

b) New positions of the particles are updated using equation 3.8. This equation uses velocity of 

the particle obtained from the previous step. 

c) Particles are maintained within the search space. They are not allowed to go beyond the 

boundaries. Thus solutions that lie beyond valid search space are discarded. If a variable crosses 

its boundary two steps are taken.  

1) The decision variable is assigned a value equal to its corresponding lower or upper boundary  

2) The velocity of corresponding particle is reversed by multiplying it by (−1) to direct the search 

in opposite direction. 

d) Evaluate objective function values for each of the particles in pop. 
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e) Update the contents of rep with the nondominated solutions. Dominated solutions in the 

repository are eliminated due to size constraint of the repository. A secondary criterion for 

retention of particles in repository is based on number of particles in the objective solution space.  

f) If a particle with a position better than the position contained in its memory is found, the 

position of the particle is updated with the new better value. 

[ ] [ ]pbest i pop i           (3.9) 

Concept of Pareto dominance is used to decide the position in memory to be retained. If the 

current position dominates the position in memory, it replaces that position in memory. 

Otherwise none of them dominates the other; any one position is selected randomly.   

g) Increment the loop counter 

8) END WHILE 

3.4.2.2 External repository 

External repository is used in Pareto based MOPSO to store the non dominated solutions. The 

non dominated or efficient solutions found during the search process are stored in the repository. 

Repository is of fixed size. To manage the repository it has two main parts: archive controller 

and the adaptive grid. 

Archive controller: 

The archive controller is used as a decision maker, to take a decision whether to accept a solution 

in the archive. An archive is a memory space that contains non dominated solutions. The 

decision process can be given as follows: Initially when the external repository archive is empty, 

then the non-dominated solutions found are simply added to the archive [31]. If archive already 
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contains some solutions then the current nondominated solutions found at each iteration are 

compared with the archive contents. Four cases may arise during the comparison: 

Case1: If the new solution is dominated by the solutions in the archive; discard the new solution. 

Archive remains unaltered. 

Case2: If the new solution is not dominated by any solution in the archive and there is space in 

the archive; new solution is added to the archive. 

Case3: If the new solution dominates some of the solution in the archive; replace them with the 

new solution. 

Case 4: If the external archive becomes full i.e. it reaches its maximum limit, then adaptive grid 

procedure is adopted to update the archive contents. 

 

Fig 3.3: Possible cases for the archive controller 
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Adaptive Grid: 

In Pareto based approaches the basic idea is to use an external archive to store efficient solutions 

in the archive. Objective function space of solutions in the archive is divided into regions as 

shown in Fig. 3.4. If the solution inserted in the archive goes outside the current boundaries of 

the grid, then the grid has to be recalculated and each solution within it has to be relocated. This 

is the reason it is called adaptive grid. Adaptive grid method is preferred over other methods like 

nitching because of its lower computational cost [31, 32]. 

 

Fig 3.4: insertion of element in the grid when it lies within the current boundaries 
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Fig 3.5: insertion of element in the grid when it lies outside the current boundaries 

3.5 Summary 

The essence of multi objective evolutionary algorithms lies in their capability to find a number of 

nondominated or efficient solutions in single run of the algorithm. This advantage has increased 

the incorporation of MOEAs into various applications. In this chapter, basic terminology related 

to multi objective evolutionary algorithms are discussed. Also multi objective PSO algorithm is 

presented in detail. 
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Chapter 4: PROPOSED APPROACH 

 

4.1 Introduction 

IIR filter design is considered one of the difficult tasks in digital signal processing. IIR filters use 

less computational resources and hence are used in applications where resources are at a 

premium. IIR filters designed using conventional approaches cannot achieve stability and phase 

linearity simultaneously. With the introduction of MOEAs in IIR filter design it is possible to 

optimize multiple objectives concurrently. MOEAs consider all objectives equally and provide a 

set of solutions to the decision maker. This set of solutions is called Pareto optimal solutions. In 

this thesis Pareto based Multi objective Particle swarm optimization is used to design IIR filter. 

Algorithm aims at finding a set of coefficients of the filter transfer function which meet the 

stated requirements. IIR filter design requires concurrent minimization of three objective 

functions namely 1) magnitude response error 2) Linear phase response error and 3) order of the 

filter. Filter in designed in cascade form. Basic filter structure is discussed in the next section. 

4.2 Filter structure 

IIR filter design in the proposed work starts with a pre assumed filter structure. In cascade form 

filter structure can be represented as  

H (z) =K ∏
     

  

     
  

 
    ∏

       
        

  

       
        

  
 
          (4.1) 

Where K is the filter gain, ai and bi for i=1, 2… n are first order coefficients, cj1, cj2, dj1, and dj2 

for j=1, 2… m are the second order coefficients. Once all the filter coefficients are calculated, 

filter gain K is calculated so that magnitude response is normalized in the range [0, 1]. LP, HP, 
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BP and BS filter types are designed with minimum possible order of 3,3,4,4 respectively. Once 

the filter structure is decided, MOPSO is used to obtain filter coefficients that satisfy other two 

objective functions.  

4.3 Objective Functions 

IIR filter design methods in the literature deal with single objective function. Single objective 

methods generally tend to ignore secondary and tertiary objectives necessary for the optimal 

filter design. Proposed approach deals with 2 objective functions 1) magnitude response error 

and 2) linear phase response error. Order of the filter is kept o minimum possible for the desired 

filter type. Definitions of these fitness functions are discussed in this section.  

4.3.1 Magnitude response error 

IIR filter design should satisfy some magnitude response conditions 

a)  The passband attenuation should be less than δ1. 

b) The stopband attenuation should not be less than 1 − δ2. 

The passband and stopband cutoff frequencies are represented by ωp and ωs, respectively. Then 

magnitude response error can be defined as [9, 10]: 

Hp (ω) ={
  δ  | ( 

 ω)|                 |  (  ω)|    δ  

                                                 |  (  ω)|    δ 
     (4.2) 

Where ω lies in passband and δ  is the attenuation in passband. 

Hs (ω) = {
| (  ω)|  δ                  |  ( 

 ω)|  δ 

                                         |  (  ω)|  δ 
      (4.3) 
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Where ω lies in the stopband range and δ  is the stopband attenuation. Hp (ω) and Hs (ω) are the 

passband and stopband magnitude response errors respectively. Thus first objective function is 

given as: 

 f1=  ∑    (  )   ∑    (  )             (4.4) 

Where ωp and ωs are the sampling frequencies in passband and stopband respectively. 

4.3.2 Linear phase response error 

The linear phase response is considered in the passband as well as transition band. The non 

linearity in phase response can lead to a large amount of distortion in the response of the filter. 

Phase response of the filter is sampled at equal intervals of frequency. The phase sequence is 

obtained as [9, 10]: 

Ph = {θ1, θ2 … θn}          (4.5) 

After obtaining the phase sequence, the phase difference between the consecutive values in phase 

sequence can be calculated as: 

ΔPh = {Δθ1, Δθ2…Δθn-1}           (4.6) 

Δθj+1 = Δθj+1- Δθj.  If the phase is linear then the values in ΔPh are same. This is because the 

linearity in phase results in equal difference values in the phase sequence.  Phase response error 

can be calculated by finding the variance of ΔPh sequence. Thus, the second objective function is 

given as 

f2 = variance (ΔPh)          (4.7) 

4.4 Initialization of parameters and design criteria 

In proposed method, IIR filter is designed in cascade form. A filter structure is assumed based on 

the desired filter type. Number of coefficients can be determined using the filter structure. These 
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coefficients are represented by a particle’s position. Each particle’s initial position and velocity 

are chosen randomly. Swarm size of 50 is taken. Maximum number of iterations is fixed to 70. 

Inertia weight, social parameter and cognitive parameter are initialized to 1, 2, and 2 

respectively. Design criteria for the different filter types [10] is summarized in table 4.1 

Table 4.1: Design Criteria 

Filter type 
p  s  

1  2  

LP [0, 0.2Π] [0.3Π, Π] 0.108 0.1778 

HP [0.8Π,Π] [0,0.7Π] 0.108 0.1778 

BP [0.4Π, 0.6 Π] [0,0.25Π] U [0.75Π,Π] 0.108 0.1778 

BS [0 ,0.25Π] U [0.75Π, Π] [0.4Π,0.6 Π] 0.108 0.1778 

 

4.5 Proposed method description 

First the position and velocity of particles are initialized randomly. Particles position represents 

coefficient values and dimension of search space is equal to the number of coefficients. 

Objective functions are then evaluated for each particle. These are discussed in previous section. 

External repository is initialized with nondominated particles. Hypercubes are generated and 

particles are located within it according to their objective function values. A leader is selected 

from hyper cubes and position and velocity of particles are updated using update equations 

discussed in chapter 3. Updation process guides the particles towards promising areas. This is 

because search is guided by best values obtained so far by the particle as well as its neighbors.  

At the end of fixed number of iterations, a set of solutions called Pareto optimal set is obtained.  
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4.6 Summary 

The algorithm proposed for the design of IIR filter is presented in this chapter.  To obtain an 

optimal design, it is treated as a multi objective optimization problem. Objective functions 

namely magnitude response error and linear phase response error are also defined.  While 

designing any filter type, foremost requirement is the design criteria. It specifies cutoff 

frequencies, desired attenuation values and other filter requirement. Thus design criteria and 

initial parameter values are also discussed.  
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Chapter 5: RESULTS AND DISCUSSIONS 

 

This chapter shows the results of filter design using proposed approach. Four conventional 

approaches namely Butterworth, Chebyshev I, Chebyshev II and elliptical filter design methods 

are compared with the proposed approach. Results of two evolutionary based algorithm namely 

hierarchical genetic algorithms (HGA) for IIR filter design [9] and Cooperative coevolutionary 

GA (CCGA) [10] based IIR filter design are also shown and compared with the approach 

proposed in this thesis. Metrics used for comparison are magnitude response error, order of the 

filter and linear phase response error. All the codes are implemented in MATLAB7.0. 

Performance of IIR filters depends on various factors. These factors together known as design 

criteria need to be kept same for comparing different approaches. Design criteria specification 

includes  

a) Filter type i.e. low pass, high pass, band pass or band stop 

b) Cutoff frequencies: it is a single value for low pass and high pass filters and two values for 

band pass and band stop filter types 

c) Maximum passband attenuation  

d) Minimum stopband attenuation 

The design criteria used in this thesis in given in table 4.1 and is used for all the approaches to 

facilitate fair comparison among the techniques. 
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5.1 Performance metrics 

Three performance metrics namely magnitude response error, linear phase response error and 

order of the filter obtained are used for comparing the results of proposed approach with other 

approaches in literature. 

5.1.1 Magnitude response error 

Magnitude response error of a filter is the amount of deviation from ideal magnitude response. 

Ideally magnitude response error should be zero. Hence MOPSO approach minimizes Magnitude 

response error and it can be used as a metric to compare the results of IIR filter design.  

Mathematically it has been defined in equation (4.4) of chapter 4. 

5.1.2 Linear phase response error  

Linear phase response error is the measure of non linearity in phase response of the filter. One of 

the major drawbacks of conventional IIR filters is their non linear phase. MOEA based 

approaches minimize linear phase response error to ensure linear phase in IIR filter. 

Mathematical definition is discussed in equations (4.5) to (4.7) . 

5.1.3 Order of the filter 

If i are the number of first order blocks and j are the number of second order blocks in the 

transfer function, then order of the filter is given by  

Order = i+2j           (5.1) 

An ideal filter design requires minimum filter order. Hence the approach which minimizes the 

filter order satisfying other design requirements is considered a better method. 
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5.2 Results of Butterworth filters 

This section discusses the results of Butterworth design method for IIR filters. Butterworth filters 

do not have ripples in the passband and stopband. Magnitude response for all four filter types i.e. 

low pass, high pass, band pass and band stop are shown in Fig 5.1. Design criteria used is same 

as that for the proposed approach.  

 

Fig 5.1: Butterworth filters a) Low Pass b) High pass c) Band pass d) Band stop 

It can be observed from fig 5.1 that Butterworth filters do not have ripples in passband as well as 

stopband. Magnitude response is flat but with a tradeoff in transition width. 
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5.3 Results of Chebyshev I filters 

This section discusses the results of Chebyshev I design method for IIR filters. Chebyshev I 

filters have the property of presence of ripples in passband only. They do not contain ripples in 

stopband. Magnitude response for all four filter types i.e. low pass, high pass, band pass and 

band stop are shown in Fig 5.2. Design criteria used is same as that for the proposed approach.  

 

Fig 5.2: Chebyshev I filters a) Low Pass b) High pass c) Band pass d) Band stop 

It can be observed from fig 5.2 that Chebyshev I filters have ripples in passband and possess flat 

magnitude in the stopband. There is a tradeoff between transition width and the passband ripples. 
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5.4 Results of Chebyshev II filters 

This section discusses the results of Chebyshev II design method for IIR filters. Chebyshev II 

filters have the property of presence of ripples in stopband only. They do not contain ripples in 

passband. Magnitude response for all four filter types i.e. low pass, high pass, band pass and 

band stop are shown in Fig 5.3. Design criteria used is same as that for the proposed approach.  

 

Fig 5.3: Chebyshev II filters a) Low Pass b) High pass c) Band pass d) Band stop 

It can be observed from fig 5.3 that Chebyshev II filters have ripples in stopband and possess flat 

magnitude in the passband. There is a tradeoff between transition width and the stopband ripples. 
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5.5 Results of Elliptical filters 

This section discusses the results of elliptical design method for IIR filters. Elliptical filters have 

ripples in both passband and stopband. Magnitude response for all four filter types i.e. low pass, 

high pass, band pass and band stop are shown in Fig 5.4. Design criteria used is same as that for 

the proposed approach.  

 

Fig 5.4: Elliptical filters a) Low Pass b) High pass c) Band pass d) Band stop 

It can be observed from fig 5.4 that Elliptical filters have ripples in stopband and passband both.  

All the conventional IIR filter design approaches have non linear phase characteristics. This 

drawback is overcome by evolutionary algorithm based approaches. 



42 
 

5.5 Results of Proposed approach 

The proposed method aims at designing a minimum order IIR filter with linear phase 

characteristics and minimum magnitude response error. Algorithm’s performance depends 

upon certain parameters like population size, number of iterations, size of repository, social 

and cognitive parameters etc. The approach produces better results when the population size 

is large and the number of iteration is more but with a corresponding increase in computation 

time. The outputs shown are magnitude response and phase response. These outputs are 

shown in figures 5.5 for low pass, high pass, band pass and band stop filter types. 

 

Fig 5.5: a) Magnitude response for LP b) Phase response for LP 

c) Magnitude response for HP d) Phase response for HP 
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Fig 5.6: a) Magnitude response for BP b) Phase response for BP 

d) Magnitude response for BS d) Phase response for BS 

 

5.6 Comparison of proposed approach with conventional approaches 

This section compares the results of conventional IIR filter design methods with the proposed 

approach. Comparison is made in terms of filter order and magnitude response of the filter. Since 

conventional approaches provide non linear phase characteristics, their phase characteristics are 

not shown. Table 5.1 summarizes the filter order obtained using different methods.  
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Table 5.1: Comparison of filter orders 

Filter Type Butterworth Chebyshev I Chebyshev II Elliptical Proposed 

approach 

Low pass 6 4 4 3 3 

High pass 6 4 4 3 3 

Band pass 12 8 8 6 4 

Band stop 12 8 8 6 4 

 

Figure 5.6-5.9 compare the magnitude response obtained using different approaches. Separate 

comparisons are shown for LP, HP, BP and BS types. 

 

Fig 5.6: Comparison of different methods for low pass filter design 
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Fig 5.7: Comparison of different methods for high pass filter design 

 

 

Fig 5.8: Comparison of different methods for band pass filter design 
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Fig 5.9: Comparison of different methods for band stop filter design 

 

From figure 5.6-5.9 it can be summarized that in terms of magnitude response proposed 

approach performs best. This is because other filter types have ripples either in passband or in 

stopband or in both. Reducing the transition width may result in increased order of the filter. 

Thus keeping the order minimum, proposed approach shows minimum ripples.  

5.7 Comparison of proposed approach with Genetic based approaches 

This section compares the results of Genetic algorithms based approaches for IIR filter design 

with the proposed approach. Comparison is made in terms of filter order, magnitude response of 

the filter and linear phase response error of the filter. Results of proposed approach are compared 

with Hierarchical genetic algorithm (HGA) based IIR filter design [9] and Cooperative 

coevolutionary GA based IIR filter design [10] methods. Table 5.2-5.5 summarizes the 

performance measures for different filter types. 
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Table 5.2: Performance comparison for low pass filter 

Approach Lowest filter 

order 

Passband magnitude 

response performance 

Stopband magnitude 

response performance 

Phase 

response error 

HGA 3 0.8862≤|  (   )|≤1   (   )  ≤ 0.1800 1.685E-04 

CCGA 3 0.9034≤|  (   )|≤1   (   )  ≤ 0.1669 1.474E-04 

MOPSO 3 0.9081≤|  (   )|≤1   (   )  ≤ 0.1584 1.0963E-04 

 

Table 5.3: Performance comparison for high pass filter 

Approach Lowest filter 

order 

Passband magnitude 

response performance 

Stopband magnitude 

response performance 

Phase 

response error 

HGA 3 0.9221≤|  (   )|≤1   (   )  ≤ 0.1819 1.1212E-04 

CCGA 3 0.9044≤|  (   )|≤1   (   )  ≤ 0.1749 9.7746E-05 

MOPSO 3 0.9001≤|  (   )|≤1   (   )  ≤ 0.1744 9.6166E-05 

 

Table 5.4: Performance comparison for band pass filter 

Approach Lowest filter 

order 

Passband magnitude 

response performance 

Stopband magnitude 

response performance 

Phase 

response error 

HGA 6 0.8956≤|  (   )|≤1   (   )  ≤ 0.1772 1.1222E-04 

CCGA 4 0.8920≤|  (   )|≤1   (   )  ≤ 0.1654 8.1751E-05 

MOPSO 4 0.9291≤|  (   )|≤1   (   )  ≤ 0.1739 6.1850E-05 

 

Table 5.5: Performance comparison for band stop filter 

Approach Lowest filter 

order 

Passband magnitude 

response performance 

Stopband magnitude 

response performance 

Phase 

response error 

HGA 4 0.8920≤|  (   )|≤1   (   )  ≤ 0.1726 2.7074E-04 

CCGA 4 0.8966≤|  (   )|≤1   (   )  ≤ 0.1733 1.6198E-04 

MOPSO 4 0.8968≤|  (   )|≤1   (   )  ≤ 0.1728 1.6034E-04 
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It can be seen from the results that the proposed design method can fully satisfy the magnitude 

response requirement, minimize the phase response error, and find the lowest order. In case of 

bandpass filters proposed approach provides lesser order than HGA based design. Also it can be 

concluded from phase response error value that proposed approach provides more linear phase 

than HGA or CCGA based approaches for all the filter types. Hence better filter designs are 

obtained using proposed approach for low pass, high pass, band pass and band stop filter types. 
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Chapter 6: CONCLUSION 

 

In this thesis, a novel approach for IIR filter design using MOPSO has been introduced. In 

contrast to other existing MOEAs for IIR filter design PSO focuses on a directed search in 

promising areas of the search space. Genetic Algorithms have been used in past for IIR filter 

design. Main advantage of using PSO instead of genetic algorithms is its fast convergence rate. 

This increase in rate is due to directed nature of PSO. GAs is based on operators like mutation 

and selection which are random in nature. IIR filters require minimum magnitude response error, 

linear phase and minimum order. Filters are designed for all four types namely Low pass (LP), 

High pass (HP), Band pass (BP) and band stop (BS). MOPSO used in this thesis is based on 

concept of Pareto dominance. Pareto dominance based approaches result in a set of solutions in 

single simulation run of the algorithm. This is in contrast to single objective methods which give 

one solution per run of algorithm. Pareto optimal set constitutes the set of solutions obtained 

using MOEA. One of these solutions is then selected based on the application of the filter. 

Results obtained using proposed approach are compared with conventional approaches. 

Conventional approaches include Butterworth, Chebyshev I, Chebyshev II, Elliptical filters. 

MATLAB filter design toolbox is used to implement these conventional approaches with 

minimum filter order. Results are compared with the proposed approach. It can be concluded 

from the comparison that MOPSO achieves minimum filter order, magnitude response error and 

more phase linearity. The performance of the algorithm depends on certain parameters like 

swarm size, number of iterations, social and cognitive parameters. These are obtained 

experimentally and can be changed for certain applications.  
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The future scope includes exploring other evolutionary algorithms with multiple objective 

solving capabilities for the filter design. Other MOEAs may include Multi objective Bacterial 

foraging algorithm .Also filter structure can be made dynamic to ensure adaptability in the filter 

design process.  

  



51 
 

References 
 

[1] R. W. Daniels, “Approximation Methods for Electronic Filter Design”. New York: McGraw-

Hill, 1974. 

 

[2] E. A. Guillemin, “Synthesis of Passive Networks”. NewYork: Wiley, 1957. 

 

[3] H. Y.-F. Lam, “Analog and Digital Filters: Design and Realization”. Englewood Cliffs, NJ: 

Prentice-Hall, 1979. 

 

[4] L. Weinberg, “Network Analysis and Synthesis”, Huntington, NY: Kreiger, 1975. 

 

[5] M. D. Lutovac, D. V. Tosic, and B. L. Evans, “Filter Design for Signal Processing Using 

Matlab and Mathematica”. Upper Saddle River, NJ: Prentice-Hall, 2001. 

 

[6] Z. M. Hussain, A. Z. Sadik, P. O’Shea, “Digital Signal Processing- An Introduction with 

MATLAB Applications”, Springer Verlang, 2011. 

 

[7] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont, “ Evolutionary Algorithms 

for Solving Multi-Objective Problems”. Norwell, MA: Kluwer, 2002, ISBN 0-3064-6762-3. 

 

[8] D. M. Etter, M. J. Hicks, and K. H. Cho, “Recursive adaptive filter design using an adaptive 

genetic algorithm,” in Proc. IEEE Int. Conf. ASSP, 1982, pp. 635–638. 

 

[9] K.S. Tang, K.F. Man, S. Kwong, Z.F. Liu,”Design and optimization of IIR filter structure 

using hierarchical genetic algorithms,” IEEE Trans. Ind. Electron. 45 (3) (1998) 481–487, June. 

 

[10] Yang Yu, Yu Xinjie, “Cooperative coevolutionary genetic algorithm for digital IIR filter 

design”, IEEE Trans. Ind. Electron. 54 (3) (2007), 1311–1318, June. 

 

[11] Eberhart, R. C. & Shi, Y. (1998),”Comparison between genetic algorithms and particle 

swarm optimization”. In V. W. Porto et al. (Eds.), Evolutionary programming: Vol. VII (pp. 611-

616),Springer. 

 

 [12] Lecture ,”DT Filter Design: IIR Filters”, OpenCourseWare, 2006, Discrete-Time Signal 

Processing Massachusetts Institute of Technology Department of Electrical Engineering and 

Computer Science . 

 

[13] J.J. Shynk, “Adaptive IIR filtering”, IEEE ASSP Mag. 6 (2) (1989) 4–21, April. 

 

[14] V. K. Ingle and J. G. Proakis, “Digital Signal Processing Using MATLAB,” Thomson 

Books, New Delhi, 2004.  

 

 



52 
 

[15] A.F. Vazquez and G.J. Dolecek “A New Method for the Design of IIR Filters With Flat 

Magnitude Response”, IEEE Transactions on circuits and systems, regular papers, vol. 53, no. 8, 

august 2006 

 

[16] R. A. Losada and V. Pellissier, “Designing IIR filters with a given 3-dB point,” IEEE Signal 

Proc. Magazine; DSP Tips & Tricks column, vol. 22, pp. 95–98, July 2005. 

 

[17]  Samarjeet Singh, Uma Sharma “ MATLAB Based Digital IIR Filter Design ”,IJECE, ISSN 

2277 - 1956, 2012/01/PP - 74 - 83. 

 

[18] E.C. Ifeachor, B.W. Jervis, “Digital Signal Processing: A Practical Approach,” Pearson 

Education Ltd. 2002. 

 

[19] J. G. Proakis and D. G. Manolakis, “Digital Signal Proc-essing: Principles, Algorithms, and 

Applications,” 4th Edition, Pearson Education, Inc., New Delhi, 2007.  

 

[20] E. B. Hogenauer, “An economical class of digital filters for decimation and interpolation,” 

IEEE Trans. on Acoust. Speech and Signal Proc., vol. ASSP-29, pp. 155–162, April 1981. 

 

[21] J. Kennedy, R. Eberhart, “Particle Swarm Optimization,” in Proc. IEEE int. Conf. On 

Neural Network, 1995. 

 

[22] Hu, X. & Eberhart, R. (2002), “Multi-objective optimization using dynamic neighborhood 

particle swarm optimization”, Proceedings of the 2002 IEEE Congress Evolutionary 

Compututation (pp  1677-1681). IEEE. 

 

[23] J. Knowles and D. Corne, “The Pareto archived evolution strategy: A new baseline 

algorithm for multiobjective optimization”, Proceedings of the 1999 Congress on Evolutionary 

Computation. Piscataway, NJ: IEEE Press, 1999, pp. 98-105. 

 

[24] Carlos A. Coello Coello, Gary B. Lamont, “Applications of multi-objective evolutionary 

algorithms”, Advances in natural computation, vol-1, Dec 2004. 

 

[25] Deb. K, ”Multi-objective Optimization using Evolutionary Algorithms”, Chichester, U.K. 

Wiley, 2001 

 

[26] Carlos A. Coello Coello, Gary B. Lamont, David A. Van Veldhuizen, “ Evolutionary algo- 

rithms for solving multi-objective problems”, 2nd ed., 2007. 

 

[27] Jin, Y., Olhofer, M., & Sendhoff, B. (2001). “Evolutionary dynamic weighted aggregation 

for multi-objective optimization: Why does it work and how? “, Proceedings of the GECCO 2001 

Conference (pp. 1042-1049), San Francisco, CA 

 

[28] Fonseca, C. M. & Fleming, P. J. (1993), “Genetic algorithms for multi-objective 

optimization: Formulation, discussion and generalization”,  Proceedings of the 5th International 

Conference on Genetic Algorithms (pp. 416-423). 



53 
 

 

[29] Srinivas, N. & Deb, K. (1994), “Multi-objective optimization using nondominated sorting in 

genetic algorithms”, Evolutionary Computation, 2(3), 221-248. 

 

[30] Srinivasan, D. & Seow, T. H. (2003),”Particle swarm inspired evolutionary algorithm 

(PSEA) for multi-objective optimization problem”, Proceedings of the IEEE 2003 Congress on 

Evolutionary  Computation (pp. 2292-2297). IEEE Press. 

 

[31] Carlos A. Coello, Gregorio Toscano Pulido, and Maximino Salazar Lechuga, “Handling 

multiple objectives with particle swarm optimization” ,Evol. Comput., vol. 8, pp. 256-279, NO. 

3, June 2004 

 

[32] J. D. Knowles and D.W. Corne, “Approximating the nondominated front using the Pareto 

archived evolution strategy”, Evol. Comput., vol. 8, pp. 149-172, 2000. 

 

 

 

 


	CERTIFICATE
	ACKNOWLEDGEMENT
	Abstract
	List of figures
	Fig 2.1: Block diagram of a filter 5
	Fig 2.2: Block diagram of FIR and IIR filters 6
	Fig 2.3: Ideal low pass filter 8
	Fig 2.4: Practical low pass filter 8
	Fig 2.5: Ideal high pass filter 9
	Fig 2.6: Practical high pass filter 9
	Fig 2.7: Ideal bandpass filter 10
	Fig 2.8: Practical bandpass filter 10
	Fig 2.9: Ideal bandstop filter 11
	Fig 2.10: practical bandstop filter 11
	Fig 2.11: A stable IIR filter 12
	Fig 2.12: An unstable IIR filter 12
	Fig 2.13: 7th and 12th order Butterworth filters 15
	Fig 3.1: Pareto front of MOP with 2 objective functions: Cost and efficiency 21
	Fig 3.2: mapping from decision variable space to objective function space 22
	Fig 3.3: Possible cases for the archive controller 28
	Fig 3.4: insertion of element in the grid when it lies within the current boundaries 29
	Fig 3.5: insertion of element in the grid when it lies outside the current boundaries 30
	Fig 5.1: Butterworth filters a) Low Pass b) High pass c) Band pass d) Band stop 38
	Fig 5.2: Chebyshev I filters a) Low Pass b) High pass c) Band pass d) Band stop 39
	Fig 5.3: Chebyshev II filters a) Low Pass b) High pass c) Band pass d) Band stop 40
	Fig 5.4: Elliptical filters a) Low Pass b) High pass c) Band pass d) Band stop 41
	Fig 5.5: a) Magnitude response for LP b) Phase response for LP 42
	c) Magnitude response for HP d) Phase response for HP 42
	Fig 5.6: a) Magnitude response for BP b) Phase response for BP 43
	d) Magnitude response for BS d) Phase response for BS 43
	Fig 5.6: Comparison of different methods for low pass filter design 44
	Fig 5.7: Comparison of different methods for high pass filter design 45
	Fig 5.8: Comparison of different methods for band pass filter design 45
	Fig 5.9: Comparison of different methods for band stop filter design 46

	List of Tables
	Table 2.1: IIR vs FIR filters 17
	Table 4.1: Design Criteria 34
	Table 5.1: Comparison of filter orders 44
	Table 5.2: Performance comparison for low pass filter 47
	Table 5.3: Performance comparison for high pass filter 47
	Table 5.4: Performance comparison for band pass filter 47
	Table 5.5: Performance comparison for band stop filter 47

	Chapter 1: INTRODUCTION
	1.1 Background
	1.2 Motivation
	1.3 Present work
	1.4 Thesis organization

	Chapter 2: IIR FILTERS
	2.1 Digital filters
	Fig 2.1: Block diagram of a filter
	Fig 2.2: Block diagram of FIR and IIR filters

	2.2 IIR Filters
	2.3 Filter specifications
	2.3.1 Low pass filter specifications
	Fig 2.3: Ideal low pass filter
	Fig 2.4: Practical low pass filter

	2.3.2 High pass filter specifications
	Fig 2.5: Ideal high pass filter
	Fig 2.6: Practical high pass filter

	2.3.3 Band pass filter specifications
	Fig 2.7: Ideal bandpass filter
	Fig 2.8: Practical bandpass filter

	2.3.4 Band stop filter specifications
	Fig 2.9: Ideal bandstop filter
	Fig 2.10: practical bandstop filter


	2.4 IIR filter stability
	Fig 2.11: A stable IIR filter

	2.5 IIR filter design: Classical approaches
	2.5.1 Butterworth filter
	Fig 2.13: 7th and 12th order Butterworth filters

	2.5.2 Chebyshev Type I filters
	2.5.3 Chebyshev type II filters
	2.5.4 Elliptical filters

	2.6 IIR vs FIR filters
	Table 2.1: IIR vs FIR filters

	2.7 Summary

	Chapter 3: MULTI-OBJECTIVE OPTIMIZATION
	3.1 Introduction
	3.2 Definitions
	3.2.1 Multi-objective optimization
	3.2.2 Pareto optimality
	3.2.3 Pareto dominance
	3.2.4 Pareto optimal set
	3.2.5 Pareto Front
	Fig 3.1: Pareto front of MOP with 2 objective functions: Cost and efficiency
	Fig 3.2: mapping from decision variable space to objective function space


	3.3 Multi objective evolutionary algorithms
	3.4 Multi objective Particle Swarm Optimization
	3.4.1 Single objective Particle Swarm Optimization
	3.4.2 Multi objective Particle Swarm Optimization
	3.4.2.1 Main algorithm
	3.4.2.2 External repository
	Fig 3.3: Possible cases for the archive controller
	Fig 3.4: insertion of element in the grid when it lies within the current boundaries
	Fig 3.5: insertion of element in the grid when it lies outside the current boundaries



	3.5 Summary

	Chapter 4: PROPOSED APPROACH
	4.1 Introduction
	4.2 Filter structure
	4.3 Objective Functions
	4.3.1 Magnitude response error
	4.3.2 Linear phase response error

	4.4 Initialization of parameters and design criteria
	Table 4.1: Design Criteria

	4.5 Proposed method description
	4.6 Summary

	Chapter 5: RESULTS AND DISCUSSIONS
	5.1 Performance metrics
	5.1.1 Magnitude response error
	5.1.2 Linear phase response error
	5.1.3 Order of the filter

	5.2 Results of Butterworth filters
	Fig 5.1: Butterworth filters a) Low Pass b) High pass c) Band pass d) Band stop

	5.3 Results of Chebyshev I filters
	Fig 5.2: Chebyshev I filters a) Low Pass b) High pass c) Band pass d) Band stop

	5.4 Results of Chebyshev II filters
	Fig 5.3: Chebyshev II filters a) Low Pass b) High pass c) Band pass d) Band stop

	5.5 Results of Elliptical filters
	Fig 5.4: Elliptical filters a) Low Pass b) High pass c) Band pass d) Band stop

	5.5 Results of Proposed approach
	Fig 5.5: a) Magnitude response for LP b) Phase response for LP
	c) Magnitude response for HP d) Phase response for HP
	Fig 5.6: a) Magnitude response for BP b) Phase response for BP
	d) Magnitude response for BS d) Phase response for BS

	5.6 Comparison of proposed approach with conventional approaches
	Table 5.1: Comparison of filter orders
	Fig 5.6: Comparison of different methods for low pass filter design
	Fig 5.7: Comparison of different methods for high pass filter design
	Fig 5.8: Comparison of different methods for band pass filter design
	Fig 5.9: Comparison of different methods for band stop filter design

	5.7 Comparison of proposed approach with Genetic based approaches
	Table 5.2: Performance comparison for low pass filter
	Table 5.3: Performance comparison for high pass filter
	Table 5.4: Performance comparison for band pass filter
	Table 5.5: Performance comparison for band stop filter


	Chapter 6: CONCLUSION
	References

