TABLE OF CONTENTS

Contents			Page No
	Certifi	cate	i
	Studen	t Declaration	ii
	Acknow	wledgement	iii - iv v - vi vii - ix x - xiii
	Abstra	cts	
	Table of	of Contents	
	List of	Figures	
	List of	Tables	xiv
	Numen	clature	XV
1.	Introd	luction	1 - 6
2.	Literat	ure Review	7 - 46
	2.1.1	Ozone depletion potential and Global warming	
		Potential of CFC Refrigerants	7
	2.1.2	Substitutes for CFC Refrigerants	8
	2.1.3	Atmospheric gases as substitutes for CFC Refrigerant	16
	2.2	Selection of Hydrocarbon gas as Refrigerant	17
	2.2.1	Refrigeration Issue	17
	2.2.2	Refrigerant Selection	17
	2.2.3	Refrigerant properties	19
	2.2.4	Lubricants	20
	2.2.5	Materials	21
	2.2.6	General System Components	21
	2.2.7	General Safety Issues	21
	2.2.8	Allowable Refrigerant Charge	21
	2.2.9	Flammable Properties of Hydrocarbons	23
	2.2.10	Refrigerant Charge for various categories	24
	2.3	Refrigeration Cycles	25
	2.3.1	Vapour Compression Cycles	25
	2.3.2	Improvements in Simple Saturation Cycle	27

2.3.3	Simple Saturation Cycle with Flash Chamber	
2.3.4	Compound Vapour Compression Systems	
2.3.4.1	1 Compound Vapour Compression System with Intercooler	
2.3.4.2	.4.2 Two Stage Compression with liquid Intercooler	
2.3.4.3	Individual Compressors Multiple Expansion Values	38
2.3.4.4		
	and Flash Intercooling	39
2.3.4.5	Advantage of Compound (or Multi-stage) Vapour	
	Compression with Intercooler	41
2.4	Cascade Refrigeration System	41
2.4.1	Cascade System	41
2.4.2	Optimum Coupling Temperature between Cascade Circuits	45
Mathen	natical Modeling	47 - 72
3.1	Vapour Compression System	47
3.1.1	Representation of Vapour Compression Cycle on Pressure	
	Enthalpy Diagram	49
3.2	Energy Analysis of Vapour Compression Refrigeration Cycle	52
3.3	Exergy Analysis of Vapour Compression Refrigeration Cycle	55
3.4.	Three Stage Cascade Refrigeration System.	60
3.5	Thermodynamic Analysis of a Three Stage Cascade	
	Refrigeration System	64
Results	& Discussion	73 - 113
4.1	Effect of Condenser Temperature of High Temperature	
	Circuit on other System Parameters	74
4.2.	Effect of Decreasing of Evaporator Temperature	
	(Cascade Heat Exchanger- I)	
	in High Temperature Circuit on System Parameters.	77
4.3	Effect of Increasing Condenser Temperature of	
	Medium Temperature Circuit.	78
4.4	Effect of Evaporator Temperature of Medium	
	Temperature Circuit (Cascade Heat Exchanger- II)	
	on System Parameters.	80

3.

4.

	of R29	0 and R600 a	(a) – (e)
	Appendix - 'A' - Correlations for Thermodynamic Properties		
7.	References		118 - 120
6.	Future Scope of Work.		117
5.	Conclusion		114- 116
		(LT Circuit) on System Parameters	83
	4.6	Effect of Evaporator Temperature of Stage- III	
		Stage-III (CHE-II) on System Parameters.	82
	4.5 Effect of Increasing Condenser Temperature of		

LIST OF FIGURES

Figure No. Title Page No. 2.1 Vapour Compression Cycles on T.S. Diagram 26 2.2 27 Vapour Compression Cycle on P.V. Diagram. 2.3 Simple Saturation Cycle with Flash Chamber 28 2.4 P-h Diagram of Simple Saturation Cycle with Flash Chamber. 30 2.5(a) Two Stage Compression with Liquid Intercooler 33 34 2.5(b) P-h Diagram of Two Stage Compression with Liquid Intercooler. 2.6(a) System with Two Evaporators, Individual Compressors and 38 Multiple Expansion Valves. 2.6(b) Thermodynamic Cycle for the System Two Evaporators, Individual Compressors and Multiple Expansion Valves. 39 2.7(a) System with Two Evaporators, Compound Compression and Flash Intercooler. 40 27(b) Thermodynamic Cycle for System with Two Evaporators, 40 Compound Compression and Flash Intercooler. 2.8 43 Cascade System 2.9 P-h Diagram and T-S Diagram of Two Stage Cascade System 46 3.1 Vapour Compression System 48 3.2 Vapour Compression Cycle on P-h Diagram 49 3.2.1 An Ideal vapour compression refrigeration system for analysis and its TS diagram 54 3.3 Systematic Diagram of Three Stage Vapour Compression **Refrigeration System** 61 3.4 Systematic T-S Diagram of Three Stage Vapour Compression Refrigeration System. 62 90 4.1.1 Effect of Condenser Temperature on work done by Compressors 4.1.2 Effect of Condenser Temperature on Coefficient of Performance 90 4.1.3 Effect of Condenser Temperature on pressure Ratio of Different Stages. 91

4.1.4	Effect of Condenser Temperature on Specific Volume	
	of Vapour Refrigerant at Various Compressor Inlet.	91
4.1.5	Effect of Condenser Temperature on Mass Flow Rate in Different stages	92
4.1.6	Effect of Condenser Temperature on IInd Law Efficiency	
	of Stage-I, II, III & System	92
4.1.7	Effect of Condenser Temperature on Exergy Destruction of	
	Stage- I, II, III & System.	93
4.2.1	Effect of Evaporator Temperature of High Temperature Circuit	
	(Cascade Heat Exchanger-I) on Work done by Compressors.	94
4.2.2	Effect of Evaporator Temperature of High Temperature Circuit	
	(Cascade Heat Exchanger-I) on COP of Stage-I, II, III & System.	94
4.2.3	Effect of Evaporator Temperature of High Temperature Circuit	
	(Cascade Heat Exchanger-I) on Pressure Ratio of Compressors.	95
4.2.4	Effect of Evaporator Temperature of High Temperature Circuit	
	(Cascade Heat Exchanger-I) on Specific Volume of Vapour	
	Refrigerant at Various Compressor Inlet.	95
4.2.5	Effect of Evaporator Temperature of High Temperature Circuit	
	(Cascade Heat Exchanger-I) on Mass Flow Rate in Different Stages.	96
4.2.6	Effect of Evaporator Temperature of High Temperature Circuit	
	(Cascade Heat Exchanger-I) on IInd Law Efficiency of	
	Stage-I, II, III & System.	96
4.2.7	Effect of Evaporator Temperature of High Temperature Circuit	
	(Cascade Heat Exchanger-I) on Exergy Destruction of	
	Stage - I, II, III & System.	97
4.3.1	Effect of Condenser Temperature of Stage- II (Cascade Heat	
	Exchanger-I) on Work done by Compressors.	98
4.3.2	Effect of Condenser Temperature of Stage- II (Cascade	
	Heat Exchanger-I) on COP of Stage-I, II, III & System.	98
4.3.3	Effect of Condenser Temperature of Stage- II	
	(Cascade Heat Exchanger-I) on Pressure Ratio Developed by Compressors.	99

4.3.4	Effect of Condenser Temperature of Stage- II (Cascade	
	Heat Exchanger-I) on Specific Volume of Vapour Refrigerant	
	at Compressor Inlet.	99
4.3.5	Effect of Condenser Temperature of Stage- II (Cascade Heat	
	Exchanger-I) on Mass Flow Rate at Various Stages.	100
4.3.6	Effect of Condenser Temperature of Stage- II (Cascade Heat	
	Exchanger-I) on IInd Law Efficiency of Stage-I, II, III & System.	100
4.3.7	Effect of Condenser Temperature of Stage- II (Cascade	
	Heat Exchanger-I) on Exergy Destruction of Stage-I, II, III & System.	101
4.4.1	Effect of Evaporator Temperature of Stage-II (Cascade	
	Heat Exchanger-II) on Compressors Power.	102
4.4.2	Effect of Evaporator Temperature of Stage-II (Cascade Heat	
	Exchanger-II) on COP of Stage-I, II, III & System.	102
4.4.3	Effect of Evaporator Temperature of Stage-II (Cascade	
	Heat Exchanger-II) on Compressor Pressure Ratio.	103
4.4.4	Effect of Evaporator Temperature of Stage-II (Cascade	
	Heat Exchanger-II) on Specific Volume of Vapour at Compressors Inlet.	103
4.4.5	Effect of Evaporator Temperature of Stage-II (Cascade	
	Heat Exchanger-II) on Mass Flow Rate Through Various Stages.	104
4.4.6	Effect of Evaporator Temperature of Stage-II (Cascade	
	Heat Exchanger-II) on IInd Law Efficiency of Stage-I, II, III & System.	104
4.4.7	Effect of Evaporator Temperature of Stage-II (Cascade	
	Heat Exchanger-II) on Exergy Destruction of Stage - I, II, III & System.	105
4.5.1	Effect of Condenser Temperature of Stage-III on Work Done	
	by Compressors.	106
4.5.2	Effect of Condenser Temperature of Stage-III on Coefficient	
	of Performance.	106
4.5.3	Effect of Condenser Temperature of Stage-III on Pressure	
	Ratio Developed by Compressors.	107
4.5.4	Effect of Condenser Temperature of Stage-III on Specific	
	Volume at Inlet of Compressors.	107

4.5.5	Effect of Condenser Temperature of Stage-III on Mass	
	Flow Rate Through Various Stages.	108
4.5.6	Effect of Condenser Temperature of Stage-III on IInd Law	
	Efficiency of Stage-I, II, III System.	108
4.5.7	Effect of Condenser Temperature of Stage-III on Exergy	
	Destruction of Stage- I, II, III & System.	109
4.6.1	Effect of Evaporator Temperature of Stage-III on Work	
	Done by Various Compressor.	110
4.6.2	Effect of Evaporator Temperature of Stage-III on COP of	
	Stage-I, II, III & System.	110
4.6.3	Effect of Evaporator Temperature of Stage-III on Pressure ratio	
	of stage I, II, III & System.	111
4.6.4	Effect of Evaporator Temperature of Stage-III on Specific Volume	
	at Compressor Inlet of Stage-I, II, & III.	111
4.6.5	Effect of Evaporator Temperature of Stage-III on Mass Flow Rate	
	in Stage-I, II, III.	112
4.6.6	Effect of Evaporator Temperature of Stage-III on IInd Law Efficiency	
	of Stage- I, II, III & System.	112
4.6.7	Effect of Evaporator Temperature of Stage-III on Exergy Destruction	
	of Stage-I, II, III & System.	113

LIST OF TABLES

2.1	Common CFCs and Possible alternatives with Normal Boiling Points	12
2.2	Short Term & Long Term Substitutes Refrigerants.	15
2.3	Application Ranges for Hydrocarbon Refrigerants.	18
2.4	Physical Properties of Refrigerants.	19
2.5	Compatibility of Various Lubricants with HC Refrigerants	20
2.6	Charge Size Requirements for Various Location Categories	22
2.7	Flammable Properties of Hydrocarbons	23
2.8	Refrigerant Charge for Various Categories	24
3.1	Balance Equation for Each System Components	66
3.2	Calculation of Thermodynamic State Points of	
	Cascade Systems Using REFPROP- 6	69
4.1	Performance of Cascade Refrigeration System, Data	
	Related to Work Done & Coefficient of Performance.	86
4.2	Performance of Cascade Refrigeration System, Data Related to	
	Compressor Discharge Temperature , Pressure Ratio, Specific Volume.	87
4.3	Performance of Cascade Refrigeration System, Data	
	Related to Mass flow rate Size of Bore and Stroke Length	88
4.4	IInd Law Efficiency and Exergy Distraction of Cascade	
	Refrigeration System.	89

NOMENCLATURE

COP	[-]	coefficient of performance
DT	[°C]	temperature difference in the cascade-condenser
h	[kJ/kg]	specific enthalpy
hs	[kJ/kg]	specific enthalpy calculated at suction entropy
<i>m</i> ₁ , m ₅ & m ₉	[kg/s]	mass flow rate of high-temperature circuit, mass
		flow rate of medium-temperature circuit &
		mass flow rate to low- temperature circuit
Р	[kPa]	pressure
Q	[kW]	heat transfer rate
RC	[-]	Compressor pressure ratio
S	[kJ/kg.K]	specific entropy
Т	[oC]	temperature
W	[kW]	work
Х	[-]	quality
X_{des}	[kW]	rate of exergy destruction
Special characters	5	
η	[-]	Efficiency
η_{Π}	[-]	Exergetic efficiency
Ψ	[kJ/kg]	Stream exergy
Subscripts		
cas		Cascade
E		Evaporator
F		Cooling space
С		Condenser
ΗT		High-Temperature circuit
MT		Medium - Temperature circuit
LT		Low-Temperature circuit
isent		Isentropic
max		maximum