
A Dissertation

On

SOFTWARE BUG LOCALIZATION

USING TOPIC MODELS

Submitted in partial fulfillment of the requirement

for the award of degree of

MASTER OF TECHNOLOGY

Computer Technology and Application (CTA)

Submitted By:

TANU SHARMA

2K10/CTA/24

Under the Guidance of:

Dr. Kapil Sharma

Associate Professor

Computer Engineering Department

Delhi Technological University

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY, 2013

ii

CERTIFICATE

This is to certify that TANU SHARMA has carried out the work presented in this thesis

report entitled, “Software Bug Localization using Topic Models”, under my supervision.

The report embodies result of work and studies carried out by her and the contents of the

thesis do not form the basis for the award of any other degree to the candidate or to anybody

else.

Dr. Kapil Sharma

Associate Professor

Computer Engineering Department

Delhi Technology University, Delhi

iii

ACKNOWLEDGMENT

First and foremost, praises and thanks to the God, the Almighty, for His showers of blessings

throughout my M.Tech to get it completed successfully.

I want to express my sincere thanks to my HOD, Dr. Daya Gupta, Department of Computer

Engineering, Delhi Technological University, Delhi for providing well equipped

infrastructure support. I would like to express my deep and sincere gratitude to my project

mentor Dr. Kapil Sharma, Associate Professor, Computer Engineering Department, Delhi

Technological University, Delhi for giving me the opportunity to do research and providing

invaluable guidance and constant encouragement throughout the project.

I am thankful to my elder brother, Tapan Sharma, Senior Advisory Software Engineer, Pitney

Bowes, Noida for helping me in implementing and completing this work by his valuable

industry experience. I am extremely grateful to my family for their love, prayers, caring and

sacrifices for educating and preparing me for my future and for not letting me down at the

time of crisis and showing me the silver linings in the dark cloud.

This thesis would have not been completed without the constant support of my best friends.

Finally, I thank all the faculty and staff members of Bhagwan Parshuram Institute of

Technology, Rohini, Delhi for extending a helping hand at every juncture of need.

TANU SHARMA

2K10/CTA/24

M.Tech (Computer Technology and Applications)

Department of Computer Engineering

Delhi Technology University, Delhi

iv

ABSTRACT

Bug localization is a process of identifying the specific file of source code that is faulty and

needs to be modified to fix the bug. Due to the increasing size and complexity of current

software applications, automated solutions for bug localization can significantly reduce

human effort and software development/maintenance cost. In this research work, bug

localization has been performed using topic model of Information Retrieval. Pachinko

Allocation Model (PAM) has been applied for the first time in bug localization. In this

research work, PAM model of source code is built first. This model is then queried for

locating bugs. The bug reports are considered as a query for the system for which files

containing bugs need to be identified. This query is used by Inference engine to produce

ranked list of files from source code. The top-ranked files are the one most likely to require

modification to correct the bug. This work performs analysis and comparison of PAM and

Latent Dirichlet Allocation (LDA) models based approach for bug localization using

MALLET library in java. This library has been extended to incorporate PAM based bug

localization using proposed Inference engine. For evaluating the performance of PAM and

LDA based approach, the datasets downloaded from two open source projects i.e. Rhino and

ModeShape have been used in this work. In case of Rhino dataset, for one bug report only

10% of dataset is needed to be reviewed. In case of ModeShape dataset, for one bug report

only 1.5 % of dataset is needed to be reviewed. It has been observed that the bug localization

technique using PAM model gives promising results as compared to LDA model.

v

CONTENTS

CERTIFICATE

ACKNOWLEDGEMENT

ABSTRACT

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

LIST OF ABBREVIATIONS ... ix

LIST OF SYMBOLS .. x

1 INTRODUCTION .. 2

1.1 Background of the study ... 2

1.2 Research Objective ... 3

1.3 Contribution of research work .. 3

1.4 Thesis Outline ... 4

2 LITERATURE SURVEY .. 6

2.1 Introduction to Topic Modeling ... 6

2.2 Topic Models in Information Retrieval .. 8

2.2.1 Information Retrieval ... 8

2.2.2 Topic Models .. 9

2.3 Applications of Topic Models in Software Engineering .. 11

2.3.1 Concept Location .. 11

2.3.2 Traceability Recovery .. 12

2.3.3 Source Code Metrics .. 13

2.3.4 Software Evolution and Trend Analysis ... 14

2.4 Bug Localization .. 14

2.4.1 Defining bug ... 14

2.4.2 Stages in Life cycle of Bug... 15

vi

2.4.3 Bug tracking System ... 17

2.4.4 Information Retrieval Model for Bug localization ... 18

2.5 Bug Localization Using Topic Models ... 19

2.6 Motivation .. 20

3 BUG LOCALIZATION USING TOPIC MODELS ... 22

3.1 Latent Dirichlet Allocation (LDA) Model.. 22

3.2 Pachinko Allocation Model .. 24

3.3 Bug Localization Using Pachinko Allocation Model ... 27

3.3.1 Preprocessing of Source Code .. 28

3.3.2 Construction of PAM Model .. 29

3.3.3 Query the PAM Model using Inference Engine ... 30

4 CASE STUDY ... 32

4.1 Experimental Data Sets .. 32

4.1.1 Rhino .. 32

4.1.2 ModeShape ... 33

4.2 Bug Tracking Systems: Bugzilla and JIRA .. 35

4.3 Performance and Evaluation Metrics ... 36

4.3.1 Mean Average Precision ... 36

4.3.2 Rank of First Relevant File ... 37

4.4 Experimental Set Up and Simulation ... 37

5 EXPERIMENTAL RESULTS AND ANALYSIS ... 42

5.1 Results for Rhino .. 42

5.2 Results for ModeShape... 44

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK ... 49

REFERENCES ... 50

vii

LIST OF FIGURES

Figure 1: Corpus of three documents .. 7

Figure 2: Bug Report in Bugzilla .. 15

Figure 3: Bug Life Cycle .. 16

Figure 4: Graphical notation for LDA .. 23

Figure 5: LDA Structure ... 25

Figure 6: PAM Structure ... 25

Figure 7: Bug Localization Using PAM Model .. 28

Figure 8: Bugzilla: Bug Tracking System for Rhino .. 35

Figure 9: JIRA: Bug Tracking System for ModeShape .. 36

Figure 10: Phase I in PAM based bug localization ... 38

Figure 11: Phase II in PAM based bug localization ... 39

Figure 12: Comparison between LDA and PAM approaches using MAP for Rhino 42

Figure 13: AP values in Rhino data set for LDA and PAM based approaches 43

Figure 14: Rank of Relevant files using LDA approach for Rhino .. 43

Figure 15: Rank of Relevant files using PAM approach for Rhino .. 44

Figure 16: Comparison between LDA and PAM approaches using MAP for ModeShape ... 45

Figure 17: AP values in ModeShape data set for LDA and PAM based approaches 45

Figure 18: Rank of Relevant files using LDA for ModeShape .. 46

Figure 19: Rank of Relevant files using PAM for ModeShape .. 46

Figure 20: MAP based comparison on Rhino and ModeShape .. 47

Figure 21: Rank based comparison on Rhino and ModeShape .. 47

viii

LIST OF TABLES

Table 1: Terminologies in Information Retrieval and Bug Localization 9

Table 2: Bug id and Summary for Rhino .. 33

Table 3: Bug id and Summary for ModeShape .. 34

ix

LIST OF ABBREVIATIONS

 Average Precision

 Aspect-Oriented Programming

 Cross-Collection Topic Models

 Directed Acyclic Graph

 First Relevant File

 Hierarchical Topic Models

 Information Retrieval

 Latent Dirichlet Allocation

 Labeled LDA

 Latent Semantic Indexing

 Mean Average Precision

 Machine Learning for Language Toolkit

 Natural Language Processing

 Pachinko Allocation Model

 Probabilistic Latent Semantic Indexing

 Polylingual Topic Model

 Relational Topic Model

 Relational Topic-based Coupling

 Supervised Topic Model

 Singular Value Decomposition

http://en.wikipedia.org/wiki/Singular_value_decomposition

x

LIST OF SYMBOLS

 Term-Document matrix

 Corpus

 A Document

 Total number of relevant files for a bug

 Number of terms in a document

 Precision at i
th

relevant file retrieved

 Vocabulary

 Term (word)

 A Topic

 Smoothing parameter for document topic distributions

 Smoothing parameter for topic term distributions

 Word-Topic Probability Distribution

 Topic-Document Probability Distribution

 A multinomial distribution over super topics

 A multinomial distribution over sub topics

 Dirichlet distribution associated with topic

1

CHAPTER 1

INTRODUCTION

2

1 INTRODUCTION

Due to the increasing size and complexity of software systems, efficient bug

localization is required. This chapter introduces the debugging process and the

objectives and contributions of this thesis. Chapter wise thesis coverage has been

summarized at the end.

1.1 Background of the study

In today’s era, software industries are competing with quality of the software

which depends upon the sound software testing phase. Most of the software contains

some bugs after being released, so it is most challenging to localize bug automatically

and fix them before release. A software quality factor is a non-functional requirement for

a software program which is not called up by the customer's contract, but nevertheless is

a desirable requirement which enhances the quality of the software program.

In large and complex software systems; software aging, poor-documentation and

developer mobility makes software project hard to understand for software developers

(Lukins, Kraft, & Etzkorn, 2008). This may slow down software project progress and

may increase overall software maintenance cost. In order to bring down the overall

resource consumption of corrective software maintenance it is required to empower

software developers with tools and techniques that can facilitate them in debugging and

bug fixing. Debugging is a methodical process of finding and reducing the number

of bugs, or defects, in a computer program or a piece of electronic hardware, thus making

it behave as expected. Debugging tends to be harder when various subsystems are tightly

coupled, as changes in one may cause bugs to emerge in another. The first Software bug

was seen by Grace Murray Hopper in year 1947 on Harvard University Mark II Aiken

Relay Calculator (a primitive computer). It starts from possibly unknown initial

conditions and the end cannot be predicted, except statistically and the duration of

debugging, cannot be constrained. It demands intuitive leaps, conjectures,

experimentation, intelligence and freedom which are impossible without detailed design

knowledge. Debugging process of a program is describes as a chain of three steps (Katz

& Anderson, 1987):

http://en.wikipedia.org/wiki/Computer_bug
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Electronic_hardware
http://en.wikipedia.org/wiki/Low-Coupling_/_High-Cohesion_pattern
http://en.wikipedia.org/wiki/Low-Coupling_/_High-Cohesion_pattern

3

i. Finding the potential location of bug

ii. Fixing the bug

iii. Testing the program

Bug fixing is a complex task as it requires understanding of bug and source code.

Bug fixing task consists of various sub-task such as understanding the bug, locating the

cause of bug and finally fixing it. In most of the bug fixing cases, locating cause of bug

(bug localization) consumes most of the developer's time (Chang, Bertacco, & Markov,

2005). Basically two types of techniques are used for performing bug localization, one is

static and another is dynamic. Static bug localization techniques work on the source code

or a static model of the source code, while dynamic bug localization techniques work on

execution traces. In static bug localization, neither operational software nor a test case is

required. While dynamic bug localization techniques, requires the working software and

also the test case that triggers the bug. The major drawback of dynamic technique is that

a program or software developed for locating bugs cannot be made language

independent. This work focuses on the task of bug localization (locating the bugs in the

source code) using topic models of Information Retrieval (IR).

1.2 Research Objective

The main objectives of this work are:

 To propose a topic model based approach for bug localization that can perform

better than the existing approaches.

 To automate bug localization process irrespective of the programming language

used in the source code where bug has to be located.

 To propose an approach for bug localization in which bugs can be located in early

stages of development also.

In this work, PAM topic model of IR has been used for performing bug localization.

1.3 Contribution of research work

The major contributions of this work are:

 The proposed approach for performing bug localization is independent of the

programming language of the source code.

4

 Bug localization can be easily performed in the initial stages of development and

no test case or test suite is required for performing bug localization.

 For locating bugs only 1.5 % of ModeShape source code is needed to be

reviewed. While 10% of Rhino source code is required to be reviewed for locating

the cause of bugs.

 PAM based approach for bug localization performs better than LDA(Latent

Dirichlet Allocation) based approach in terms of both MAP(Mean Average

Precison) and First relevant file method.

 For Rhino dataset, the value of MAP is 0.157 and 0.202 using LDA and PAM

based approaches respectively.

 For ModeShape dataset, the value of MAP is 0.100 and 0.142 using LDA and

PAM based approaches respectively.

1.4 Thesis Outline

The next chapter provides the background of bug localization and various topic

models in Information Retrieval. Chapter 3 discusses the details of the topic models and

methodology used for locating bugs in this work. Chapter 4 discusses the datasets used in

this work and the various evaluation metrics used for comparing and evaluating the

result. This chapter also describes the experimental set up and simulation. In chapter 5,

analysis of result has been done. Conclusion and future scope of this work has been

included at the end.

5

CHAPTER 2

LITERATURE SURVEY

6

2 LITERATURE SURVEY

Bug localization is a process of mapping a bug back to the code that might have

caused it. Performing bug localization is relatively time consuming and costly. For this

reason, many techniques are available for facilitating the task of bug localization. This

chapter provides background for various topic models in Information Retrieval and the

task of bug localization. Details of topic models and their applications are discussed first

followed by the details about bug, bug tracking system and bug localization.

2.1 Introduction to Topic Modeling

A topic model (or latent topic model or statistical topic model) refers to a model

designed to automatically extract topics from a corpus of text documents (Anthes,

Dec,2010) (Blei & Lafferty, Topic models, 2009) (Steyvers & Griffiths, 2007). A

collection of terms that co-occur frequently in the documents of the corpus, for example

{mouse, click, drag, right, left} and {user, account, password, authentication} makes a

topic. Topic models are algorithms for discovering the main themes that pervade a large

and otherwise unstructured collection of documents. Topic models can organize the

collection according to the discovered themes.

Topic modeling is a suite of algorithms that aim to discover and annotate large

archives of documents with thematic information (Blei, David M., 2012). Topic modeling

algorithms are statistical methods that analyze the words of the original texts to discover

the themes that run through them, how those themes are connected to each other, and

how they change over time.

Topic modeling algorithms do not require any prior annotations or labeling of the

documents, the topics emerge from the analysis of the original texts. Due to the nature of

language use, the terms that constitute a topic are often semantically related (Blei, Ng, &

Jordan, 2003)

7

 Figure 1: Corpus of three documents

Figure 1 shows the corpus of three documents. The terminology used in topic model is

explained below with reference to this figure.

a) Term (word) : A string of one or more alphanumeric characters. In figure 1,

there are total of 101 terms. For example, predicting, bug, there, have, bug and of

are all terms. Terms might not be unique in a given document.

b) Document : An ordered set of terms, . In above figure, there

are three documents : has = 34 terms, has = 35 terms,

and has = 32 terms

c) Corpus : An ordered set of documents . In figure 1, there is one

corpus, which consists of = 3 documents: .

d) Vocabulary : The unordered set of unique terms that appear in a corpus. In

figure 1, the vocabulary consists of = 71 unique terms across all three

documents: code, of, are, that, to, the, software, …

e) Term-document matrix : An m x n matrix whose i
th

, j
th

 entry is the weight of

term in document .

8

In figure, the term code appears three times in document and two times in

document .

2.2 Topic Models in Information Retrieval

 Various topic models in Information Retrieval have been discussed below

2.2.1 Information Retrieval

An Information Retrieval system is a software program that stores and manages

information on documents, often textual documents but possibly multimedia. The system

assists users in finding the information they need. It does not explicitly return information

or answer questions. Instead, it informs on the existence and location of documents that

might contain the desired information. Some suggested documents will, hopefully, satisfy

the user's information need. These documents are called relevant documents (Hiemstra,

2009).

The goal of any IR system is to identify documents relevant to a user's query. In

order to do this, an IR system must assume some specific measure of relevance between a

document and a query, i.e., an operational definition of a relevant document with respect

to a query. A fundamental problem in IR research is thus to formalize the concept of

relevance; a different formalization of relevance generally leads to a different retrieval

model (Zhai, October,2007).

Since the IR based approaches were originally developed for natural languages,

there exist some challenges when one tries to adapt them to retrieval from software

libraries. The two key challenges are: vocabulary mismatch and the lack of availability of

good evaluation datasets. Vocabulary mismatch occurs when a query contains a word that

was not seen before in the documents used for model construction. For the case of

software libraries, the vocabulary mismatch problem arises from the use of abbreviations

and concatenations of variable names and identifiers by the developers at the time of code

development. Such words are called hard-words. The words used in a query may carry

the same semantic intent as portions of the hard-words, but may not match them

structurally.

9

Table 1: Terminologies in Information Retrieval and Bug Localization

Terminology in IR Terminology in Bug Localization

Document Source files of the software library

Query Bug report and/or its textual description

Terms Identifier names

Retrieval Bug localization

Index Source library

2.2.2 Topic Models

Topic models were originally developed in the field of natural language

processing (NLP) and IR as a means of automatically indexing, searching, clustering and

structuring large corpora of unstructured and unlabeled documents. Using topic models,

documents can be represented by the topics within them, and thus the entire corpus can

be indexed and organized in terms of this discovered semantic structure. Topic models

enable a low-dimensional representation of text, which uncovers latent semantic

relationships and allows faster analysis on text (Thomas S. W., 2012).

A variety of probabilistic topic models have been proposed to analyze the content

of documents and the meaning of words (Blei, Ng, & Jordan, 2003) (Hoffman, 1999)

(Blei & Lafferty, Topic models, 2009). These models all use the same fundamental idea,

that a document is a mixture of topics but make slightly different statistical assumptions.

Authors (Deerwester, Dumais, Landauer, Furnas, & Harshman, 1990) proposed

Latent Semantic Indexing (LSI), an indexing and retrieval model that used a

mathematical technique called singular value decomposition (SVD) to identify patterns in

the relationships between the terms and concepts contained in an unstructured collection

of text. LSI is based on the principle that words that are used in the same contexts tend to

have similar meanings. Hofmann (Hoffman, 1999) introduced the probabilistic topic

approach to document modeling in his Probabilistic Latent Semantic Indexing method

(pLSI; also known as the aspect model).

Latent Dirichlet Allocation (LDA), a popular probabilistic topic model has been

proposed by authors (Blei, Ng, & Jordan, 2003). LDA has largely replaced PLSI. One of

the reasons it is so popular is because it models each document as a multi-membership

http://en.wikipedia.org/wiki/Singular_value_decomposition

10

mixture of K corpus-wide topics, and each topic as a multi membership mixture of the

terms in the corpus vocabulary. This means that there are a set of topics that describe the

entire corpus, each document can contain more than one of these topics, and each term in

the entire repository can be contained in more than one of these topic. Hence, LDA is

able to discover a set of ideas or themes that well describe the entire corpus (Blei, David

M., 2012).

 Several variants of LDA have been proposed. All of these variants apply additional

constraints on the basic LDA model in some way.

Authors (Blei, Griffiths, Jordan, & Tenenbaum, 2004) proposed Hierarchical Topic

Model (HLDA) that discovers a tree-like hierarchy of topics within a corpus, where each

additional level in the hierarchy is more specific than the previous. For example, a super-

topic “user interface” might have sub-topics “toolbar” and “mouse events”.

 Authors (Rosen-Zvi, Griffiths, Steyvers, & Smyth, 2004) proposed Author-Topic

Model. The author-topic model considered one or more authors for each document in the

corpus. Each author is then associated with a probability distribution over the discovered

topics. For example, the author Stephen King would have a high probability with the

“horror” topic and a low probability with the “dandelions” topic.

 Authors (Li & McCallum, 2006) introduced Pachinko Allocation Model (PAM) that

provided connections between discovered topics in an arbitrary directed acyclic graph.

Authors (Blei & McAuliffe, Supervised topic models, 2008) proposed Supervised Topic

Models (sLDA). sLDA considered documents that are already marked with a response

variable (e.g., movie reviews with a numeric score between 1 and 5), and provides a

means to automatically discover topics that help with the classification (i.e., predicting

the response variable) of unseen documents.

 Paul (Paul, 2009.) introduced Cross-Collection Topic Models (ccLDA) which

discovered topics from multiple corpora, allowing the topics to exhibit slightly different

behavior in each corpus. For example, a “food” topic might contain the words {food

cheese fish chips} in a British corpus and the words {food cheese taco burrito} for a

Mexican corpus.

Authors (Ramage, Hall, Nallapati, & Manning, 2009) introduced Labeled LDA (LLDA)

LLDA takes as input a text corpus in which each document is labeled with one or more

11

labels (such as Wikipedia) and discovers the term-label relations. LLDA discovers a set

of topics for each label and allows documents to only display topics from one of its

labels.

 Authors (Mimno, Wallach, Naradowsky, Smith, & McCallum, 2009) proposed

Polylingual Topic Model (PLTM). PLTM can handle corpora in several different

languages, discovering aligned topics in each language. For example, if PLTM runs on

English and German corpora, it might discover the aligned “family” topics {child parent

sibling} and {kind eltern geschwister}.

 Authors (Chang & Blei, 2009) introduced Relational Topic Models (RTM). RTM

models documents as does LDA, as well as discovers links between each pair of

documents. For example, if document 1 contained the “planets” topic, document 2

contained the “asteroids” topic, and document three contained the “Michael Jackson”

topic, then RTM would assign a stronger relationship between documents 1 and 2 than

between documents 1 and 3 or documents 2 and 3, because topics 1 and 2 are more

closely related to each other.

2.3 Applications of Topic Models in Software Engineering

The various applications of topic models in field of software engineering are discussed

below.

2.3.1 Concept Location

 The task of concept location (or feature location) is to identify the parts (e.g.,

documents or methods) of the source code that implement a given feature of the software

system. This is useful for developers wishing to debug or enhance a given feature. For

example, if the so-called file printing feature contained a bug, then a concept location

technique would attempt to automatically find those parts of the source code that

implement file printing (i.e., parts of the source code that are executed when the system

prints a file). Related to concept location is aspect-oriented programming (AOP), which

aims at providing developers with the machinery to easily implement aspects of

functionality whose implementation spans over multiple source code documents.

 Authors (Linstead, Rigor, Bajracharya, Lopes, & Baldi, Mining Eclipse developer

contributions via author-topic models, 2007) were the first to use LDA to locate concepts

12

in source code in the form of LDA topics. The proposed approach can be applied to

individual systems or large collections of systems to extract the concepts found within the

identifiers and comments in the source code. The authors demonstrated how to group

related source code documents based on comparing the documents’ topics.

 Authors (Linstead, Rigor, Bajracharya, Lopes, & Baldi, Mining Eclipse developer

contributions via author-topic models, 2007)applied a variant of LDA, the Author-Topic

model, to source code to extract the relationship between developers (authors) and source

code topics. The proposed technique allows the automated summarization of “who has

worked on what”, and the authors provided a brief qualitative argument as to the

effectiveness of this approach.

 Authors (Maskeri, Sarkar, & Heafield, 2008) applied LDA to source code to extract

the business concepts embedded in comments and identifier names. The authors applied a

weighting scheme for each keyword in the system, based on where the keyword is found

(e.g., class name, parameter name, method name). The authors found that their LDA-

based approach is able to successfully extract business topics, implementation topics, and

cross-cutting topics from source code.

 Authors (Baldi, Lopes, Linsteda, & Bajracharya, 2008) proposed a theory that

software concerns are equivalent to the latent topics found by statistical topic models.

Further, they proposed that aspects are those latent topics that have a high scattering

metric. The authors applied their approach to a large set of open-source projects to

identify the global set of topics, as well as perform a more detailed analysis of a few

specific projects. The authors found that latent topics with high scattering metrics are

indeed those that are typically classified as aspects in the AOP community.

 Authors (Savage, Dit, Gethers, & Poshyvanyk, 2010) introduced a topic visualization

tool, called TopicXP, which supports interactive exploration of discovered topics located

in source code.

2.3.2 Traceability Recovery

 Traceability recovery aims to automatically uncover links between pairs of software

artifacts, such as source code documents and requirements documents. This allows a

project stakeholder to trace a requirement to its implementation, for example to ensure

that it has been implemented correctly or not. Traceability recovery between pairs of

13

source code documents is also important for developers wishing to learn which source

code documents are somehow related to the current source code file being worked on.

 Authors (Asuncion, Asuncion, & Taylor, 2010) introduced a tool called TRASE that

uses LDA for prospectively, as opposed to retrospectively, recovering traceability links

amongst diverse artifacts in software repositories. This means that developers can create

and maintain traceability links as they work on the project. The authors demonstrated that

LDA outperforms LSI in terms of precision and recall.

2.3.3 Source Code Metrics

 Bug prediction (or defect prediction or fault prediction) tries to automatically predict

which parts (e.g., documents or methods) of the source code are likely to contain bugs.

This task is often accomplished by collecting metrics on the source code, training a

statistical model to the metrics of documents that have known bugs, and using the trained

model to predict whether new documents will contain bugs.

 Authors (Linstead & Baldi, Mining the coherence of GNOME bug reports with

statistical topic models, 2009) applied LDA to the bug reports in the GNOME project

with the goal of measuring the coherence of a bug report, i.e., how easy to read and how

focused a bug report is. This coherence metric is defined as the tangling of LDA topics

within the report, i.e., how many topics are found in the report (fewer are better).

 Authors (Liu, Poshyvanyk, Ferenc, Gyimothy, & Chrisochoides, 2009) applied LDA

to source code methods in order to compute novel class cohesion metric called Maximum

Weighted Entropy (MWE). MWE is computed based on the occupancy and weight of a

topic in the methods of a class. The authors demonstrated that this metric captures novel

variation in models that predict software faults.

 Authors (Gethers & Poshyvanyk, 2010) introduced a new coupling metric, the

Relational Topic-based Coupling (RTC) metric, based on a variant of LDA called

Relational Topic Models (RTM). RTM extends LDA by explicitly modeling links

between documents in the corpus. RTC uses these links to define the coupling between

two documents in the corpus. The authors demonstrated that their proposed metric

provides value because it is statistically different from existing metrics.

14

2.3.4 Software Evolution and Trend Analysis

 Authors (Linstead, Lopes, & Baldi, 2008) applied LDA to several versions of the

source code of a project in an effort to identify the trends in the topics over time. Trends

in source code histories can be measured by changes in the probability of seeing a topic at

specific version. When documents pertaining to a particular topic are first added to the

system, for example, the topics will experience a spike in overall probability.

 Authors (Thomas, Adams, Hassan, & Blostein, 2010) evaluated the effectiveness of

topic evolution models for detecting trends in the software development process. The

authors applied LDA to a series of versions of the source code and calculated the

popularity of a topic over time. The authors manually verified that spikes or drops in a

topic’s popularity indeed coincided with developer activity mentioned in the release notes

and other project documentation, providing evidence that topic evolution models provide

a good summary of the software history.

2.4 Bug Localization

Bug localization is a process of mapping a bug back to the code that might have caused it.

Bug and the various stages in its life cycle have been discussed below. Bug tracking

system and use of IR models in bug localization has also been discussed below.

2.4.1 Defining bug

 “A computer bug is an error, flaw, mistake, failure, or fault in a computer program

that stops it from working correctly or produces an incorrect result. Bugs arise from

mistakes and errors, made by people, in either a program’s source code or its design.”

The first Software bug was seen by Grace Murray Hopper in year 1947 on Harvard

University Mark II Aiken Relay Calculator (a primitive computer).

15

Figure 2: Bug Report in Bugzilla

2.4.2 Stages in Life cycle of Bug

 In software development process, the bug has a life cycle (Rakesh). The bug should go

through the life cycle to be closed. A specific life cycle ensures that the process is

standardized. The bug attains different states in the life cycle. The different states of a

bug can be summarized as follows:

1. New

2. Open

3. Assign

4. Test

5. Verified

16

6. Deferred

7. Reopened

8. Duplicate

9. Rejected

10. Closed

Figure 3: Bug Life Cycle

Description of Various Stages:

1. New: When the bug is posted for the first time, its state will be “NEW”. This

means that the bug is not yet approved.

2. Open: After a tester has posted a bug, the bug is approved as genuine by the lead

of the tester the state is changed as “OPEN”.

3. Assign: Once the lead changes the state as “OPEN”, the bug is assigned to

corresponding developer or developer team. The state of the bug now is changed

to “ASSIGN”.

4. Test: Once the bug is fixed by developer, the bug is assigned to the testing team

for next round of testing. Before releasing the software with bug fixed, the state of

bug is changed to “TEST”. It specifies that the bug has been fixed and is released

to testing team.

17

5. Deferred: The bug, changed to deferred state means the bug is expected to be

fixed in next releases. The reasons for changing the bug to this state have many

factors. Some of them are priority of the bug may be low, lack of time for the

release or the bug may not have major effect on the software.

6. Rejected: If the developer feels that the bug is not genuine, the bug is rejected and

the state of the bug is changed to “REJECTED”.

7. Duplicate: If the bug is repeated twice or the two bugs mention the same concept

of the bug, then status of one bug is changed to “DUPLICATE”.

8. Verified: Once the bug is fixed and the status is changed to “TEST”, the tester

tests the bug. If the bug is not present in the software, the bug is approved as fixed

and the status is changed to “VERIFIED”.

9. Reopened: If the bug still exists even after the bug is fixed by the developer, the

status is changed to “REOPENED” by tester. The bug traverses the life cycle once

again.

10. Closed or Fixed: Once the bug is fixed, it is tested by the tester. If the bug no

longer exists in the software, the status is changed to “CLOSED”. This state

means that the bug is fixed, tested and approved.

2.4.3 Bug tracking System

 A bug tracking system or defect tracking system is a software application that is

designed to keep track of reported software bugs in software development efforts. It may

be regarded as a type of issue tracking system.

 Many bug tracking systems, such as those used by most open source software

projects, allow users to enter bug reports directly. Other systems are used only internally

in a company or organization doing software development. Typically bug tracking

systems are integrated with other software project management applications.

 A major component of a bug tracking system is a database that records facts about

known bugs. Facts may include the time a bug was reported, its severity, the erroneous

program behavior, and details on how to reproduce the bug; as well as the identity of the

person who reported it and any programmers who may be working on fixing it. Typical

bug tracking systems support the concept of the life cycle for a bug which is tracked

http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Issue_tracking_system
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Database

18

through status assigned to the bug. Bugzilla is the very first Bug Tracking System

developed for tracking bugs in the year 1998. Bugzilla is written in Perl language.

 In 2000, Mantis Bug Tracker was introduced written in PHP. Mantis introduced a

much nicer user interface than Bugzilla, and offered more customization, including

customization of the bug workflow and state transitions.

 JIRA, a commercial product launched in 2003 and built in Java, represented another

step forward for issue tracking systems, adding additional customization options, and a

powerful plug-in architecture. The JIRA platform tends to work best for large enterprise

software projects.

 In 2006, two similar projects were introduced: Trac and Redmine. Both are open-

source project management and issue tracking systems. Both offer web-based ticketing

system similar to Mantis, along with support for milestones, Wiki-style documentation,

and source integration. Trac is written in Python, whereas Redmine is developed on the

recently popular Ruby on Rails framework.

2.4.4 Information Retrieval Model for Bug localization

 Information Retrieval (IR) can be defined as: “Retrieving relevant documents (or

documents that satisfy user information need) from large and unstructured collection of

documents" (Anvik, Hiew, & Murphy, 2006).

Information Retrieval is an art and science of searching (or retrieving) relevant

documents from the large collection of documents, for example:

 Searching for articles on image processing.

 Retrieving web pages relevant to endangered species.

 Retrieving advertisement on latest laptops brands present in the market.

All these are real world examples that are encountered in daily life. Web search engines

such as Google, Yahoo, Bing etc. are the biggest applications of IR system. These search

engines indexes millions of documents (unstructured or semi-structured nature) which are

used for IR model building. When a user input's a query this IR model is used to provide

user ranked list of document which are ordered according to their relevance to the given

query (Sangeeta, 2011).

IR models are gaining popularity in bug localization domain mainly because of two

reasons: 1) scalability, and 2) language independence (Rao & Kak, 2011). These features

http://www.atlassian.com/software/jira/overview
http://trac.edgewall.org/
http://www.redmine.org/

19

of IR model allow automated bug localization tools to remain applicable as software

grows in size and complexity.

 For bug localization problem IR models have been built using software source code

information. In addition to source code other information present with the software

system such as software documentation, software specification or previous bug locations

has also been used for IR model formation. Document collection represents at which

level of granularity bug localization system need to locate the bug, it can be at statement,

method, class, or file level. Document collection is formed from source code by breaking

it into desired level of granularity. Any new bug report is considered as a query for the

system for which relevant documents need to be retrieved. New bug reports are converted

to query using query formation module. All this information (IR model, document

collection, query) is used by query engine module to produce ranked list of documents

from document collection. Documents are ranked in order of their relevance with respect

to current query. These ranked documents can be used by software developers to predict

bug location during bug fixing.

 Authors (Hayes, Nichols, Kraft, & Anderson) proposed a technique for bug

localization in which LSI model has been used. And to improve the efficiency, historical

patch data has also been used. For locating a given bug combined result of both previous

history and LSI based approach has been used.

 Shao (Shao, 2011) proposed an improvement in LSI based bug localization by

combining the structural information as well. In this work, LSI has been combined with

call graphs for the task of locating bugs. This LSI-Call Graph based approach has shown

better results as compared to LSI based approach.

2.5 Bug Localization Using Topic Models

In recent times, researchers have developed automated static bug localization

location techniques (Poshyvanyk & Marcus, 2007) (Lukins, Kraft, & Etzkorn, 2008) (Lal

& Sureka, 2012)using topic models of Information Retrieval (IR) such as Latent

Semantic Indexing (LSI) (Deerwester, Dumais, Landauer, Furnas, & Harshman, 1990),

Latent Dirichlet allocation (LDA) (Blei, Ng, & Jordan, 2003) and N-Gram (Wei X. ,

2007). These techniques show efficacy but leave room for some improvement.

20

Authors (Lukins, Kraft, & Etzkorn, 2008) presented an LDA based approach to

bug localization at method level granularity. In five case studies on Mozilla, Eclipse, and

Rhino they demonstrate show that the approach outperforms LSI as well as the accuracy

and scalability of the approach. Further, the authors show that the approach is not

sensitive to the size of the subject software system and that there is no relationship

between the accuracy of the approach and the stability of the subject system. Finally, the

authors demonstrate that coding links can be used to navigate from the first relevant

method in the ranking to other methods modified to correct the bug.

 Authors (Lal & Sureka, 2012) used N-gram model for the task of bug localization at

file level granularity. The authors used experimental datasets from two open source

project (JBoss and Apache). Experimental results reveal that the median value for the

SCORE metric for JBOSS and Apache dataset is 99.03% and 93.70% respectively.

2.6 Motivation

After going through various research proposals in the area of localizing bug, it has

been observed that there is a scope of improvement in the technique for locating the bugs.

Topic models like LDA, N-gram, etc have already been used for this task but still there

exists some topic models which have shown promising results in various fields and are

not used for the task of bug localization yet. One such model is Pachinko Allocation

Model (PAM), which captures arbitrary, nested, and possibly sparse correlations between

topics using a directed acyclic graph (DAG) and has not been used for locating bugs yet.

Also, the topics discovered by LDA capture correlations among words, but LDA

does not explicitly model correlations among topics. This limitation arises because the

topic proportions in each document are sampled from a single Dirichlet distribution. As a

result, LDA has difficulty modeling data in which some topics co-occur more frequently

than others. Motivated by the desire to present more accurate approach for locating bugs

by discovering large numbers of fine-grained topics and finding correlations between

them, PAM model has been used in this research work for the task of bug localization.

21

CHAPTER 3

BUG LOCALIZATION

USING TOPIC MODELS

22

3 BUG LOCALIZATION USING TOPIC MODELS

In this chapter, bug localization has been done at file level granularity using LDA

and PAM models. LDA model has already been used for this task while PAM has not

been used yet for the task of bug localization. LDA and PAM models are discussed in this

chapter. In the last section, the methodology used in this work for performing bug

localization using PAM has been discussed.

3.1 Latent Dirichlet Allocation (LDA) Model

Latent Dirichlet Allocation is a powerful learning algorithm for automatically and

jointly clustering words into "topics" and documents into mixtures of topics. It has been

successfully applied to model change in scientific fields over time.

Latent Dirichlet Allocation (LDA) is a popular probabilistic topic model (Blei,

Ng, & Jordan, 2003) that has largely replaced pLSI. One of the reasons it is so popular is

because it models each document as a multi-membership mixture of K corpus-wide

topics, and each topic as a multi membership mixture of the terms in the corpus

vocabulary. This means that there are a set of topics that describe the entire corpus, each

document can contain more than one of these topics, and each term in the entire

repository can be contained in more than one of these topic. Hence, LDA is able to

discover a set of ideas or themes that well describe the entire corpus (Blei & Lafferty,

Topic models, 2009).

To generate a document, LDA first samples per-document multinomial

distribution over topics from a Dirichlet distribution. Then it repeatedly samples a topic

from this multinomial and samples a word from the topic. Before an LDA analysis can be

performed on the document collection, the following parameters must be set.

 The number of topics

 The number of iterations for the Gibbs sampling process

 , a hyper parameter of LDA, determines the amount of smoothing applied to the

topic distributions per document (Griffiths & Steyvers, 2004) .

 , a hyper parameter of LDA, determines the amount of smoothing applied to the

word distributions per topic (Griffiths & Steyvers, 2004)

23

The LDA analysis results in the following two probability distributions which, along with

the topics themselves, comprise the LDA model.

 The word-topic probability distribution ()

 The topic-document probability distribution ()

 LDA is based on a fully generative model that describes how documents are created.

Intuitively, this generative model makes the assumption that the corpus contains a set of

K corpus-wide topics, and that each document is comprised of various combinations of

these topics. Each term in each document comes from one of the topics in the document

(Wei & Croft, 2006) (Thomas S. W., 2012). This generative model is formulated as

follows:

1. Choose a topic for document .

2. For each of the terms :

(a) Choose a topic .

(b) Choose a term from

Here, is a multinomial probability function, is a smoothing parameter for

document-topic distributions, and is a smoothing parameter for topic-term

distributions.

Figure 4: Graphical notation for LDA

LDA model with repeated sampling steps can be conveniently illustrated using plate

notation as shown in figure 4. In this graphical notation, shaded and un shaded variables

24

indicate observed and latent (i.e., unobserved) variables respectively. The variables and

 , as well as (the assignment of word tokens to topics) are the three sets of latent

variables that one would like to infer. The hyper parameters and are considered as

constants in the model. Arrows indicate conditional dependencies between variables

while plates (the boxes in figure 4) refer to repetitions of sampling steps with the variable

in the lower right corner referring to the number of samples. For example, the inner plate

over and illustrates the repeated sampling of topics and words until words have

been generated for document . The plate surrounding illustrates the sampling of a

distribution over topics for each document for a total of documents. The plate

surrounding illustrates the repeated sampling of word distributions for each topic

until topics have been generated.

 Two levels of this generative model allow three important properties of LDA to be

realized: documents can be associated with multiple topics, the number of parameters to

be estimated does not grow with the size of the corpus, and, since the topics are global

and not estimated per document, unseen documents can easily be accounted (Thomas S.

W., 2012).

 One assumption that LDA makes is the “bag of words” assumption that the order of

the words in the document does not matter. For more sophisticated goals such as

language generation it is patently not appropriate. There have been a number of

extensions to LDA that model words non exchangeable. Another assumption is that the

order of documents does not matter. A third assumption about LDA is that the number of

topics is assumed known and fixed.

3.2 Pachinko Allocation Model

Pachinko allocation model (PAM), uses a directed acyclic graph (DAG) structure

to represent and learn arbitrary nested, and possibly sparse topic correlations. In PAM,

the concept of topics is extended to be distributions not only over words, but also over

other topics. The model structure consists of an arbitrary DAG, in which each leaf node is

associated with a word in the vocabulary, and each non-leaf “interior” node corresponds

to a topic, having a distribution over its children. An interior node whose children are all

leaves would correspond to a traditional LDA topic. But some interior nodes may also

25

have children that are other topics, thus representing a mixture over topics. With many

such nodes, PAM therefore captures not only correlations among words (as in LDA), but

also correlations among topics themselves. Figure 5 and figure 6 shows the structure of

LDA and PAM models respectively.

Figure 5: LDA Structure

 Figure 6: PAM Structure

For example, consider a document collection that discusses four topics: cooking,

health, insurance and drugs. The cooking topic co-occurs often with health, while health,

26

insurance and drugs are often discussed together. A DAG can describe this kind of

correlation. Four nodes for the four topics form one level that is directly connected to the

words. There are two additional nodes at a higher level, where one is the parent of

cooking and health, and the other is the parent of health, insurance and drugs (Li &

McCallum, 2006).

In PAM each interior node’s distribution over its children could be parameterized

arbitrarily. PAM model consists of a DAG, with each interior node containing a Dirichlet

distribution over its children. To generate a document from this model, first sampling a

multinomial from each Dirichlet is done. Then, to generate each word of the document,

one has to begin at the root of the DAG, sampling one of its children according to its

multinomial, and so on sampling children down the DAG until leaf is reached, which

yields a word. The model is named for pachinko machines, a game popular in Japan, in

which metal balls bounce down around a complex collection of pins until they land in

various bins at the bottom.

It is easy to see that LDA can be viewed as a special case of PAM: the DAG

corresponding to LDA is a three-level hierarchy consisting of one root at the top, a set of

topics in the middle and a word vocabulary at the bottom. The root is fully connected to

all the topics, and each topic is fully connected to all the words.

PAM connects words in V and topics in T with an arbitrary DAG, where topic

nodes occupy the interior levels and the leaves are words. It is a four-level hierarchy

consisting of one root topic , topics at the second level ,
 topics at

the third level and words at the bottom. The topics at the second

level are called super-topics and the ones at the third level as sub-topics. The root is

connected to all super-topics, super-topics are fully connected to sub-topics and sub-

topics are fully connected to words. is Dirichlet distribution associated with topic

The generative process for a document in PAM is as follows:

1. Sample

 from the root , where

 is a multinomial distribution over

super topics.

2. For each super-topic , sample

, where

 is a multinomial distribution over

sub-topics.

27

3. For each word w in the document,

a) Sample a super-topic from

.

b) Sample a sub-topic from

.

c) Sample word w from

Following this process, a joint probability for generating a document , a super-topic

assignment a sub-topic assignment
 and a multinomial distribution is

calculated as:

 (
 |)

 ∏ (

)

 ∏

 (1)

Integrating out and summing over and
, the marginal probability of the

document is calculated as:

∫

 ∏

 ∏ (|

) (

 |

) (|

)

 (2)

The probability of generating the whole corpus is the product of the probability for every

document, integrating out multinomial distributions for sub-topics as:

 ∫∏
 ∏

 (3)

3.3 Bug Localization Using Pachinko Allocation Model

To perform PAM-based bug localization on a given version of a software system,

first a PAM model of the source code is built. Then, the created model is queried as often

as necessary to localize bugs existing in that version. The implementation work has been

done by extending MALLET (McCallum, 2002) library of JAVA.

28

Figure 7: Bug Localization Using PAM Model

Figure 7 shows the two main phases involved in performing bug localization using PAM

model.

3.3.1 Preprocessing of Source Code

 Before PAM model can be applied to source code, several preprocessing steps are

generally taken in an effort to reduce noise and improve the resulting topics. These steps

are same for other topic models also.

a. Characters related to the syntax of the programming language (e.g., “&&”, “->”) are

removed; programming language keywords (e.g., “if”, “while”) are removed.

29

b. Identifier names are split into multiple parts based on common naming conventions

(e.g., “oneTwo”, “one_two”).

c. Common English-language stopwords (e.g., “the”, “it”, “on”) are removed.

d. Word stemming is applied to find the root of each word (e.g., “changing” becomes

“chang”).

3.3.2 Construction of PAM Model

Two steps are necessary to construct a PAM model of a software system: (1)

building the document collection from the source code, and (2) Training the PAM Model.

Step1: Building the Binary output file.

In this step, source code is passed through the program written for implementation

task. Binary output file gets created after this first step. Semantic information is extracted

and stemming is performed to eliminate stop words. Porter stemmer removed the word

suffix and eliminated the variations and repetition of words.

Step 2: Training the PAM Model

 In this step, training of the topic model from the data file generated in the

previous step is done. As an output, topic-words list is generated. But before a PAM

model can be trained, the following parameters must be set.

 The number of sub topics

 The number of sub topics

 The number of iterations for the Gibbs sampling process

 , a hyper parameter of PAM, determines the amount of smoothing applied to the topic

distributions per document (Li & McCallum, 2006)

 , a hyper parameter of PAM, determines the amount of smoothing applied to the word

Distributions per topic (Li & McCallum, 2006).

 By default, the number of super topics are generally half of the subtopics but

could be larger than it. At this point, a static PAM model of the source code has been

constructed. This model can then be queried for each bug discovered.

30

3.3.3 Query the PAM Model using Inference Engine

 PAM model generated in previous phase can be queried now. Terms in the query

should be preprocessed in the same manner as the source code, e.g., stop words removed

and stemming performed. Each query results in a list of source code elements ranked by

similarity to the query (most similar elements ranked highest). In this work, Inference

engine for querying the PAM model has been proposed by extending MALLET library in

java.

 In this work, source code queries have been formulated manually by utilizing

information about bugs extracted from the bug title and description entered into the

software’s bug repository by the person initially reporting the bug. Separate files were

prepared for each bug containing its summary and description. These files act as the

query for the Inference engine. The query is one by one into the engine to get the topic

corresponding to the query content. After the first phase list of topics corresponding to

each file has already generated. This data was then used to know the files that were

having the maximum percentage of the topic. The files are arranged in the decreasing

order of the topic percentage, file with maximum percentage at the top. In this way the

list of expected files to be modified is created. Details regarding the formation of queries

for each case study are discussed in the description for each study.

31

CHAPTER 4

CASE STUDY

32

4 CASE STUDY

In this chapter, details about the data sets have been given. This chapter also

discusses the experimental set up and simulation. The main phases of the proposed work

are also discussed in this chapter.

4.1 Experimental Data Sets

To assess the viability of a PAM-based approach to bug localization and to

compare it with LDA based bug localization, two case studies have been performed on

two different software systems. Both the case studies use the approach outlined in Section

3.3 to perform bug localization. To determine the accuracy of the predictions for each

bug, the PAM and LDA query results were compared to relevant files for the bug i.e., the

actual files fixed by developers to correct the bug. These relevant source code files were

determined by examining the software patch for each bug posted in the software’s bug

tracking system.

For the task of evaluating the performance of the proposed work, source codes

have been downloaded for two popular open source projects: Rhino (Rhino) and

Modeshape. The dataset is publicly available as a result of which the experiments

performed in this work can be replicated in future for improvement. The data about the

bugs has been downloaded from two Bug Tracking systems i.e. Bugzilla and JIRA for

Rhino and Modeshape respectively.

4.1.1 Rhino

Rhino is an open-source implementation of JavaScript written entirely in Java. It

is typically embedded into Java applications to provide scripting to end users. It is

embedded in J2SE 6 as the default Java scripting engine. In this work, source code of

Rhino (Rhino) version 1.7 release (1.7R) with 219 files has been used. Bugs and its

details have been downloaded from Bugzilla. Bugs that fulfill the following criteria have

been used for analysis of result:

a) Bugs existing in the Rhino version 1.7

b) Bugs with the status “Closed” or “Resolved”

c) Bugs requiring modification at file level

https://developer.mozilla.org/en/JavaScript

33

Table 2 lists the bug id and bug summary from Rhino’s bug repository (Bugzilla) for

each bug examined.

Table 2: Bug id and Summary for Rhino

Bug id Bug Summary

220367 NPE when accessing RegExp.$1 after matching /(a)|(b)/ against "b"

510265 Make the source property of RegExp instances conform to the spec

684131 AstNode missing operator name "^=" (ASSIGN_BITXOR) - patch included

537483 JSON.parse doesn't correctly add properties with numeric identifiers

513549 Rhino's new JSON.parse breaks on trailing whitespace

507104 Make RegExp.prototype.constructor non-enumerable

505524 Implement Date.toJSON

442922 New E4X Dom based XML implementation is not serializable

400159 Make org.mozilla.javascript.Synchronizer act on native Java objects when available

255595 Factory class for Context creation

281067 ThreadLocal in Context prevents class unloading

258959 ScriptableInputStream doesn't use Context's applicationClassLoader to resolve classes

245882 JavaImporter constructor

236193 Only active Context for compilation

236117 Context sealing API for Rhino

76683 RegExp regression (NullPointerException)

201987 delete "".x throws ClassCastException

198086 optimizer enhancement: generate only single class per script and all its functions

214997 build.xml changes: clean and help targets

4.1.2 ModeShape

ModeShape is a distributed, hierarchical, transactional, and consistent data store

with support for queries, full-text search, events, versioning, references, and flexible and

dynamic schemas. It is very fast, highly available, extremely scalable, and it is 100%

open source and written in Java. Bugs and its details have been downloaded from JIRA.

For this work, ModeShape version 3.1.1 with source code of 1660 files has been used

Bugs that fulfill the following criteria have been used for analysis of result:

https://bugzilla.mozilla.org/show_bug.cgi?id=220367
https://bugzilla.mozilla.org/show_bug.cgi?id=220367
https://bugzilla.mozilla.org/show_bug.cgi?id=510265
https://bugzilla.mozilla.org/show_bug.cgi?id=510265

34

a) Bugs existing in the ModeShape version 3.1.1

b) Bugs with the status “Closed” or “Resolved”

c) Bugs requiring modification at file level

Table 1 lists the bug id and bug summary from ModeShape’s bug repository(JIRA) for

each bug examined.

Table 3: Bug id and Summary for ModeShape

Bug id Bug Summary

MODE-1878 Same name siblings are incorrectly prevented in some cases

MODE-1837
Sometimes query returns duplicated records after commiting a transaction that

contains VersionManager.checkin() call when using a real JTA transaction manager

MODE-1769

org.infinispan.marshall.NotSerializableException:

org.infinispan.schematic.internal.SchematicEntryLiteral when using async cache

store

MODE-1751

Updating reference with already assigned node brings referential integrity exceptions

MODE-1748
Importing XML throws VersionException "node is checked in, preventing this

action"

MODE-1414 Sequencing VDB project causes NullPointerException

MODE-1269 Methods to re-index content are not public

MODE-1207 WSDL sequencer does not sequence document correctly.

MODE-1131 Exception Querying For Workspace Areas Using IRestClient

MODE-1036
Modeshape unit test JpaConnectorNoCreateWorkspaceTest freezes when Oracle is

used.

MODE 1016
ConstraintViolationException is thrown when importing sample drools rules from

XML file.

MODE1013 XML sequencer doesn't work correctly

MODE 1004 Teiid VDB sequencer incorrectly set the value of the vdb:builtIn property

MODE 972 CND sequencer doesn't work correctly

MODE 950 Text sequencer does not sequence CSV file correctly

MODE 927 Unable to delete file through REST interface

MODE 902 NotSerializableException in the JpaRepository when using HSQL as the repository

MODE 815
DDL Sequencer doesn't populate primary key correctly when constraint defined on a

column

MODE 802 Some valid non-identity joins will produce an error upon execution

MODE 797
Session.getWorkspace().getAvailableWorkspaceNames() does not match those

available in the underlying source

MODE 793 Version Storage Does Not Preserve Cardinality of Properties

MODE 792 Checking Out an Already Checked-Out Node Resets Changes on That Node

MODE 790 XPath Query with Compound Predicate Not Translated Correctly

https://issues.jboss.org/browse/MODE-1878
https://issues.jboss.org/browse/MODE-1837
https://issues.jboss.org/browse/MODE-1837
https://issues.jboss.org/browse/MODE-1837
https://issues.jboss.org/browse/MODE-1769
https://issues.jboss.org/browse/MODE-1769
https://issues.jboss.org/browse/MODE-1769
https://issues.jboss.org/browse/MODE-1769
https://issues.jboss.org/browse/MODE-1751
https://issues.jboss.org/browse/MODE-1751
https://issues.jboss.org/browse/MODE-1751
https://issues.jboss.org/browse/MODE-1748
https://issues.jboss.org/browse/MODE-1748
https://issues.jboss.org/browse/MODE-1748
https://issues.jboss.org/browse/MODE-1414
https://issues.jboss.org/browse/MODE-1414
https://issues.jboss.org/browse/MODE-792

35

4.2 Bug Tracking Systems: Bugzilla and JIRA

 A bug tracking system or defect tracking system is a software application that is

designed to help keep track of reported software bugs in software development efforts. It

may be regarded as a type of issue tracking system. Many bug tracking systems, such as

those used by most open source software projects, allow users to enter bug reports

directly. Other systems are used only internally in a company or organization

doing software development. Typically bug tracking systems are integrated with other

software project management applications. In this research work, Bugzilla and JIRA have

been used for collecting the bug details of the software.

Bugzilla as shown in figure 8 is a "Defect Tracking System" or "Bug-Tracking

System". Defect Tracking Systems allow individual or groups of developers to keep track

of outstanding bugs in their product effectively. Most commercial defect-tracking

software vendors charge enormous licensing fees.

Figure 8: Bugzilla: Bug Tracking System for Rhino

Despite being "free", Bugzilla has many features its expensive counterparts lack.

Consequently, Bugzilla has quickly become a favorite of thousands of

http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Issue_tracking_system
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Software_development
http://www.bugzilla.org/features/
http://www.bugzilla.org/installation-list/

36

organizations across the globe. In this work, Bugzilla has been used for collecting the

details about bugs in Rhino.

Figure 9: JIRA: Bug Tracking System for ModeShape

JIRA as shown in figure 9 is a bug tracking system, developed by Atlassian, used

for bug tracking, issue tracking and project management. The product name, JIRA, is not

an acronym but rather a truncation of "Gojira", the Japanese name for Godzilla. In this

work, JIRA has been used for collecting the details about bugs in ModeShape.

4.3 Performance and Evaluation Metrics

4.3.1 Mean Average Precision

Mean average precision (computed for a set of queries i.e., for the set of bug

reports in the evaluation dataset) is equal to the mean of the Average Precision (AP)

scores for each query in the experimental dataset. AP consists of computing the precision

of the system at the rank of every relevant document retrieved. MAP is a well know

metric to measure retrieval performance for IR systems.

http://www.bugzilla.org/installation-list/
http://en.wikipedia.org/wiki/Atlassian
http://en.wikipedia.org/wiki/Bug_tracking_system
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Godzilla

37

Equation 1 and equation 2 gives the formula for calculating AP and MAP where

denotes the precision at
 relevant file retrieved and denotes total number of relevant

files for a bug.

 (1)

 (2)

4.3.2 Rank of First Relevant File

Rank of first relevant file means rank of the first relevant file retrieved for a

particular bug. In this work, this metric has been used to calculate number of bugs

finding their relevant file at given rank. For example, in a given bug report, if the first

relevant file is found at 3
rd

position, then rank will be 3. In this work, three ranges of

rank has been used. First, rank less 5(Rank<5), second is rank between 6 to

10(6<=Rank<=10) and third is rank between 11 to 20(11<=Rank<=20). The higher the

metric value, better the bug localization performance.

4.4 Experimental Set Up and Simulation

In this work for performing bug localization using topic models, an open source

library called MALLET has been used. MALLET is a Java-based package for statistical

natural language processing, document classification, clustering, topic modeling,

information extraction, and other machine learning applications to text. This library

provides almost various machine learning algorithms which include Classification

techniques, sequence tagging, topic modeling and graph models.

There are two main phases viz. constructing the PAM model for source code and

querying that model for a given query. Using MALLET, the PAM model for the source

code has been constructed. MALLET library does not provide option for querying the

PAM model. For this purpose, MALLET library has been extended to inference the PAM

model using the proposed inference engine. This work is an incremental contribution to

the existing MALLET library.

38

Source codes of Rhino and ModeShape software act as input for the first phase of

bug localization. Thereafter bugs and their details of Rhino and ModeShape, taken from

Bugzilla and JIRA respectively act as input for the second phase.

Steps to perform Phase I:

Source codes of Rhino and Modeshape are saved separately in directories.

MALLET batch file takes the directory path as an input, processes all the files present

under the directory and creates a binary output file in the format described by MALLET.

Figure 10 describes the various steps involved in phase I. Therefore, in the first phase, the

source code path has been passed into the MALLET batch file which returned the binary

MALLET file as an output. In the next step of the first phase, the PAM model from the

MALLET data file generated in the previous step is trained. After this, the topic-words

list is generated.

SOURCE CODE

(Rhino or ModeShape)

BINARY OUTPUT FILE

(MALLET FILE) TRAINING PAM MODEL

PAM MODEL

(Topic-Word list

Topic-File list)

Figure 10: Phase I in PAM based bug localization

Steps to perform Phase II:

For performing phase II, Inference engine has been proposed. In MALLET,

inferencing can be performed for LDA model but not for PAM model. Therefore, in this

work, Inference engine has been developed for querying the PAM model built during

phase I. After the first phase, the list of topics(super topic and sub topic) corresponding to

each file has already been generated.

39

Figure 11: Phase II in PAM based bug localization

Figure 11 shows the various steps involved in phase II. In the second phase of the

PAM based bug localization, 20 bugs of Rhino & Modeshape software have been

collected from Bugzilla and JIRA respectively. These bugs and their complete description

40

are saved in separate files. These files contain the bug description as well as the steps to

reproduce each bug. This acted as the query for the Inference engine.

The various steps in phase II are:

1. The bug files acting as query are entered one by one into the Inference engine.

2. The stop words are removed and stemming is done on the query.

3. The words in the query are read one by one and the corresponding topic is found

(using topic-words list fetched in phase I).

4. The number of words per topic is counted to get the topic with which maximum

number of words belonged to.

5. The topic found in the step 3, becomes the topic of particular query.

6. Now using the topic-file list, one can know the number of files under that topic.

In this way the list of expected files to be modified is generated in decreasing order of

probability.

41

CHAPTER 5

EXPERIMENTAL

RESULTS AND

ANALYSIS

42

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter, performance of LDA and PAM based approaches for bug

localization has been compared. Two case studies Rhino and ModeShape have been used

for this task. Bug localization using LDA and PAM models has been done using MALLET

library in Java. This chapter discusses and compares the results of LDA and PAM based

bug localization on Rhino and ModeShape respectively.

5.1 Results for Rhino

For Rhino, it has been observed that value of Mean Average Precision (MAP) is

0.157 in case of LDA based approach for bug localization. While performing bug

localization using PAM, value of MAP becomes 0.202. This comparison has been clearly

shown in Figure 12. It clearly shows that the MAP of PAM based approach is better than

LDA based approach for bug localization.

Figure 12: Comparison between LDA and PAM approaches using MAP for Rhino

43

Figure 13: AP values in Rhino data set for LDA and PAM based approaches

Figure 13 shows the different values of average precision calculated for bugs

separately. In LDA based approach, 20% of bugs are located at Rank less than 5.

28% of bugs are located at rank between 6 to 10 and 50% of bugs are located at rank

between 11to 20. Figure 14 illustrates the bugs located with the respective rank ranges.

Figure 14: Rank of Relevant files using LDA approach for Rhino

44

While in PAM based approach for bug localization, 35% of bugs are located at Rank less

than 5. 25% of bugs are located at rank between 6 to 10 and 40% of bugs are located at

rank between 11 to 20. Figure 15 illustrates the bugs located with the respective rank

ranges.

Figure 15: Rank of Relevant files using PAM approach for Rhino

It can be clearly seen from the results that for Rhino, PAM based approach has

performed better than LDA based approach for bug localization, for both MAP and

Ranking metrics.

5.2 Results for ModeShape

For ModeShape, it has been observed that value of Mean Average Precision

(MAP) is 0.100 in case of LDA based bug localization. While performing bug

localization using PAM, value of MAP becomes 0.142.

45

This comparison has been clearly shown in figure 16. It shows that the MAP of

PAM based approach for bug localization is better than LDA based approach for bug

localization.

Figure 16: Comparison between LDA and PAM approaches using MAP for

ModeShape

 Figure 17 shows the different values of average precision calculated for bugs

separately.

Figure 17: AP values in ModeShape data set for LDA and PAM based approaches

46

In LDA based approach, 17% of bugs are located at Rank less than 5. 39% of bugs are

located at rank between 6 to 10 and 44% of bugs are located at rank between 11to 20.

Figure 18 illustrates the bugs located with the respective rank ranges.

Figure 18: Rank of Relevant files using LDA for ModeShape

In PAM based approach for bug localization, 42% of bugs are located at Rank

less than 5.

26% of bugs are located at rank between 6 to 10 and 32% of bugs are located at rank

between 11 to 20. Figure19 illustrates the bugs located with the respective rank ranges.

Figure 19: Rank of Relevant files using PAM for ModeShape

47

It can be clearly seen from the results that for ModeShape, PAM based approach

has performed better than LDA based approach for bug localization, for both MAP and

Ranking metrics. Figure 20 and figure 21 compares the performance of LDA and PAM

based approach on both datasets using MAP and Rank metric respectively.

Figure 20: MAP based comparison on Rhino and ModeShape

Figure 21: Rank based comparison on Rhino and ModeShape

48

In case of Rhino dataset, for one bug report only 10% of dataset is needed to be

reviewed. In case of ModeShape dataset, for one bug report only 1.5 % of dataset is

needed to be reviewed. For both the case studies, Rhino and ModeShape, PAM based bug

localization technique has performed better than LDA based bug localization technique.

49

CONCLUSION

In this work, bug localization has been performed using PAM model. For the first

time, PAM model has been used for the task of bug localization. PAM model based

approach for bug localization has been compared with LDA model based approach for

bug localization. MALLET library in java has been extended to incorporate PAM model

based bug localization using proposed Inference engine. Data sets from two open source

software viz. Rhino version 1.7 and ModeShape version3.1.1 have been used. For Rhino

dataset, the value of MAP is 0.157 and 0.202 using LDA and PAM based approach

respectively. Also percentage of bugs for which the relevant files retrieved are in top 5

position is 20% and 35% using LDA and PAM based approach respectively. For

ModeShape dataset, the value of MAP is 0.100 and 0.142 using LDA and PAM based

approach respectively. Also percentage of bugs for which the relevant files retrieved are

in top 5 position is 17% and 42% using LDA and PAM based approach respectively. In

case of Rhino dataset, for one bug report only 10% of dataset is needed to be reviewed. In

case of ModeShape dataset, for one bug report only 1.5 % of dataset is needed to be

reviewed. Thus, it can be concluded that performance of PAM based bug localization is

better than LDA based bug localization.

SUGGESTIONS FOR FUTURE WORK

In this work, only lexical information has been focused. The performance of bug

localization can be improved by focusing on both lexical and structural information. In

future work, some new topic models can be used for the task of bug localization. Call

graphs or any other such technique can be used to model the structural information as

well for performing bug localization.

50

REFERENCES

Anthes, G. (Dec,2010). Topic models vs. unstructured data. Communications of the ACM, (pp.

16–18,).

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix the bug? 28th international

conference on Software engineering (ICSE '06),, (pp. 361-370). Shanghai, China.

Asuncion, H. U., Asuncion, A. U., & Taylor, R. N. (2010). Software traceability with topic

modeling. Proceedings of the 32nd International Conference on Software Engineering, (pp. 95-

104).

Baldi, P. F., Lopes, C. V., Linsteda, E. J., & Bajracharya, S. K. (2008). A theory of aspects as latent

topics. ACM , 543–562.

Blei, D. M., & Lafferty, J. D. (2009). Topic models. In Text Mining: Classification, Clustering, and

Applications (pp. 71-94). London,UK: Chapman & Hall.

Blei, D. M., & McAuliffe, J. (2008). Supervised topic models. Advances in Neural Information

Processing System , 20, 121-128.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. (J. Lafferty, Ed.) Journal

of Machine Learning Research , 3, 993-1022.

Blei, D., Griffiths, T. L., Jordan, M. I., & Tenenbaum, J. B. (2004). Hierarchical topic models and

the nested Chinese restaurant process. Advances in neural information processing systems .

Blei, David M. (2012). Probabilistic Topic Models. Commuications of the ACM , 55, 77-84.

Chang, J., & Blei, D. M. (2009). Relational topic models for document networks. Proceedings of

the 12th International Conference on Artificial Intelligence and Statistics, 9, pp. 81-89.

Chang, K. H., Bertacco, V., & Markov, I. L. (2005). Simulation-based bug trace minimization with

BMC-based refinement. 2005 IEEE/ACM International conference on Computer-aided design

(ICCAD '05), (pp. 1045-1051). San Jose, CA.

51

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, F. W., & Harshman, R. A. (1990).

Indexing by latent semantic analysis. Journal of the American Society for Information Science ,

41, 391-407.

Gethers, M., & Poshyvanyk, D. (2010). Using relational topic models to capture coupling among

classes in object-oriented software systems. Proceedings of the 26th International Conference

on Software Maintainence, (pp. 1-10).

Grant, S., Cordy, J. R., & Skillicorn, D. (2008.). Automated concept location using independent

component analysis. In15th Working Conference on Reverse Engineering., (pp. 138–142).

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. National Academy of Sciences,,

(pp. 5228–5235).

Hanley, J. (2012, February). History of Issue Tracking System. Retrieved from blog.pmrobot.com:

http://blog.pmrobot.com/2012/02/history-of-issue-tracking-systems.html

Hayes, C. J., Nichols, B., Kraft, N. A., & Anderson, M. D. (n.d.). Improving LSI-Based Bug

Localization using Historical Patch data. The University of Alabama McNair Journal .

Hiemstra, D. (2009). Information Retrieval Models. In A. Goker, & J. Davies, Information

Retrieval: Searching in the 21st century. John Wiley and Sons, Ltd.

Hoffman, T. (1999). Probabilistic Latent Semantic Indexing 22nd International Conference on

Research and Development in Information Retrieval., (pp. 50–57).

http://www.wisegeek.com/what-is-debugging.htm. (n.d.). Retrieved from Wisegeek.com.

Katz, I. R., & Anderson, J. R. (1987). Debugging: an analysis of bug- location strategies, Human

Computer Interaction.

Lal, S., & Sureka, A. (2012). A Static Technique for Fault Localization Using Character. ISEC '12,

Feb. 22-25 (pp. 109-118). Kanpur: ACM.

Li, W., & McCallum, A. (2006). Pachinko Allocation:DAG-Structured Mixture Models of Topic

Correlations. 23 rd International Conference on Machine Learning. Pittsburgh,PA.

52

Linstead, E., & Baldi, P. (2009). Mining the coherence of GNOME bug reports with statistical

topic models. Proceedings of the 6th Working Conference on Mining Software Repositories, (pp.

99-102).

Linstead, E., Lopes, C., & Baldi, P. (2008). Proceedings of the 26th International Conference on

Software evolution. Proceedings of the 7th International Conference on Machine Learning and

Applications, (pp. 813-818).

Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., & Baldi, P. (2007). Mining concepts from code

with probabilistic topic models. Proceedings of the 22nd International Conference on Automated

Software Engineering, (pp. 461-464).

Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., & Baldi, P. (2007). Mining Eclipse developer

contributions via author-topic models. Proceedings of the 4th International Workshop on Mining

Software Repositories, (pp. 30-33).

Liu, Y., Poshyvanyk, D., Ferenc, R., Gyimothy, T., & Chrisochoides, N. (2009). Modeling class

cohesion as mixture of latent topics. Proceedings of the 25th International Conference on

Software Maintenance, (pp. 233-242).

Lukins, S. K., Kraft, N. A., & Etzkorn, L. H. (2008). Source code retrieval for bug localization. 2008

15th Working Conference on Reverse (pp. 155-164). IEEE.

Maskeri, G., Sarkar, S., & Heafield, K. (2008). Mining business topics in source code using latent

Dirichlet allocation. Proceedings of the 1st conference on India software engineering conference,

(pp. 113-120).

McCallum, A. K. (2002). MAchine Learning for Language Toolkit. Retrieved from

http://mallet.cs.umass.edu.

Mimno, D., Wallach, H. M., Naradowsky, J., Smith, D. A., & McCallum, A. (2009). Polylingual topic

models. Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing, (pp. 880-889).

Paul, M. (2009.). Cross-Collection Topic Models: Automatically Comparing and Contrasting Text.

University of Illinois at Urbana-Champaign, Urbana.

53

Poshyvanyk, D., & Marcus, A. (2007). Combining formal concept analysis with information

retrieval for concept location in source code. Proceedings of the 15th IEEE International

Conference on Program Comprehension (ICPC) (pp. 37-48). Banff, Alberta, Canada: IEEE.

Rakesh. (n.d.). Bug Life Cycle. Retrieved from www.softwaretestinghelp.com:

http://www.softwaretestinghelp.com/?attachment_id=98

Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled LDA: a supervised topic

model for credit attribution in multi-labeled corpora. Proceedings of the 2009 Conference on

Empirical Methods in Natural Language Processing, (pp. 248-256).

Rao, S., & Kak, A. (2011). Retrieval from software libraries for bug localization: a comparative

study of generic and composite text models. 8th working conference on Mining software

repositories, MSR ’11, (pp. 43-52). Honolulu,Hawaii: ACM.

Rhino. (n.d.). Retrieved from http://www.mozilla.org/rhino/.

Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2004). The author-topic model for authors

and documents. Proceedings of the 20th conference on Uncertainty in artificial intelligence, (pp.

487-494).

Sangeeta. (2011). A Static Technique for Bug Localization Using Character N-Gram Based

Information Retrieval Model. Indraprastha Institute of Information Technology, Delhi, Delhi.

Savage, T., Dit, B., Gethers, M., & Poshyvanyk, D. (2010). TopicXP: exploring topics in source

code using latent dirichlet allocation. Proceedings of the 26th International Conference on

Software Maintenance, (pp. 1-6).

Shao, P. (2011). Combining Information Retrieval Modules and Structural Information for Source

Code Bug Localization and Feauture location. Graduate School of University of Albama,

Computer Science, Tuscaloosa, Alabama.

Sisman, B., & Kak, A. C. (2012). Incorporating Version Histories in Information Retrieval Based

Bug Localization. MSR (pp. 50-59). Zurich: IEEE.

Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. In Latent Semantic Analysis: A

Road to Meaning. Laurence Erlbaum.

54

Thomas, S. W. (2012). Mining Software Repositories with Topic Models. Queem's University,

School of Computing, Ontario,Canada.

Thomas, S. W., Adams, B., Hassan, A. E., & Blostein, D. (2010). Validating the use of topic models

for software evolution. Proceedings of the 10th International Working Conference on Source

Code Analysis and Manipulation, (pp. 55-64).

Wei, X. (2007). Topic Models in Information Retrieval. University of Massachusetts Amherst,

Computer Science.

Wei, X., & Croft, B. (2006). LDA-Based Document Models for Ad-hoc Retrieval. 29th Annual

International ACM SIGIR Conference on Research & Development on Information Retrieval, (pp.

178-185). Seattle,USA.

Wong, W. E., & Debroy, V. (2009). A Survey of Software Fault Localization. The University of

Texas at Dallas, Department of Computer Science, Dallas.

Zachary, F. P. (2012). Fault Localization Using Textual Similarities. MCS Thesis, University of

virginia.

Zhai, C. (October,2007). A Brief Review of Information Retrieval Models.

Zhou, J., Zhang, H., & Lo, D. (2012). Where Should the Bugs Be Fixed? ICSE 2012 (pp. 14-24).

Zurich, Switzerland: IEEE.

