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ABSTRACT 

Bug localization is a process of identifying the specific file of source code that is faulty and 

needs to be modified to fix the bug. Due to the increasing size and complexity of current 

software applications, automated solutions for bug localization can significantly reduce 

human effort and software development/maintenance cost. In this research work, bug 

localization has been performed using topic model of Information Retrieval. Pachinko 

Allocation Model (PAM) has been applied for the first time in bug localization. In this 

research work, PAM model of source code is built first. This model is then queried for 

locating bugs. The bug reports are considered as a query for the system for which files 

containing bugs need to be identified. This query is used by Inference engine to produce 

ranked list of files from source code. The top-ranked files are the one most likely to require 

modification to correct the bug. This work performs analysis and comparison of PAM and 

Latent Dirichlet Allocation (LDA) models based approach for bug localization using 

MALLET library in java. This library has been extended to incorporate PAM based bug 

localization using proposed Inference engine. For evaluating the performance of PAM and 

LDA based approach, the datasets downloaded from two open source projects i.e. Rhino and 

ModeShape have been used in this work. In case of Rhino dataset, for one bug report only 

10% of dataset is needed to be reviewed. In case of ModeShape dataset, for one bug report 

only 1.5 % of dataset is needed to be reviewed. It has been observed that the bug localization 

technique using PAM model gives promising results as compared to LDA model. 
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1 INTRODUCTION  

Due to the increasing size and complexity of software systems, efficient bug 

localization is required. This chapter introduces the debugging process and the 

objectives and contributions of this thesis. Chapter wise thesis coverage has been 

summarized at the end. 

1.1 Background of the study 

In today’s era, software industries are competing with quality of the software 

which depends upon the sound software testing phase. Most of the software contains 

some bugs after being released, so it is most challenging to localize bug automatically 

and fix them before release. A software quality factor is a non-functional requirement for 

a software program which is not called up by the customer's contract, but nevertheless is 

a desirable requirement which enhances the quality of the software program. 

In large and complex software systems; software aging, poor-documentation and 

developer mobility makes software project hard to understand for software developers 

(Lukins, Kraft, & Etzkorn, 2008). This may slow down software project progress and 

may increase overall software maintenance cost. In order to bring down the overall 

resource consumption of corrective software maintenance it is required to empower 

software developers with tools and techniques that can facilitate them in debugging and 

bug fixing. Debugging is a methodical process of finding and reducing the number 

of bugs, or defects, in a computer program or a piece of electronic hardware, thus making 

it behave as expected. Debugging tends to be harder when various subsystems are tightly 

coupled, as changes in one may cause bugs to emerge in another. The first Software bug 

was seen by Grace Murray Hopper in year 1947 on Harvard University Mark II Aiken 

Relay Calculator (a primitive computer). It starts from possibly unknown initial 

conditions and the end cannot be predicted, except statistically and the duration of 

debugging, cannot be constrained. It demands intuitive leaps, conjectures, 

experimentation, intelligence and freedom which are impossible without detailed design 

knowledge. Debugging process of a program is describes as a chain of three steps (Katz 

& Anderson, 1987): 

 

http://en.wikipedia.org/wiki/Computer_bug
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Electronic_hardware
http://en.wikipedia.org/wiki/Low-Coupling_/_High-Cohesion_pattern
http://en.wikipedia.org/wiki/Low-Coupling_/_High-Cohesion_pattern
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i. Finding the potential location of bug 

ii. Fixing the bug 

iii. Testing the program 

Bug fixing is a complex task as it requires understanding of bug and source code. 

Bug fixing task consists of various sub-task such as understanding the bug, locating the 

cause of bug and finally fixing it. In most of the bug fixing cases, locating cause of bug 

(bug localization) consumes most of the developer's time (Chang, Bertacco, & Markov, 

2005). Basically two types of techniques are used for performing bug localization, one is 

static and another is dynamic. Static bug localization techniques work on the source code 

or a static model of the source code, while dynamic bug localization techniques work on 

execution traces. In static bug localization, neither operational software nor a test case is 

required. While dynamic bug localization techniques, requires the working software and 

also the test case that triggers the bug. The major drawback of dynamic technique is that 

a program or software developed for locating bugs cannot be made language 

independent. This work focuses on the task of bug localization (locating the bugs in the 

source code) using topic models of Information Retrieval (IR). 

1.2 Research Objective 

The main objectives of this work are: 

 To propose a topic model based approach for bug localization that can perform 

better than the existing approaches. 

 To automate bug localization process irrespective of the programming language 

used in the source code where bug has to be located. 

 To propose an approach for bug localization in which bugs can be located in early 

stages of development also. 

In this work, PAM topic model of IR has been used for performing bug localization.   

1.3 Contribution of research work 

The major contributions of this work are: 

 The proposed approach for performing bug localization is independent of the 

programming language of the source code. 
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 Bug localization can be easily performed in the initial stages of development and 

no test case or test suite is required for performing bug localization.  

 For locating bugs only 1.5 % of ModeShape source code is needed to be 

reviewed. While 10% of Rhino source code is required to be reviewed for locating 

the cause of bugs. 

 PAM based approach for bug localization performs better than LDA(Latent 

Dirichlet Allocation) based approach in terms of both MAP(Mean Average 

Precison) and First relevant file method. 

 For Rhino dataset, the value of MAP is 0.157 and 0.202 using LDA and PAM 

based approaches respectively. 

 For ModeShape dataset, the value of MAP is 0.100 and 0.142 using LDA and 

PAM based approaches respectively. 

1.4 Thesis Outline 

The next chapter provides the background of bug localization and various topic 

models in Information Retrieval. Chapter 3 discusses the details of the topic models and 

methodology used for locating bugs in this work. Chapter 4 discusses the datasets used in 

this work and the various evaluation metrics used for comparing and evaluating the 

result. This chapter also describes the experimental set up and simulation. In chapter 5, 

analysis of result has been done. Conclusion and future scope of this work has been 

included at the end. 
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2 LITERATURE SURVEY  

Bug localization is a process of mapping a bug back to the code that might have 

caused it. Performing bug localization is relatively time consuming and costly. For this 

reason, many techniques are available for facilitating the task of bug localization. This 

chapter provides background for various topic models in Information Retrieval and the 

task of bug localization. Details of topic models and their applications are discussed first 

followed by the details about bug, bug tracking system and bug localization.     

2.1  Introduction to Topic Modeling 

A topic model (or latent topic model or statistical topic model) refers to a model 

designed to automatically extract topics from a corpus of text documents (Anthes, 

Dec,2010) (Blei & Lafferty, Topic models, 2009) (Steyvers & Griffiths, 2007). A 

collection of terms that co-occur frequently in the documents of the corpus, for example 

{mouse, click, drag, right, left} and {user, account, password, authentication} makes a 

topic. Topic models are algorithms for discovering the main themes that pervade a large 

and otherwise unstructured collection of documents. Topic models can organize the 

collection according to the discovered themes.  

Topic modeling is a suite of algorithms that aim to discover and annotate large 

archives of documents with thematic information (Blei, David M., 2012). Topic modeling 

algorithms are statistical methods that analyze the words of the original texts to discover 

the themes that run through them, how those themes are connected to each other, and 

how they change over time.  

Topic modeling algorithms do not require any prior annotations or labeling of the 

documents, the topics emerge from the analysis of the original texts. Due to the nature of 

language use, the terms that constitute a topic are often semantically related (Blei, Ng, & 

Jordan, 2003) 
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               Figure 1: Corpus of three documents 

Figure 1 shows the corpus of three documents. The terminology used in topic model is 

explained below with reference to this figure. 

a) Term (word)   : A string of one or more alphanumeric characters. In figure 1, 

there are total of 101 terms. For example, predicting, bug, there, have, bug and of 

are all terms. Terms might not be unique in a given document. 

b) Document   : An ordered set of   terms,           .  In above figure, there 

are three documents :                  has   = 34 terms,   has   = 35 terms, 

and    has   = 32 terms 

c) Corpus  : An ordered set of    documents       . In figure 1, there is one 

corpus, which consists of   = 3 documents:             . 

d) Vocabulary  : The unordered set of   unique terms that appear in a corpus. In 

figure 1, the vocabulary consists of   = 71 unique terms across all three 

documents: code, of, are, that, to, the, software, … 

e) Term-document matrix  : An m x n matrix whose i
th

, j
th

 entry is the weight of 

term    in document   .  
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In figure, the term code appears three times in document    and two times in 

document   . 

2.2 Topic Models in Information Retrieval 

 Various topic models in Information Retrieval have been discussed below 

2.2.1 Information Retrieval 

An Information Retrieval system is a software program that stores and manages 

information on documents, often textual documents but possibly multimedia. The system 

assists users in finding the information they need. It does not explicitly return information 

or answer questions. Instead, it informs on the existence and location of documents that 

might contain the desired information. Some suggested documents will, hopefully, satisfy 

the user's information need. These documents are called relevant documents (Hiemstra, 

2009).  

The goal of any IR system is to identify documents relevant to a user's query. In 

order to do this, an IR system must assume some specific measure of relevance between a 

document and a query, i.e., an operational definition of a relevant document with respect 

to a query. A fundamental problem in IR research is thus to formalize the concept of 

relevance; a different formalization of relevance generally leads to a different retrieval 

model (Zhai, October,2007). 

Since the IR based approaches were originally developed for natural languages, 

there exist some challenges when one tries to adapt them to retrieval from software 

libraries. The two key challenges are: vocabulary mismatch and the lack of availability of 

good evaluation datasets. Vocabulary mismatch occurs when a query contains a word that 

was not seen before in the documents used for model construction. For the case of 

software libraries, the vocabulary mismatch problem arises from the use of abbreviations 

and concatenations of variable names and identifiers by the developers at the time of code 

development. Such words are called hard-words. The words used in a query may carry 

the same semantic intent as portions of the hard-words, but may not match them 

structurally. 
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Table 1: Terminologies in Information Retrieval and Bug Localization 

Terminology in IR  Terminology in Bug Localization 

Document  Source files of the software library 

Query Bug report and/or its textual description 

Terms Identifier names 

Retrieval Bug localization 

Index  Source library 

 

2.2.2 Topic Models 

Topic models were originally developed in the field of natural language 

processing (NLP) and IR as a means of automatically indexing, searching, clustering and 

structuring large corpora of unstructured and unlabeled documents. Using topic models, 

documents can be represented by the topics within them, and thus the entire corpus can 

be indexed and organized in terms of this discovered semantic structure. Topic models 

enable a low-dimensional representation of text, which uncovers latent semantic 

relationships and allows faster analysis on text (Thomas S. W., 2012). 

A variety of probabilistic topic models have been proposed to analyze the content 

of documents and the meaning of words (Blei, Ng, & Jordan, 2003) (Hoffman, 1999) 

(Blei & Lafferty, Topic models, 2009). These models all use the same fundamental idea, 

that a document is a mixture of topics but make slightly different statistical assumptions.  

Authors (Deerwester, Dumais, Landauer, Furnas, & Harshman, 1990) proposed 

Latent Semantic Indexing (LSI), an indexing and retrieval model that used a 

mathematical technique called singular value decomposition (SVD) to identify patterns in 

the relationships between the terms and concepts contained in an unstructured collection 

of text. LSI is based on the principle that words that are used in the same contexts tend to 

have similar meanings. Hofmann (Hoffman, 1999) introduced the probabilistic topic 

approach to document modeling in his Probabilistic Latent Semantic Indexing method 

(pLSI; also known as the aspect model).  

Latent Dirichlet Allocation (LDA), a popular probabilistic topic model has been 

proposed by authors (Blei, Ng, & Jordan, 2003). LDA has largely replaced PLSI. One of 

the reasons it is so popular is because it models each document as a multi-membership 

http://en.wikipedia.org/wiki/Singular_value_decomposition
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mixture of K corpus-wide topics, and each topic as a multi membership mixture of the 

terms in the corpus vocabulary. This means that there are a set of topics that describe the 

entire corpus, each document can contain more than one of these topics, and each term in 

the entire repository can be contained in more than one of these topic. Hence, LDA is 

able to discover a set of ideas or themes that well describe the entire corpus (Blei, David 

M., 2012). 

 Several variants of LDA have been proposed. All of these variants apply additional 

constraints on the basic LDA model in some way. 

Authors (Blei, Griffiths, Jordan, & Tenenbaum, 2004) proposed Hierarchical Topic 

Model (HLDA) that discovers a tree-like hierarchy of topics within a corpus, where each 

additional level in the hierarchy is more specific than the previous. For example, a super-

topic “user interface” might have sub-topics “toolbar” and “mouse events”. 

 Authors  (Rosen-Zvi, Griffiths, Steyvers, & Smyth, 2004) proposed Author-Topic 

Model. The author-topic model considered one or more authors for each document in the 

corpus. Each author is then associated with a probability distribution over the discovered 

topics. For example, the author Stephen King would have a high probability with the 

“horror” topic and a low probability with the “dandelions” topic. 

 Authors (Li & McCallum, 2006) introduced Pachinko Allocation Model (PAM) that 

provided connections between discovered topics in an arbitrary directed acyclic graph.  

Authors (Blei & McAuliffe, Supervised topic models, 2008) proposed Supervised Topic 

Models (sLDA). sLDA considered documents that are already marked with a response 

variable (e.g., movie reviews with a numeric score between 1 and 5), and provides a 

means to automatically discover topics that help with the classification (i.e., predicting 

the response variable) of unseen documents. 

 Paul (Paul, 2009.) introduced Cross-Collection Topic Models (ccLDA)  which 

discovered topics from multiple corpora, allowing the topics to exhibit slightly different 

behavior in each corpus. For example, a “food” topic might contain the words {food 

cheese fish chips} in a British corpus and the words {food cheese taco burrito} for a 

Mexican corpus. 

Authors (Ramage, Hall, Nallapati, & Manning, 2009) introduced Labeled LDA (LLDA)  

LLDA takes as input a text corpus in which each document is labeled with one or more 
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labels (such as Wikipedia) and discovers the term-label relations. LLDA discovers a set 

of topics for each label and allows documents to only display topics from one of its 

labels. 

 Authors (Mimno, Wallach, Naradowsky, Smith, & McCallum, 2009) proposed 

Polylingual Topic Model (PLTM). PLTM can handle corpora in several different 

languages, discovering aligned topics in each language. For example, if PLTM runs on 

English and German corpora, it might discover the aligned “family” topics {child parent 

sibling} and {kind eltern geschwister}. 

 Authors (Chang & Blei, 2009) introduced Relational Topic Models (RTM). RTM 

models documents as does LDA, as well as discovers links between each pair of 

documents. For example, if document 1 contained the “planets” topic, document 2 

contained the “asteroids” topic, and document three contained the “Michael Jackson” 

topic, then RTM would assign a stronger relationship between documents 1 and 2 than 

between documents 1 and 3 or documents 2 and 3, because topics 1 and 2 are more 

closely related to each other. 

2.3 Applications of Topic Models in Software Engineering 

The various applications of topic models in field of software engineering are discussed 

below. 

2.3.1  Concept Location 

 The task of concept location (or feature location) is to identify the parts (e.g., 

documents or methods) of the source code that implement a given feature of the software 

system. This is useful for developers wishing to debug or enhance a given feature. For 

example, if the so-called file printing feature contained a bug, then a concept location 

technique would attempt to automatically find those parts of the source code that 

implement file printing (i.e., parts of the source code that are executed when the system 

prints a file). Related to concept location is aspect-oriented programming (AOP), which 

aims at providing developers with the machinery to easily implement aspects of 

functionality whose implementation spans over multiple source code documents. 

 Authors (Linstead, Rigor, Bajracharya, Lopes, & Baldi, Mining Eclipse developer 

contributions via author-topic models, 2007)  were the first to use LDA to locate concepts 
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in source code in the form of LDA topics. The proposed approach can be applied to 

individual systems or large collections of systems to extract the concepts found within the 

identifiers and comments in the source code. The authors demonstrated how to group 

related source code documents based on comparing the documents’ topics. 

 Authors (Linstead, Rigor, Bajracharya, Lopes, & Baldi, Mining Eclipse developer 

contributions via author-topic models, 2007)applied a variant of LDA, the Author-Topic 

model, to source code to extract the relationship between developers (authors) and source 

code topics. The proposed technique allows the automated summarization of “who has 

worked on what”, and the authors provided a brief qualitative argument as to the 

effectiveness of this approach.  

 Authors (Maskeri, Sarkar, & Heafield, 2008) applied LDA to source code to extract 

the business concepts embedded in comments and identifier names. The authors applied a 

weighting scheme for each keyword in the system, based on where the keyword is found 

(e.g., class name, parameter name, method name). The authors found that their LDA-

based approach is able to successfully extract business topics, implementation topics, and 

cross-cutting topics from source code. 

 Authors (Baldi, Lopes, Linsteda, & Bajracharya, 2008) proposed a theory that 

software concerns are equivalent to the latent topics found by statistical topic models. 

Further, they proposed that aspects are those latent topics that have a high scattering 

metric. The authors applied their approach to a large set of open-source projects to 

identify the global set of topics, as well as perform a more detailed analysis of a few 

specific projects. The authors found that latent topics with high scattering metrics are 

indeed those that are typically classified as aspects in the AOP community. 

 Authors (Savage, Dit, Gethers, & Poshyvanyk, 2010) introduced a topic visualization 

tool, called TopicXP, which supports interactive exploration of discovered topics located 

in source code.  

2.3.2  Traceability Recovery 

 Traceability recovery aims to automatically uncover links between pairs of software 

artifacts, such as source code documents and requirements documents. This allows a 

project stakeholder to trace a requirement to its implementation, for example to ensure 

that it has been implemented correctly or not. Traceability recovery between pairs of 
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source code documents is also important for developers wishing to learn which source 

code documents are somehow related to the current source code file being worked on. 

 Authors (Asuncion, Asuncion, & Taylor, 2010) introduced a tool called TRASE that 

uses LDA for prospectively, as opposed to retrospectively, recovering traceability links 

amongst diverse artifacts in software repositories. This means that developers can create 

and maintain traceability links as they work on the project. The authors demonstrated that 

LDA outperforms LSI in terms of precision and recall. 

2.3.3 Source Code Metrics 

 Bug prediction (or defect prediction or fault prediction) tries to automatically predict 

which parts (e.g., documents or methods) of the source code are likely to contain bugs. 

This task is often accomplished by collecting metrics on the source code, training a 

statistical model to the metrics of documents that have known bugs, and using the trained 

model to predict whether new documents will contain bugs. 

 Authors (Linstead & Baldi, Mining the coherence of GNOME bug reports with 

statistical topic models, 2009) applied LDA to the bug reports in the GNOME project 

with the goal of measuring the coherence of a bug report, i.e., how easy to read and how 

focused a bug report is. This coherence metric is defined as the tangling of LDA topics 

within the report, i.e., how many topics are found in the report (fewer are better). 

 Authors (Liu, Poshyvanyk, Ferenc, Gyimothy, & Chrisochoides, 2009) applied LDA 

to source code methods in order to compute novel class cohesion metric called Maximum 

Weighted Entropy (MWE). MWE is computed based on the occupancy and weight of a 

topic in the methods of a class. The authors demonstrated that this metric captures novel 

variation in models that predict software faults.  

 Authors (Gethers & Poshyvanyk, 2010)  introduced a new coupling metric, the 

Relational Topic-based Coupling (RTC) metric, based on a variant of LDA called 

Relational Topic Models (RTM). RTM extends LDA by explicitly modeling links 

between documents in the corpus. RTC uses these links to define the coupling between 

two documents in the corpus. The authors demonstrated that their proposed metric 

provides value because it is statistically different from existing metrics. 
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2.3.4 Software Evolution and Trend Analysis 

 Authors (Linstead, Lopes, & Baldi, 2008) applied LDA to several versions of the 

source code of a project in an effort to identify the trends in the topics over time. Trends 

in source code histories can be measured by changes in the probability of seeing a topic at 

specific version. When documents pertaining to a particular topic are first added to the 

system, for example, the topics will experience a spike in overall probability. 

 Authors (Thomas, Adams, Hassan, & Blostein, 2010) evaluated the effectiveness of 

topic evolution models for detecting trends in the software development process. The 

authors applied LDA to a series of versions of the source code and calculated the 

popularity of a topic over time. The authors manually verified that spikes or drops in a 

topic’s popularity indeed coincided with developer activity mentioned in the release notes 

and other project documentation, providing evidence that topic evolution models provide 

a good summary of the software history. 

2.4 Bug Localization 

Bug localization is a process of mapping a bug back to the code that might have caused it. 

Bug and the various stages in its life cycle have been discussed below. Bug tracking 

system and use of IR models in bug localization has also been discussed below. 

2.4.1 Defining bug 

 “A computer bug is an error, flaw, mistake, failure, or fault in a computer program 

that stops it from working correctly or produces an incorrect result. Bugs arise from 

mistakes and errors, made by people, in either a program’s source code or its design.” 

The first Software bug was seen by Grace Murray Hopper in year 1947 on Harvard 

University Mark II Aiken Relay Calculator (a primitive computer).  
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Figure 2: Bug Report in Bugzilla 

2.4.2 Stages in Life cycle of Bug 

 In software development process, the bug has a life cycle (Rakesh). The bug should go 

through the life cycle to be closed. A specific life cycle ensures that the process is 

standardized. The bug attains different states in the life cycle. The different states of a 

bug can be summarized as follows: 

1. New 

2. Open 

3. Assign 

4. Test 

5. Verified 
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6. Deferred 

7. Reopened 

8. Duplicate 

9. Rejected 

10. Closed 

 

Figure 3: Bug Life Cycle 

Description of Various Stages: 

1. New: When the bug is posted for the first time, its state will be “NEW”. This 

means that the bug is not yet approved. 

2. Open: After a tester has posted a bug, the bug is approved as genuine by the lead 

of the tester the state is changed as  “OPEN”. 

3. Assign: Once the lead changes the state as “OPEN”, the bug is assigned to 

corresponding developer or developer team. The state of the bug now is changed 

to “ASSIGN”. 

4. Test: Once the bug is fixed by developer, the bug is assigned  to the testing team 

for next round of testing. Before releasing the software with bug fixed, the state of 

bug is changed to “TEST”. It specifies that the bug has been fixed and is released 

to testing team. 
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5. Deferred: The bug, changed to deferred state means the bug is expected to be 

fixed in next releases. The reasons for changing the bug to this state have many 

factors. Some of them are priority of the bug may be low, lack of time for the 

release or the bug may not have major effect on the software. 

6. Rejected: If the developer feels that the bug is not genuine, the bug is rejected and 

the state of the bug is changed to “REJECTED”. 

7. Duplicate: If the bug is repeated twice or the two bugs mention the same concept 

of the bug, then status of one bug is changed to “DUPLICATE”. 

8. Verified: Once the bug is fixed and the status is changed to “TEST”, the tester 

tests the bug. If the bug is not present in the software, the bug is approved as fixed 

and the status is changed to “VERIFIED”. 

9. Reopened: If the bug still exists even after the bug is fixed by the developer, the 

status is changed to “REOPENED” by tester. The bug traverses the life cycle once 

again. 

10. Closed or Fixed: Once the bug is fixed, it is tested by the tester. If the bug no 

longer exists in the software, the status is changed to “CLOSED”. This state 

means that the bug is fixed, tested and approved. 

2.4.3 Bug tracking System 

 A bug tracking system or defect tracking system is a software application that is 

designed to keep track of reported software bugs in software development efforts. It may 

be regarded as a type of issue tracking system. 

 Many bug tracking systems, such as those used by most open source software 

projects, allow users to enter bug reports directly. Other systems are used only internally 

in a company or organization doing software development. Typically bug tracking 

systems are integrated with other software project management applications. 

 A major component of a bug tracking system is a database that records facts about 

known bugs. Facts may include the time a bug was reported, its severity, the erroneous 

program behavior, and details on how to reproduce the bug; as well as the identity of the 

person who reported it and any programmers who may be working on fixing it.  Typical 

bug tracking systems support the concept of the life cycle for a bug which is tracked 

http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Issue_tracking_system
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Database
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through status assigned to the bug. Bugzilla is the very first Bug Tracking System 

developed for tracking bugs in the year 1998. Bugzilla is written in Perl language. 

 In 2000, Mantis Bug Tracker was introduced written in PHP. Mantis introduced a 

much nicer user interface than Bugzilla, and offered more customization, including 

customization of the bug workflow and state transitions. 

 JIRA, a commercial product launched in 2003 and built in Java, represented another 

step forward for issue tracking systems, adding additional customization options, and a 

powerful plug-in architecture. The JIRA platform tends to work best for large enterprise 

software projects. 

 In 2006, two similar projects were introduced: Trac and Redmine. Both are open-

source project management and issue tracking systems. Both offer web-based ticketing 

system similar to Mantis, along with support for milestones, Wiki-style documentation, 

and source integration. Trac is written in Python, whereas Redmine is developed on the 

recently popular Ruby on Rails framework. 

2.4.4 Information Retrieval Model for Bug localization 

 Information Retrieval (IR) can be defined as: “Retrieving relevant documents (or 

documents that satisfy user information need) from large and unstructured collection of 

documents" (Anvik, Hiew, & Murphy, 2006). 

Information Retrieval is an art and science of searching (or retrieving) relevant 

documents from the large collection of documents, for example: 

 Searching for articles on image processing. 

 Retrieving web pages relevant to endangered species. 

 Retrieving advertisement on latest laptops brands present in the market. 

All these are real world examples that are encountered in daily life. Web search engines 

such as Google, Yahoo, Bing etc. are the biggest applications of IR system. These search 

engines indexes millions of documents (unstructured or semi-structured nature) which are 

used for IR model building. When a user input's a query this IR model is used to provide 

user ranked list of document which are ordered according to their relevance to the given 

query (Sangeeta, 2011). 

IR models are gaining popularity in bug localization domain mainly because of two 

reasons: 1) scalability, and 2) language independence (Rao & Kak, 2011). These features 

http://www.atlassian.com/software/jira/overview
http://trac.edgewall.org/
http://www.redmine.org/


19 
 

of IR model allow automated bug localization tools to remain applicable as software 

grows in size and complexity.  

 For bug localization problem IR models have been built using software source code 

information. In addition to source code other information present with the software 

system such as software documentation, software specification or previous bug locations 

has also been used for IR model formation. Document collection represents at which 

level of granularity bug localization system need to locate the bug, it can be at statement, 

method, class, or file level. Document collection is formed from source code by breaking 

it into desired level of granularity. Any new bug report is considered as a query for the 

system for which relevant documents need to be retrieved. New bug reports are converted 

to query using query formation module. All this information (IR model, document 

collection, query) is used by query engine module to produce ranked list of documents 

from document collection. Documents are ranked in order of their relevance with respect 

to current query. These ranked documents can be used by software developers to predict 

bug location during bug fixing.  

 Authors (Hayes, Nichols, Kraft, & Anderson) proposed a technique for bug 

localization in which LSI model has been used. And to improve the efficiency, historical 

patch data has also been used. For locating a given bug combined result of both previous 

history and LSI based approach has been used. 

 Shao (Shao, 2011) proposed an improvement in LSI based bug localization by 

combining the structural information as well. In this work, LSI has been combined with 

call graphs for the task of locating bugs. This LSI-Call Graph based approach has shown 

better results as compared to LSI based approach.  

2.5  Bug Localization Using Topic Models 

In recent times, researchers have developed automated static bug localization 

location techniques (Poshyvanyk & Marcus, 2007) (Lukins, Kraft, & Etzkorn, 2008) (Lal 

& Sureka, 2012)using topic models of  Information Retrieval (IR)  such as Latent 

Semantic Indexing (LSI) (Deerwester, Dumais, Landauer, Furnas, & Harshman, 1990), 

Latent Dirichlet allocation (LDA) (Blei, Ng, & Jordan, 2003) and N-Gram (Wei X. , 

2007). These techniques show efficacy but leave room for some improvement. 
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Authors (Lukins, Kraft, & Etzkorn, 2008) presented an LDA based approach to 

bug localization at method level granularity. In five case studies on Mozilla, Eclipse, and 

Rhino they demonstrate show that the approach outperforms LSI as well as the accuracy 

and scalability of the approach. Further, the authors show that the approach is not 

sensitive to the size of the subject software system and that there is no relationship 

between the accuracy of the approach and the stability of the subject system. Finally, the 

authors demonstrate that coding links can be used to navigate from the first relevant 

method in the ranking to other methods modified to correct the bug. 

 Authors  (Lal & Sureka, 2012) used N-gram model for the task of bug localization at 

file level granularity. The authors used experimental datasets from two open source 

project (JBoss and Apache). Experimental results reveal that the median value for the 

SCORE metric for JBOSS and Apache dataset is 99.03% and 93.70% respectively. 

2.6  Motivation 

After going through various research proposals in the area of localizing bug, it has 

been observed that there is a scope of improvement in the technique for locating the bugs. 

Topic models like LDA, N-gram, etc have already been used for this task but still there 

exists some topic models which have shown promising results in various fields and are 

not used for the task of bug localization yet. One such model is Pachinko Allocation 

Model (PAM), which captures arbitrary, nested, and possibly sparse correlations between 

topics using a directed acyclic graph (DAG) and has not been used for locating bugs yet.  

Also, the topics discovered by LDA capture correlations among words, but LDA 

does not explicitly model correlations among topics. This limitation arises because the 

topic proportions in each document are sampled from a single Dirichlet distribution. As a 

result, LDA has difficulty modeling data in which some topics co-occur more frequently 

than others. Motivated by the desire to present more accurate approach for locating bugs 

by discovering large numbers of fine-grained topics and finding correlations between 

them, PAM model has been used in this research work for the task of bug localization. 
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3 BUG LOCALIZATION USING TOPIC MODELS 

In this chapter, bug localization has been done at file level granularity using LDA 

and PAM models. LDA model has already been used for this task while PAM has not 

been used yet for the task of bug localization. LDA and PAM models are discussed in this 

chapter. In the last section, the methodology used in this work for performing bug 

localization using PAM has been discussed. 

3.1  Latent Dirichlet Allocation (LDA) Model 

Latent Dirichlet Allocation is a powerful learning algorithm for automatically and 

jointly clustering words into "topics" and documents into mixtures of topics. It has been 

successfully applied to model change in scientific fields over time. 

Latent Dirichlet Allocation (LDA) is a popular probabilistic topic model (Blei, 

Ng, & Jordan, 2003) that has largely replaced pLSI. One of the reasons it is so popular is 

because it models each document as a multi-membership mixture of K corpus-wide 

topics, and each topic as a multi membership mixture of the terms in the corpus 

vocabulary. This means that there are a set of topics that describe the entire corpus, each 

document can contain more than one of these topics, and each term in the entire 

repository can be contained in more than one of these topic. Hence, LDA is able to 

discover a set of ideas or themes that well describe the entire corpus (Blei & Lafferty, 

Topic models, 2009).  

To generate a document, LDA first samples per-document multinomial 

distribution over topics from a Dirichlet distribution. Then it repeatedly samples a topic 

from this multinomial and samples a word from the topic. Before an LDA analysis can be 

performed on the document collection, the following parameters must be set. 

 The number of topics  

 The number of iterations for the Gibbs sampling process 

  , a hyper parameter of LDA, determines the amount of smoothing applied to the 

topic distributions per document (Griffiths & Steyvers, 2004) . 

  , a hyper parameter of LDA, determines the amount of smoothing applied to the 

word distributions per topic (Griffiths & Steyvers, 2004) 
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The LDA analysis results in the following two probability distributions which, along with 

the topics themselves, comprise the LDA model.  

 The word-topic probability distribution ( ) 

 The topic-document probability distribution ( ) 

 LDA is based on a fully generative model that describes how documents are created. 

Intuitively, this generative model makes the assumption that the corpus contains a set of 

K corpus-wide topics, and that each document is comprised of various combinations of 

these topics. Each term in each document comes from one of the topics in the document 

(Wei & Croft, 2006) (Thomas S. W., 2012). This generative model is formulated as 

follows: 

1. Choose a topic                 for document  . 

2. For each of the   terms   :  

(a) Choose a topic                  . 

(b) Choose a term    from             

Here,            is a multinomial probability function,   is a smoothing parameter for 

document-topic distributions, and   is a smoothing parameter for topic-term 

distributions. 

 

Figure 4: Graphical notation for LDA 

LDA model with repeated sampling steps can be conveniently illustrated using plate 

notation as shown in figure 4. In this graphical notation, shaded and un shaded variables 
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indicate observed and latent (i.e., unobserved) variables respectively. The variables   and 

 , as well as   (the assignment of word tokens to topics) are the three sets of latent 

variables that one would like to infer. The hyper parameters   and   are considered as 

constants in the model. Arrows indicate conditional dependencies between variables 

while plates (the boxes in figure 4) refer to repetitions of sampling steps with the variable 

in the lower right corner referring to the number of samples. For example, the inner plate 

over   and   illustrates the repeated sampling of topics and words until    words have 

been generated for document  . The plate surrounding      illustrates the sampling of a 

distribution over topics for each document   for a total of   documents. The plate 

surrounding      illustrates the repeated sampling of word distributions for each topic   

until   topics have been generated. 

 Two levels of this generative model allow three important properties of LDA to be 

realized: documents can be associated with multiple topics, the number of parameters to 

be estimated does not grow with the size of the corpus, and, since the topics are global 

and not estimated per document, unseen documents can easily be accounted (Thomas S. 

W., 2012). 

 One assumption that LDA makes is the “bag of words” assumption that the order of 

the words in the document does not matter. For more sophisticated goals such as 

language generation it is patently not appropriate. There have been a number of 

extensions to LDA that model words non exchangeable. Another assumption is that the 

order of documents does not matter. A third assumption about LDA is that the number of 

topics is assumed known and fixed. 

3.2 Pachinko Allocation Model 

Pachinko allocation model (PAM), uses a directed acyclic graph (DAG) structure 

to represent and learn arbitrary nested, and possibly sparse topic correlations. In PAM, 

the concept of topics is extended to be distributions not only over words, but also over 

other topics. The model structure consists of an arbitrary DAG, in which each leaf node is 

associated with a word in the vocabulary, and each non-leaf “interior” node corresponds 

to a topic, having a distribution over its children. An interior node whose children are all 

leaves would correspond to a traditional LDA topic. But some interior nodes may also 



25 
 

have children that are other topics, thus representing a mixture over topics. With many 

such nodes, PAM therefore captures not only correlations among words (as in LDA), but 

also correlations among topics themselves. Figure 5 and figure 6 shows the structure of 

LDA and PAM models respectively. 

 

 

Figure 5: LDA Structure 

 

 

       Figure 6: PAM Structure 

                                                              

For example, consider a document collection that discusses four topics: cooking, 

health, insurance and drugs. The cooking topic co-occurs often with health, while health, 
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insurance and drugs are often discussed together. A DAG can describe this kind of 

correlation. Four nodes for the four topics form one level that is directly connected to the 

words. There are two additional nodes at a higher level, where one is the parent of 

cooking and health, and the other is the parent of health, insurance and drugs (Li & 

McCallum, 2006). 

In PAM each interior node’s distribution over its children could be parameterized 

arbitrarily. PAM model consists of a DAG, with each interior node containing a Dirichlet 

distribution over its children. To generate a document from this model, first sampling a 

multinomial from each Dirichlet is done. Then, to generate each word of the document, 

one has to begin at the root of the DAG, sampling one of its children according to its 

multinomial, and so on sampling children down the DAG until leaf is reached, which 

yields a word. The model is named for pachinko machines, a game popular in Japan, in 

which metal balls bounce down around a complex collection of pins until they land in 

various bins at the bottom. 

It is easy to see that LDA can be viewed as a special case of PAM: the DAG 

corresponding to LDA is a three-level hierarchy consisting of one root at the top, a set of 

topics in the middle and a word vocabulary at the bottom. The root is fully connected to 

all the topics, and each topic is fully connected to all the words. 

PAM connects words in V and topics in T with an arbitrary DAG, where topic 

nodes occupy the interior levels and the leaves are words. It is a four-level hierarchy 

consisting of one root topic  ,    topics at the second level                 ,   
 topics at 

the third level                        and words at the bottom. The topics at the second 

level are called super-topics and the ones at the third level as sub-topics. The root is 

connected to all super-topics, super-topics are fully connected to sub-topics and sub-

topics are fully connected to words.         is Dirichlet distribution associated with topic 

     

The generative process for a document   in PAM is as follows: 

1. Sample   
   

 from the root         , where   
   

 is a multinomial distribution over 

super topics. 

2. For each super-topic   , sample    

   
, where     

   
 is a multinomial distribution over 

sub-topics. 
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3. For each word w in the document, 

a) Sample a super-topic    from    
   

. 

b) Sample a sub-topic      from     
   

. 

c) Sample word w from    
 

 

Following this process, a joint probability for generating a document  , a super-topic 

assignment       a sub-topic assignment      
 and a multinomial distribution      is 

calculated as: 
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Integrating out       and summing over      and      
, the marginal probability of the 

document is calculated as: 
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The probability of generating the whole corpus is the product of the probability for every 

document, integrating out multinomial distributions for sub-topics   as: 

         ∫∏       
   ∏            

  
        (3) 

3.3 Bug Localization Using Pachinko Allocation Model 

To perform PAM-based bug localization on a given version of a software system, 

first a PAM model of the source code is built. Then, the created model is queried as often 

as necessary to localize bugs existing in that version.  The implementation work has been 

done by extending MALLET (McCallum, 2002) library of JAVA.   
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Figure 7: Bug Localization Using PAM Model 

Figure 7 shows the two main phases involved in performing bug localization using PAM 

model. 

3.3.1 Preprocessing of Source Code 

 Before PAM model can be applied to source code, several preprocessing steps are 

generally taken in an effort to reduce noise and improve the resulting topics. These steps 

are same for other topic models also. 

a. Characters related to the syntax of the programming language (e.g., “&&”, “->”) are 

removed; programming language keywords (e.g., “if”, “while”) are removed. 
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b. Identifier names are split into multiple parts based on common naming conventions 

(e.g., “oneTwo”, “one_two”). 

c. Common English-language stopwords (e.g., “the”, “it”, “on”) are removed. 

d. Word stemming is applied to find the root of each word (e.g., “changing” becomes 

“chang”). 

3.3.2  Construction of PAM Model 

Two steps are necessary to construct a PAM model of a software system: (1) 

building the document collection from the source code, and (2) Training the PAM Model. 

Step1: Building the Binary output file. 

In this step, source code is passed through the program written for implementation 

task. Binary output file gets created after this first step. Semantic information is extracted 

and stemming is performed to eliminate stop words. Porter stemmer removed the word 

suffix and eliminated the variations and repetition of words.  

Step 2: Training the PAM Model 

 In this step, training of the topic model from the data file generated in the 

previous step is done. As an output, topic-words list is generated. But before a PAM 

model can be trained, the following parameters must be set. 

 The number of sub topics 

  The number of sub topics 

 The number of iterations for the Gibbs sampling process 

  , a hyper parameter of PAM, determines the amount of smoothing applied to the topic 

distributions per document (Li & McCallum, 2006) 

  , a hyper parameter of PAM, determines the amount of smoothing applied to the word 

Distributions per topic (Li & McCallum, 2006). 

 

  By default, the number of super topics are generally half of the subtopics but 

could be larger than it. At this point, a static PAM model of the source code has been 

constructed. This model can then be queried for each bug discovered. 
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3.3.3  Query the PAM Model using Inference Engine 

  PAM model generated in previous phase can be queried now. Terms in the query 

should be preprocessed in the same manner as the source code, e.g., stop words removed 

and stemming performed. Each query results in a list of source code elements ranked by 

similarity to the query (most similar elements ranked highest). In this work, Inference 

engine for querying the PAM model has been proposed by extending MALLET library in 

java. 

  In this work, source code queries have been formulated manually by utilizing 

information about bugs extracted from the bug title and description entered into the 

software’s bug repository by the person initially reporting the bug. Separate files were 

prepared for each bug containing its summary and description. These files act as the 

query for the Inference engine. The query is one by one into the engine to get the topic 

corresponding to the query content. After the first phase list of topics corresponding to 

each file has already generated. This data was then used to know the files that were 

having the maximum percentage of the topic. The files are arranged in the decreasing 

order of the topic percentage, file with maximum percentage at the top. In this way the 

list of expected files to be modified is created. Details regarding the formation of queries 

for each case study are discussed in the description for each study. 
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4 CASE STUDY 

In this chapter, details about the data sets have been given. This chapter also 

discusses the experimental set up and simulation. The main phases of the proposed work 

are also discussed in this chapter. 

4.1 Experimental Data Sets 

To assess the viability of a PAM-based approach to bug localization and to 

compare it with LDA based bug localization, two case studies have been performed on 

two different software systems. Both the case studies use the approach outlined in Section 

3.3 to perform bug localization. To determine the accuracy of the predictions for each 

bug, the PAM and LDA query results were compared to relevant files for the bug i.e., the 

actual files fixed by developers to correct the bug. These relevant source code files were 

determined by examining the software patch for each bug posted in the software’s bug 

tracking system.  

For the task of evaluating the performance of the proposed work, source codes 

have been downloaded for two popular open source projects: Rhino (Rhino) and 

Modeshape. The dataset is publicly available as a result of which the experiments 

performed in this work can be replicated in future for improvement. The data about the 

bugs has been downloaded from two Bug Tracking systems i.e. Bugzilla and JIRA for 

Rhino and Modeshape respectively.   

4.1.1 Rhino  

Rhino is an open-source implementation of JavaScript written entirely in Java. It 

is typically embedded into Java applications to provide scripting to end users. It is 

embedded in J2SE 6 as the default Java scripting engine.  In this work, source code of 

Rhino (Rhino) version 1.7 release (1.7R) with 219 files has been used. Bugs and its 

details have been downloaded from Bugzilla. Bugs that fulfill the following criteria have 

been used for analysis of result: 

a) Bugs existing in the Rhino version 1.7 

b) Bugs with the status “Closed” or “Resolved” 

c) Bugs requiring modification at file level  

https://developer.mozilla.org/en/JavaScript
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Table 2 lists the bug id and bug summary from Rhino’s bug repository (Bugzilla) for 

each bug examined. 

Table 2: Bug id and Summary for Rhino 

Bug id Bug Summary 

220367 NPE when accessing RegExp.$1 after matching /(a)|(b)/ against "b" 

510265 Make the source property of RegExp instances conform to the spec 

684131 AstNode missing operator name "^=" (ASSIGN_BITXOR) - patch included 

537483 JSON.parse doesn't correctly add properties with numeric identifiers 

513549 Rhino's new JSON.parse breaks on trailing whitespace 

507104 Make RegExp.prototype.constructor non-enumerable 

505524 Implement Date.toJSON 

442922 New E4X Dom based XML implementation is not serializable 

400159 Make org.mozilla.javascript.Synchronizer act on native Java objects when available 

255595 Factory class for Context creation 

281067 ThreadLocal in Context prevents class unloading 

258959 ScriptableInputStream doesn't use Context's applicationClassLoader to resolve classes 

245882 JavaImporter constructor 

236193 Only active Context for compilation 

236117 Context sealing API for Rhino 

76683 RegExp regression (NullPointerException) 

201987 delete "".x throws ClassCastException 

198086 optimizer enhancement: generate only single class per script and all its functions 

214997 build.xml changes: clean and help targets 

    

4.1.2 ModeShape 

ModeShape is a distributed, hierarchical, transactional, and consistent data store 

with support for queries, full-text search, events, versioning, references, and flexible and 

dynamic schemas. It is very fast, highly available, extremely scalable, and it is 100% 

open source and written in Java. Bugs and its details have been downloaded from JIRA. 

For this work, ModeShape version 3.1.1 with source code of 1660 files has been used 

Bugs that fulfill the following criteria have been used for analysis of result: 

  

https://bugzilla.mozilla.org/show_bug.cgi?id=220367
https://bugzilla.mozilla.org/show_bug.cgi?id=220367
https://bugzilla.mozilla.org/show_bug.cgi?id=510265
https://bugzilla.mozilla.org/show_bug.cgi?id=510265
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a) Bugs existing in the ModeShape version 3.1.1 

b) Bugs with the status “Closed” or “Resolved” 

c) Bugs requiring modification at file level  

Table 1 lists the bug id and bug summary from ModeShape’s bug repository(JIRA) for 

each bug examined. 

Table 3: Bug id and Summary for ModeShape 

Bug id Bug Summary 

MODE-1878 Same name siblings are incorrectly prevented in some cases 

MODE-1837 
Sometimes query returns duplicated records after commiting a transaction that 

contains VersionManager.checkin() call when using a real JTA transaction manager 

MODE-1769 

org.infinispan.marshall.NotSerializableException: 

org.infinispan.schematic.internal.SchematicEntryLiteral when using async cache 

store 

 

MODE-1751 

 

Updating reference with already assigned node brings referential integrity  exceptions   

MODE-1748 
Importing XML throws VersionException "node is checked in, preventing this 

action" 

MODE-1414 Sequencing VDB project causes NullPointerException 

MODE-1269 Methods to re-index content are not public 

MODE-1207 WSDL sequencer does not sequence document correctly. 

MODE-1131 Exception Querying For Workspace Areas Using IRestClient 

MODE-1036 
Modeshape unit test JpaConnectorNoCreateWorkspaceTest freezes when Oracle is 

used. 

MODE 1016 
ConstraintViolationException is thrown when importing sample drools rules from 

XML file. 

MODE1013 XML sequencer doesn't work correctly 

MODE 1004 Teiid VDB sequencer incorrectly set the value of the vdb:builtIn property 

MODE 972 CND sequencer doesn't work correctly 

MODE 950 Text sequencer does not sequence CSV file correctly 

MODE 927 Unable to delete file through REST interface 

MODE 902 NotSerializableException in the JpaRepository when using HSQL as the repository 

MODE 815 
DDL Sequencer doesn't populate primary key correctly when constraint defined on a 

column 

MODE 802 Some valid non-identity joins will produce an error upon execution 

MODE 797 
Session.getWorkspace().getAvailableWorkspaceNames() does not match those 

available in the underlying source 

MODE 793 Version Storage Does Not Preserve Cardinality of Properties 

MODE 792 Checking Out an Already Checked-Out Node Resets Changes on That Node 

MODE 790 XPath Query with Compound Predicate Not Translated Correctly 

 

 

  

https://issues.jboss.org/browse/MODE-1878
https://issues.jboss.org/browse/MODE-1837
https://issues.jboss.org/browse/MODE-1837
https://issues.jboss.org/browse/MODE-1837
https://issues.jboss.org/browse/MODE-1769
https://issues.jboss.org/browse/MODE-1769
https://issues.jboss.org/browse/MODE-1769
https://issues.jboss.org/browse/MODE-1769
https://issues.jboss.org/browse/MODE-1751
https://issues.jboss.org/browse/MODE-1751
https://issues.jboss.org/browse/MODE-1751
https://issues.jboss.org/browse/MODE-1748
https://issues.jboss.org/browse/MODE-1748
https://issues.jboss.org/browse/MODE-1748
https://issues.jboss.org/browse/MODE-1414
https://issues.jboss.org/browse/MODE-1414
https://issues.jboss.org/browse/MODE-792
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4.2  Bug Tracking Systems: Bugzilla and JIRA 

 A bug tracking system or defect tracking system is a software application that is 

designed to help keep track of reported software bugs in software development efforts. It 

may be regarded as a type of issue tracking system. Many bug tracking systems, such as 

those used by most open source software projects, allow users to enter bug reports 

directly. Other systems are used only internally in a company or organization 

doing software development. Typically bug tracking systems are integrated with other 

software project management applications. In this research work, Bugzilla and JIRA have 

been used for collecting the bug details of the software. 

Bugzilla as shown in figure 8 is a "Defect Tracking System" or "Bug-Tracking 

System". Defect Tracking Systems allow individual or groups of developers to keep track 

of outstanding bugs in their product effectively. Most commercial defect-tracking 

software vendors charge enormous licensing fees. 

 

Figure 8: Bugzilla: Bug Tracking System for Rhino 

Despite being "free", Bugzilla has many features its expensive counterparts lack. 

Consequently, Bugzilla has quickly become a favorite of thousands of 

http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Issue_tracking_system
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Software_development
http://www.bugzilla.org/features/
http://www.bugzilla.org/installation-list/
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organizations across the globe. In this work, Bugzilla has been used for collecting the 

details about bugs in Rhino. 

 

Figure 9: JIRA: Bug Tracking System for ModeShape 

JIRA as shown in figure 9 is a bug tracking system, developed by Atlassian, used 

for bug tracking, issue tracking and project management. The product name, JIRA, is not 

an acronym but rather a truncation of "Gojira", the Japanese name for Godzilla. In this 

work, JIRA has been used for collecting the details about bugs in ModeShape. 

4.3  Performance and Evaluation Metrics 

4.3.1 Mean Average Precision 

Mean average precision (computed for a set of queries i.e., for the set of bug 

reports in the evaluation dataset) is equal to the mean of the Average Precision (AP) 

scores for each query in the experimental dataset. AP consists of computing the precision 

of the system at the rank of every relevant document retrieved. MAP is a well know 

metric to measure retrieval performance for IR systems.  

http://www.bugzilla.org/installation-list/
http://en.wikipedia.org/wiki/Atlassian
http://en.wikipedia.org/wiki/Bug_tracking_system
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Godzilla
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Equation 1 and equation 2 gives the formula for calculating AP and MAP where    

denotes the precision at     
 relevant file retrieved and   denotes total number of relevant 

files for a bug. 

      
           

 
      (1) 

       
              

 
      (2) 

4.3.2 Rank of First Relevant File 

Rank of first relevant file means rank of the first relevant file retrieved for a 

particular bug.  In this work, this metric has been used to calculate number of bugs 

finding their relevant file at given rank. For example, in a given bug report, if the first 

relevant file is found at 3
rd 

position, then rank will be 3.  In this work, three ranges of 

rank has been used. First, rank less 5(Rank<5), second is rank between 6 to 

10(6<=Rank<=10) and third is rank between 11 to 20(11<=Rank<=20). The higher the 

metric value,  better the bug localization performance. 

4.4 Experimental Set Up and Simulation 

In this work for performing bug localization using topic models, an open source 

library called MALLET has been used. MALLET is a Java-based package for statistical 

natural language processing, document classification, clustering, topic modeling, 

information extraction, and other machine learning applications to text. This library 

provides almost various machine learning algorithms which include Classification 

techniques, sequence tagging, topic modeling and graph models.  

There are two main phases viz. constructing the PAM model for source code and 

querying that model for a given query. Using MALLET, the PAM model for the source 

code has been constructed. MALLET library does not provide option for querying the 

PAM model. For this purpose, MALLET library has been extended to inference the PAM 

model using the proposed inference engine. This work is an incremental contribution to 

the existing MALLET library.  
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Source codes of Rhino and ModeShape software act as input for the first phase of 

bug localization. Thereafter bugs and their details of Rhino and ModeShape, taken from 

Bugzilla and JIRA respectively act as input for the second phase.  

Steps to perform Phase I: 

Source codes of Rhino and Modeshape are saved separately in directories. 

MALLET batch file takes the directory path as an input, processes all the files present 

under the directory and creates a binary output file in the format described by MALLET. 

Figure 10 describes the various steps involved in phase I. Therefore, in the first phase, the 

source code path has been passed into the MALLET batch file which returned the binary 

MALLET file as an output. In the next step of the first phase, the PAM model from the 

MALLET data file generated in the previous step is trained. After this, the topic-words 

list is generated.  

SOURCE CODE

(Rhino or ModeShape)

BINARY OUTPUT FILE

(MALLET FILE) TRAINING PAM MODEL

PAM MODEL

(Topic-Word list

Topic-File list)

 

Figure 10: Phase I in PAM based bug localization 

Steps to perform Phase II: 

For performing phase II, Inference engine has been proposed. In MALLET, 

inferencing can be performed for LDA model but not for PAM model. Therefore, in this 

work, Inference engine has been developed for querying the PAM model built during 

phase I. After the first phase, the list of topics(super topic and sub topic) corresponding to 

each file has already been generated.  
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Figure 11: Phase II in PAM based bug localization 

Figure 11 shows the various steps involved in phase II. In the second phase of the 

PAM based bug localization, 20 bugs of Rhino & Modeshape software have been 

collected from Bugzilla and JIRA respectively. These bugs and their complete description 
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are saved in separate files. These files contain the bug description as well as the steps to 

reproduce each bug. This acted as the query for the Inference engine. 

 

The various steps in phase II are: 

1. The bug files acting as query are entered one by one into the Inference engine. 

2. The stop words are removed and stemming is done on the query. 

3. The words in the query are read one by one and the corresponding topic is found 

(using topic-words list fetched in phase I). 

4. The number of words per topic is counted to get the topic with which maximum 

number of words belonged to. 

5. The topic found in the step 3, becomes the topic of particular query. 

6. Now using the topic-file list, one can know the number of files under that topic.  

In this way the list of expected files to be modified is generated in decreasing order of 

probability.  
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5 EXPERIMENTAL RESULTS AND ANALYSIS 

In this chapter, performance of LDA and PAM based approaches for bug 

localization has been compared. Two case studies Rhino and ModeShape have been used 

for this task. Bug localization using LDA and PAM models has been done using MALLET 

library in Java. This chapter discusses and compares the results of LDA and PAM based 

bug localization on Rhino and ModeShape respectively.   

5.1 Results for Rhino  

For Rhino, it has been observed that value of Mean Average Precision (MAP) is 

0.157 in case of LDA based approach for bug localization. While performing bug 

localization using PAM, value of MAP becomes 0.202. This comparison has been clearly 

shown in Figure 12. It clearly shows that the MAP of PAM based approach is better than 

LDA based approach for bug localization.  

 

Figure 12: Comparison between LDA and PAM approaches using MAP for Rhino 
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Figure 13: AP values in Rhino data set for LDA and PAM based approaches 

                                                           

Figure 13 shows the different values of average precision calculated for bugs 

separately. In LDA based approach, 20% of bugs are located at Rank less than 5.  

28% of bugs are located at rank between 6 to 10 and 50% of bugs are located at rank 

between 11to 20.  Figure 14 illustrates the bugs located with the respective rank ranges. 

 

Figure 14: Rank of Relevant files using LDA approach for Rhino 
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While in PAM based approach for bug localization, 35% of bugs are located at Rank less 

than 5. 25% of bugs are located at rank between 6 to 10 and 40% of bugs are located at 

rank between 11 to 20.  Figure 15 illustrates the bugs located with the respective rank 

ranges. 

 

Figure 15: Rank of Relevant files using PAM approach for Rhino 

                                                                     

It can be clearly seen from the results that for Rhino, PAM based approach has 

performed better than LDA based approach for bug localization, for both MAP and 

Ranking metrics. 

5.2  Results for ModeShape 

For ModeShape, it has been observed that value of Mean Average Precision 

(MAP) is 0.100 in case of LDA based bug localization. While performing bug 

localization using PAM, value of MAP becomes 0.142.  
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This comparison has been clearly shown in figure 16. It shows that the MAP of 

PAM based approach for bug localization is better than LDA based approach for bug 

localization.  

 

 

Figure 16: Comparison between LDA and PAM approaches using MAP for 

ModeShape 

                           

          Figure 17 shows the different values of average precision calculated for bugs 

separately.  

 

Figure 17: AP values in ModeShape data set  for LDA and PAM based approaches 



46 
 

                                                       

In LDA based approach, 17% of bugs are located at Rank less than 5. 39% of bugs are 

located at rank between 6 to 10 and 44% of bugs are located at rank between 11to 20.  

Figure 18 illustrates the bugs located with the respective rank ranges. 

 

Figure 18: Rank of Relevant files using LDA for ModeShape 

In PAM based approach for bug localization, 42% of bugs are located at Rank 

less than 5.  

26% of bugs are located at rank between 6 to 10 and 32% of bugs are located at rank 

between 11 to 20.  Figure19 illustrates the bugs located with the respective rank ranges. 

 

Figure 19: Rank of Relevant files using PAM for ModeShape 
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It can be clearly seen from the results that for ModeShape, PAM based approach 

has performed better than LDA based approach for bug localization, for both MAP and 

Ranking metrics. Figure 20 and figure 21 compares the performance of LDA and PAM 

based approach on both datasets using MAP and Rank metric respectively. 

                                    

 

Figure 20: MAP based comparison on Rhino and ModeShape 

                                                      

                           

 

Figure 21: Rank based comparison on Rhino and ModeShape 
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In case of Rhino dataset, for one bug report only 10% of dataset is needed to be 

reviewed. In case of ModeShape dataset, for one bug report only 1.5 % of dataset is 

needed to be reviewed. For both the case studies, Rhino and ModeShape, PAM based bug 

localization technique has performed better than LDA based bug localization technique.  
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CONCLUSION  

In this work, bug localization has been performed using PAM model. For the first 

time, PAM model has been used for the task of bug localization. PAM model based 

approach for bug localization has been compared with LDA model based approach for 

bug localization. MALLET library in java has been extended to incorporate PAM model 

based bug localization using proposed Inference engine. Data sets from two open source 

software viz. Rhino version 1.7 and ModeShape version3.1.1 have been used. For Rhino 

dataset, the value of MAP is 0.157 and 0.202 using LDA and PAM based approach 

respectively. Also percentage of bugs for which the relevant files retrieved are in top 5 

position is 20% and 35% using LDA and PAM based approach respectively. For 

ModeShape dataset, the value of MAP is 0.100 and 0.142 using LDA and PAM based 

approach respectively. Also percentage of bugs for which the relevant files retrieved are 

in top 5 position is 17% and 42% using LDA and PAM based approach respectively. In 

case of Rhino dataset, for one bug report only 10% of dataset is needed to be reviewed. In 

case of ModeShape dataset, for one bug report only 1.5 % of dataset is needed to be 

reviewed. Thus, it can be concluded that performance of PAM based bug localization is 

better than LDA based bug localization. 

SUGGESTIONS FOR FUTURE WORK 

In this work, only lexical information has been focused. The performance of bug 

localization can be improved by focusing on both lexical and structural information. In 

future work, some new topic models can be used for the task of bug localization. Call 

graphs or any other such technique can be used to model the structural information as 

well for performing bug localization. 
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