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CHAPTER 1 – INTRODUCTION 

 
1.1 A brief background of wireless communications. 

 

 
When land line based telephony systems were first introduced in the earlier part of this 

century, they allowed people to communicate almost instantaneously over large 

distances at a reasonable cost for the very first time. Indeed it was the advent of 

telephony and the advance in communications technology that has drastically 

influenced the way we live and our outlook on life. 

        If land based telephony ushered in the age of communications; then wireless 

communications is its legitimate successor. Though land based systems will go on 

providing backbone connectivity for a long time to come, it has become increasingly 

clear in the last decade or so, that for the last hop in the information chain (that links 

the user to his information source), the user prefers wireless access. The reason for this 

is simply convenience. Nobody wants his or her mobility restricted. Wireless access 

allows the user the freedom to be mobile. Apart from user satisfaction, there is a very 

legitimate justification of wireless connectivity from the service provider’s point of 

view. There are many areas in the world that are still inaccessible to land line systems 

due to their remoteness or because of intervening inhospitable terrain. Wireless 

systems are a very practical alternate in such a scenario to replace or supplement the 

backbone landlines. 

          The last and perhaps most important factor in the drive towards mobile 

telephony is simply economics [1]. For the first 35 years since its first commercial 

deployment ,wireless systems saw little market penetration due to the high cost and 

the technological challenges involved. But in the last fifteen years, cellular telephony 

alone (not including paging, amateur radio, terrestrial microwave radio systems) has 

been growing at rates similar to that of television and the automobile as seen in the 
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figure below. So we see that wireless communications holds enough promise to be the 

technology that drives our lifestyle and indeed our culture into the next  millenium. 

     

Fig 1.1: Mobile Telephony growth compared with other inventions this century 

 

 

           As with most things this promising, wireless communications opens a whole 

Pandora’s box of complications. A radio signal transmitted from a base station to a 

mobile in a typical urban environment, exhibits variations in both received amplitude 

and phase/frequency. The change in amplitude us usually manifest in the form of 

sharp drops in signal level called Fades. Fades of 40dB or more below the mean signal 

level are common with successive minima occurring every few inches of the motion of 

the mobile. A vehicle traveling at 60 miles/hr can easily experience fades at the rate of 

100Hz, thus distorting speech [1].Each radio wave received at the mobile has an 

associated Doppler shift that depends on the mobile velocity, the carrier frequency and 
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the angle between the velocity vector and the wave propagation vector. This manifests 

itself as a random variance in the instantaneous frequency of the received signal, 

causing further distortion. 

 These obstacles may seem to defy any attempt at a systematic interpretation or 

analysis. However, starting from a model that takes into account the buildings and 

other structures in the vicinity of the mobile, that affect the signal, we can successfully 

predict many of the observed properties of the received signal by utilizing statistical 

techniques. 

 

1.2 What is Channel Estimation? 

 

 
Before we approach the problem of predicting and analyzing the observable properties 

of transmission, we must first define what we mean by a channel. In its most general 

sense, a channel can describe everything from the source to the sink of a radio signal 

[3]. This includes the physical medium (free space, fiber, waveguides etc.) between 

the transmitter and the receiver through which the signal propagates. The word 

channel refers to this physical medium throughout this work. An essential feature of 

any physical medium is, that the transmitted signal is received at the receiver, 

corrupted in a variety of ways by frequency and phase-distortion, inter symbol 

interference and thermal noise. 

A channel model on the other hand can be thought of as a mathematical representation 

of the transfer characteristics of this physical medium. This model could be based on 

some known underlying physical phenomenon or it could be formed by fitting the best 

mathematical / statistical model on the observed channel behavior. Most channel 

models are formulated by observing the characteristics of the received signals for each 

specific environment. Different mathematical models that explain the received signal 

are then fit over the accumulated data. Usually the one that best explains the behavior 

of the received signal is used to model the given physical channel. 
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Channel estimation[7] is simply defined as the process of characterizing the effect of 

the physical channel on the input sequence. If the channel is assumed to be linear, the 

channel estimate is simply the estimate of the impulse response of the system. It must 

be stressed once more that channel estimation is only a mathematical representation of 

what is truly happening. A “good” channel estimate is one where some sort of error 

minimization criteria is satisfied (e.g. MMSE). 

 

 

Fig: 1.2: A general Channel Estimation Procedure. 

 

 

In the figure above e(n) is the estimation error. The aim of most channel estimation 

algorithms is to minimize the mean squared error (MMSE), E[e
2
 (n)] while utilizing as 

little computational resources as possible in the estimation process. 

 

1.3 Why Channel Estimation? 

 
Channel estimation algorithms allow the receiver to approximate the impulse response 

of the channel and explain the behavior of the channel. This knowledge of the 
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channel's behavior is well-utilized in modern radio communications. Adaptive channel 

equalizers utilize channel estimates to overcome the effects of inter symbol 

interference. Diversity techniques (for e.g. the IS-95 Rake receiver) utilize the channel 

estimate to implement a matched filter such that the receiver is optimally matched to 

the received signal instead of the transmitted one. Maximum likelihood detectors 

utilize channel estimates to minimize the error probability. 

 

      One of the most important benefits of channel estimation is that it allows the 

implementation of coherent demodulation[4]. Coherent demodulation requires the 

knowledge the phase of the signal. This can be accomplished by using channel 

estimation techniques. 

 

1.4 Filters for Channel Equalization 

 
 In order to counter intersymbol interference effect, the observed signal may 

first be passed through a filter called the equalizer whose characteristics are the 

inverse of the channel characteristics. If the equalizer is exactly matched to the 

channel, the combination of the channel and equalizer is just a gain so that there is no 

intersymbol interference present at the output of the equalizer. As mentioned, the 

equalizer is a filter which is known as Adaptive filter. 

1.4.1. Adaptive Filter 

 
In contrast to filter design techniques based on knowledge of the second-order 

statistics of the signals, there are many digital signal processing applications in which 

these statistics cannot be specified a priori. The filter coefficients depend on the 

characteristics of the medium and cannot be specified a priori. Instead, they are 

determined by the method of Least squares, from measurements obtained by 

transmitting signals through the physical media. Such filters, with adjustable 

parameters, are usually called adaptive filters, especially when they incorporate 
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algorithms that allow the filter coefficients to adapt to the changes in the signal 

statistics. 

 

 The equalizers, thereby using adaptive filters are called adaptive equalizers. On 

channels whose frequency response characteristics are unknown, but time invariant, 

we may measure the channel characteristics and adjust the parameters of the equalizer; 

once adjusted, the parameters remain fixed during the transmission of data. Such 

equalizers are called preset equalizers. On the other hand, adaptive equalizers update 

their parameters on a periodic basis during the transmission of the data and, thus, they 

are capable of tracking time-varying channel response. 

 

 The adaptive filters will be discussed, in detail, in the next chapter. However, 

at this point of time, one needs to understand that the equalizer used to counter 

intersymbol interference effect of the channel is to be adaptive in nature. This is 

because of the reason that, there is no priori information available to the filter but only 

the incoming data, depending on which the filter parameters have to adapt.  

 

 

1.5 Training Sequences vs. Blind Methods 

 
Once a model has been established, its parameters need to be continuously updated 

(estimated) in order to minimize the error as the channel changes. If the receiver has a-

priori knowledge of the information being sent over the channel, it can utilize this 

knowledge to obtain an accurate estimate of the impulse response of the channel. This 

method is simply called Training sequence based Channel estimation. It has the 

advantage of being used in any radio communications system quite easily. Even 

though this is the most popular method in use today, it still has its drawbacks. One of 

the obvious drawbacks is that it is wasteful of bandwidth. Precious bits in a frame that 

might have been otherwise used to transport information are stuffed with training 

sequences for channel estimation. This method also suffers due to the fact that most 
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communication systems send information lumped frames. It is only after the receipt of 

the whole frame that the channel estimate can be extracted from the embedded training 

sequence. For fast fading channels this might not be adequate since the coherence time 

of the channel might be shorter than the frame time. 

 

           Blind methods [4,5]on the other hand require no training sequences. They 

utilize certain underlying mathematical information about the kind of data being 

transmitted. Classical equalization techniques employ a time-slot (recurring 

periodically for time- varying situations) during which a training signal, known in 

advance by the receiver, is transmitted. The receiver adapts the equalizer so that its 

output closely matches the known reference training signal. The more recent 

emergence of digital multipoint and broadcast systems has produced communication 

scenarios where training is infeasible or prohibited, since the inclusion of such signals 

sacrifices valuable channel capacity.[5] 

 Blind adaptive equalizers are those that do not need training to achieve 

convergence from an acceptable equalizer setting to a desired one. Blind 

equalization is desirable in multipoint and broadcast systems and necessary in 

noninvasive test and intercepts scenarios. Even in point-to-point communication 

systems, blind equalization has been adopted for various reasons, including capacity 

gain and procedural convenience. 

 There are basically two different approaches to the problem of blind 

equalization. The stochastic gradient descent (SGD) approach which iteratively 

minimizes a chosen cost function over all possible choices of equalizer coefficients, 

while the statistical approach uses sufficient stationary statistics collected over a 

block of received data for a channel identification or equalization. The latter 

approach often exploits higher order cyclo-stationary statistical information directly. 

The intended work is focused on blind equalization method using stochastic gradient 

approach. 
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Linear Blind Equalization System 

The Least Mean Square (LMS) adaptive equalizer employing a training sequence is 

given by: 

w(k + 1) = w(k) + µe(k)x(k) ………………………………….1.1 

 where µ is a small step size controlling the convergence of the algorithm, and 

e(k) the difference between the output of the equalizer and the transmitted symbol. 

Naturally this algorithm requires that the channel input a(k - v) be available, the 

equalizer iteratively minimizes the E = |e(k)|2 mean square error(MSE) cost function 

in which the error is defined as : 

e(k) = y(k) - a(k - v)……………………………………………….1.2  

If the MSE is small such that after training the equalizer output y(k) is a close estimate 

of the true channel input , then the decision device output can replace a(k - v) in a 

decision directed algorithm that continues to track the modest time variations in the 

channel dynamics. In blind equalization the channel input a(k) is unavailable, and thus 

different minimization criteria are explored. The crudest blind equalization scheme is 

the decision-directed scheme that updates the adaptive equalizer coefficients according 

to: 

w(k + 1) = w(k) + µ(yk - Q[y(k)])x(k)……………..…………1.3    

             

where Q[y(k)] =        The ability of the equalizer to achieve desired convergence 

results when it is initialized with sufficiently small inter symbol interference (ISI) [5] 

accounts for the key role that decision-directed algorithm plays in channel 

equalization. Without direct training, a blind equalization algorithm is therefore used 

to provide a good initialization scheme for the decision-directed equalizer because of 

the decision-directed equalizer's poor convergence behavior under high ISI.  
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 Thus a better adaptive algorithm is needed for the blind equalization of linear 

channels when the initial coefficients are far from ideal. The general structure of the 

blind adaptive algorithm is shown in the Figure 1.3. Blind Adaptive equalization 

algorithms are often designed by minimizing special non-MSE cost functions that do 

not directly involve the input a(k) while still reflect the current level of ISI in the 

equalizer output. 

 

Fig 1.3: Linear Blind Equalization Systems 

Let the mean cost function be defined as: 

              

where   (.) is a scalar function of the equalizer output. The mean cost function J(w) 

should be specified such that its minimum, the corresponding w results in a minimum 

ISI or MSE equalizer. Because of the symmetric distribution of {a(k)} over alphabet    

the blind equalizer is unable to distinguish between  a(k - v) .Thus the function   

(.) should be even. In other words, both y(k) = a(k- v) and y(k) = -a(k - v) are 

acceptable objectives as global minima of the mean cost function. Using equation 

above, the stochastic gradient descent minimization algorithm is easily derived and is 

given by : 



DELHI TECHNOLOGICAL UNIVERSITY                       JUNE 2012 Page 10 
 

             
        

  
 

                 =                            

Where    = 
  

  
 

The resulting blind equalization algorithm can be written as: 

w(k + 1) = w(k) + µΨ’(w
H

(k)x(k)) Hence, a blind equalizer can be defined by its cost 

function or its derivative. The derivative of the cost function is also called as the error 

function as it replaces the prediction error of the LMS algorithm.The Blind 

equalization when compared with the existing similar schemes gives better 

convergence rates at the cost of complexity. 
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 CHAPTER 2 – ADAPTIVE FILTERS 

 

2.1 Introduction 

 

 In this chapter, we make a comparison of the adaptive filters with other filters 

and discuss 

the comparative advantages. We also study the adaptive filter theory[8,9,10] in detail, 

their types and applications. The chapter also includes the factors that determine the 

choice of an algorithm. 

 

2.2 Types of Filters 

 

2.2.1 Linear Optimum Filter 

 

We may classify filters as linear or non-linear. A filter is said to be linear if the 

filtered, smoothed or, predicted quantity at the output of the filter is a linear function 

of the observations applied to the filter input. Otherwise, the filter is non-linear. 

  In the statistical approach to the solution of the linear filtering problem, we 

assume the availability of certain statistical parameters (i.e., mean and correlation 

functions) of the useful signal and unwanted additive noise, and the requirement is to 

design a linear filter with the noisy data as input so as to minimize the effects of noise 

at the filter output according to some statistical criterion. A useful approach to this 

filter-optimization problem is to minimize the mean-square value of the error signal, 

defined as the difference between some desired response and the actual filter output. 

For stationary inputs, the resulting solution is commonly known as the Wiener filter, 

which is said to be optimum in the mean-square error sense. The Wiener filter[10] is 
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inadequate for dealing with situations in which non stationery of the signal and /or 

noise is intrinsic to the problem. In such situations, the optimum filter has to assume a 

time varying form. A highly successful solution to this more difficult problem is found 

in the Kalman filter, which is a powerful system with a wide variety of engineering 

applications. 

 Linear filter theory, encompassing both Wiener and Kalman filters, is well 

developed in the literature for continuous–time as well as discrete-time signals[11]. 

 

 

2.2.2 Adaptive Filters 

 

 
As seen in last section, Wiener and Kalman filters are the mostly used filters. But, 

both of them have constraints, i.e., they require some priori information. Wiener filter 

requires knowledge of signal covariance, and Kalman filter requires knowledge of 

state-space model governing signal behavior. 

 In practice, such a priori information is rarely available; what is available is the 

data (sequence of numbers). Moreover, all the data is not available at a time; the data 

is coming in sequentially. This is where adaptive processing comes into play. The 

basic idea is to process the data as it comes in (i.e., recursively), and by a filter which 

is only data dependent, i.e., the filter parameters adapt to the coming data. Such filters 

are referred to as adaptive filters. 

 By such a system we mean one that is self-designing in that the adaptive 

algorithm, which makes it possible for the filter to perform satisfactorily in an 

environment where complete knowledge of the relevant signal characteristics is not 

available. The algorithm starts from some predetermined set of initial conditions, 

representing whatever we know about the environment. Yet, in a stationary 

environment, we find that after successive iterations of the algorithm it converges to 

the optimum Wiener solution in some statistical sense. In a non stationary 

environment, the algorithm offers a tracking capability, in that it can track time 
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variations in the statistics of the input data, provided that the variations are sufficiently 

slow. 

 As a direct consequence of the application of a recursive algorithm whereby 

the parameters of an adaptive filer are updated from one iteration to the next, the 

parameters become data dependent. This, therefore, means that an adaptive filter is in 

reality a non linear system, in the sense that it does not obey the principle of 

superposition. Notwithstanding this properly, adaptive filters are commonly classified 

as linear or non linear. An adaptive filter is said to be linear if its input-output map 

obeys the principle of superposition whenever its parameters are held fixed. 

Otherwise, the adaptive filter is said to be non linear. 

 

2.3 Types of Adaptive Filters 

 
The operation of a linear adaptive filtering algorithm involves two basic processes; (1) 

a filtering process designed to produce an output in response to a sequence of input 

data and (2) an adaptive process, the purpose of which is to provide a mechanism for 

the adaptive control of an adjustable set of parameters used in the filtering process. 

These two processes work interactively with each other. Naturally, the choice of a 

structure for the filtering process has a profound effect on the operation of the 

algorithm as a whole. 

 The impulse response of a linear filter determines the filter’s memory. On this 

basis, we may classify filters into finite-duration impulse response (FIR)[8], and 

infinite-duration impulse response (IIR) filters[8], which are respectively 

characterized by finite memory and infinitely long, but fading, memory. 

 Although both IIR and FIR filters have been considered for adaptive filtering, 

the FIR filter is by far most practical and widely used. The reason for this preference is 

quite simple; the FIR filter has only adjustable zeros; hence, it is free of stability 

problems associated with adaptive IIR filter, which have adjustable poles as well as 

zeros. However, the stability of FIR filter depends critically on the algorithm for 

adjusting its coefficients. 
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2.4 Factors determining the choice of Algorithm 

An important consideration in the use of an adaptive filter is the criterion for 

optimizing the adjustable filter parameters. The criterion must not only provide a 

meaningful measure of filter performance, but it must also result in a practically 

realizable algorithm. 

 A wide variety of recursive algorithms have been developed in the literature 

for the operation of linear adaptive filters. In the final analysis, the choice of one 

algorithm over another is determined by one or more of the following factors: 

 

Rate of convergence.  This is defined as the number of iterations required for the 

algorithm, in response to stationary inputs, to converge “close enough” to the optimum 

Wiener solution in the mean-square error sense. A fast rate of convergence allows the 

algorithm to adapt rapidly to a stationary environment of unknown statistics. 

 

Misadjustment.  For an algorithm of interest, this parameter provides a quantitative 

measure of the amount by which the final value of the mean-square error, averaged 

over an ensemble of adaptive filters, deviates from the minimum mean-square error 

produced by the Wiener filter. 

 

Tracking.  When an adaptive filtering algorithm operates in a non stationary 

environment, the algorithm is required to track statistical variations in the 

environment. The tracking performance of the algorithm, however, is influenced by 

two contradictory features: (a) rate of convergence, and (b) steady-state fluctuation 

due to algorithm noise. 

 

Robustness.  For an adaptive filter to be robust, small disturbances can only result in 

small estimation errors. The disturbances may arise from a variety of factors, internal 

or external to the filter. 
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Computational requirements.  Here the issues of concern include (a) the number of 

operations required to make one complete iteration of the algorithm (b) the size of 

memory locations required to store the data and program, and (c) the investment 

required to program the algorithm on a computer. 

 

Structure.  This refers to the structure of information flow in the algorithm, 

determining the manner in which it is implemented in hardware form. 

  

Numerical Properties.  Numerical stability is an inherent characteristic of an 

adaptive filtering algorithm. Numerical accuracy, on the other hand, is determined by 

the number of bits used in the numerical representation of data samples and filter 

coefficients. An adaptive filtering algorithm is said to be numerically robust when it is 

insensitive to variations in the word length used in its digital implementation. 

 

 

2.5 How to choose an Adaptive Filter 

 
Given the wide variety of adaptive filters available to a system designer, the question 

arises how a choice can be made for an application of interest. Clearly, whatever the 

choice, it has to be cost effective. With this goal in mind, we may identify three 

important issued that require attention: computational cost, performance, and 

robustness. 

 Practical applications of adaptive filtering are highly diverse, with each 

application having peculiarities of its own. Thus, the solution for one application may 

not be suitable for another. Nevertheless, be successful, we have to develop a physical 

understanding of the environment in which the filter has to operate and thereby relate 

to the realities of the application of interest. 

 

2.6 Applications of Adaptive Filter 
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The ability of an adaptive filter to operate satisfactorily in an unknown environment 

and track time variations of input statistics makes the adaptive filter a powerful device 

for signal processing and control applications. Indeed, adaptive filters have been 

successfully applied in such diverse fields as communications, radar, sonar, 

seismology, and biomedical engineering. Although these applications are quite 

different in nature, nevertheless, they have one basic feature in common: An input 

vector and a desired response are used to compute an estimation error, which is in turn 

used to control the values of a set of adjustable filter coefficients. The adjustable 

coefficients may take the form of tap weights, reflection coefficients, or rotation 

parameters, depending on the filter structure employed. However, the essential 

differences between the various applications of adaptive filtering arise in the manner 

in which the desired response is extracted. In this context, we may distinguish four 

basic classes of adaptive filtering 

applications, as follows: 

 

 

I. Identification: 

 

 I. a. System Identification. Given an unknown dynamical system, the purpose 

of system identification is to design an adaptive filter that provides an approximation 

to the system. 

 

Fig: 2.1 Block diagram for system identification 
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 I. b. Layered Earth Modeling. In exploration seismology, a layered model of 

the earth 

is developed to unravel the complexities of the earth’s surface. 

 

II.  Modeling: 

 

 II. a. Equalization. Given a channel of unknown impulse response, the 

purpose of an adaptive equalizer is to operate on the channel output such that the 

cascade connection of the channel and the equalizer provides an approximation to an 

ideal transmission medium. 

 

 

Fig :  2.2 Block diagram for a channel estimater. 

III. Prediction: 

 

 III. a. Predictive coding. The adaptive prediction is used to develop a model 

of a signal of interest; rather than encode the signal directly, in predictive coding the 

prediction error is encoded for transmission or storage. Typically, the prediction error 

has a smaller variance than the original signal, hence the basis for improved encoding. 

 

 III. b. Spectrum analysis. In this application, predictive modeling is used to 

estimate the power spectrum of a signal of interest. 
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IV. Interference cancellation: 

 

 IV. a. Noise cancellation. The purpose of an adaptive noise canceller is to 

subtract noise from a received signal in an adaptively controlled manner so as to 

improve the signal-to-noise ratio.Echo cancellation, experienced on telephone circuits, 

is a special form of noise cancellation. Noise cancellation is also used in 

electrocardiography. 

 

 IV .b.Beamforming. A beamformer is a spatial filter that consists of an array 

of antenna elements with adjustable weights (coefficients). The twin purposes of an 

adaptive beamformer are to adaptively control the weights so as to cancel interfering 

signals impinging on the array from unknown directions and, at the same time, provide 

protection to a target signal of interest. 

 

The application of adaptive filter considered in this project is Equalization, belonging 

to the Inverse modeling class of adaptive filtering application. Consider fig. 2.1, which 

illustrates the inverse modeling class of adaptive filtering application. The 

followingnotation is used in the figure: 

xk = input applied to adaptive filter; 

yk = output of the adaptive filter; 

dk = desired response; and 

ek = dk – yk = estimation error. 
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  Fig 2.3: Inverse Modeling Class of Adaptive Filtering Applications. 

In inverse modeling, the function of the adaptive filter is to provide an inverse model 

that represents the best fit to an unknown noisy plant. Ideally in the case of an linear 

system, the inverse model has a transfer function equal to the reciprocal (inverse) of 

the plant’s transfer function, such that the combination of the two constitutes an ideal 

transmission medium. A delayed version of the plant (system) input constitutes the 

desired response for the adaptive filter. In some applications, the plant input is used 

without delay as the desired response. 

 

2.7 The Kalman Filter 
 

 

The Kalman filter is an optimal linear minimum variance estimator. It can provide 

real-time estimates of the states of a system from noisy measurements. The Equations 

(2.2) and (2.1)describe a linear system and form a Kalman filtering problem. The 

algorithm given in Table 1 is well known for the Kalman Filter [12,13,14]. The 

estimate of xk is     and Pk is the error covariance matrix of state estimates.  

 The Kalman filter is a recursive algorithm composed of two parts: 

Measurement Update Equations and Time Update Equations. Using the measurement 

update equations, the Kalman filter estimates the next state vector of the linear system 

or the CIR based on a noisy measurement which is the input signal at the receiver. 

Then, using the time update equations, the Kalman filter updates its estimate of the 
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next state vector according to its knowledge of the linear system parameters such as F 

and G. 

 

 The flow of instruction in the kalman filter is shown below in the figure 2.4 

and in the table calculation of various filter parameters are shown in the form of 

equation. The true state evolves over time according to a true state-space model given          

Equation  

                                             

 

with known input u(k) and subject to disturbances noise v(t). Observations are made 

of the true state according to a true observation model given by Equation.  

                                        

 

The observations are sampled at discrete points in time and are subject to observation 

noises w(k). The cycle associated with the evolution of the true state shown in Figure 

2.4  makes it clear that the true state is never known; the only output from this stage 

are the sampled observations made of the true state. 
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Fig : 2.4 flow of instruction in the kalman filtering process 

 

 

The starting point for the estimation cycle is the generation of a state prediction from 

knowledge of the state estimate at the preceding time-step. This prediction is 

computed from Equation: 

 

                                                          

 

and is based upon the known control input u(k) and the state transition model F(k). 

The state prediction is then used to compute a predicted observation from Equation: 
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according to the model H(k). This predicted observation is then tracted from the true 

observation according to Equation:  

 

                                                

 

to give the innovation. The innovation is multiplied by the gain matrix (generated by 

the covariance loop) and added to the prediction to generate a state estimate according 

to Equation: 

 

                                                   

 

  The time index is then incremented and the cycle repeated. It is important to 

note that the only inputs to this cycle are the control input u(k), the observation z(k) 

and the gain matrix W(k). The state and observation models F(k) and H(k) must also 

be specified. The primary output is the state estimate ˆx(k | k).  

 

The estimate covariance cycle also begins by generating a prediction covariance 

according to Equation: 

 

                                                                 

 

 on the basis of the state model F(k) and the estimated process noise covariance Q(k). 

The innovation covariance is then computed according to Equation: 
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On the basis of the observation model H(k) and the estimated observation noise R(k). 

The innovation covariance, together with the prediction covariance, is then used to 

compute the gain matrix W(k) according to Equation 

 

                                                  

 

The gain matrix is passed to the state estimation loop and is also used to compute the 

updated state covariance P(k | k) according to Equation 160. Finally the time index is 

incremented and the cycle is repeated. The only inputs to this covariance loop are the 

estimated process noise covariance Q(k) and the estimated observation noise 

covariance R(k). As in the estimation loop, the process model F(k) and the observation 

model must also be specified. The primary output from this loop is the estimate 

covariance P(k | k). It is important to note that the covariance loop is independent of 

the observations that are made and so is also independent of the evolution of the true 

state. This is simply because the information required by the covariance loop is the 

covariance of the process and observation noises and these are only available in terms 

of the estimated covariances Q(k) and R(k) respectively. One consequence of this is 

that all state covariance information can be computed off-line prior to any 

observations being made. It follows that all the gain matrices required by the state 

estimation cycle can also be computed off-line. This is significant because the 

majority of the computational requirements of the estimation process are dedicated to 

this task. As will be shown in a subsequent section, the state covariance tends to a 

steady-state value over time as, consequently, does the gain matrix. This fact can be 

used to construct estimators in which the gain matrix is time-invariant (and usually 

equal to its steady-state value) eliminating the need for the covariance loop and 

leading to significantly reduced computational requirements. 
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CHAPTER 3 - EQUALIZER 

 

3.1 Equalization Theory 

For a typical optical link, the received pulse shape, hr (t) is usually determined by the 

fiber impulse response, hf(t), and the transmitted pulse shape, ht(t). 

hr (t) = ht(t) * hf(t)………………..3.1 

 

where * denotes convolution. Normally, the transmitted pulse shape is known, leaving 

the engineer to estimate the impulse response of the fiber, which is often difficult to 

characterize. However, studies have shown that for a fiber that exhibits mode 

coupling, its impulse response is close to a cosine-squared shape in both the time and 

frequency domain. 

 

hf(t) = e xp[-(t
2
/(2(αT)

2
))] / [sqrt(2π)]( αT)…………….. 3.2 

 

As such, it is highly probable that when a series of pulses is transmitted, overlapping 

will occur due to pulse broadening caused by dispersion as discussed in the previous 

section. Therefore, to reduce the pulse broadening that causes the resulting ISI, a 

suitable equalizer with a frequency response of Heq(w) may be implemented. 

 

Heq(ω) = Hout(ω ) / HA(ω )………………….. 3.3 

where Hout(ω) = F[hout(t)], is the desired output pulse shape, and HA(ω) = F[hA(t)], is 

the total dispersive response of the system and F denotes Fourier transform. 
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As equalization makes up one of the main parts of an optical receiver together with the 

detector and amplifier, the equalizer is often designed to include the effects of the 

channel as well as the degradations caused by the amplifier. 

 

  

Figure 3.1 Application of a Decision Feedback Equalizer in an optical 

transmission system 

3.2 Adaptive Filter Theory  

Adaptive equalization is increasing popular in optical fiber communications. However, 

with the ever-increasing demand for larger bandwidth and faster transmission speed, 

the increase in distortion in an optical channel is likely to be significant. Therefore, it 

is gainful to delve into adaptive equalization techniques to suppress distortion in an 

optical communication channel. Minimizing distortion will in turn, allow for longer 

haul communication before requiring a repeater, which will save infrastructure and 

equipment cost for a communication link. Adaptive filters are systems that can adjust 
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themselves to different environments. It involves a process of filtering some input 

signal to match a desired response. 

 The filter parameters are updated by making a set of measurements of the 

underlying signals and applying that set to the adaptive filtering algorithm such that 

the difference between the filter output and the desired response is minimized in either 

a statistical or deterministic sense. 

A simple yet effective illustration of the principle behind adaptive filtering is given in 

Fig (3.2). 

 

Figure 3.2: A simple diagram on the principle of adaptive filtering. 

 

The general operation of an adaptive equalizer in an optical communication channel is 

to track the variations of the laser and fiber response over time. This is achieved by 

sending a known training sequence through the channel and obtaining the difference 

when the output is subtracted from the known sequence. The difference is known as 

the prediction error. The computed error is then used to adjust the tap coefficients so 

that the channel response can be estimated. This is done recursively using an adaptive 

algorithm like the least mean square (LMS) algorithm. Once the equalizer has 

converged, the actual data can then be sent and received accurately as the channel 

response is known and compensated for by the equalizer. 

3.3 Comparison of Adaptive Algorithms 
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There exist a great number of adaptive algorithms, each with its own unique properties 

and applications. Before looking into the types of adaptive algorithms available, it is 

useful to look into factors that determine the performance of such algorithms. 

 Convergence Rate – This is defined as the number of iterations required for the 

algorithm to converge close enough to the optimum solution. A fast convergence rate 

enables the algorithm to track statistical variations when operating in a non stationary 

environment and requires a shorter training sequence. 

 Computational Complexity – This is defined as the number of operations 

required for the algorithm to make one complete iteration. 

Misadjustment – this parameter provides a quantitative measure of the amount by 

which the final value of the mean square error, averaged over an ensemble of adaptive 

filters, deviates from the optimal minimum mean square error. 

 Numerical properties – when an algorithm is implemented numerically, 

inaccuracies are produced due to round-off noise and representation errors in the 

computer. This influences the stability of the algorithm. 

 

3.4 Types of Equalizers suitable for an Optical Channel  

In digital communications, an equalizer is a device that attempts to recover a signal 

transmitted through an ISI channel. It may be a simple linear filter or a complex 

algorithm. 

Several equalizer types are listed below: 

o Linear Equalizer: processes the incoming signal with a linear filter  

o MMSE equalizer: designs the filter to minimize E[|e|
2
], where e is the error 

signal, which is the filter output minus the transmitted signal.  

o Zero Forcing Equalizer: approximates the inverse of the channel with a linear 

http://www.answers.com/topic/data-transmission
http://www.answers.com/topic/intersymbol-interference
http://www.answers.com/topic/wiener-deconvolution
http://www.answers.com/topic/zero-forcing-equalizer
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filter. 

o Decision Feedback Equalizer: augments a linear equalizer by adding a filtered 

version of previous symbol estimates to the original filter output.  

 

Fig 3.3:  Classification of Equalizers 

o Blind Equalizer: estimates the transmitted signal without knowledge of the 

channel statistics, using only knowledge of the transmitted signal's statistics. 

o Adaptive Equalizer: is typically a linear equalizer or a DFE. It updates the 

equalizer parameters (such as the filter coefficients) as it is processes the data. 

Typically, it uses the MSE cost function; it assumes that it makes the correct 

symbol decisions, and uses its estimate of the symbols to compute , which is 

defined above. 

o Viterbi Equalizer: Finds the maximum likelihood (ML) optimal solution to the 

equalization problem. Its goal is to minimize the probability of making an error 

over the entire sequence 

 

http://www.answers.com/topic/adaptive-equalizer
http://www.answers.com/topic/blind-equalization
http://www.answers.com/topic/adaptive-equalizer
http://www.answers.com/topic/viterbi-algorithm
http://www.answers.com/topic/maximum-likelihood
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The inherent property behind linear equalizers is that they are optimum with respect to 

the criterion of minimum probability of symbol error when the channel does not suffer 

from amplitude distortion. However, in a practical optical communication channel, 

amplitude distortion is one of the major detrimental effects. 

 Therefore, the investigation and research into the Decision Feedback 

Equalizer, which is a non-linear equalizer and capable of superior performance in 

amplitude distorted channels, would be very beneficial and relevant to the application 

in optical communications. When implementing the DFE structure, enhancements like 

the Fractionally Spaced Equalization, which makes the equalizer more robust to 

amplitude distortions, can also be considered.[15] 

3.5   Working principle of adaptive filters 

The adaptive filter operates on the input x[n] to produce an estimate of the desired 

response d[n]. The generation of the desired response is an important issue. To 

measure the performance of an adaptive filter we can consider how functions of the 

error J(e[ n]) behave as time increases, or whether the filter coefficient (weight) vector 

w(n) approaches some optimal setting. 

Adaptive Algorithm 

All algorithms are based on minimising some function of the error : - 

J(e[ n]) = e
2
. 

e[ n] = d[ n] − y[ n] = d[ n] − x
T
[ n] w[ n] = d[ n] − w

T
[ n] x[ n] 

The error squared form will be found to be most analytically tractable and 

appropriate for measurements corrupted by Gaussian noise. When the measurement 

noise is sub -Gaussian higher power errors are preferred whilst for super-Gaussian 

measurement noise distributions, lower power errors are more useful. To derive the 

optimal setting of an adaptive FIR filter we shall assume that the input and derived 

response signals are zero-mean and WSS. The function we wish to minimise is the 

Mean Square Error (MSE) : - 
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Variables in error function are 

  w(n)  = the p×1 column weight (parameter) vector of the filter 

= [ w1( n) , w2( n) , . . . , wp ( n) ] 
T
 

   x[ n] = [ x[ n] , x[ n − 1] , . . . , x[ n − p + 1] ] 
T
 the input vector 

so  

           ……………………..…3.4 

Thus, the cost (error , objective) function becomes: - 

                                 

       
                      

Where autocorrelation                            

And cross correlation                              

Error performance surface: 

Thus J(w) is quadratic function of w and provided that R is full rank, J(w)  will 

have one unique minimum. 

Consider a filter with two parameters such that w = [w(1), w(2)]
T
 . 

The input {x[n]} is assumed to be zero mean , white noise , so that the 

contours of constant J, as in the figure on the right below , are circular. 

 

Fig: 3.4 contour of J 
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3.5.1Wiener Hopf Equation: 

 In order to minimise the function J(w) . Using Wiener Filtering we write J(w) 

as perfect square in w 

 

       
                                  

 

 Then by substituting W as            

      ……………….……3.10 

       
                  

 

Another Method: 

 In case of Complex variables derivatives are defined as  

 

 

 

 

 

 Take derivative of  J(w) with respect to w and w
H
  

 

 

 Wiener Hopf Equation 
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Table 1 summary of wiener filter algorithm 

Summary of Wiener filter Algorithm 

Initialization 
Initialize Filter coefficients   00

^

w  

Initialize Input vector x(n)=0 

Inputs 
Filter coefficients vector estimate  nw

^

 

Input vector x(n) 

Desired output d(n) 

Autocorrelation Matrix  nR  

Output 
Filter output  ny n 1

^


 

Update filter coefficient vector  1
^

nw  

Algorithm: 

1.Get Autocorrelation Matrix      nxnxnR T
 

2. Get Cross correlation Matrix      ndnxnp   

3. Output (filtering)       nxnwny T
^^

  

4. Coefficient vector Updating    nnn pRw
1]1[   

 

In the above table the important steps for the wiener filter is given. 

 

3.5.2 Role of Eigen-Analysis in Wiener Solution 

 The shape of the error performance surface is related directly to the 

eigen–structure of the autocorrelation matrix R. The condition number of R , that is, 

λmax/λmin , is particularly important. 

For a white input, 

 

 

Therefore the contours of J are circles when projected on to the [w(1), w(2)] plane. 

When the input is coloured, the condition number increases, and the contours will take 

an elliptical form. 

 

 
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Fig: 3.5 contour of J according to eigen values 

 

3.6  Steepest Descent algorithm 

The update equation for the steepest descent method to find the minimum of some 

function J is given by 

 

 

And  

  

 So that the “weights update equation” 

 

The parameter µ is termed the adaptation gain (learning rate, step size) and controls 

the speed of convergence 
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The convergence of the Steepest Descent algorithm from the initial point w[0] toward 

the optimum 

Coloured Input–Convergence 

For the coloured case, as depicted in the figure below, the direction of steepest descent 

does not necessarily point at the minimum, it depends on the starting point we are 

taking.To analyse the convergence of the method of steepest descent , replace the 

[w(1), w(2)] axis by moving the origin to wopt and replacing w by v=(w−wopt) and then 

rotating the axes by a new matrix S, to align with the principal axes denoted v ′ in the 

diagram above. 

 

 

 

 

 

 

 

Eigen values and convergence 

The matrix S corresponds to a component of the spectral factorisation of the 

autocorrelation matrix, i.e. 

Rxx = SΛS
T
 where Λ = Diag (λ1,λ2, . . . , λp) 

and S = [s1,s2, . . . ,sp] , si is a normalised eigen vector. 

Therefore S×S
T
 = I the p × p identity matrix. 

The purpose of re defining the axes is to “decouple” the learning modes of the 

adaptive filter. 

Proceeding with the analysis of w[n + 1], we have 

  w[n + 1] = w[n] + µ(p − R w[ n]) 
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 = w[n] + µ(R wopt − Rw [n]) 

 = w[n] + µ R(wopt − w[n])………………………......3.17 

 

3.6.1Convergence analysis – weight error vector v(n) 

 

 The error in the weights with respect to their optimal values is given by (using 

the Wiener solution for p) 

  

We obtain  

Equivalently                                                         

i.e. 

 

thus we have                                    

 Form a new variable  

So that   

Finally, v(n +1) = [I − µΛ]v(n) where I− µΛ is diagonal matrix 

and we have the so-called modes of convergence 

vj[ n + 1] = (1 − µλj)vj(n) where j = 1, 2, . . . , p 

For each mode , at adaptation sample number n, we have : -  

vj[ n + 1]=(1 − µλj)
n 
vj(0) 

For convergence , we require that 

| 1 − µ λj | < 1  

then the algorithm is guaranteed to converge to the Wiener –Hopf Solution 

|1 − µ λj| < 1 ⇒ − 1< 1 − µ λj < 1 
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Now : -  0 < µ < 2/λi ∀ λi 

Generally, the eigen values are not equal (λj = σ
2
 N if white noise ∀ i) , 

therefore we take the worst case 

 

 

This condition is also sufficient for convergence of the steepest descent algorithm in 

the mean square. 

 

Table 2 Summarry of steepest descent method 

Summary of Steepest Descent Algorithm 

Initialization 
Initialize Filter coefficients   00

^

w  

Initialize Input vector x(n)=0 

Inputs 
Filter coefficients vector estimate  nw

^

 

Input vector x(n) 

Desired output d(n) 

Autocorrelation Matrix  nR  

Output 
Filter output  ny n 1

^


 

Update filter coefficient vector  1
^

nw  

Algorithm: 

1.Get Autocorrelation Matrix      nxnxnR T
 

Get Maximum eigen value of Autocorrelation Matrix max  

2. Get Cross correlation Matrix      ndnxnp   

3.Calculate step size as  
max

2
0


   

4. Output (filtering)       nxnwny T
^^

  

5. Coefficient vector Updating ])[(][]1[ nnn Rwpww    
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3.7 The Least Mean Square (LMS) Algorithm  

From the steepest descent algorithm 

 

      And  

 So that the “weights update equation” 

 

The parameter µ is termed the adaptation gain (learning rate, step size) and controls 

the speed of convergence 

 

  

 

 

Table 3 LMS algorithm 

 

Computational requirement for the LMS algorithm:- 

• To calculate e[ n] 

p multiplications + p additions 

• For weight update 
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 1 multiplication ( f or 2µ e[ n] ) + p multiplications (f or µx [ n]e[n]) ⇒( p + 1) 

multiplications 

 p additions (updating w[n]) 

⇒ the LMS algorithm is an O(2N) algorithm 

• only twice the complexity of a fixed filter 

• together with its robust performance , is the reason why it finds extensive use in 

channel equalisation and echo cancellation in modems, and coding in speech 

(ADPCM) codecs. 

3.7.1 Error performance surface for LMS 

 

The actual LMS algorithm follows a noisy descent direction due to the approximate 

gradient expression used in the update equation. 

Only on the average will the LMS algorithm follow the direction of Spectral Density. 

We wish to determine the value so that the average value of w[ n] tends to the Wiener 

solution- this does not mean that the actual value of w[n] will equal the Wiener 

solution at any time. 
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3.8 Recursive Least Squares Algorithm 

 

To implement the recursive method of least squares, we start the computation with 

known initial conditions and then update the old estimate based on the information 

contained in data samples. Next, we minimize the cost function J(n), where n is 

variable length of observed data 

 

 

 

 

 

 

In standard RLS algorithm, the weighting factor  kn   is choosen to have exponential 

form   kn

n k   k=1,2,3….n 
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Where the value of λ is less than one and, hence  kn  is confirmed in range 

  00  kn for k=1,2,….n. the weighting factor  kn   is also known as forgetting 

factor, since it weights (emphasizes) the recent data and tends to forget the past. 

The minimum value of J(n) is attained when the normal equation  
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^
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Note that R  differs from R in the following respect: 

 The common matrix x
T
[ n] x[ n] is weighted by the exponential factor kn . 
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Matrix Inversion Lemma:- 
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Applying above lemma on following equation 
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Applying above lemma in calculating inverse of R
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Table 4 summary of RLS algorithm 
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3.9 Kalman Filter as equalizer 

A complete schematic diagram of adaptive Kalman equalizer is shown in Fig.1. The 

aim of this equalizer is to reconstruct the original transmitted data at receiver from the 

received data affected by noise and ISI. Transmitted data is corrupted by the channel 

parameters. So the modeling of this channel parameters are required. 

 

 

Fig: 3.6 Channel equalization for time varying channel 

 

 

 channel model:- 

The communication channel can be modeled by discrete time transversal filter with 

additive white noise as shown on top left hand side in Figure. 1. A low-pass tapped 

delay line model of the time varying channel is really nothing more than an finite 

impulse response (FIR) filter with time varying coefficients. The input-output 
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description of the FIR filter with time varying coefficients isThe channel output S(n) 

can be written in terms of channel input x(n) and time varying channel coefficient 

hn[k] as 

                 
   
   …………………………3.44 

In presence of noise w[n] 

                      
   
        ………...3.45 

Where w[n] is assumed to be white Gaussian noise (WGN) with variance   . It is a 

slow fading channel so state space model is given by 

 

                 ……………………………..3.46 

where  

                                ………..3.47 

A is a known qxq matrix, u[n] is the vector WGN with covariance matrix Q. A 

standard assumption that is made to simplify the modeling is that of the uncorrelated 

scattering [2]. We assume that the tap weights are uncorrelated with each other and 

hence independent due to jointly Gaussian assumption. As a result, we can let A,Q and 

Ch, the covariance matrix of h[-1] be diagonal matrices. The vector Gauss-Markov 

model then becomes q independent scalar models. the measurement model is given by 

                   ……………….3.48 

We can now form the minimum mean square error (MMSE) estimator for the tapped 

delay line weights recursively in time using the Kalman filter for this particular 

problem (vector state and scalar observations). 

Equation (3) represents the vector state model and equation (5) is scalar observation or 

measurement equation. The Kalman filter equations for this problem are 

 

 



DELHI TECHNOLOGICAL UNIVERSITY                       JUNE 2012 Page 45 
 

Prediction: 

                      …………………3.49 

 

 

Minimum Prediction MSE matrix(qxq): 

 

                      ……………….3.50 

 

Kalman Gain: 

 

     
            

                    
…………………..……3.51 

Correction: 

                                          …………..3.52 

 

Minimum MSE: 

            –                    ………..3.53 

Initialization matrices are 

ĥ[-1│-1]=µh=0 

M[-1│-1]=Ch=100I 

 

3.10  Implementing The Kalman Filter 

 

 
Although the Kalman filter algorithm itself appears to be quite general and 

straightforward, its successful implementation tends to be very problem-specific, 

relying heavily on engineering judgment to adjust and tune process and sensor models. 

As a rule of thumb, it takes an order of magnitude more time and effort to tune and 

adjust a filter to work well, over the time it takes to implement the basic algorithm. 
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This rule increases to two orders of magnitude in the case of non-linear process and 

observation models. There are two main reasons for this: First, in dealing with real 

data from a real process it is very rarely the cases that the true state of nature is known. 

That is, there is never any absolute truth by which to judge the performance of the 

algorithm, all that is available for this judgment are the observations which are 

themselves used by the filter. This leads to a problem of introspection in which the 

only way to judge the performance of a filter is with respect to other possible filter 

performances. The second reason for the difficulty of implementation is simply not 

knowing when the filter performance is limited by the adequacy of the sensor and 

process models rather than an inability to fine tune the algorithm: can I do any better 

by improving my models or am I simply limited by the performance of the algorithm 

itself ? Again this is often a question of engineering judgment which can only be based 

on the comparison of different possible filters with respect to the observations that are 

made. 

 As in all matters of engineering judgment there are some well understood 

procedures and rules which provide a systematic means of approaching the problem of 

design and implementation. In the case of the Kalman filter these rules are as follows: 

 
1. Understand your sensor: The first step is simply to be familiar with the physics of 

the device: propagation medium,wave-length or emission characteristics, maximum 

and minimum ranges, etc. The second step is to acquire as much data as possible, in a 

variety of situations, from the sensor to be employed. A surprising amount can be 

learnt by simply looking at this data and appreciating what kind of information is 

likely to be available to the filter. It is quite pointless designing a filter without 

knowing what information will be available for use. 

 

2. Understand your process: Again familiarity with the kinematics, physics or 

geometry of the process under consideration is essential: parameters of importance 

should be identified, constraints and physical limits made precise, key time-constants 

should be measured, etc. Observation of the process in a variety of operating modes, 



DELHI TECHNOLOGICAL UNIVERSITY                       JUNE 2012 Page 47 
 

with additional instrumentation if required, can yield surprising insights into filter 

design and implementation. It (almost) goes without saying that it is simply not 

sensible to begin designing a filter without a clear understanding of the problem to be 

solved. 

 

3. Model your sensor: Having obtained as much information as possible from the 

device, an accurate kinematic and statistical model of the sensor must be developed. In 

the Kalman filter algorithm this simply reduces to the construction of an appropriate 

observation model H(k) and noise source v(k). The performance of the filter will be 

directly dependent on the adequacy of this model. As we have and will continue to 

stress, there is simply no substitute for developing precise and detailed models of the 

sensing process. 

 

 

4. Model your process: The first step is to build as accurate a  truth model’ as possible, 

describing all aspects of the process to be estimated. This model will undoubtedly be 

too large and intractable to be employed directly in the filter algorithm but is still an 

essential step in understanding which states are significant and which marginal in 

obtaining desirable filter performance. The second step is to reduce this model to those 

states which have a direct and significant impact on filter performance and to construct 

an appropriate process model F(k) and process noise w(k). This has to be done on a 

case-by-case basis with respect to an overall ‘state-budget’. 

 

 

5. Filter Coding: The easiest part of the implementation is simply coding the Kalman 

filter algorithm and models generated in the preceding analysis. Some clearly defined 

rules exist for sequencing the various components of the algorithm and computing of 

state estimates and their associated covariances. 
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6. Initialization: The recursive formulation of the Kalman filter algorithm means that 

we must provide some reasonable guess for the initial conditions   (0 | 0 )andP(0 | 0). 

Although not critical to long-term performance in the linear algorithm (we shall see 

that the effects of initial conditions diminish rapidly with time) initialization is still of 

importance in the filtering of data from real systems. 

 

 

7. Analysis of Innovation Sequence: The first and most important method of analyzing 

filter performance is using the innovation or residual sequence. Recall that the 

innovation is simply the difference between the true observation and the predicted 

observation and that under the assumptions made in deriving the Kalman filter, the 

innovation sequence will be white and uncorrelated with known covariance S(k). We 

will see that testing the innovation sequence for these properties tells us a great deal 

about how the filter is working and can be used directly to tune filter performance. 

 

 

8. Analysis of Steady-State Performance: The innovation is a single measure of filter 

performance which is affected by both the observation and process models. The 

second step in analysing filter performance is to separate out these two factors by 

looking simultaneously at both the observation sequence and at the steady-state 

properties of the filter; the state estimates, state predictions, and their respective 

covariances. 

9. Analysis of Error Conditions: In real systems a final step is required to identify and 

eliminate erroneous or spurious data from consideration in the filtering process; to 

ensure that the filter is sufficiently robust for proper use.  

 

 The object of this section is to provide as much practical advice as possible on 

how to design and build a linear Kalman filter. The previous section described the 

problem of building and validating sensor and process models. Here we will 

concentrate on the implementation of the algorithm and the tuning of the filter to 
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achieve desired performance. Although a great deal of what follows must be example 

specific, the techniques and procedures employed can and should be generalized in all 

applications of the Kalman filter Algorithm. 

 We begin be describing the overall estimation architecture and the way in 

which it should be implemented. Taking the example of one-dimensional target 

motion developed throughout this section we show first how the filter is initialized and 

then describe how the performance of the filter may be analyzed using the innovation 

sequence and steady-state conditions. 

 

 

3.11 Advantages  

 

The single most important advantage of the Kalman Algorithm over the conventional 

steepest-desect algorithm is its convergence rate. The improvement in the convergence 

rate is more in the case where the condition number (or the eigen-value spread) of the 

Covariance matrix is large. This is because the Kalman algorithm utilizes more 

parameters than the gradient algorithm. The parameters that control the Kalman 

algorithm are the N elements of the Kalman weight vector KN(t), with each element 

controlling a tap-weight vector. 

 

3.12  Disadvantages. 

 

 The computational complexity of the Kalman algorithm is proportional toN2 and is 

considerably more when compared to the gradient algorithm. To correct this problem 

numerous variations of this algorithm have been proposed in literature : 

• The Square-Root RLS algorithm proposed by Bierman [16]. It has an computation 

complexity of 1.5N2 + 6.5N. 

• Variations of Kalman algorithm that have computational complexities that grow 

linearly with N have also been proposed in literature [17,1 8, 19]. 
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Another disadvantage of the RLS algorithm is its sensitivity to round-off noise that 

accumulates due to recursive computations. This may result in instabilities. 
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 CHAPTER 4 - SIMULATED RESULTS 

 

4.1  Simulation Results and Discussions 

 

This chapter will present the results of the simulations performed using Matlab, based 

on the literature review and findings described in earlier chapters. The results were 

analyzed and presented using the parameters set to evaluate the performance of an 

adaptive equalizer, namely: 

o Channel adaptation 

o Tap weight of kalman filter 

o Kalman filter gain 

o Squared difference of input to Channel and output of Equalizer(MMSE) 

 

These analyzed results will be accompanied by discussions of the observations made 

compared to the theoretical findings in previous chapters. 

Here we are using simple gauss-markov channel due to simplicity in calculation and 

no. of multipath for the channel is two. 

The simulations involved the following:  

o Kalman filter as equalizer 

 

 

4.2 kalman filter as equalizer 

Let the Kalman filter estimator have q = 2 weights. Assume a state model with  
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A= 
     
      

  And Q= 
       

       
  

True values of the weights are shown in Fig. 4.1, in which hn[0] is decaying to zero 

while hn[1] is fairly constant. This is because the mean of the weights will be zero in 

steady state. 

 

Fig: 4.1 True value and the estimated value of the tap weight of kalman filter 

As shown in the figure 4.1 the blue line shows the true value of the filter coefficient 

(tap weight) and the red line shows the estimated value. Due to the smaller value of 

[A]11, hn[0] will decay more rapidly. Also, note that the eigen values of A are just the 

diagonal elements and they are less than 1 in magnitude. 

In practice this is seldom known, so that we usually just choose an arbitrary initial 

state estimate with a large initial MSE matrix to avoid “biasing” the Kalman filter 

towards that assumed state. The estimated tap weights are shown in figure 4.1 with the 
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help of the red line After an initial transient the Kalman filter “locks on" to the true 

weights and tracks them closely.W hich is  our prime requirement. 

 

Fig: 4.2 input and out put of channel  without noise and with noise 

 

Here figure 4.2 shows the input to the channel with noise and without noise the 

channel model is gauss-markov model is used due to simplicity. 

 

  When observation noise is added with  = 0.1,  Let ĥ[-1 -1] = = 0 and M[-1 -1] = Ch 

= 100I, which were chosen to reflect little knowledge about the initial state. In the 

theoretical development of the Kalman filter the initial state estimate is given by the 

mean of s[-1]. 
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Fig: 4.3 Variation of kalman gain 

The Kalman filter gains are shown in figure. 4.2. They appear to attain a periodic 

steady-state, although this behavior is different than the usual steady-state, since x[n] 

varies with time and so true. steady-state is never attained. Also, at times the gain is 

zero, as for example in [K]1 = k1[n] for 0≤ n≤ 4. This is because at these times the 

input x[n] is zero and thus the observation contain only noise. The Kalman filter 

ignores these data samples by forcing the gain to be zero. 
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Fig: 4.4 MMSE of the filter 

Finally the min. mean square error is shown in the figure 4.3. In the MSE criterion, the 

tap weight coefficients of the equalizer are adjusted to minimize the mean square 

values of the error at the output of the equalizer. Error in this sense is the difference 

between the sent symbol and the equalizer output. Here both ISI and additive noise 

compose this error. the minimization of MSE results in complete elimination of the 

ISI, and it will become identical to ZF-equalizer. 
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CHAPTER 5 – CONCLUSION 

 

5.1 Conclusion  

 

The objective of this thesis is to develop a suitable adaptive equalization technique to 

mitigate the effects of ISI and noise in a typical communication channel. With the 

successful development of the adaptive Equalizer and blind Equlization, it offers an 

excellent alternative to the existing equalization techniques available in the 

communication industry. This thesis also gives brief introduction of the Blind 

Equalizer which is a very recent equalizer technique. Here kalman filter is used as 

adaptive equalizer for the unknown channel. 

 The adaptive equalizer was implemented using the Recursive Least  Square 

(RLS) technique, using stochastic gradient adaptation, for the direct equalization of the 

unknown channel. A number of adaptive algorithms had been analyzed and discussed. 

The RLS algorithm was chosen because of its  faster convergence than LMS algorithm  

and stability. The main contribution of this thesis is the development of a Kalman 

filter based channel estimation algorithm. We considered a multipath channel with a 

time varying impulse response. Training sequences are sent periodically to produce 

snapshot estimates of the channel. 

 We assumed a Gauss-Markov  model for the channel due to its simplicity in 

calculation.  we can now predict the state of the channel (with lesser accuracy of 

course) without having to wait for the data estimate to arrive. The Kalman estimator 

improved upon the performance of the data estimator by almost thirty percent on each 

path. Since the only way (assuming channel noise is not under the operators control) to 

increase the accuracy of the data estimate is to increase the length of the training 

sequence, the Kalman estimator provides an efficient technique of improving the 

channel estimate without wasting any more bandwidth. In radio systems where 
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bandwidth is prohibitively expensive or there is just no more room on the frame for 

any more training sequence information, the Kalman estimator solution becomes even 

more attractive. 

In short we can say in this thesis the channel is modeled as an FIR filter with time 

varying coefficients. The observation model is assumed to be Gauss-Markov for tap 

weights. Kalman filter is used to estimate the time varying coefficients of the channel. 

 

5.2 Future work 

The work presented in this thesis can be extended various ways including the 

following: 

 

 Use of multiple sampling rates[20] : In this thesis it is assumed that data 

estimates arem available at the end of every frame. The channel is assumed to be a 

constant for the duration of this frame. The Kalman filter based estimator provides 

current estimates after processing the data based estimate and hence at the end of each 

frame received. We can increase the usefulness of the method presented in this thesis 

by running the Kalman filter at a higher rate than the frame rate. In the intervals that 

no data estimate has arrived, we can perform only the time-update portion of the 

Kalmanfilter. When data is received, we perform the measurement update portion of 

the Kalman algorithm. Estimates can then be made available on as fine a division of 

the time line as we desire. The second advantage is that the data arrival times need not 

be uniform. For a-periodically available data we merely perform time updates until a 

data estimate is received.  

  

  Correlated paths: In this work, we have assumed that the multipaths are not 

correlated. Correlated multipaths can still be tracked using this Kalman algorithm but 

further work needs to be done to modify the Kalman filter to track correlated paths. A 
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good starting point is reference [21] where a Cholesky decomposition is used to 

generate correlated multipath waves. 

 Actual Implementation: This algorithm is very well suited for implementation 

on a live system. The discrete Kalman filter is well documented as a robust algorithm. 

It will be very interesting to compare the theoretical and actual performance of the 

algorithm. 
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