EQULIZATION OF CHANNEL USING KALMAN FILTER

A Dissertation Submitted towards the Partial Fulfillment of Award of Degree of

MASTER OF TECHNOLOGY in MICROWAVE AND OPTICAL COMMUNICATION ENGINEERING

Submitted by

VIPIN SHARMA 2K10/MOC/10

Under the Supervision of

PROF. RAJIV KAPOOR Head of ECE department

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

&

DEPARTMENT OF APPLIED PHYSICS DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering)

Main Bawana Road, Shahabad Daulatapur, New Delhi - 110042

CERTIFICATE

This is to certify that the work contained in this thesis entitled "*EQUALIZATION OF CHANNEL USING KALMAN FILTER*" by **Vipin Sharma** in the requirement for the partial fulfillment for the award of the degree of **Master of Technology** in **Microwave and Optical Communication Engineering**, **Delhi Technological University**, New Delhi is an account of her work carried out under my guidance in the academic year **2011-2012**.

This work embodies in this dissertation has not been submitted for the award of any other degree to the best of my knowledge.

Prof. Rajiv Kapoor

Project Guide,

Department of Electronics & Communication Engineering

Delhi Technological University

Date - /06/2012

Prof. Rajiv Kapoor

Head of ECE Dept.,

Department of Electronics & communication Engineering

Delhi Technological University

Date - /06/2012

ACKNOWLEDGEMENT

I would like to thank my project Guide, *Prof. Rajiv Kapoor, Head of Electronics and Communication Engineering Department, Delhi Technological University, Delhi,* for providing me with the right balance of guidance and independence in my work. I am greatly indebted to him for his full support, constant encouragement and advice both in technical and non-technical matters, valuable suggestion, and guidance and for kind co-operation throughout the bringing up of the major project.

Not forgetting my parents , brother and all my friends who had given me their love and support throughout my studies.

Vipin Sharma

2K10/MOC/10

M Tech (Microwave and Optical communication Engineering)

Department of Electronics and

Communication Engineering,

DTU, DELHI

ABSTRACT

The needs for increasing speeds and capacities in modern data communication systems have lead to increasing hopes for the introduction of optical communication in a wide range of communication networks. In communications, a critical manifestation of distortion is inter-symbol interference (ISI), whereby symbols transmitted before and after a given symbol corrupt the detection of that symbol. All physical channels (at high data rates) tend to exhibit ISI.It will be gainful to delve into techniques that can mitigate the effects of ISI and thus improving transmission speed and saves bandwidth.

The equalizer attempts to extract the transmitted symbol sequence by counteracting the effects of ISI, thereby improving the probability of correct symbol detection. Its purpose is to reverse the effects that the channel has on the transmitted signal, with the aim of reproducing the original signal at the receiver end. Data based channel estimation methods offer low complexity and good performance and are thus quite widely used in communications systems today. But they are also wasteful of bandwidth since they use training sequences to estimate the channel.

This thesis presents a method of improving the channel estimate without increasing the length of the training sequence. This method uses the underlying channel model and the available data based estimate, to implement the channel estimation algorithm in the form of a Kalman filter. The Kalman filter based channel estimator leads to a significant gain in performance as compared to the data-only estimator. The Kalman filter also allows us to predict the state of the before the frame is actually received. In this thesis, the channel is estimated by using kalman filter. The channel is time varying modeled as a low-Pass tapped delay line filter that is work as the FIR filter with time varying Coefficients. Here Kalman filter technique is used to estimate the time varying coefficient of the channel.

Table Of Contents:

ACKNOLADGMENT

ABSTRACT

1 Introduction:	1
1.1 A brief background of wireless communications.	1
1.2 What is Channel Estimation?	3
1.3 Why Channel Estimation?	4
1.4 Filters for channel equalization	5
1.4 .1 Adaptive filters	5
1.5 Training Sequences vs. Blind Methods	6
2 Adaptive Filter	11
2.1 Introduction	11
2.2 Types of filters	11
2.2.1 Linear Optimum Filter	11
2.2.2 Adaptive Filters	12
2.3 Types of adaptive filters	1.
2.4 Factors determining choice of algorithm	12
2.5 How to choose an adaptive filter	15
2.6 Application of adaptive filter	15
2.0 Aphication of adaptive filter	

3. Equalizer	24
3.1 Equalization theory	24
3.2 Adaptive filter theory	25
3.3 Comparison of adaptive algorithm	26

3.4 Types of equalizer for optical communication	27
3.5 Working principle of adaptive filter	29
3.5.1 Weiner Hopf equation	31
3.5.2 role of eigen analysis in weiner sol'n	32
3.6 Steepest descent algorithm	33
3.6.1 Convergence analysis of error vector	35
3.7 Least mean square algorithm	37
3.7.1 Error performance of LMS	38
3.8 Recursive least square algorithm	39
3.9 Kalman filter as equalizer	43
3.10 Implementing the kalman filter	45
3.11 Advantages	49
3.12 Disadvantages	49

4. Simulated result	51
4.1 similated result & discussion	51
4.2 kalman filter as equalizer	51
5. Conclusion	56
5.1 Conclusion	

6. References	 1

LIST OF FIGURE

1.1 Mobile telephony growthcompared with other invention	2
1.2 A general procedure for channel estimation	4
1.3 Linear blind equalization system	9
2.1 Block diagram for system identification	16
2.2 Block diagram for channel estimation	17
2.3 Inverse modeling system	19
2.4 Flow of inst'n for kalman filter	21
3.1 Application of DFE in an optical system	25
3.2 Simple diagram for adaptive filtering	26
3.3 Classification of equalizer	28
3.4 Contour of error function	30
3.5 contour of error function with eigen values	33
3.6 Channel equalization for time varying channel	43
4.1 True and estimated value of tap weight of filter	52
4.2 Input and output of channel with and without noise	53
4.3 Variation of kalman gain	54
4.4 MMSE of the filter	55

LIST OF TABLE

Table 1 summary of wiener solution	32
Table 2 Summary of steepest descent algorithm	36
Table 3 Summary of LMS algorithm	37
Table 4 summary of RLS algorithm	42