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v ABSTRACT 
 

A fully nonstationary stochastic model for strong earthquake ground motion has been taken for 

study. The model employs filtering of a discretized white-noise process. Nonstationarity is 

achieved by modulating the intensity and varying the filter properties in time. The formulation 

has the important advantage of separating the temporal and spectral nonstationary characteristics 

of the process, thereby allowing flexibility and ease in modeling and parameter estimation. The 

model is fitted to target ground motions by matching a set of statistical characteristics, including 

the mean-square intensity, the cumulative mean number of zero-level up-crossings and a 

measure of the bandwidth, all expressed as functions of time. Post-processing by a second filter 

assures zero residual velocity and displacement, and improves the match to response spectral 

ordinates for long periods. Hence, together with the target accelerogram, they can be considered 

as realizations of a stochastic ground motion having the characteristics of the earthquake and 

site, which produced the target motion. Such an ensemble of ground motions would be 

appropriate for design or assessment of a structure for that particular earthquake. However, in the 

broader context of PBEE (performance based earthquake engineering) design and analysis 

associated with the structure, an ensemble of ground motions that represents all possible 

earthquakes at a site is of interest.    
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1. INTRODUCTION 

1. Introduction 

� Earthquakes   are     a source  of  critical    loading  condition for   structures   located  in   

the  seismically active region of the earth. A  significant  feature  of  the  earthquake  loading 

is  a large  measure  of  uncertainty  associated  with  the earthquake phenomena. To establish  

the seismic loading  condition for a structure , it  is  necessary to anticipate the number, size  

and location of  future earthquakes in the region surrounding the  site during  the  service life   

of  the structure. Further, this assessment should  be  coupled  with  the  prediction of    

structural response,  and  damage  due  to   random  vibration  induced   by ground  motion  

of   a given intensity. Both these steps involve   uncertainty at several stages.The problem is 

compounded By the fact that potentially damaging strong motion earthquakes occur after 

long  intervals of time and  the  available data for such events  is often statistically 

insufficient. A  probabilistic treatment  of    earthquake  engineering   problems,   which  

involves  assessment  of  seismic risk and  random  vibration  analysis, therefore, provides a 

rational  and  consistent basis for a seismic design. Accurate  response prediction, possibly 

associated with a measure of  confidence  in the  prediction itself, lies  at  the core  of   performance-

based  earthquake  engineering (PBEE). This approach marks a paradigm shift from traditional  

design  and  assessment  practice, characterised  by conservatism  and   a  mostly  implicit  

consideration of  uncertainties, to a more  transparent, explicit approach.  

 

 

 

 

 



1.2 CHRACTERISTICS OF EARTHQUAKE GROUND MOTION 
 
 

1.2.1 Introduction 
 

Most  earthquakes  of  engineering  significance  are  of  tectonic  origin  and  are  caused  
by  slip    along geological  faults. While specific  source  mechanisms  leading  to  a  slip 
vary in  different  regions  of  the earth,   and   are   not   always   fully  understood,  four  
basic  types  of  faulting  can be identified  with strong- motion   
earthquakes(Housner,1977): 

i) low-angle, compressive under-thrust faulting caused by compressive forces generated due 
to the movement of the sea-floor crustal plate against continental plate; 
 

ii)  compressive over-thrust  faulting due to shear failure on an inclined fault with  the  upper 
portion of the rock moving upward under the action of compressive forces;  
 

iii)  extensional  faulting  on   inclined faults  due  to  extensional  strains  in  the earth  crust 
causing rocks overlying the faults to move downwards;  
 

iv)  strike-slip faulting which consists of a relative horizontal displacement of  the  two  sides 
of a fault across an essentially vertical plane. 
 

In most earthquakes the actual slip  mechanism  is  a  combination of two, or more, of the 

above types of faulting. Often   slip  occurs on an irregular  surface  and  on an more than 

one fault. The  characteristics  of the  ground motion  during an earthquake in the vicinity 

of  the  causative  fault (near-field)  are   strongly  dependent  on  the type of faulting  and 

the  time  history  motion  of  the fault  displacement. As   we  move  away  from the fault 

(far-field),  the  nature  of  ground   motion is  primarily  determined  by  the   travel  path 

geology. the  nature of ground motion at a point on the earth surface is also influenced by 

the local site  conditions that is soil properties and topography. 

Characteristics of   the source  mechanisms, travel-path geology  and local site conditions 

,therefore determine the nature of ground motion due to an earthquake. 

The  basic  characteristics   of  the  seismic  waves  depend primarily on : the stress drop 

during  the  slip; total  fault  displacement; size  of slipped area; roughness of the slipping 

process; fault shape; and  the  proximity of  the slipped area to the ground surface. As the 

waves  radiate  from the fault, they  undergo  geometric spreading  and  attenuation due to 

loss  of  energy  in  the rocks. Since   the  interiors  of  the earth consists  of  heterogenous 

formations,      the   waves    undergo   multiple  reflections , refractions,  dispersions  and 



attenuations as they travel. The seismic waves arriving at a site on the surface of the earth 

are  a  result of  complex  superposition  giving  rise  to  irregular  motion  which  may  be 

modelled as a random vector varying randomly in space and time.  

 
 

An earthquake causes  both  translation  and  rotation at a point on the surface of the earth. 

For  most problems the rotational component can be disregarded , and ground motion 

treated as a random  vector with  three  orthogonal  translation  components- two 

horizontal and one vertical. Each component can be  expressed either by  an  acceleration, 

velocity or  displacement  function of time. Although the three forms contain equivalent 

information  and  can be  derived from each other  by  differentiation , or  integration , it   

is  generally  convenient   to  represent  and   record earthquake  ground  motion  as  

acceleration ,  and  derive  velocity  and   displacement    through integration ,  if  

required. Based  on  its  characteristics, a ground acceleration time-history due to 

earthquakes may be classified into four broad groups: 

 

i)   time-history   containing   essentially  a  single  shock. Such   motions  occur at short 

distances  on  firm  ground  during  moderate  to  shallow  focus  earthquakes. The records  

exhibit  a strong  unidirectional character and represent predominantly short period 

oscillatory motion; 

 

ii) time-history containing moderately  long and extremely irregular motion. Such motion   

occur on firm ground  at  moderate   distances from the focus to large earthquakes. They 

contain a wide range of frequencies (0.1-30Hz), and generally are of comparable severity 

in the three directions; 

 

iii) time-history  of  long  duration  containing a  dominant  frequency of vibration. Such 

motions result  from  the  filtering  of  the  second  type of  ground  motion  through layers 

of soft soil and from successive wave reflections from the mantle; and 

 

v) motions  consisting  of  large- scale , permanent deformation  of  ground,  such  as, slides 

or  soil liquefaction. 



The  actual  ground motion during an earthquake may contain the characteristics of two 
or more, of the type of motions described above. 

 
 
 

1.2.2  Parameters describing ground motion: 

Ground motion parameters are important for describing the involved characteristics of  

importance (i.e., amplitude, frequency content, and duration) of strong ground motions. 

 

1.2.2.1 Amplitude parameters 

The most common way of describing a ground motion is through the time history. 

� Acceleration time history, 

� Velocity time history, and 

� Displacement time history 

Typically, only one of these is recorded directly with the others computed form it by 

integration/differentiation. Note that integration produces a smoothing or filtering effect. The 

acceleration time history displays more high frequency content (relatively), the velocity time 

history displays more intermediate frequency content (relatively), and the displacement displays 

more low frequency content (relatively).  

1.2.2.1.1 Peak acceleration 

Peak horizontal acceleration (PHA): the largest (absolute) value of the horizontal acceleration. 

Because of its relationship to inertial force, intensity-acceleration relationships can be used to 

estimate PHA when other information is not available. Peak vertical acceleration (PVA): the 

largest (absolute) value of the vertical acceleration. It is often assumed that the ratio of PVA to 

PHA is 2/3 for engineering purposes, although the ratio is quite variable. Generally, PVA/PHA is 

greater than 2/3 near the source and less than 2/3 at large distance.  

 
Ground motions with high peak accelerations are usually, but not always, more destructive than 

motions with lower peak accelerations. Damage is also related to other characteristics (e.g., 

frequency content and duration).  



1.2.2.1.2   Peak velocity 

Since the velocity is more sensitive to the intermediate frequency components of the ground 

motion, the PHV may characterize the ground motion more accurately at intermediate 

frequencies than the PHA. The PHV may provide a much more accurate indication of the 

potential for damage in structures that are more sensitive to loading in the intermediate frequency 

range. 

 

1.2.2.1.3   Peak displacement 

Peak displacements are generally associated with the lower-frequency components of a ground 

motion. They are, however, often difficult to determine accurately due to signal processing errors 

and long period noise. They are less commonly used than peak acceleration and peak velocity. 

 

1.2.2.1.4   Sustained maximum acceleration and velocity 

It is the 3rd or 5th largest peak in an acceleration or velocity time history. Damage, in some cases, 

may require repeated cycles of high amplitude to develop.  

 

1.2.2.2   Frequency content parameters 

1.2.2.2.1  Ground motion spectra 

Fourier spectra 

Fourier transform brings a motion in the time domain to the frequency domain. Fourier 

amplitude spectrum is a plot of Fourier amplitude versus frequency, showing the distribution of 

the amplitude of a motion with respect to frequency. It expresses the frequency content of a 

motion very clearly. Large earthquakes produce greater low frequency motions than smaller 

earthquakes. Fourier phase spectrum is a plot of Fourier phase angle versus frequency. It 

describes the relative variation between the constituent harmonic signals in the motion time 

history. 

Response spectra 

The response spectrum describes the maximum response of a SDOF system to a particular input 

motion as a function of the natural frequency and damping ratio of the SDOF system. It provides 

information on the potential effects of an input motion on different structures. 

  



� A linear response spectrum corresponds to a linear structural force displacement relationship. 

� A nonlinear  response  spectrum  corresponds  to a  nonlinear  structural  force displacement 

relationship. 

� Acceleration  response  spectra:  Maximum  acceleration  response  versus  structural natural 

frequency and damping ratio. 

� Velocity response spectra: Maximum Velocity response versus  structural  natural frequency 

and damping ratio.  

� Displacement response spectra: Maximum displacement response  versus  structural  natural 

frequency and damping ratio. 

 

1.2.2.2.2  Spectral parameters 

Predominant period: the period corresponds to the peak Fourier amplitude. 

Bandwidth: the range of frequency over which some level of Fourier amplitude is exceeded. 

 

1.2.2.3  Duration 

Degradation of stiffness and strength of certain types of structures and the buildup of pore water 

pressures in loose, saturated sand, are sensitive to the number of cycles of a ground motion. The 

duration of strong ground motion is related to the time required to release the accumulated strain 

energy by rupture along the fault. The strong motion duration increases with earthquake 

magnitude. The most commonly used definition is the bracketed duration. It is defined as the 

time between the first and last exceedances of a threshold acceleration.  

 



`  



1.3. MATHEMATICS INVOLVED IN RANDOM VIBRATIONS: 

1.3.1 Autocorrelation and covariance: 

     Let t1 and t2 be two fixed values of t and use the abbreviations x1 and x2 to denote the 

ensembles of samples x(t1) and x(t2). Let f(x) and g(x) be known functions. We wish to obtain 

the ensemble average of f(x1).g(x2).  

          Consider  first   the  experimental  case   where  n sample  functions  x(j)(t), j==1,…,n,  are 

available. At  the  fixed  times t1 and t2 these provide n pairs of values x1(j) and x2(j). Under the 

assumption  that those  n  samples  are representative  of  the  process, the  average of f(x1) g(x2) 

would be simply 

              

����������	

�����	




	��

 

                       

which  can  be  interpreted as a weighted sum of  f(x1) g(x2) values where each weighting factor 

gives  the  fraction of  sample  having that particular f(x1) g(x2) value. The interpretation permits 

easy  generalization  to the  continuous  case  where the  distribution of x1 and x2 is described by 

the  second-order  probability  density  p(x1, x2). Since  the  fraction of samples for which x1 lies 

between  x1 and  x1 + dx1  and  for  which x2 lies between x2 and x2 + dx2 is p(x1, x2) dx1 dx2, 

the ensemble average or mathematical expectation of the product f(x1) g(x2) is  

                  E[f(x1) g(x2)]  = � ����
�����
������� ��
������������                                         ( 1 )   

When   f(x1) =x1  and   g(x2)= x2  in  eq. ( 1 )  the   resulting    average  E[x1x2]  is  called  the 
autocorrelation function.  

              E[x(t1) x(t2)]     =� ������������ ��
���������∞�∞                       

     

The  prefix  auto refers  to  the  fact  that x1,x2 represents a product of values in the same sample 

at   two  instants. For  fixed  t1  and  t2  this average is simply a constant; however, in subsequent 

applications  t1  and  t2  will  be  permitted  to  vary  and  the  autocorrelation will in general be a 



function of  both t1 and t2. In  an important special case the autocorrelation function is a function 

only of τ = t1 – t2.  

                    A related  average,  the  covariance  is  obtained  by  averaging  the  product  of    the 

deviations from the means at two instants. Thus we set f(x1) = x1 – E[x1] and g(x2) = x2 – E[x2] 

in eq. ( 1 ) to obtain  

E[(x1-E[X1]) (X2 – E[X2])]      =� ���� � �����
�����– ������
����� ��
����������
��   

                                                     =E[X1X2]-E[X1] E[X2] 

as the covariance.  

1.3.2 Stationary Processes 

  A  random  process  is  said  to  be stationary if its probability distributions are invariant under a 

shift  of  the  time  scale; i.e., the  family  of  probability  densities applicable now also applies 10 

minutes  from or 3 weeks from now. In particular the first-order probability density p(x) becomes 

a  universal  distribution  independent  of  time. This  implies  that  all the averages based on p(x) 

(e.g., the mean E[x] and the variance ...)  are  constants  independent  of time. If the second-order 

probability  density p(x1, x2) is  to  be  invariant under a translation of the time scale then it must 

be a function only of the lag between t1 and t2 and not a function of t1 or t2 individually. Setting 

t2 – t1 = τ  we  can  write  the second-order density of a stationary process as p(t, t + τ) and know 

that it is independent of t. This implies that the autocorrelation function is also a function only of 

τ.  

                                   E[X1X2] = E[ x(t) x(t+τ)]  = R(τ) 

1.3.3 Temporal Averages: 

    Given a single sample x(j) of duration t it is, however, possible to obtain averages by averaging 

with respect to time along the sample. Such an average is called a temporal average in contrast to 

the ensemble or statistical averages described previously. 

Let  x(j) = f(t) be a function of time defined from t = - T/2 to t = T/2. For our purposes it is well to 

think  of  f(t)  as representing  a  particular   sample  of  a random  process although the following 



temporal  averages  apply  to any function f(t) and have nothing to do with random processes, per 

se. The temporal mean of  f(t)  

                      < f> = (1/T)  ���!
�!"#$
–"#$  

and the temporal mean square is  

                   < f2 > = (1/T) �%#$
�%#$ f 2(t) dt  

where we have adopted  the notation <f> for temporal mean.  

1.3.4  Spectral Density of a stationary random process: 

                   Returning    now  to  random  processes  we  recall  that  for  stationary  processes  the 

autocorrelation function E[x(t1) x(t2)] was a function R(τ) of the interval τ = t2 – t1. A frequency 

decomposition of R(τ) can be made in the following way  

          R(τ)  =  &�'
()*+��� dτ                                                                                 ( 2 ) 

 where S(ω) is essentially (except for the factor 2..) the Fourier transform of  R(τ).  

           S(ω)  =(1/2π)  ,�-
(�)*+��� dτ    

It can be shown [14] that S(ω) is a non-negative, even function of ω. 

A physical   meaning can be given to S(ω) by considering the limiting case of eq. ( 2 ) in  which  

τ =0. 

                    R(0)  = E[X2] =   &�'
��� dω    

The  mean  square  of the process equals the sum over all frequencies of S(ω) dω so that S(ω) can 

be interpreted as a mean square spectral density.  

1.3.5  Wide-Band Processes; White Noise  

The terms wide and narrow are qualitative and not precisely delineated. A wide-band process is a 

stationary  random  process whose mean square spectral density S(ω) has significant values over 

a  band  or  range  of  frequencies  which  is of roughly the same order of magnitude as the center 



frequency of the band. A wide range of frequencies appears in representative sample functions of 

such  a  process. Excitation   processes   which   are  typically   wide-band   include  the  pressure 

fluctuations  on  the  surface of a rocket missile due to acoustically transmitted jet noise or due to 

supersonic boundary layer turbulence. 

        In analytical investigations a common idealization for the spectrum of a wide-range process 

is the assumption of a uniform spectral density S… as shown. A process with such a spectrum is 

called  white  noise  in  analogy  with  white  light  which spans the visible spectrum more or less 

uniformly. Ideal white noise is supposed to have a uniform density over all frequencies. This is a 

physically  unrealizable  concept since the mean square value of such a process would be infinite 

because  there  is  infinite area under the spectrum. Nevertheless, the ideal white noise model can 

sometimes be used to provide physically meaningful results in a simple manner.   

 

1.3.6  Duhamel integral: 

   A force  p(t)  varying  arbitrarily  with  time can be represented as a sequence of infinitesimally 

short impulse . the response of a linear dynamic system to one of these impulses , the one at time 

τ of magnitude p(τ) dτ , is this magnitude times the unit impulse- response function: 

                   du(t) =  [p(τ) dτ] h(t-τ)                                    t >τ 

the response of the system at time t is the sum of the responses to all impulses up to that time. 
Thus, 

              u(t) = .�-
/�0 � -
1-2
3                                                                                            ( 3 )  

this is known as convolution integral , a general result that applies to any linear dynamic system. 

A unit impulse at time t=τ imparts to the mass m , the velocity 

                     u’(t) = 1/m                                                                                                             ( 4 ) 

but the displacement is zero prior to and up to the impulse: 

                     u(τ)= 0                                                                                                                    ( 5 ) 



A   unit   impulse  causes   free   vibration  of  the  SDF  system  due  to  the  initial  velocity  and 

displacement    given  by   Eqs. ( 4 )  and  ( 5 ) .  Substituting   these   gives   the      response   of 

undamped system : 

     h(t-τ) ≡   u(t) = (1/mωn ) sin [ωn(t-τ)]                                               t ≥ τ   

similarly, the result for viscously damped systems:     

      h(t-τ) ≡   u(t) = (1/mωn ) (�4*
(t-τ)  sin [ωD(t-τ)]                          t ≥ τ                              ( 6 ) 

Specializing  eq. ( 3 )  for  the  SDF  system  by  substituting  eq. ( 6 )  for  the  unit  impulse 

response function gives Duhamel’s integral : 

   u(t) = (1/mωD )  .�-
2
5 (�4*
(t-τ)sin [ωD(t-τ)]dτ                                                                    ( 7 )     

  for an undamped system this result simplifies to  

    u(t) = (1/mωn )  .�-
2
5 (�4*
(t-τ)sin [ωn(t-τ)]dτ                                                                     ( 8 )         

 implicit in this result are “at rest” initial conditions u(0) = 0 and u’(0)=0. 

 Duhamel  integral  provides  a  general  result for evaluating the response of a linear SDF system 

to arbitrary force. This result is restricted to linear systems because it is based on the principle of 

superposition . thus it does not apply to structures deforming beyond their linearly elastic limit. If 

p(τ)  is  a simple function , closed  form  evaluation of the integral is possible. Then the Duhamel 

integral is an alternative to the classical method for solving differential equations. 

 

 

 

 

 

 

 



1.4.  NONSTATIONARY PROCESSES 

1.4.1 Definition of Nonstationarity process :  

A  nonstationary process  is a stochastic process whose joint probability distribution does change 

when shifted in time or space. Consequently, parameters such as the mean and variance, if they 

exist, also change over time or position. 

 

1.4.2  Types of nonstationarities involved : 

The following are the types of nonstationarities involved in modeling of ground   

motions: 

i)  Spectral Nonstationarity  

ii) Temporal Nonstationarity 

 

1.4.2.1 Description of Spectral Nonstationarity : 

In the frequency domain, the properties of the model process are influenced by the selection of 

the filter, i.e., the form of the IRF  �[� − �, �(�)], and its time-varying parameters �(�) that 

are used to “shape” the filter response. In particular, for a second-order filter (employed in this 

study), the time-varying frequency content of the process may be controlled by the natural 

frequency and damping of the filter, as they evolve in time. As stated, in choosing the linear 

filter, certain constraints must be followed to make sure that the choice of the IRF is acceptable: 

• The filter should be causal so that  �(�, �)=0 for  ����. 

• The filter should be stable so that ��� �(�, �)d� � ∞ � � , which requires lim ���
�(�, �)=0  

• The filter must have an IRF that is at least once differentiable so that (25) can be evaluated. 

Any damped single or multi-degree-of-freedom linear system that follows the above constraints 

can be selected as the filter. 

In this study, we select 

      

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Joint_probability_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Variance


 
                                                                                                                                                   ( 9 ) 

which represents the pseudo-acceleration response of a single-degree-of-freedom linear oscillator 

subjected to a unit impulse, in which � denotes the time of the pulse  and �(�) = 

[����	
����	] is the set of parameters of the filter with ����	denoting the natural 

frequency and ����	denoting the damping ratio, both dependent on the time of application of 

the pulse. We expect ����	 to influence the predominant frequency of the resulting ground 

motion process, whereas ����	 to influence its bandwidth. 

Aiming for a simple model and based on analysis of a large number of accelerograms, we adopt 

a linear form for the filter frequency: 

                                        ( 10 ) 
In  the  above expression, �n is  the  total  duration  of  the  ground  motion, �n� is  the      filter  

frequency at time �� 
�, and �n is the frequency at time �n �. Thus, the two parameters �0 and 

�n� describe  the  time-varying  frequency  content of  the ground  motion. The      predominant 
frequency of a typical earthquake ground motion tends to decay with time; hence, it is expected 
that  �0 >��n �for a typical motion. Of course any other two parameters that describe the linear 

function in (10) may be used in place of �0 and �n. Investigations  of  several  accelerograms 
revealed that the variation of their bandwidth  measure with time is relatively insignificant. Thus, 
as a first approximation, the filter damping is considered a constant: 
 

                                                                          ( 11 ) 
A more refined model for the filter damping ratio that accounts for the observed variation in the 

bandwidth  of some   recorded motions can be considered. The  refined  model  is  a  piece-wise 

constant function of the form:  



                                   ( 12) 

with parameters ζ1, ζ2,  ζ3, T1,  and T2  that must be identified for a target motion. The function in 

(12) may have fewer or more than three pieces, as required. One disadvantage of using a single-

degree-of-freedom filter, as in (9), is that such a filter can characterize only a single dominant 

frequency in the ground motion. One can select a multi-degree-of-freedom filter instead to 

simulate ground motions with multiple dominant frequencies, in which case additional 

parameters will need to be introduced and identified. This  is possible with the proposed model, 

but is not pursued in the present study.  

 

 



 



 

 

 



1.4.2.2 Description of  Temporal  Nonstationarity : 

In general, any function that gradually increases from zero to achieve a nearly constant intensity that 

represents the “strong shaking” phase of an earthquake and then gradually decays back to zero is a valid 

modulating function. Several models have been proposed in the past. These include piece-wise 

modulating functions proposed by Housner and Jennings (1964) and Amin 29 and Ang (1968), a double-

exponential function proposed by Shinozuka and Sato (1967), and a gamma function proposed by 

Saragoni and Hart (1974). Two modulating functions that are employed in this study are presented below. 

 

Piece-wise modulating function: 
A modified version of the Housner and Jennings (1964) model that hereafter will be referred to 
as the “piece-wise” modulating function is defined by 

 

 
                                                                                                                                               ( 13 ) 

This model has six parameters T0, T1, T2, σ max,α and β, which obey the conditions T0<T1≤ T2, 

0<σmax, 0<α and 0<β. (The Housner–Jennings model has β	1.) T0 denotes the start time of the process, 

T1 and T2 denote the start and end times of the strong-motion phase with root mean square (RMS) σ max, 

and α and β are parameters that shape the decaying end of the modulating function.  Figure shows a 

piece-wise modulating function for selected parameter values.  

 

 
 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 



Gamma modulating function: 
 
Another model used in this study is the “gamma” modulating function, defined by the formula: 

 

 
                                                                                                                                                   ( 14 ) 
This function is proportional to the   gamma probability density function, thus the reason for   its 

name. The model has four parameters α�
���

��2
��3
���	, where 0< α1, α3,   and ��α2. 

Again, �� denotes the start time of the process. Of the other three parameters, ���controls the 
intensity of the process, �2 controls the shape of the modulating function, and �3   controls  the 
duration of the motion. Figure shows a gamma modulating function for selected parameter 
values. 

 

  



   
 
 
 
 



1.4.3  Model Parameters 

With the above parameterization, the stochastic ground motion model is completely defined by 

specifying the forms of the modulating and IRF functions, and the parameters that define them. 

Specifically, the parameters � = (�
, ��, �
, ��, … ) define the modulating function and 

completely control the temporal nonstationarity of the process (six parameters (�
, ��, �
, 
��,��, ��) if a “piece-wise” formulation is selected, four parameters (α1, α2, α3, T0) if a “gamma” 

formulation is selected). With a linearly varying filter frequency and a constant filter damping 

ratio, the three parameters (ω0,ωn, ζf) define the filter  IRF and completely control the spectral 

nonstationarity of the process. Therefore, the total number of the model parameters may be as 

few as six if T0 = 0 is selected: 

(�
, ��, �
 , �0
��n�, �f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. LITERATURE REVIEW 

2.1.   Model Definition: 

Stochastic models for characterization and simulation of earthquake ground motions have been of interest 

for a long time. They are useful in generating artificial samples of ground motions with specified 

characteristics, which can be used for the evaluation of seismic demand on structures, foundations and 

soils by time-history dynamic analysis. Stochastic ground motion models are also directly employed for 

the probabilistic assessment of seismic demand by the random vibration analysis. The growing interest in 

performance-based earthquake engineering (PBEE) in recent years has further increased the need for 

stochastic modeling of ground motions. The PBEE analysis typically considers the entire spectrum of 

structural response, from linear to grossly nonlinear and even collapse [30]. For such an analysis, realistic 

characterization of the ground motion is essential. In the current PBEE practice (either in research or 

engineering practice), usually recorded ground motions are employed, which are then scaled to various 

levels of intensity in order to evaluate fragility curves for structural damage measures [28]. This approach 

suffers from scarcity of recorded ground motions for specified earthquake characteristics (magnitude, 

distance, type of faulting, site conditions, etc.), and from concerns regarding the validity of the scaling of 

recorded motions. Stochastic ground motion models provide an alternative for use in PBEE in lieu of or 

in conjunction with recorded ground motions. 

There are two types of stochastic ground motion models: models that describe the random 

occurrence of fault ruptures at the source and propagation of the resulting seismic waves through the 

ground medium (‘source-based’ models, see [19] for a review), and models that describe the ground 

motion for a specific site by fitting to a recorded motion with known earthquake and site characteristics 

(‘site-based’ models). Our focus in this paper is on the latter. By using a site based stochastic model, one 

is able to generate artificial ground motions, which have statistical characteristics similar to those of the 

target ground motion. By performing such analyses for a large number of recorded ground motions, one 

may construct correlations between the model parameters and the earthquake and site characteristics 

(similar to attenuation laws). Such correlations will allow generation of artificial ground motions for 

given earthquake and site characteristics, which is what one needs in PBEE. This paper deals only with 

the first of these steps, i.e. the development of a stochastic model and identification of its parameters by 

fitting to a target accelerogram. In a follow-up study, we intend to develop a large database and evaluate 

correlations between the model parameters and earthquake and site characteristics. 

As we have established that the earthquake ground motions are nonstationary in both time and 

frequency domains. Temporal nonstationarity refers to the variation in the intensity of the ground motion 

in time. Spectral nonstationarity refers to the variation in the frequency content of the motion in time. 



Although temporal nonstationarity can be easily modeled by multiplying a stationary process by a time 

function, spectral nonstationarity is not so easy to model. However, both effects are important, 

particularly in the nonlinear response analysis. Inelastic, degrading structures tend to have resonant 

frequencies, which decay with time as the structure responds to strong shaking. This trend may coincide 

with the variation in time of the predominant frequency of the ground motion, thus enhancing the demand 

[24]. Therefore, realistic representation of the nonstationary characteristics of earthquake ground motions 

is essential for the PBEE analysis. From a practical standpoint, it is desirable that the model be 

parsimonious, i.e. have as few parameters as possible. Furthermore, it is helpful if the parameters have 

physical meaning; hence, one can gain insight from their identification. Finally, it is desirable for the 

model to have a form, which facilitates the random vibration analysis for linear as well as nonlinear 

systems. 

A large number of site-based stochastic ground motion models have been developed. Formal 

reviews are presented by Liu [8], Ahmadi [15], Shinozuka and Deodatis [20] and Kozin [21]. The paper 

by Conte and Peng [26] presents a brief but comprehensive review of more recent work. The existing 

stochastic models can be classified into four categories: (a) Processes obtained by passing a white noise 

through a filter (e.g. [1,5,6,7,10]), with subsequent modulation in time to achieve temporal 

nonstationarity. These processes have essentially time-invariant frequency content. (b) Processes obtained 

by passing a train of Poisson pulses through a linear filter (e.g. [2, 4]). Through modulation in time, these 

processes can possess both temporal and spectral nonstationarities [18]. 

 However, matching with recorded ground motions is difficult. (c) Auto-regressive moving 

average models (e.g. [21,13,14,16,17,25,29]). By allowing themodel parameters to vary with time, 

thesemodels can have both temporal and spectral nonstationarity. However, it is difficult to relate the 

model parameters 

to any physical aspects of the ground motion. (d) Various forms of spectral representation (e.g. [26, 

12,22,31]). The focus in these models is in developing a time-varying spectral representation. These 

models require extensive processing of the target recorded ground motion. Virtually, all these models 

assume the ground motion to be a zero-mean Gaussian process. 

The stochastic ground motion model developed in this paper is a modulated, filtered Gaussian 

white-noise process. However, unlike previous models, the filter used in this study has time-varying 

properties, thus allowing variation of the spectral content with time. Temporal nonstationarity is achieved 

by modulation in time, as is done in most previous studies. The filter properties are adjusted to capture the 

time-varying predominant frequency and bandwidth of the target accelerogram.  

Two models are particularly relevant to this study. One is the model by Yeh and Wen  

[23], which is also a Gaussian filtered white-noise process. They use a time-invariant filter; however, 



to achieve spectral nonstationarity, they modify the timescale through a nonlinear transformation. The 

model parameters are identified by matching the cumulative energy and zero-level up-crossings of the 

target motion. The approach for estimating the model parameters in the present work is similar to that 

used by Yeh and Wen [23]. The second is a model developed by Papadimitriou [24], which is based on a 

second-order differential equation with time-varying properties and subjected to a modulated Gaussian 

white noise (essentially a filtered white-noise process). Papadimitriou derives approximate expressions 

for the second-moment statistics of the process. This model can be seen as a special case of the model 

presented in this paper (the filter in the present formulation can be more general). Furthermore, in this 

study, the approaches to parameterization and fitting of the model are entirely different. In particular, the 

present model has the important advantage that the temporal and spectral nonstationary characteristics are 

completely separated, thus facilitating parameter estimation. 

Compared with the existing models, the proposed model has the following advantages: (a) the 

model has a small number of parameters, which control the temporal and spectral nonstationary 

characteristics of the simulated ground motion and can be easily identified by matching with similar 

characteristics of the target accelerogram; (b) the temporal and spectral nonstationary characteristics 

are completely separable, facilitating identification and interpretation of the parameters; (c) there is no 

need for sophisticated processing of the target accelerogram, such as the Fourier analysis or estimation of 

evolutionary power spectral density; (d) the filter model provides physical insight and its parameters can 

be related to the characteristics of the earthquake and site considered; (e) simulation of sample functions 

is simple and requires little more than generation of standard normal random variables; and (f) the model 

is of a form, which facilitates nonlinear random vibration analysis by the tail-equivalent linearization 

method (TELM) [33]. 

Virtually, all site-based stochastic ground motion models fail to match the response spectrum 

associated with the target accelerogram in the long-period range (typically greater than 2 s), and the 

model proposed here is no exception. To make a correction, we post-process the stochastic model by 

passing it through a filter based on Brune’s [9] source model. With such a post-processing, the simulated 

motion is appropriate for periods as long as 5–10 s. 

We begin this paper with a new formulation of the filtered white-noise model, which through 

a normalization separates the temporal and spectral characteristics of the process. The model is then 

extended by allowing the filter parameters to vary with time, while maintaining complete separation of 

the time-varying temporal and spectral characteristics. A discrete representation the process is then 

developed, whereby the process is defined as the summation of standard normal random variables with 

time-varying coefficients. This form is of particular interest for the nonlinear random vibration analysis 

[33]. This is followed by parameterization of the model and description of a method for estimation of the 



model parameters. The last section describes simulation of artificial ground motions fitted to a selected 

accelerogram and its post-processing to correct for long periods. 

 

2.2.   Modulated Filtered White Noise Process: 
 

The modulated filtered Gaussian white-noise process is obtained by time modulating the stationary 

response of a linear filter subjected to a Gaussian white-noise excitation. Let the linear filter be defined by 

its impulse response function (IRF) h(t, θ), where θ denotes a set of parameters used to ‘shape’ the filter 

response. Specifically, θ may include the natural frequency and damping of the filter, which control the 

predominant frequency and bandwidth of the process. We assume that the filter is causal so that h(t, θ)=0 

for t<0, and that it is stable so that  /�
�� (t, θ)dt<∞, which also implies lim t→∞h(t)=0. We also assume 

h(t, θ) is at least once differentiable. Note that this requires h(t, θ) to start from a zero value at t =0 and 

not have any discontinuities. The modulated filtered Gaussian white-noise process can be expressed in the 

form 

 
where q(t) is the (deterministic, non-negative) modulating function, w(t) denotes the Gaussian white-noise 

process, and σh is the standard deviation of the filtered white-noise process represented by the integral 

inside the square brackets. Since the response of a stable filter to a white-noise excitation becomes 

stationary after sufficient time, and since the white-noise process is assumed to have started in the infinite 

past (the lower limit of the integral is −∞), the filter response at any finite time point is stationary and, 

therefore, σh is a constant. One can easily show that 

 
where S is the intensity of the white-noise process. An important advantage of expressing the modulated 

filtered white-noise process in the form of (9) is that the segment inside the square brackets is a unit-

variance stationary process, so that the intensity of the process is solely controlled by the modulating 

function q(t). In fact, the standard deviation of the process x(t) is 

                                                                                                                                         ( 17) 

Thus, whereas the modulating function q(t) defines the temporal nonstationarity, the normalized process inside 

the square brackets defines the spectral content of the process, i.e. the time-invariant shape of the power 

spectral density function. Note that, due to the normalization by σh, the intensity of the white-noise process 

   ( 15 )   

                          ( 16 ) 



cancels out and S can be assigned any arbitrary positive value. The modulated filtered white-noise process 

defined by (9) lacks spectral nonstationarity. That is, the frequency content of the process, as represented by 

the instantaneous power spectral density, has a time-invariant shape that is scaled in time uniformly over all 

frequencies according to q2(t). For this reason, this class of processes are known as being uniformly modulated. 

 

 2.3 Fully Nonstationary Filtered White Noise Process : 
 

As mentioned earlier, earthquake ground motions have nonstationary characteristics both in time and 

frequency domains. The temporal nonstationarity arises from the transient nature of the earthquake event. 

The intensity of a typical motion gradually increases from zero to achieve a nearly constant intensity 

during a ‘strong shaking’ phase, and then gradually decays to zero with a total duration of 20–60 s. The 

spectral nonstationarity of the ground motion arises from the evolving nature of the seismic waves 

arriving at a site. Typically, high-frequency (short wavelength) P waves tend to dominate the initial few 

seconds of the motion. These are followed by moderate-frequency (moderate wavelength) S waves, which 

tend to dominate the strong-motion phase of the ground motion. Toward the end of the shaking, the 

ground motion is dominated by low-frequency (long wavelength) surface waves. The complete ground 

motion is an evolving mixture of these waves with a dominant frequency that tends toward lower values 

with time. This evolving frequency content of the ground motion can be critical to the response of 

degrading structures, which have resonant frequencies that also tend to decay with time as the structure 

responds to the excitation. Thus, in modeling earthquake ground motions, it is crucial that both the 

temporal and spectral nonstationary characteristics be properly represented. One convenient way to 

achieve spectral nonstationarity with the filtered white-noise process is to allow the filter parameters to 

vary with time. Generalizing the form in (15), we define the fully nonstationary filtered white-noise 

process 

 

 
 

 

where the parameters θ of the filter are now made dependent on the time of application of the load 

increment. Figure 1 illustrates the idea behind this formulation. The figure shows the responses of the 

filter to 2 unit load pulses at times�-�=1 and 3s, with the filter having a higher frequency at the earlier 

time. The superposition of such incremental responses to a sequence of random load pulses produces a 

process that has a time-varying frequency content, as illustrated in Figure 2. Naturally, the response of 

( 18 ) 

5 



such a filter may not reach a stationary state. Therefore, the standard deviation σh(t) of the process defined 

by the integral in (18) in general is a function of time. One can easily show that 

 

                                                                                         ( 19 ) 

Owing to the normalization by the standard deviation, the process inside the curved brackets in (12) has 

unit variance. Hence, the identity in (11) still holds. However, the normalized process inside the curved 

brackets now has a time-varying frequency content (Figure 2). Thus, whereas the modulating function q(t) 

completely defines the temporal nonstationarity of the process, the selected filter (the form of the IRF) 

and its time-varying parameters θ(-) control the spectral nonstationarity of the process. This complete 

separation of the temporal and spectral nonstationary characteristics of the process offers significant 

advantage in identifying and interpreting the model parameters, as described below. 

 The modulating function q(t) used to model ground motions usually starts from a zero value and 

gradually increases with time. Furthermore, the damping value of the filter used to model ground motions 

is usually large so that the IRF h�t��-,ѳ(-)� quickly diminishes with increasing. 

 

 
 



 
 

t−�-. Under these conditions, the lower limit of the integral in (18) and (19), which is −∞, can be replaced 

with zero (or a finite negative value) without much loss of accuracy. This replacement offers a slight 

computational convenience in the discretization of the process, as described in the following section. 

 

2.4   Characterization of the Ground Motion Process: 
 

The intensity of a zero-mean, Gaussian ground motion process is characterized by its time-varying 

standard deviation. For the model developed in this paper, this is defined by the modulating function q(t). 

In the frequency domain, the ground motion process is characterized by a time varying frequency content. 

In particular, the frequency content may be characterized in terms of a predominant frequency and a 

measure of the bandwidth of the process, as they evolve in time. These properties of the process are 

influenced by the selection of the filter, i.e. the form of the IRF h[t--,θ(-)], and its time-varying 

parameters θ(-). 

As a surrogate for the predominant frequency of the process, we employ the mean zero-level up-

crossing rate, v(0�, t), i.e. the mean number of times per unit time that the process crosses the level zero 

from below. Since the scaling of a process does not affect its zero-level crossings, v(0�, t) for the process 

is identical to that for the process 

 
It is well known [31] that for such a process 

( 20 ) 



 

where σy(t), σ˙y(t) and6y˙y(t) are the standard deviations and cross-correlation coefficient of y(t) and its time 

derivative, ˙y(t)=dy(t)/dt, at time t. For the process in (14), these are given by 

 
Where ˙si (t)=dsi(t)/dt. Using (12) and hi (t)=h[t−ti ,θ(ti)], one can easily show that 

 
 

It is clear that the filter should be selected so that its IRF is differentiable at all times. Thus, for any given 

differentiable IRF and filter parameter functions, the mean zero-level up-crossing rate of the process can 

be computed from (21) by use of the relations in (22)–(25). Naturally, one can expect 

 

 ( 21 ) 

        ( 22 ) 

  ( 23 ) 

   ( 24) 

     ( 25 ) 



 

Figure 3. Segments of (a) narrow-band process and (b) wide-band process. Observe the larger 
number of 

negative maxima and positive minima in the wide-band process. 
 

 

that the fundamental frequency of the filter will have a dominant influence on the predominant frequency 

of the resulting process. 

Several alternatives are available for characterizing the time-varying bandwidth of the process. In 

this paper we use the rate of negative maxima or positive minima as a surrogate for the bandwidth. This 

measure has the advantage that it is not affected by the modulating function. As is well known, in a zero-

mean narrow band process, almost all maxima are positive and almost all minima are negative (see Figure 

3(a)). With increasing bandwidth, the rate of occurrence of negative maxima or positive minima increases 

(see Figure 3(b)). Thus, by determining the rate of negative maxima or positive minima, a time-varying 

measure of bandwidth can be developed. An analytical expression of this rate for the theoretical model 

can be derived in terms of the well-known distribution of local peaks [31]. However, the resulting 

expression is cumbersome, since it involves the variances and cross-correlations of y(t), ˙y(t) and ¨y(t) 

and, therefore, the second derivative of si(t). For this reason, in this paper, the rate of negative maxima or 

positive minima for a selected model process is computed by counting and averaging them in a small 

sample of simulations (typically 10) of the process. As we will shortly see, the damping of the filter,  , has 

the dominant influence on the bandwidth of the process. 

 



 
 

 

 

 

  



 

 

 

 



THE GROUND MOTION MODEL CAN BE REPRESENTED SCHEMATICALLY AS 

BELOW: 

 



3.  MATHEMATICAL MODELLING  OF NONSTATIONARY GROUND 
MOTION 

 
 
3.1 Discretization of the  Nonstationary  Process: 
 
We define the fully nonstationary filtered white-noise process  

                                                                  ( 26 ) 

where the parameters θ of the filter are now made dependent on the time of application of the load 

increment. 

In order to digitally simulate a stochastic process, some sort of discretization is necessary. Here, we select 

a discretization in the time domain. Let the duration of the ground motion be discretized into a sequence 

of equally spaced time points ti =i×7t  for i =0,1, . . . ,n, where 7t is a small time step. At a time t, 0<t8tn, 

letting int (t/7t)=k, where 08k8n, the process in (26) can be expressed as 

 

 

Assuming h[t−-,θ(-)] remains essentially constant during each small time interval ti−18t8ti and 

neglecting the last term, which is an integral over a fraction of the small time step, one obtains 

 
Where 

 

 

It is easy to show that Wi for all i are statistically independent and identically distributed Gaussian random 

variables having zero mean and the variance 29S7t. Introducing the standard normal random variables ui 

=Wi / :�9&70 , (28) can be expressed as 

 

 

( 27 ) 

 ( 28 ) 

  ( 29 ) 

 ( 30 ) 



We have superposed hats on two terms in the above expression. The one on ˆx(t) is to highlight the fact 

that expressions (28) and (30) are for the discretized process and employ the approximations involved in 

going from (27) to (28). The hat on ˆσh(t) is used to signify that this function is the standard deviation of 

the discretized process represented by the sum inside the square brackets in (28), so that the process inside 

the square brackets in (30) is properly normalized. Since Wi in (28) are statistically independent random 

variables, one has 

                                                               ( 31 )   

This equation is the discretized form of (13). 

     The representation in (30) has the simple form 

                                                                                   ( 32 ) 

 

 

 

 

 

 

 

 

The form in (32) has interesting geometric interpretations [27]. In particular, the zero-mean Gaussian 

process ˆx(t) can be seen as the scalar product of a deterministic, time-varying vector of magnitude q(t) 

along the unit vector s(tk )=[s1(tk) . . . sk (tk )]
T, and a time-invariant, standard normal random vector u=[u1 

. . .uk ]T. Furthermore, this representation of the excitation process can be used for nonlinear random 

vibration analysis by use of the TELM, as described by Fujimura and Der Kiureghian [33]. 

 

 

 

 

 

 

Where 

   ( 33 ) 



 

 

 
 
 

 
 
 



3.2. VALIDATION OF THE MODEL: 
 

As shown above, the temporal and spectral characteristics of the proposed model are completely 

separable. Specifically, the modulating function q(t) describes the evolving RMS of the process, whereas 

the filter IRF h�t�-,θ(-)� controls the evolving frequency content of the process. This means that the 

parameters of the modulating function and of the filter can be independently identified by matching to 

corresponding statistical characteristics of a target accelerogram. 

 

3.2.1 Identification of parameters in the modulating function 

Let α�(T0,T1,T2, σmax , α, β) denote the parameters of the modulating function, so that q(t)� q(t,α). For a 

target accelerogram, a(t), we determine α by matching the expected cumulative energy of the process, Ex 

(t)�(1/2) 23  q2(-,α)d-, with the cumulative energy in the accelerogram, Ea(t)� (1/2)� 23 a2(-)d-, over 

the duration of the ground motion, 0<t ≤ tn. This is done by minimizing the integrated squared difference 

between the two cumulative energy terms, i.e. 

 
where B(t) is a weight function introduced to avoid dominance by the strong-motion phase of the record. 

(Otherwise, the tail of the record is not well fitted.) We have found the function B(t)=min{[maxt q�; 

(t)]/q��;  (t),5}, where q0(t) is the modulating function obtained in a prior optimization without the weight 

function, to work well. The objective function in (34), which was earlier used by Yeh and Wen [27] 

without the weight function, has the advantage that the integral  23  a2(-)B(-) d- is a relatively smooth 

function so that no artificial smoothing is necessary. 

As an example, Figure  compares the two energy terms 2Ex (t) and 2Ea(t) when fitting to 

component 090 of the accelerogram recorded at the 116th Street School station during the 1994 

Northridge earthquake. The parameter values are T0=0.0004s, T1=T2=12.2s, α =0.413s−1, β =0.552 and  

σmax=0.0744g. It can be seen that the fit is excellent at all time points. We use this record to 

illustrate further steps of the parameter identification process. As a measure of the error in fitting to the 

cumulative energy of the accelerogram, we use the ratio 

                                                                                                      (  35 ) 

( 34 ) 



The numerator is the absolute area between the two cumulative energy curves and the denominator is the 

area underneath the energy curve of the target accelerogram. For the example shown in Figure, <q �0.0248.  

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.  Cumulative energies in the target accelerogram and the fitted model. 

 



 

3.2.2 Identification of filter parameters 

The parameters '0 and 'n defining the time-varying frequency of the filter (see (21)) and parameters 

defining its damping ratio ζf(-) control the predominant frequency and bandwidth of the process. Since 

these parameters have interacting influences, we first determine '0 and 'n, while keeping the filter 

damping a constant ,.  For a given ζf , the parameters '0 and 'n are identified by matching the cumulative 

expected number of zero-level up-crossings of the process, i.e.  23  v(0+,-)d-, with the cumulative count 

N(0+, t) of zero-level up-crossings in the target accelerogram for all t, 0<t ≤ tn. This is accomplished by 

minimizing the mean-square error 

 
 

where r(-) is an adjustment factor as described below. As can be noted in the equations leading to 

(15),v(0�,-) is an implicit function of the filter characteristics 'f(-) and ������(-), and therefore,'0, 'n and 

  ζf . The same is true for r (-). 
 When a continuous-parameter stochastic process is represented as a sequence of discrete-time 

points of equal intervals 7t, the process effectively loses its content beyond a frequency approximately 

equal to 9/(27t) rad/s. This truncation of high-frequency components results in undercounting of level 

crossings. One can show that the undercount per unit time, denoted r, is a function of 7t as well as the 

frequency characteristics of the process. In Appendix A, approximate expressions for r are given as 

functions of 7t,  'f and ζf . In the present case, since 'f is a function of -, r is also a function of -. 

Since digitally recorded accelerograms are available only in the discretized form, the count N(0�, t) 

underestimates the true number of crossings of the target accelerogram by the factor r (-) per unit time. 

Hence, to account for this effect, we must multiply the rate of counted up-crossings by the factor 1/r (-). 
However, r (-) depends on the predominant frequency and bandwidth of the accelerogram. For this 

reason, it is more convenient to adjust the theoretical mean up-crossing rate (the first term inside the 

square brackets in (36)) by multiplying it by the factor r (-). It is noted that, depending on the time step 

and filter frequency and damping, the undercount in the rate of up-crossings can be as much as 15% (see 

Appendix A). 

In order to solve (36), we need to select the filter damping ratio, ζf , which controls the bandwidth 

     ( 36 ) 



of the process. As mentioned earlier, we employ a simulation approach to estimate the average 

cumulative number of negative maxima and positive minima, which characterizes the bandwidth of the 

model process. Shown in Figure 5 is the cumulative number of negative maxima plus positive minima as 

a function of time for the Northridge record (thick solid line), as well as the estimated averages of the 

same quantity for sets of 10 simulations of the theoretical model with damping values  ζf  �0.2, 0.3, 0.4, 

0.5, 0.6 and 0.7 (thin solid lines). The slopes of these lines should be regarded as instantaneous measures 

of bandwidth. The parameters �'0 and �' n for each value of  ζf   are determined as described above and 

listed in Table I. Note that the modulating function has no effect on this calculation. 

 
 



 
 

Several observations in Figure  are noteworthy. First, note that the curves based on the theoretical model 
for the various values of ζf are nearly straight lines. This implies that a constant value of the filter 
damping ratio corresponds to a constant bandwidth of the process, even though the predominant 
frequency varies with time. This also implies that the bandwidth of the model process is solely controlled 
by the damping ratio of the filter. Secondly, observe that the curve based on the target accelerogram 
shows relatively small curvatures. This implies that the bandwidth of this particular accelerogram, as 
measured in terms of the rate of negative maxima and positive minima, remains more or less constant 
during the excitation. It can be seen that the theoretical curve with ζf  =0.3 best matches the bandwidth of 
the target accelerogram. If we select ζf =0.3, the corresponding values of the frequency parameters are 

'0�39.7rad/s and �'n�4.68rad/s (Table I). These parameter values, together with the parameters 

identified for the modulating function, completely define the theoretical model fitted to the target 
accelerogram.  

Closer examination of the target curve in Figure  shows that the rate of occurrence of negative 

maxima and positive minima in the Northridge accelerogram is higher during the initial 8 s and final 10 s 

of the motion relative to the 22 s middle segment. This phenomenon was observed to varying degrees in 

other accelerograms that were investigated. It appears that ground motions typically have broader 

bandwidths during their initial and final phases, as compared to their middle segments. This phenomenon 

may be attributed to mixing of wave forms: In the initial segment, P and S waves are mixed providing a 

broad bandwidth, the middle segment is dominated by S waves and, therefore, has a narrower bandwidth, 

whereas the final segment is a mixture of S waves and surface waves, again providing a broader 

bandwidth. 

To more accurately model the time-varying bandwidth of the accelerogram, the filter damping 

ratio can be made as a function of time. To capture the three-segment behaviour described above, we 

select three values of the damping ratio for the initial, middle and final segments of the ground motion. 



The dashed line in Figure 5 shows the average cumulative number of negative maxima and positive 

minima for 10 simulations of the fitted model with the filter damping ratio ζf(-)�0.4 for 0<-≤8s,     

(-)�0.2 for 8<-≤30s and ζf (-)�0.9 for 30<�-�≤40s. These values were selected by comparing the slopes 

of the observed curve (the thick line in Figure 5) with those of the theoretical curves for different damping 

ratios (thin lines in the same figure). The corresponding optimal values of the filter parameters (obtained 

by using the variable damping values in (24)) are �'0�39.4rad/s and �'n�4.86rad/s. It can be seen in 

Figure 5 that the refined model achieves a close fit to the time-varying bandwidth of the target 

accelerogram. 

Figure 6 compares the cumulative number of zero-level up-crossings of the Northridge 

accelerogram and the adjusted (by factor r (-)) mean cumulative number of zero-level up-crossings of the 

fitted model process with variable filter damping. It is evident that the rate of up-crossings (the slope of 

the curve) decays with time, indicating that the predominant frequency of the ground acceleration 

decreases with time. As a measure of the error in fitting to the cumulative number of zero-level up-

crossings, we use 

 
Values of this measure are listed in Table I for both constant and variable damping models. A similar 

measure of error in fitting the bandwidth can be defined as the difference between the cumulative 
numbers of negative maxima and positive minima of the target accelerogram and of the model process, 
normalized by the cumulative number for the target accelerogram. This measure, denoted <����, is also 

listed in Table I. Note that this error measure is small only when    �0.3 or variable damping is selected. 
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Figure. Cumulative number of zero-level up-crossings in the target accelerogram and fitted model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.3 POST-PROCESSING OF SIMULATED MOTION 
 

3.3.1  Description of post-processing 
 
It has been noted in the past that site-based stochastic ground motion models tend to overestimate the 

structural response at low frequencies. As an example, Figure (a)  shows the response spectrum of the 

Northridge target accelerogram (thick line) together with response spectra of 10 simulated motions with 

the variable damping model described above (thin lines). It can be seen that, although the simulated 

spectra match the target spectrum fairly closely for periods shorter than about 2.5 s, at longer periods they 

all exceed the target spectrum.  

The above problem has to do with describing the ground acceleration as a filtered white-noise 

process. Such a process has a non-zero spectral density at zero frequency and, as a consequence, the 

integral of the process (the ground velocity or displacement) has infinite spectral density at zero 

frequency. Because of this property, the variances of the velocity and displacement processes keep on 

increasing even after the acceleration has vanished. This is contrary to (base-line-corrected) 

accelerograms, which have zero residual velocity and displacement at the end of the record. To overcome 

this problem, it is necessary to adjust the low-frequency content of the stochastic model. This is achieved 

by using a high-pass filter. For this study, we have selected the critically damped oscillator as the high-

pass filter. Accordingly, the corrected acceleration record, denoted �z (t), is obtained as the solution of the 

differential equation 

 

where 'c is the frequency of the high-pass filter and �x(t) is the discretized acceleration process as 

defined in (32). Due to high damping of the oscillator, it is clear that z(t), �z(t) and �z(t) will 
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Figure. Pseudo-acceleration response spectra of the target accelerogram (thick line), and 10 realizations of 

the fitted model (thin lines): (a) before post-processing and (b) after post-processing. 
 

all vanish shortly after the input process ˆx(t) has vanished, thus assuring zero residuals for the simulated 

ground motion. This filter, which was also used by Papadimitriou [24], is motivated by Brune’s [9, 11] 

source model, based on which  c, also known as the ‘corner frequency,’ can be related to the geometry 

of the seismic source and the shear wave velocity. Most ground motion databases, e.g. 

http://peer.berkeley.edu/nga/index.html, provide the corner frequency. Note that for stochastic dynamic 

analysis, the high-pass filter can be included as a part of the structural model so that the discretized form 

of the input process in (32) can be preserved.  

Figure (b) compares the response spectrum of the target accelerogram with the response spectra 

of the 10 simulated motions, which are post-processed with the filter in (26) with  c=0.5_rad/s. It can be 

seen that the post-processing significantly improves the estimation of spectral values at long periods 

without affecting the short-period range.  

The observed discrepancies between the target and simulated spectra in the short-period range Of 

Figure 7(b), although not significant, are partly due to the use of a single-degree-of-freedom filter. Such a 

filter can only characterize a single dominant period in the ground motion. The target recorded ground 

motion here clearly shows multiple dominant periods. If a closer match is desired, one can select a two-

degrees-of-freedom filter, in which case additional parameters will need to be introduced and identified. 

This is entirely possible with the proposed model but is not pursued in this study. 

 

 
 



3.3.2 Adjustment factor for zero-level up-crossings 
 

 
 

 
Figure AI. Adjustment factor for undercounting of zero-level up-crossings of a discretized process. 

represents the undercounting of the zero-level up-crossings, when the process is represented at discrete-

time points of interval _t. The dotted lines represent the straight-line approximations 

 

 
 

It can be seen in Figure AI that representation of a process at discrete-time points can result in 

undercounting of the zero-level up-crossings by as much as 2–25%, depending on the filter parameters 

and the time step used. 

 

 

  



4. APPLICATIONS 
 

The response of a linear filter with time-varying parameters subjected to a white-noise process is 

normalized by its standard deviation and is multiplied by a deterministic time-modulating function to 

obtain the ground acceleration process. Normalization by the standard deviation separates the spectral 

(achieved by time-variation of the filter parameters) and temporal (achieved by multiplying the process 

with a time-modulating function) nonstationary characteristics of the process. This model is formulated in 

the continuous form by (26) and in the discrete form by (32). The discrete form is ideal for digital 

simulation and for use in nonlinear random vibration analysis by the tail-equivalent linearization method. 

The model is completely defined by the form of the filter IRF and the modulating function and their 

parameters. Suggested models for the IRF and the modulating function and their parameters are provided. 

The stochastic model may have as few as six parameters that control the statistical characteristics of the 

ground motion. The simulated acceleration process according to (32) is then high-pass filtered in 

accordance with (38) to assure zero residual velocity and displacement, as well as to produce reliable 

response spectral values at long periods. Figure illustrates the steps involved in simulating a single ground 

acceleration time-history for a given set of model parameters. 

For specified parameters of the modulating function and the filter IRF, sample realizations of the 

proposed stochastic ground motion model are generated by the use of (32). This requires generation of the 

standard normal random variables ui , i �1, . . . ,n, and their multiplication by the functions si (t), which 

are computed according to (33). The resulting motion is then postprocessed as described in the previous 

section. Figure 8 shows the target Northridge accelerogram together with two sample realizations 

simulated using the fitted stochastic model. These simulated ground motions have evolutionary statistical 

characteristics, i.e. time-varying intensity, predominant frequency and bandwidth, which are similar to 

those of the target accelerogram. Hence, together with the target accelerogram, they can be considered as 

realizations of a stochastic ground motion having the characteristics of the earthquake and site, which 

produced the target motion. Such an ensemble of ground motions would be appropriate for design or 

assessment of a structure for that particular earthquake. However, in the broader context of PBEE design 

and analysis, an ensemble of ground motions that represents all possible earthquakes at a site is of 

interest. The proposed model can be used to generate such an ensemble as described below  

               Suppose we fit the model to a large ensemble of accelerograms with known earthquake and 

recording site characteristics, e.g. the earthquake magnitude, distance, faulting type, depth to bedrock, site  



 

Figure. Target accelerogram and two simulations using the fitted model. 
 

.  

shear wave velocity. The result will be a database of the model parameters for the given values of the 

earthquake and site characteristics. By regressing the former against the latter, one can develop predictive 

relations for the model parameters in terms of the earthquake and site characteristics (similar to 

attenuation laws). Let θ�g(x)�= denote the set of relations between the model parameters, θ, and the 

earthquake and site characteristic variables, x, with = denoting the zero-mean regression errors. For a 

given set of earthquake variables x, an ‘average’ ground motion is generated using the mean model 

parameters θ�g(x). An entire suit of motions for given x can be generated by randomizing = and 

computing the corresponding values of the model parameters. This process can be repeated for different 

sets of earthquake and site characteristics x, thus generating an entire suite of artificial ground motions for 

the PBEE design and analysis. Because of the fact that the parameters of the proposed model are directly 

related to the physical characteristics of the ground motion (i.e. intensity, predominant frequency and 

bandwidth) it is likely that the regressions with earthquake and site characteristics will produce good 

predictive models. This study is currently underway. 



5. NUMERICAL STUDY 

5.1 Numerical Examples  

Example 1: The matlab program has been given the value as follows: 

      INPUT DATA:  

      Damping ratio(ζ) =0.3, 

             Filter frequency at time t0 ( ω0)= 39.7 ,  

             Filter frequency at time tn ( ωn)= 4.68, 

             Initial time (t0) = 0.0004 sec., 

             Total   time duration (tn) = 40 sec., 

              MODULATING FUNCTION PARAMETERS : 

               Start of the strong motion phase(T1) =12.2sec., 

               End of the strong motion phase(T2) =12.2sec.,  

               R.M.S value of the function = 0.0744g, 

               α (shape the decaying end of the function) =0.413, 

               β (shape the decaying end of the function) =0.552,  

 

 

 

 

              



       

                       

                    TIME (IN SEC) 

Y AXIS REPRESENTS THE MODULATING FUNCTION 

The above graph shows the variation of modulating function with respect to time. 

 

 



 
 

                      TIME (IN SEC) 

Y AXIS REPRESENTS THE ACCELERATION 

The above graph shows the variation of acceration Vs time in the unmodulated 
process.  

 

 

 

 



 
 

 

 

 

The above final graph shows the variation of  acceleration Vs time in the 
modulated process.   

 

 

 
 
 
 
 
 
 
 
 
 
 



 
Example 2: The matlab program has been given the value as follows: 

      INPUT DATA:  

      Damping ratio(ζ) =0.2, 

             Filter frequency at time t0 ( ω0)= 40.8,  

             Filter frequency at time tn ( ωn)= 4.16, 

             Initial time (t0) = 0.0004 sec., 

             Total   time duration (tn) = 40 sec., 

              MODULATING FUNCTION PARAMETERS : 

               Start of the strong motion phase (T1) =12.2sec., 

               End of the strong motion phase (T2) =12.2sec.,  

               R.M.S value of the function = 0.0744g, 

               α (shape the decaying end of the function) =0.413, 

               β (shape the decaying end of the function) =0.552,   

 

 

           



 
 
 
                     TIME (IN SEC) 

Y AXIS REPRESENTS THE MODULATING FUNCTION 

The above graph shows the variation of modulating function with respect to time. 

 
 
 



 
 
 
 
                      TIME (IN SEC) 

Y AXIS REPRESENTS THE ACCELERATION 

The above graph shows the variation of acceleration Vs time in the unmodulated 
process.   
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The above final graph shows the variation of  acceleration Vs time in the 
modulated process.    

 
 
 
 
 
 



Example 3: The matlab program has been given the value as follows: 

      INPUT DATA:  

      Damping ratio(ζ) =0.4, 

             Filter frequency at time t0 ( ω0)= 38.6,  

             Filter frequency at time tn ( ωn)= 4.49, 

             Initial time (t0) = 0.0004 sec., 

             Total   time duration (tn) = 40 sec., 

              MODULATING FUNCTION PARAMETERS : 

               Start of the strong motion phase (T1) =12.2sec., 

               End of the strong motion phase (T2) =12.2sec.,  

               R.M.S value of the function = 0.0744g, 

               α (shape the decaying end of the function) =0.413, 

               β (shape the decaying end of the function) =0.552,   

 

 
 
 



 
 
 
 
 
                     TIME (IN SEC) 

Y AXIS REPRESENTS THE MODULATING FUNCTION 

The above graph shows the variation of modulating function with respect to time.  

 
 
 



 
 
 
                      TIME (IN SEC) 

Y AXIS REPRESENTS THE ACCELERATION 

The above graph shows the variation of acceration Vs time in the unmodulated 
process.    
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The above final graph shows the variation of  acceleration Vs time in the 
modulated process.     

 
 
 
 
 
 
 



5.2 COMPARISON OF TARGET AND SIMULATED ACCELEROGRAMS 

 

 
 
 
 
 

 
 
 
 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6. CONCLUSIONS & ANNEXURE 

 
 

6.1  Conclusion 

A fully nonstationary stochastic model to describe earthquake ground motions is developed. The model is 

based on the modulation of the response of a linear filter with time-varying characteristics to a discretized 

white-noise excitation. The proposed model has a number of important advantages. One significant 

advantage is that the temporal and spectral nonstationary characteristics of the process are separate, 

facilitating the identification and interpretation of the model parameters. Specifically, the modulating 

function characterizes the variation of the intensity in time, whereas the time-varying filter parameters 

define the evolving frequency content of the process. The model parameters are estimated by fitting to 

selected statistical characteristics of a target accelerogram. There is no need for sophisticated processing 

of the recorded motion such as Fourier analysis or estimation of evolutionary power spectral density. 

Instead, the model fitting requires computation of the cumulative energy and the cumulative counts of 

zero-level up-crossings, negative maxima and positive minima of the accelerogram.  

The model can be used to simulate artificial ground motions having statistical characteristics 

similar to those of the target accelerogram. The simulation requires little more than generation of standard 

normal random variables, their multiplication with deterministic time functions, and post-processing 

through a high-pass filter to correct the long-period content of the spectrum. Furthermore, the model is of 

a form, which facilitates the nonlinear random vibration analysis by TELM.  

An example application using an accelerogram of the 1994 Northridge earthquake as the target 

motion is described in detail. The example demonstrates the effectiveness of the proposed parameter 

estimation method and the faithfulness of the model in reproducing realizations with statistical 

characteristics similar to those of the target motion. By fitting to different recorded ground motions, one 

can generate a library of simulated motions with specified earthquake and site characteristics for use in 

performance-based earthquake engineering analysis. 

 

 
 
 
 
 
 
 
 

 



6.2.ANNEXURE 

 

6.2.1 Program listing 

 

Stochastic model has been developed in the matlab software. The following is the input file of the 

program: 

1**********!***********q_Iq2_B.m ********* 

switch Type  

     

    case 'piece-wise' 

     

for r=1:n 

    tr=(r-1)*deltat; 

    if tr<T0 

        q(r)=0; 

    else  

        if tr<T1 

            q(r)=((tr-T0)/(T1-T0))^2; 

        else  

            if tr<T2 

                q(r)=1; 

            else 

                q(r)=exp(-S*((tr-T2)^B)); 

            end 

        end 

    end 

end 



q=q*D; 

q2_Integ(1)=0; 

for r=2:n 

    q2_Integ(r)=q2_Integ(r-1)+q(r)^2; 

end 

q2_Integ=q2_Integ*deltat; 

  

2****************SampleSiml.m************ 

 

% Created by vivek kumar pankaj  

% Last update: 12/21/2011 

% Simulate a ground motion given parameters according to 2008paper 

% Accompanied by: q_Iq2_B.m  simf.m 

  

%% Simulation (n=tn*tdeltat/deltat) 

n=2000; 

deltat=0.02; 

  

%% Specify the type of the deterministic modulating function q(t) 

Type='piece-wise'; 

T0=0.0004; 

T1=12.2; 

T2=12.2; 

D=0.0744; 

S=0.413; 

B=0.552; 

q_Iq2_B %%this script creates functions q(t) and q2_Integ(t) 



figure 

plot(0:deltat:(n-1)*deltat,q) 

  

%% Simulate the filter 

a=39.7; 

b=(a-4.68)/((n-1)*deltat); 

c=0.3; 

figure 

f=simf(a,b,c,n,deltat);  %% Generates the unmodulated process 

  

%% final form of the realization 

F=q.*f; 

figure 

plot(0:deltat:(n-1)*deltat,F) 

xlabel('time (sec)') 

ylabel('acceleration (g)') 

title('Simulation') 

***********simf.m************** 

 

function f=simf(a,b,c,n,deltat) 

%%% Generates the unmodulated simulation 

  

for r=1:n 

    t(r)=(r-1)*deltat; 

end 

  

f=zeros(1,n); 



C=zeros(1,n); 

zeta=c; 

  

%% Find the scale parameter, C vector 

for j=1:n 

    tj=t(j); 

    omega=a-b*tj; 

    omegaD=omega*sqrt(1-zeta^2); 

    for i=1:n 

        ti=t(1)+(i-1)*deltat; 

        if ti>=tj 

            hf=-(omega/sqrt(1-zeta^2))*exp(-zeta*omega*(ti-
tj))*sin(omegaD*(ti-tj)); 

            Cj(i)=hf.^2; 

        else 

            Cj(i)=0; 

        end 

    end  

    C = C + Cj; 

end 

C=C.^(.5); 

C(1)=.1; 

  

%% Generate the Sj vectors: 

for j=1:n 

    tj=t(j); 

    uj=randn(1); 



    cj=C(j); 

    omega=a-b*tj; 

    omegaD=omega*sqrt(1-zeta^2); 

    for i=1:n 

        ti=t(1)+(i-1)*deltat; 

        if ti>=tj 

            hf=-(omega/sqrt(1-zeta^2))*exp(-zeta*omega*(ti-
tj))*sin(omegaD*(ti-tj)); 

            Sj(i)=hf; 

        else 

            Sj(i)=0; 

        end 

    end  

    f = f + Sj*uj; 

end 

  

%% Scale f to normalize its standard deviation 

f=f./C; 

plot(t,f) 
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