DELHI COLLEGE OF ENGINEERING DELHI Department of Electrical Engineering

CERTIFICATE

It is certified that Ms.SMITHA .P Roll No.13962 ,student of M.E,Control and Instrumentation, Department of Electrical Engineering, Delhi College of Engineering, has submitted the dissertation entitled "Survey of post Current Conveyor Voltage mode / Current mode active building blocks" under my guidance towards partial fulfillment of the requirements for the award of the degree of Master of Engineering in Electrical Engineering (Control and Instrumentation). This dissertation is a bonafide record of project work carried out by her under my guidance and supervision and has not been presented earlier for the award of any degree / diploma.

I wish her success in all her endeavors.

Prof. (Dr.) NARENDRA KUMAR Head of Department Department of Electrical Engineering Delhi College of Engineering Delhi -110042 Dr.PRAGATI KUMAR Associate Professor Department of Electrical Engineering Delhi College of Engineering Delhi -110042

ACKNOWLEDGEMENT

I am thankful to the Almighty because without his blessings this work would not have been possible. It is a great pleasure to have the opportunity to extend my heartfelt gratitude to everybody who helped me through out the course of this project.

It is a pleasure to express my deep sense of gratitude and indebtedness to my project supervisor Dr.Pragati Kumar for his invaluable guidance, encouragement and patient reviews. His continuous inspiration has made me complete this dissertation.

I would like to take this opportunity to present my sincere regards to Prof. Narendra Kumar, Head Electrical Engineering Department, DCE for his support and encouragement.

I would like to thank Ms.Indu, Associate Professor, Electronic Engineering Department, DCE for the support she has given in the course of my project. I, gratefully, acknowledge the support given by Mr.Karan Singh and my friend Kumari shipra in the duration of my project.

At last but not least I am grateful to my husband Dr.Suresh, my son Hrishikesh and rest of my family for their encouragement and support which has helped me in a great way to complete this dissertation.

> Smitha.P College Roll No ,07 / C&I / 09 University Roll No 13962

CONTENTS

Certificate		i
Acknowledgement		ii
Contents		iii
List of figures		vi
Abstract		ix
S.No	Title Pag	ge No.
Chapter – I	Introduction	
1.1	Introduction	1
1.2	Analog signal processing Vs Digital signal processing	2
1.3	Current signal processing Vs Voltage signal processing	3
1.4	Scope and outline of the work presented in Thesis	4
References		5
Chapter – II	Current Conveyors and its derivatives	
2.1	Introduction	6
2.2	Characteristics of CCI and CCII	6
2.3	FDCCII	8
2.4	OFCC	9
2.5	CCCII	11
2.6	CFBCCII	13
2.7	UCC	15

2.8	FBCCII	17
2.9	DXCCII	18
2.10	MCCIII	19
References		22
Chapter – III	Opamps, FTFNs and Hybrid Opamp-CCs	
3.1	FTFN and Multi-output FTFN	25
3.2	TFTFN	28
3.3	FBFTFN	30
3.4	Current feedback Amplifiers, CFA	31
3.5	Basic concepts of CC-CFA	33
3.6	Operational Conveyor, OC	34
References		37
Chapter – IV	Other Active Devices	
4.1	CDBA	39
4.2	CC-CDBA	41
4.3	DC-CDBA	42
4.3.1	Current Differencing Circuit	43
4.3.2	Current Division Network	45
4.4	CDTA	45
4.5	ZC-CDTA	48
4.6	MCDTA	49
4.7	CC-CDTA	50
4.8	ССТА	52

4.9	CC-CCTA	53
4.10	MO-CCCCTA	55
4.11	DV-CCTA	56
4.12	DDCCTA	58
4.13	VDTA	59
4.14	CFTA	60
4.15	ZC-CFTA	61
4.16	VDBA	63
4.17	CFBTA / CIBTA	64
References		66
Chapter V	Practical implementation of some of the active blocks	
5.1	Introduction	70
5.2	Practical realization of CCTA	70
5.3	Practical realization of CC-CFA	75
5.4	Practical realization of CDBA	79
54.1	Realization of CDBA based quadrature oscillator	86
5.5	Summary and scope for future work	90
References		91

LIST OF FIGURES

Fig 2.1 CCI (a)Symbol	(b)Nullator- Norator representation	7
Fig 2.2 (a)The positive co	nveyor CCII+, (b)The negative conveyor CCII-,	7
Fig 2.3 The circuit symbol	of FDCCII	8
Fig 2.4 CMOS realization	of FDCCII	9
Fig 2.5 Block diagram representation of OFCC		10
Fig 2.6 Circuit scheme of C	DFCC	10
Fig 2.7 Symbol of CCCII		12
Fig 2.8 Equivalent Symbol	of ±CCCII	13
Fig 2.9 CMOS implementi	on of CCCII± with -ve intrinsic resistance	13
Fig 2.10 Symbol of CFBCC	CII	14
Fig 2.11 Frame diagram of	CFBCCII	14
Fig 2.12 Circuit realization	of CFBCCII	15
Fig 2.13 Matrix description	of UCC	15
Fig 2.14 Symbol of UCC		16
Fig 2.15 CMOS implement	ation of UCC	17
Fig 2.16 Fully balanced rea	lization of CCII	18
Fig 2.17 CMOS realization	of FBCCII	18
Fig 2.18 Symbol of DXCC	П	19
Fig 2.19 Practical realization	on of DXCCII using AD844	19
Fig 2.20 Realisation of CCI	III using two CCII+	20
Fig 2.21 Symbol of modifie	ed Third generation CC	20
Fig 2.22 MCCIII based all	pass filters and related transfer functions	21
Fig 3.1 Model of FTFN		26
Fig 3.2 Symbol and possibl	e implementation of multiout FTFN	26
Fig 3.3 Bipolar implementation of multioutput FTFN		26
Fig 3.4 Cascade npn current mirror with adjustable current gain		27
Fig 3.5 Electronically tunat	ble FTFN-symbol and bipolar realization	28

Fig 3.6 TFTFN – circuit diagram and symbol	29
Fig 3.7 FBFTFN-symbol and CMOS implementation	30
Fig 3.8 CFA – symbol and equivalent circuit	32
Fig 3.9 CCCFA-symbol and equivalent circuit	33
Fig 3.10 CCCFA – Bipolar implementation	34
Fig 3.11 symbol of a basic current conveyor	35
Fig 3.12 Operatonal Conveyor with impedance Z	35
Fig 3.13 Operational Conveyor in non-inverting configuration	36
Fig 4.1 symbol of CDBA	40
Fig 4.2 CMOS implementation of CDBA	40
Fig 4.3 Symbol and implementation of CC-CDBA	42
Fig 4.4 DC-CDBA –symbol and block diagram	44
Fig 4.5 CMOS Current differencing circuit	44
Fig 4.6 CDN- circuit diagram and symbol	45
Fig 4.7 Model of ideal CDTA	46
Fig 4.8 CDTA –Symbol and realization using CCII+ and OTA	47
Fig 4.9 ZC-CDTA –symbol and implementation	48
Fig 4.10 CDTA –CMOS realization	49
Fig 4.11 MCDTA –symbol and equivalent circuit	50
Fig 4.12 CC-CDTA –symbol and behavioral model	51
Fig 4.13 CC-CDTA –CMOS implementation	51
Fig 4.14 CCTA-behavioral model	52
Fig 4.15 CCTA –realization using CCIII and OTA	52
Fig 4.16 CCCCTA –symbol and equivalent circuit	54
Fig 4.17 CCCCTA-Bipolar realization	54
Fig 4.18 MO-CCCCTA symbol	55
Fig 4.19 MO-CCCCTA –CMOS implementation	56
Fig 4.20 DV-CCTA symbol	57
Fig 4.21 DV-CCTA –CMOS implementation	57

Fig 4.22 DD-CCTA symbol	58
Fig 4.23 DD-CCTA –CMOS implementation	58
Fig 4.24 VDTA symbol	59
Fig 4.25 VDTA –CMOS realisation	60
Fig 4.26 CFTA symbol and behavioral model	61
Fig 4.27 ZC-CFTA symbol and equivalent circuit	63
Fig 4.28 FB-VDBA –symbol and behavioral model	64
Fig 4.29 CFBTA / CIBTA –symbol and behavioral model	65
Fig 5.2.1 Implementation of CCTA using AD844	71
Fig 5.2.2 CCTA based sinusoidal oscillator	71
Fig 5.2.3 CCTA based sinusoidal oscillator simulated using AD844 and LM13600)73
Fig 5.2.4 CCTA based sinusoidal oscillator response using Pspice	74
Fig 5.3.1 Implementation of CC-CFA using commercially available active blocks	76
Fig 5.3.2 CC-CFA based non inverting voltage amplifier	76
Fig 5.3.3 CC-CFA based non inverting amplifier using AD844 and LM13600	77
Fig 5.3.4 Simulation results of CC-CFA based non inverting amplifier	78
Fig 5.4.1 Implementation of CDBA using two CFAs	80
Fig 5.4.2 CDBA based universal biquad filter	80
Fig 5.4.3 CDBA biquad universal filter –Low Pass mode	82
Fig 5.4.4 Simulated frequency characteristics of CDBA biquad filter	83
Fig 5.4.5 CDBA biquad universal filter Band stop mode	84
Fig 5.4.6 Simulated frequency characteristics of Band stop filter	85
Fig 5.4.7 CDBA based sinusoidal quadrature oscillator	86
Fig 5.4.8 Practical realization of CDBA based quadrature oscillator	87
Fig 5.4.9 Simulated result of CDBA based quadrature oscillator	88
Fig 5.4.10 waveforms of V_{01} and V_{02} showing the phase-shift of 90°	89

ABSTRACT

In the present work a survey of the active building blocks introduced in the domain of analog signal processing after the introduction of Current Conveyor has been presented. Particular emphasis has been put on those works which have been presented during the last one decade. Developments in the field of analog signal processing post conveyor is briefly described in the first chapter highlighting the differences between analog signal processing, its types and digital signal processing. In this thesis the newly introduced active elements are categorized in three headings *Current Conveyors and it's derivatives ; Opamps, FTFNs, Hybrid Opamp-CC ; Other Active elements*. Each of these classes and the developments in each of the category is described in detail in subsequent second, third and fourth chapters. The fifth chapter discuss about the practical implementation of few of the active blocks described in the previous chapters. Some of their applications are simulated using off the shelf components like AD844 and LM13600 using ORCAD-PSPICE 9.1version. The simulation results are also presented in the same chapter.